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CARTESIAN SPACES OVER T AND LOCALES OVER 03A9(T)

by S. B. NIEFIELD *

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE

Vol. XXIII -3 (1982)

A BST RACT. Recall that an object Y of a finitely complete category (i is

cartesian if the functor -x Y: @ -&#x3E; (i has a right adjoint, denoted ( )Y. If

Y is a space over a sober space T , one can consider the cartesianness of

1. Y in the category Top/ T of topological spaces over T ,
2. y (the soberification of Y ) in the category Sob/T of sober spaces

over T , or

3. -O- (Y) (the locale of opens of Y ) in the category LocIO(T)of
locales over the locale -O- (T) of opens of T .

The goal of this paper is to establish the equivalence of these three con-

ditions.

1 . INTRODUCTION.

Recall that a continuous lattice is a complete lattice A such that

a = V b | ba}, for every a E A, where b « a (read «b is way below a»)
if whenever a  V5 for some directed subset S of A , we have b  s for

some s c S.

A space Y is cartesian in Top (by Freyd’s Special Adjoint Theo-

rem [5]) iff - X Y preserves colimits, iff -X Y preserves coequalizers
( - X Y preserves coproducts in any case) iff -X Y preserves quotient maps.
Such spaces were characterized by Day &#x26; Kelly [2] as those spaces Y

such that -O-(Y) is a continuous lattice, or equivalently (cf. 2.4 [19])

-O- (Y) satisfies

where a subset H of a complete lattice A is Scott-open if it is upward
closed and meets every directed subset S C A such that V S C H . Note that

* The research for this paper was supported by a Killam Postdoctoral Fellowship.
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a sober space is cartesian iff it is locally compact [8].
Recall that a firxme [ 3, 20] (localic lattice [1] or complete Heyting

algebra [4, 16]) is a complete lattice A satisfying the distributive law

a^VS=V{a^S | S C S} forall aEA, SCA.

A frame homomorphism is a finite meet and arbitrary sup preserving map.
An object of the dual category is called a locale [11]. The notation and

terminology of this paper is essentially that of [13].
In [9], Hyland shows that a locale A is cartesian in Loc iff it is

locally compact (i.e, a continuous iattice). But such locales are necessar-

ily spatial [10]. Thus, a locale is cartesian iff it is isomorphic to 0 (Y ) ,
for some cartesian space Y .

Let T be any space. In [17], we show that a space Y over T is

cartes ian in Top/ T iff
(*) given y C U C -O- (Yt), there exists H C IIt C E T-O- (Yt) such that

U E Ht , H is Scott-open and binding, and f1H is a neighborhood of y in Y,

where Yt denotes the fiber of Y over t (i. e. p 
-1 t with the subspace top-

ology) ; H is Scott-open if Ht is for all t c T ; H is binding if I t I Ut c Ht I

is open in T whenever U is open in Y ; and f1 H is the subset of Y whose

fiber over t is flH t (i. e. the intersection of the family Ht in the power set

of Yt). Note that the set IIt C T -O- (Yt ) with the Scott-open binding subsets

as opens is the exponential (TX2) Y , where 2 denotes the Sierpinski

space. Among corollaries we show that a locally compact space over a

Hausdorff space T and the inclusion of a locally closed subspace are

cartesian in Top/ T . Note that although (*) has been useful (as exempli-

fied by the above mentioned corollaries) , a less technical condition might

also be desirable, for example one that provides some insight into carte-

sianness in Loc/ -O- (T).

2. CARTESIAN SPACES AND LOCALES.

Throughout this section we shall assume that T is a sober space.

LEMMA 1. I f Y is a sober space over T such that n(Y) is cartesian
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over -O-(T), then for every sober space
X over T . 

P ROO F. It suffices to show that 0 ( X) X -O- (T) 0 (Y) has enough points.
Consider the pullbacks

Now, - x-O- (T) -O- (Y) preserves coproducts and epimorphisms being left

adjoint. Thus, (IIXCXQ(1))X-O-(T)-O-(Y) can be expressed as a coprod-

uct of locales of the form -O- (1) X -O- (T) -O- (Y), and f ’ is an epimorphism

s ince f is. But, -O- (1) X (T) -O- (Y) is cartesian in Loc (since pulling
back along any morphism preserves cartesian objects [17]), and hence

spatial. Therefore -O- (X) X -O- (T) -O- (Y) is spatial, and the desired result

follows. o

Suppose Y is a space over T,

We shall say that U is an element o f H over G , written U c H if Ut c Ht
G 

t

for all t C G . We also define /B H by

A continuous map p ; Y -&#x3E; T of spaces induces a geometric mor-

phism p : Sh Y - Sh T on the categories of set-valued sheaves on Y and

T , respectively. Now, p * preserves internal locales [16]. In particular,

p *Oy is an intemal locale in Sh T , where °y denotes the subobject clas-
sifier in Sh Y. For the basic theory of internal locales in a topos vie refer

the reader to [14].

