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CAHIERS DE TOPOLOGIE Vol. XXIII-3 (1982)
ET GEOMETRIE DIFFERENTIELLE

CAUCHY-COMPLETION AND THE ASSOCIATED SHEAF
by R. BETTI and A. CARBONI *)

INTRODUCTION.

We will fotlow the point of view that categories based on a bicat-
egory B (briefly B-categories) should be thought as general spaces. Such
categories arose by considering a variable base for homs and the sugges-
tion for regarding them as spaces comes directly from a paper (Walters [4])
where it is shown that sheaves for a general site are equivalent to symmet-
ric, skeletal, Cauchy-complete categories based on a bicategory construct-
ed out of the site.

For a category, Cauchy-completeness means that any adjoint pair
of bimodules can be represented by one functor and, in order to express
fundamental constructions of sheaf theory by means of B-category theory,
we need to show the existence of the general process of «Cauchy-comple-
tion». The experience of metric spaces developed in [ 3] suggests that this
construction should be done by taking adjoint pairs of bimodules. We will
prove that in fact we get in this way the general process of Cauchy-com-
pletion and that it particularizes to the associated sheaf. This last result
will be obtained by showing that such completion is left adjoint to the em-
bedding of a particular kind of symmetric B-categories (called adjoint-in-
verse, briefly a.i.), and by constructing a «comparison functors. This func-
tor also leads to compare the B-categorical one with an already known one-
step construction of the associated sheaf [ 2].

The following diagram summarizes the whole subject:
o
Rel; (C)-Cata.i. —0mp__ sC°F

Cauchy™_ "o

*) Work partially supported by the Italian C.N.R.
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BETTI & CARBONI 2

where Rel ](C) is the base bicategory associated to the site (C,J).

We will use a different (but equivalent to that of [4]) construction
of the base bicategory and because the absence of papers on B-categories
we feel the need to give the main definitions, though they are simply trans-

lations (from one to many objects) of classical V-category ones.

1. We introduce now a notion which corresponds to that of «polyad» in

the terminology of [ 1].

DEFINITION, When B is a bicategory, a B-category X is defined by as-
signing:

1) objects x, ¥y, ... ;

ii) to every object x an «underlying» object e(x) of B

iii) to every ordered pair <x, y> of objects an «object of morphisms»
e(x) —X.(x’_L)._. e(y)

in the category B(e(x),e(y) );
iv) to every ordered triple <x,y,z> a «composition» in the category
Ble(x),e(z)):
e(x)_M_,e(y) X(y,z) e(z)

l

X(x,z)
v) to every object x an «identity» in the category B(e(x),e(x))
1
T T
e(x) ] e(x)

vyl

The above data have to be subjected to the associativity and unity laws,
which can be expressed by commutative diagrams of 2-cells in B. The base
bicategories involved in the following are locally partially-ordered, so that

these conditions hold trivially.

DEFINITION. If X and Y are two B-categories, a B-functor f: X> Y isa
function on objects which preserves underlyings: e(fa) = e(x ) ; moreover,

for each ordered pair <x, x'> of X-objects, a 2-cell must be assigned:
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CAUCHY-COMPLETION AND THE ASSOCIATED SHEAF 3

/l%
e(x) Jj e(x')
Y(fx,fx7)

which preserves identity and composition (always satisfied in the partially-

ordered case).

DEFINITION. If X and Y are B-categories, a bimodule X - Y assigns to

every ordered pair of objects x in X and y in Y a l-cell

e(y) —B(H%)  _o(x)

subject to actions

e(y)_Me(x) _X_wl,e(x')
/2
T

e(y)—YX5Y) ery) _B(¥:%) _orx)

\_T_&——//
é(y,x)

satisfying unity, associativity and mixed associativity (always true in the

partially-ordered case).

If any hom-category of B allows arbitrary sups preserved by com-

positions, then bimodules ¢: X4 Y and ¢y: Y-~ Z can be composed by

(fod)(z,x) =>/z//(z,y) by, x) .

