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CHAIN HOMOTOPY PULLBACKS AND PUSHOUTS

by Y. L. WONG

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFTRENTIELLE

Vol. XXIII-3 (1982)

0. INTRODUCTION.

Homotopy pullbacks and pushouts in the category of topological spa-
ces are introduced in [2] to characterize most of the standard construc-

tions in topology and to deal with problems in homotopy theory; see for

example [4] and [ 5]. Mather’s Cube Theorems [2] so to speak are of fund-

amental importance within homotopy theory. In this paper, I prove an ana-

logous result for chain complexes. Because of the exact dual character of

chain fibration and chain cofibration, the two dual cube theorems also hold

in this case. Chain homotopy pullbacks and pushouts are introduced in Sec-

tion 1. In Section 2, the concept of fibration and cofibration, in this case I

shall call chain fibration and chain cofibration, are recalled. Owing to a

theorem of K.H. Kamps [1], one is able to glue chain fibrations or chain

cofibrations together so that their properties actually resemble that of

Dold’s fibration and cofibration in topology. In Section 3, the Cube Theo-

rems are established by a similar argument to that of Mather [2].

1. CHAIN HOMOTOPY PULLBACKS AND PUSHOUTS.

Let f , g: X - Y be chain maps and S, T be chain homotopies,
from f to g. We shall say S is equivalent to T, in symbol S - T , if for

each n , there is a group homomorphism en: Xn -+ Yn+ 2 such that

One verifies that - is an equivalence relation. We use [T] to denote the

equivalence class of chain homotopies with representative T . If T and

S are chain homotopies from the chain m ap f to the chain m ap g , then add-
ition of homotopies is given by [T] + [S] = [T + S] . It can be verified that

this is well-defined. Moreover, by direct calculation, we have the following
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Interchange Law: Let f, g ; X -&#x3E; Y and p , q: Y -&#x3E; Z be chain maps. If T

is a chain homotopy from f to g and S is a chain homotopy from p to q,

then [Sf]+[qT] =[pT]+(Sg].
A square

of chain maps with a chain homotopy T from f g to p q is called a chain

homotopy commutative square . In view of the interchange law above, such

squares with a class of chain homotopy filling constitute a Special double
category with connection CC introduced in [3]. To make the notation eas-

ier, we shall use the small case letter of the chain homotopy to denote

such a square.

Let

p

be a chain commutative square. It is called a chain homotopy pullback if

given any chain maps u : X -&#x3E; B, v: X - C and chain homotopy H from

f u to p v , there exists a chain map 0 X -&#x3E; A and chain homotopies v from

u to g0, V from q 0 to v such that

Moreover if 0’ is another such chain map and U’, V’ are such chain homo-

topies, then there exists a chain homotopy S from 0 to 0’ such that

Chain homotopy pushout is defined dually.
Next, we shall describe the standard construction of chain homo-

topoy pullback and pushout.
The standard chain homotopy pullback of the chain maps
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is the following chain homotopy commutative square

where with boundary homomorphism giv-
en by

pl and P2 are the respective projection chain maps. The chain homotopy
T is given by

Dually the standard chain homotopy pushout of the chain maps

is the chain homotopy commutative square

where with boundary homomorphism giv-
en by

i1 and i2 are the respective inclusion chain maps. The chain homotopy T

is given by T (z ) = (0, z , 0, -z , 0 ) . We omit the verification of the def-

initions, which will be seen in later discussion.

On th e other h and, given a chain homotopy commutative square

it is a chain homotopy pullback iff B’ is chain homotopy equivalent to B .

Similarly, this is true for the dual case.
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2. CHAIN FIBRATION AND COFIBRATION.

We just follow the usual definition in topology. A chain map

f: X -&#x3E; Y is called a Chain fibration if for any chain maps go : Z -&#x3E; X ,

h 0, h1 : Z - Y and chain homotopy T from ho to h I such that f go = h o , 
there exist chain map gl : Z - X and chain homotopy S from go to gl such

that f S = T and f g 1 = h, . Dually, one defines chain co fi bration. These

definitions are equivalent to that given by Kamps in [1].
We recall that in [1], f : X - Y is a fibration (cofibration) iff, for

each n, fn: Xn -* Yn is a retraction (section). Here we state a further re-

sult. Its proof is actually categorical.

PROPOSITION 2.1. Let

be a chain pullback (pushout) of chain complexes. 1 f f is a chain fibration
(g is a chain cofibration), then this square with the zero chain homotopy
is a chain homotopy pullback (pushout).

Now, suppose f : X -&#x3E; Y is a chain map. Consider the chain homo-

topy pullback

where ( with boundary homomorphism given by

p and t are the respective projection chain maps. The chain homotopy T

is given by T (x, y1 , y) - Y1 . It is clear that p is a chain fibration. Let

r : X -&#x3E; P f be the chain map given by r( x ) = (x, f (x) , 0 ) . One then ver-
ifies t is a chain homotopy equivalence with chain homotopy inverse r.