T H EO R EM 2. The follo wing are e quivalent fo r a continuo us map p : Y -&#x3E; T

such that the canonical morphism 12( Yt) -+ a(yt) is an isomorphism for
all t E T, where the latter denotes the fiber over t of the soberification
Y of Y.
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a) 0( Y) is cartesian in Loc/ -O- (T) .
b) Y is carte sian in Sob/ T .
c) Y is cartesian in Top/ T.

H Scott-open and

for all C -O- (Y) .
e) p *Oy is locally compact (i. e. a continuous lattice) as an internal

locale in Sh T .

P ROOF . a =7 b : Suppose that X and Z are sober spaces over T . Then

where the second and fourth isomorphisms follow from Lemma 1 and a resp-

ectively, and pt denotes the right adjoint to Q . Therefore, Y is cartesian

in So b/ T .
b =&#x3E; d: Suppose U C -O- (Y) . Note that condition (*) (see Introduction)

holds for Y since the proof in [17] that cartesianness implies (*) involves

(’., ly sober spaces over T . If U denotes the image of v under the iso-

morphism SZ (Y) -&#x3E; -O- (Y) , then (by (*) ) given y c U t , there exists

such that Ut c Ht) H is Scott-open and binding, and nH is a neighbor-
hood of y in Y. It easily follows that

(1) U = V I A n G I t/ H, H is Scott-open and binding}
G

for U clearly contains the right hand side, and by the above remark every

y C U is contained in A H n p-1 G, for some // , where G={t | Ut C Ht }.
Note that G is open since H is binding.
It remains to show that we can remove the ’s in (1). Using the isomor-

phisms -O- (Yt) -&#x3E; -O- (Yt), it suffices to show that for H C II C T Q(yt)
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the soberification of Inty (nH) is precisely Intp (nH) where H is the

image of H under the map But U C H iff

d =&#x3E; c: This follows easily from Theorem 2.3 of [17], since d is equi-
valent to (*).

d =&#x3E; e : First we claim that it suffices to show that for every U C -O- (Y)
(i. e. a global element of p*ily ), we have U = V{V| V « U}, where the
right hand side is the sup in p* -O- Y . To see this we note that if Y is car-

tesian in Top/ T , then p-1 G is cartesian in Top/ G , for every open sub-
set G of T, and so the desired property also holds for locally defined

elements. Recall that if S is a subset of p fly , then

[15 . Thus, we must show that

But, using d, it suffices to show that AHnp.1 G « Unp-1 G in p *-O-y | G’ ,
for all He IIt C T -O- (Yt) such th at U C G H and H is Scott-open and bind-

ing. Note that H n p-1 G « U n p-1 G in p*-O- y| G if for every globally def-
ined ideal I (i. e, downward closed and directed subset) of p *-O- y| G’

for then v c I( G ) (since I is a sheaf) , as desired. But then a straightfor-
ward « localization» gives the corresponding property for locally defined

ideals. 

Suppose I is a globally defined ideal of p *° YB G such that Unp-1 G C I .
If t E G, then ,

Now, Ut E Ht and Ht is Scott-open, so there exists G’ containing t such

that V C I (G’), and Vt c Ht , since the set of all such Vt is directed. Let

, and
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Therefore, (2) is verified.

e =&#x3E; a : First, p*-O-Y , being locally compact, is cartesian in the category

Loc( Sh T ) of internal locales in Sh(T) [9]. But Loc (Sh T) is equivalent
to Loc/ -O- (T) via an equivalence that identifies p Hy and -O- (Y) .
[ 14]. This completes the proof. o

COROLLARY 3.// Y is a sober space over T, then Y satisfies the hypo-
thesis, and hence the conclusion of Theorem 2.

P ROO F. This follows immediately since Y = Y , a

COROLLARY 4. I f T is a TD-space (i.e. points o f T are locally closed),
then any space Y over T satisfies the hypothesis, and hence the conclu-

sion of Theorem 2.

P ROO F. Suppose t E T . Then the inclusion t: 1-&#x3E; T is cartesian in Top/T
[17]. To see that -O- (Yt) =-O- (Yt) it suffices to show that ( T X 2 ) 

t is

sober, where 2 denotes the Sierpinski space, for then

Now, as a set,

where t : 1-&#x3E; T . The closed subsets F are described as follows. If 7 c F

then t E F (since the fiber over t is Scott-closed). Also, F n T is closed

in T , and if 1 $ F, then F’{t} is closed in T (since F is binding).
Then it is not difficult to show that the irreducible closed subsets are

those of th e form Ful 1}, where t E F and F is irreducible in T , F = {t} ,
and F not containing t such that F is irreducible in T . In the former

case, the generic point is the generic point of F if F # I t I, and 7 if

F = I t In the latter cases, the generic point is the generic point of F

in T . o

Next, we would like to compare the exponentials in the relevant

categories when Y is as in the above theorem. 5e begin with a lemma.