Any B-functor f: X > Y becomes a bimodule

f*fX'+_’Y by f*('y,x):Y(y,fx),

and the essential feature of such bimodules is that there exists an adjoint

bimodule
f*: Y4 X defined by f*(x,y) = Y(fx, ),
where adjointness ¢ —| iy means
X(x,%')<(pod)(%,x') foreach x,x' and
(pot)(y,y')SY(y,y') foreachy, y'

If u is an object of B, let us denote by # the trivial B-category

2%5



BETTI & CARBONI 4

with just one object over u.

DEFINITION (Lawvere [3]). A B-category Y is said to be Cauchy-com-

plete (shortly C.c.) if for each u and each pair of adjoint bimodules

—F—

Y ( )
Z . oy

is representable by a functor y: > Y, 1.e., ¢ = ¥, and ¢ = y*.
For this reason, in the following, dealing with adjoint pairs of bi-

modules, we will simply use ¢ to mean the pair, and ® ¢ * to denote the

left and right adjoint parts.

We now prove that Cauchy completion still exists in the B-categor-

ical framework.
THEOREM. The embedding of Cauchy complete B-categories in B-Cat has
a left adjoint in the appropriate two-dimensional sense.
PROOF. When X is a B-category, define its Cauchy-completion X , by tak-
ing as objects all pairs of adjoint bimodules ¢ : 4 -+ X. The underlying
object of ¢ is u and the hom is defined by ).((qS,(//) =¢*o Llf* (observe
that ¢ *o , has just one component u- v if e(¢y) =v).

Easily the adjointness conditions provide the necessary B-category
operations in X .

There exists a B-functor ¢: X » X sending objects x of X into the

adjoint pair it represents; ¢ is fully faithful:
Xtex)e(x')) = Vo X(x,27) X(x",5") = X(x,%").

Therefore we can identify without any ambiguity each X-object with its
image in X . A direct calculation shows that:

(+) X(grx) = ¢¥(x), X(x, ) =y (x).
With these identities we can prove that ¢ and c¢* are inverse bimodules:

(c,oc*)($oy) = Vo (p,x)c¥x,¢) = VX(p,x)X(x,y) =

u

V*(x) g, (%)= X(g,y) ,
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CAUCHY-COMPLETION ANLC THE ASSOCIATED SHEAF 5

(coe ), x) = V¥l )ey($,x") = gi(x,da)ffw,x') ~

~ q\S/¢*(x) d¥(x')= X(x,x'),
because

Vo (x)$*(x') s X(x,5")

follows by adjointness, and in the other direction it suffices to take
¢*:X("x) and ¢*: X(x")'

X is Cauchy complete: If ¢ : 12—+—>/.Y is an adjoint pair of bimodules,

the composites c*o¢  and ¢*o ¢, are still adjoint because ¢ and c*

are inverses each other, so give rise to a point i of X which lies over

u. Consider the B-functor which takes the only object of i to ¢y . The ad-

joint pair ¢ is represented by ¢ :

X(,0) = p*oc o0, = Y #* (ey00,) (41 -

=V ) Ve (u,x)0,(x) = V,6*y') VX(y',2)0,(x) =
(/l' x * ¢" x *

= V oy )Vy'*(x)0,(x) = V, e*y" X(y', 6) = $*0).
v! x U

In the same way it can be shown that 3(( 0,y) = ¢*(9) .
To show the universal property of the Cauchy-completion, extend any

B-functor g: X > Y (Y Cauchy complete) along ¢ to a B-functor

é: X-Y by ;(qS) = the object of ¥ which represents go ¢.
The functor -é is determined up to invertible 2-cells in B-Cat ; in the par-
tially ordered case g equivalent to ' just means that for each ¢ the ob-

jects g( ) and g'(¢) are B-isomorphic, i.e.,
1<Y(g(4),8'()) and 1<Y(g'(4),8(p)).