Moreover, f = p r . Therefore, we are able to factor a chain map into a com-

posite of a chain fibration and a chain homotopy equivalence.
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Dually, consider the chain homotopy pushout
r

where with boundary homomorphism given by

i and j are the respective inclusion chain maps. The chain homotopy T

is given by T (x)= (0, x, 0) . Let r; Z - Y be the chain map given by

r ( y, x1 , x ) = y + f (x) . In this case, j is a chain cofibration and i is

chain homotopy equivalence with chain homotopy inverse r . Also f = rj 
VUe state the results as follows :

PROPOSITION 2.2. Any chain map f can be factored as p r or r j in which

r, r are chain homotopy equivalences, p is a chain fibration and j is a

chain cofibration.

We remark also that chain fibration and chain cofibration are pre-

served by chain pullback and pushout respectively.

3. CUB E TH EOREMS.

(FIG.l)

with chain homotopy commutative faces t, t, u1 , U21 vl , v2 is said to be

chain homotopy commutative if

THEO REM 1. Refer to the chain homotopy commutative cube in Figure I.

1 f t, t are chain homotopy pushouts and ul, u2 are chain homotopy pull-
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backs, then v1 , v2 are chain homotopy pull backs.

P ROO F. Following Mather’s argument, it is just sufficient to prove the the-

orem in the case where fl , f2 are chain fibrations, u 2 is a chain pullback
and U 1 = 0. Actually such reductions are valid in any special double cat-

egory with connection [6]. Let X’ be the chain pullback of p 1 and f1 so
that we get a commutative diagram

in which 0 is a chain homotopy equivalence. Let D’ be the chain complex

If D is the standard chain homotopy pushout of Pl and p2 , then we have
the following homotopy commutative cube :

in which il , i2 , i1, i 2 are the respective inclusion chain maps and the

chain map h is given by

Since all the f’s are chain fibrations, Kamps’s result implies that h is

also a chain fibration. It is also clear the front and the right faces of this

cube are chain pullbacks so that they are actually chain homotopy pull-
backs. Now we shall show the top face s’ is a chain homotopy pushout.
At this point it is sufficient to show that D’ is chain homotopy equivalent
to the standard chain homotopy pushout D of P 1 and p2 , Here, we may as-
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sume the chain homotopy equivalence 0: X -&#x3E; X’ is a strong chain homo-

topy equivalence with inverse 0 . This means there are chain homotopies

K from 00 to 1X and K from 00 to lX , such that

For this, see Proposition 2.3 of [ 3]. The chain maps 0 ; D - D’ and 0 :
D ’ - D are given by

.L 11 L 1.

The chain homotopies L from 00 to ID and E from 00 to 1 D’ are resp-

ectively given by

where M is the homomorphism such that 0K - K 0 = aM - Ma. The rest

is categorical. See for example [6] .

T H EO RE M 3.2. Refer to Figure 1. 1 f u1 , U2,, v1 , V2 are chain homotopy

pullbacks and t is a chain homotopy pushout, then t is a chain homotopy

pushout.

P ROO F. F ollow in g M ath er’ s reduction, it is equivalent to prove that in the

commutative cube

1

the upper face is a chain homotopy pushout. In this case, all the vertical

faces are chain pullbacks, the lower face is a flat chain homotopy pushout
with D being the standard chain homotopy pushout of P1 and p 2’ and p
is a chain fibration. Here 0 is the chain homotopy equivalence between

D and Y . The chain maps il’ 121 il and 12 are the obvious inclusion
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chain maps. The chain complex X’ is given by Xn = yn X Dn+1 + X n with

boundary homomorphism

The chain complex A’ is given by with bound-

ary homomorphism 

The structure of B’ is similar. Here all the chain maps of the top face are

the inclusion chain maps and all the vertical ones are projection chain

maps. Now suppose u ; A’ -&#x3E; Q and v; B’ -&#x3E; Q are chain maps such that

u j 1 = v j2 . Then the unique chain map 0 from P f to Q is given by

Hence the top face is a chain pushout. Since j1 or j2 is a chain cofibra-

tion, it is a chain homotopy pushout.

We remark also that Theorem 3.2 follows from Theorem 3.1 if all

are free chain complexes. Dualizing the proofs, we have

THEOREM 3.3. Refer to Figure 1.

(a ) 1 f t, t are chain homotopy pullbacks and V1’ v2 are chain homo-

topy pushouts, then ul and u2 are chain homotop y pushouts.
( b) 1 f " 11 u2, v1 , v2 are chain homotopy pushouts and t is a chain

homotopy pullback, then t is a chain homotopy pullback.

4. FLAT HOMOTOPY PUSHOUT.

Suppose the commutative square

is a homotopy pushout of topological spaces. VUe want to investigate the

commutative square
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where S is the singular homology functor.

Consider the commutative cube

in which all the vertical maps are homotopy equivalences. Applying the

singular homology functor S , we obtain the following chain commutative

cube

In this case, all the vertical chain maps are chain homotopy equivalences.

By the Mayer-Vietoris Theorem, the upper face is a chain homotopy push-
out. Hence the bottom square is also a chain homotopy pushout. Moreover,

by the Whitehead Theorem, the converse is also true for simply connected

CW complexes. We thus have :

P ROPOSITION 4.1. Suppose all spaces are simply connected elf com-

plexes. Then a is a homotopy pushout iff S(a) is a chain homotopy push-
o ut.
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