L EMM A 5. Let Y be a cartesian space over T such that Q (Yt) = -O- (Yt) ,
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for all t . 1 f X is a space over T, then

P ROO F. First, we consider the case where T is a one point space. The

exponential 2 Y or 2 in Top is the lattice of opens -O- (Y) with the

Scott-topology, and hence is sober [7]. Thus, it follows that Z Y = Z Y is

sober, for all sober space Z since it is a limit of sober spaces. Therefore

for all sober spaces Z , and the desired result follows.

Next, we show that the canonical map f: X XT Y - X X T Y is an equalizer
in Top , for " = ptQ , the morphism

an equalizer in Loc (its inverse image is clearly a surjection), and pt pre-
serves finite limits being a right adjoint. Thus, it suffices to show that f
is an epimorphism. Consider the following commutative diagram

where the bottom squares are pullbacks, the top isomorphism follows from

the first part of the proof (since Y t is cartesian in Top being the pull-
back of a cartesian object over T and Y- Yt ) and the bottom isomorph-
ism follows from the commutativity of

and the pullback
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Note that Y = Y, since Y, is sober (Sob is closed to pullbacks) and

-O- (Yt) = -O- (Yt). Now, g is an epimorphism since II t C T Xt -&#x3E; X is, and

preserves coproducts and epimorphisms. But XxT Y is cartesian over

X (being the pullback of a cartesian object over T), and so g’ is also

an epimorphism. Therefore, f is an epimorphism, and the proof is com-

plete. o

COROLLARY 6. If Y is as in Theorem 2, and Z is a sober space over
T, then the exponential Z Y in Top/ T is sober, and hence isomorphic
to the exponential ZY in So b/ T . Moreover, -O-(TX2) -O-(Y)=-O-((TX2)Y).
PROOF. First, we note that ZY=ZY as exponentials in TopIT. Thus,
it suffices to show that Z Y is sober. But if X is any space over T we

have

where the third isomorphism holds since Z is sober. Therefore, Z Y is
sober. When Z = T X 2 , we know -O- (TX2 ) -O- (Y) has enough points [9]

Therefore,

Note that we do not know whether Q preserves exponentials in

general. 

COROLL ARY 7. The following are equivalent for a locale A over -O- (T) :

a) A is cartesian in Loci Q( T) .

b) A = -O- (Y) for some cartesian space Y over T .

c) A is locally compact as an internal locale in Sh T .

PROOF. a =&#x3E; b: Consider the pullback

where f ’ is an epimorphism since A is cartesian over 0 (T) and f is
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an epimorphism. Thus, it suffices to show that -O-(1) X -O-(T) A has enough
points, for all -O- (1) -&#x3E; (T) . But, -O- (1) x -O- (T) A is carte sian in Lo c

(it is the pullback of a cartesian locale over -O- (T) ) and the desired result

f ollow s.

b=&#x3E; c : follows from c =&#x3E; e of Theorem 2.

c =&#x3E; a: Note that the proof of e=&#x3E; a of Theorem 2 does not use the as-

sumption that the locale in question is spatial. Thus, the same proof ap-

plies. D

COROLLARY 8. 1 f T is a Hausdorf f space and A is a locally compact
locale over Q ( T ) , then A is cartesian in Loc/ Q ( T ) .

P ROOF. We know that A = -O- (Y) for some locally compact sober space
Y over T . But, such a space is cartesian over T [17], and the result

f ollow s from Corollary 7. 0

COROLLARY 9. The incl usion o f a sublocal e A o f Q(T) i s carte sian

iff it is locally closed (i. e. the intersection of an open and a closed sub-

locale).

PROOF. This follows immediately from Corollary 7, a=&#x3E; b, and the ana-

logous result for spaces [17]. 0

Note that Corollary 9 is proved in [18] for an arbitrary base locale.

Let Top denote the 2-category of toposes, geometric morphisms,
and natural transformations between their inverse images [12]. The follow-

ing proposition relates the above results to exponentials in Topl Sh T .

PROPOSITION 10. Let A be a locale over i2(T). Then Sh BShA exists

in Top/ Sh T for all locales B over -O- (T) iff A is cartesian in Loc/-O6 (T) .

Moreover, Sh BShA :::::: Sh(BA ). 
P ROOF . Recall that Loc/ -O- (T) is equivalent to the category
of localic toposes over Sh T [14]. Moreover, the latter is a reflective sub-

category of Top/ Sh T [14], via a reflection R which satisfies

for all toposes E over Sh T [18].
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If A is cartesian over -O- (T), then

where the third isomorphism holds since L Top/Sh T is equivalent to

Loc/ -O- (T) .
The converse follows from an appropriate 2-categorical version 1.31 of

[6]. o

Department of Mathematic s
Union College
SCHENECTADY, N. Y. 12308
U.S.A.
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