2. Following the line of Lawvere's «Metric spaces» [3], where the pursued
aim is that «fundamental structures are themselves categories ... by taking
account of a certain natural generalization of category theory within itself»
(namely V-category theory), the further generalization from V to B leads

to consider sheaves also as categories.
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BETTI & CARBONI ¢

If (C,J)is a site, we construct a bicategory RelJ (C) as follows:

objects of Rel; (C) are those of C, 1-cells R: u - v are families of spans

h k

U - w Lk

which are saturated by composition, i.e. if <h, k>¢ R, then <fh, fk> ¢ R
for all f: w'>w. We write {<h, k>} for the 1-cell in Rel] (C) generated
by <h, k>. Composition RS is defined as the family of spans <h, k> for

which there exists a g with
<h,g>e¢R and <g,k> ¢ S.

Identities are given by {<],1>}. It is straightforward to verify that in this
way we get a category which defines the 1-dimensional part of Rel; (C).
The 2-cells of Rel; (C) are essentially depending upon the topology:

R< S iff forall <h,k> ¢ R there exists a covering family

U= {wi-a-»w}idf](w) such that <g.h, g, k> ¢ S
forall i ¢ .

The proof that Rel; (C) is a bicategory (in fact, a 2-category) in-
volves directly the axioms of the topology J . Moreover Rel;(C) is loc-
ally a lattice and each Rel; (C)(u,v) is sup-complete: the sup is simply
set-theoretical union of families, and it is easy to verify its strict preser-
vation by composition. Observe that Rel; (C) is a symmetric bicategory,

in the sense that there exists a natural i1somorphism of categories
(-)°: Rel](C)(u, v) > Rell(C)(v, u)
such that (R?)° =R and (RS)? = S°R°.
We have a faithful functor
C- Rel; (C) given by h b {<1,h>}.

This functor allows to identify arrows in C with corresponding ones in

Rel](C) . By this identification, arrows h of C satisfy
hh® >1 and A°h<1I.
I J

The symmetry of the base allows to define symmetric Rel;(C)-cat-

egories as those for which X(x, x")° = X(x',x).
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CAUCHY-COMPLETION AND THE ASSOCIATED SHEAF 7

o
DEFINITION. L:S€ P, Rel (C)-Cat (Rel (C) denotes the bicategory as-
sociated to the minimal topology) is a functor defined as follows: L F has
objects the sections x ¢ F u whose underlying object is u. If x ¢ Fu and

ye FV, then LF(x,y) is the family of spans
<h, k> such that x/h = y/k.

Let us observe that the functor L takes its images in the full sub-
category of symmetric and skeletal Rel (C)-categories, where skeletal, for

a B-category X , means:
1<X(x,y) and I < X(y,x) implies x =y.

It is easy to check that the property to be skeletal is equivalent to the
uniqueness of representability of bimodules # 4 X, and observe that skel-
etality destroys the 2-dimensional part of B-Cat.

Finally, observe that by construction the partial order of topologies

is preserved, i.e., if J < J', then there is a canonical embedding
Rel] (C)-Cat » Rel] (C) -Cat

which does not preserve skeletality.

We now need some remarks about symmetry and Cauchy-completion.
First observe it is not always true that the Cauchy-completion of a sym-
metric B-category still is symmetric: consider the monoid M = Set(A, A)
as a symmetric Set-category with just one object. It is known that Cauchy-
completion for ordinary categories is the universal process of splitting id-
empotents [ 3, page 164] ; this means that M is not symmetric but in trivial
cases. However, in particular cases (e. g. metric spaces) the Cauchy-com-
pletion of a symmetric B-category is symmetric. So far we don't know whe-
ther the same property holds for all Rel; (C)-categories. The following

lemma provides a characterization for the general case.

LEMMA 1. Let X be a B-category. The Cauchy-completion X is symmetric
iff each adjoint pair ¢ : i+ X is an inverse pair (i. e., ¢ (%)° = ¢*(x) )
P ROOF. In one direction the proof comes directly by the definition of X.

In the other one, just consider the formulas (%) in the proof of the theorem
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BETTI & CARBONI 8

on Cauchy-completion and take into account the symmetry of X.

Observe that the a.i. property implies the symmetry of X ; it suf-
fices to particularize the a.i. property to representable bimodules. As we
have already remarked, we don't know if the a.i. property is equivalent to

the symmetry of X in the Rel; (C) case.

The previous lemma implies that the Cauchy-completion restricts:

B-Cat B-CatC. c.

N

B-Cat sym. C. c.

B-Cat a. i.

€

(C.c. = Cauchy-complete) and that B-Cat a.i. is the biggest full subcat-
egory through which the adjunction restricts.

In view of Walters result [4], in the case B = Rel; (C) let us def-

ine a functor I'; which will provide a useful description of the "-process.

Ty
Rel](C)-Cat——’sh](C)

is defined in the following way:

F] X(u) = isomorphism classes of adjoint pairs of bimodules

é: i+ X.

When A :v- u is an arrow in C, the restriction is defined by the ad-

joint pairover ¥: ¢ /h(x) = (x)ho and ¢*/h(x) =hd™*(x).
Functoriality of I'; X is an easy matter. For sheaf conditions, let

U=1{u, —h’—>u }
be a J-covering family, and ¢;: ;> X be a compatible family. Define
é:4-4-> X by:
B,(%) = N, (2)hy $%(x) =Vhygi(x).
They are adjoint: to check
L5 VIVR 6000 Vo000

it is sufficient to take { = j, and so to check
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1S VUAL(V ¢f(2)$; (% )b 1.

l x

But b, ~ qS’t'.‘ , so it is enough to check ] <] vhi"hi’ which is true be-
12

cause {hi } is a covering family. To verify the other adjointness condi-
tion, first observe that compatibility means that, for each commutative

square k. h. = k. h., it holds
I 2 2 ] ]
qSi*kl;. =~ j*k? and kiqS’:.‘z k].qs’;f for each i, j.
Hence:

qsi*kgk]. = ¢].*k]o.kl. ; by

So, for each <ki,k].> in hihjv, it holds
Biy(%) kol $¥(x") S (%) $i(x") < X(x,27),
hence ¢ (%) o p*(x') < X(x,x").
LEMMA 2. There exists a functor L;
Rel;(C)-Cat a. i.é——:Rel](C)-Cat sym. C. c.

FJ L
shj(C)

J

such that 'y — L e, in the appropriate 2-dimensional sense.

PROOF. L; is defined as in Walters [ 4], Proposition 1, by the composi-
tion:

o

shy (C)—=SC"P—L . Rel (C)-Cat —Rel; (C) - Cat
where it is shown that it factorizes through Rel](C) -Cat sym. c. c. and
that it is fully-faithful. Observe now that for each X in RelJ (C)-Cat a.i.,
it holds X ~ L;(T;X). Clearly both categories agree on elements (up to
isomorphisms); for homs:
X(¢p,¢p) = p*op, =1<h, k> | Boho =y okol=L, (T X(¢,¢)).

Indeed, let <k, k> be such that qs*oko =0 ko ; then

d¥o ®,.° hook = ¢*o(//*0k°ok 7 d)*olfl* )
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BETTI & CARBONI 10

but 1< ¢*o ¢, and <h,k>ehok, thus <h, k>egp*o ¢, - Conversely,
J
let <h, k> ¢ ¢p*o Y, ; then hokf ¢p*o i, , therefore

¢*oh° ]< ¢*ohoo koko 7 qS*o qS*o(/l*o ko <j¢/*ok0.
Now

(//*okﬂ ; (//*okoohohof (//*ol/J*o ¢*oh9§¢*oh0 ,
because hofk ?qS*o t, and the a.i. property implies
koh ? (/l*oo p*o = Yo d)*-

Now the following chain of equivalences proves the adjunction :

X e(LJ F) by the theorem on ~

X LJ F by the previous remark
Lty X)—~L, F L; is 2-fully-faithful
ryx F .

THEOREM (Walters [ 4] Proposition 2). The functor L; is a 2-equivalence.

A direct proof may be obtained by considering the adjunction:
Ty — L;e. Because L;e is 2-fully-faithful, it is enough to prove that
ny: X- e(LJ (T'; X)) is an equivalence iff X is Cauchy-complete.

By this theorem, we will call T'; simply ~.

3. We want now to compare the previous adjunction with the associated
sheaf functor.

THEOREM. There exists a comparison functor L':

RelJ(C)-Caz a. i. T

I shy (C)
L’
sC°P
To prove the theorem we need a suitable description of the asso-

ciated sheaf functor a@. For our purpose we found the best one to be that
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CAUCHY-COMPL ETION AND THE ASSOCIATED SHEAF 11

in [2], where aF (u) is given by «u-locally compatible families of ele-

ments of F, with covering support and closed», which means:

DEFINITION 2. If F is a presheaf and u an object of C, a u-locally
compatible family with covering support is the assignment for each arrow
i:v>u of afamily ¥, C Fv such that:

1o if xe¢ ffi , foreach h:w- v, x/h¢ ?hi ;

20 the crible {i: v>u | §; # @} is J-covering («covering support»);

30 if x,yeF;, thrw-v | x/k=y/k} is J-covering («local com-
patibility»).
Such a family is closed if moreover:

4 if xe Fv and {k: w-v | x/keF;} is aJ-covering family, then
xe .

Cefine L'F as L F but thought in Rel] (C)-Cat sym.

LEMMA 1. If ¢:a—-4> L'F is a bimodule, and {<h,k>}§¢(x) then
k ? d(x/h).
P ROOF. Directly we have k< hi{<h, k>}.

By the bimodule property and the assumption :

hi<h, k>} 7 L'F(x/h,x) ¢$(x) <] b(x/h).

LEMMA 2.lsomorphism classes ofpairs of adjoint bimodules ¢: it 4> L'F
are in 1-1 correspondance with u-locally compatible, with covering sup-

port, closed families of partsof F.

P ROOF. Let us consider such a u-family F. Define a pair of adjoint bi-

modules ¢ = ¢.(3") by
P (%)= x'Yfﬂ.L'F(x’x') i, ¢¥(x) =g, (x)o.
The proof of the adjointness condition ] ? y *(x )qs*(x) is the same as

that in the proof of sheaf conditions for I'; , by using condition 2 on ¥.

The other adjointness condition ¢ (x) *(y) 7 L'F(x,y)holds because

for each x'¢ 3‘;. and x'" ¢ ?]- we have
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BETTI& CARBONI 12

L'F(x,x')ij"?L’F(x,x") :

<r,s>e¢L'F(x,x')ijo means that there exists t such that x/r ==x'/¢

ti=sj;byl,
x/r:x'/tcgt

; and x''/se (fs}. = 3:“, :
by 3, x/r and x''/s agree on a covering.

Conversely, given an adjoint pair of bimodules ¢: 2> L'F, define
F=%(s) by

Fi=lyeFuli<ay) andio<g*(y) )
foreach i:v-u.
Condition 1: if i§¢*(y), then for each k: w- v also <k, ki> 795*‘/),)
which by Lemma 1 implies ki< ¢ _(y/k); ko< ¢p*(y/k) follows in a
J J
similar way from ¢ 0 ? ¢*(y) and a «dual» of Lemma 1.
Condition 2: by the adjointness condition ] < é,° ¢*, it follows that there
J

exists a covering

k

‘U:{ua——a—>u§

such that for each g there exists x, with <k ,k,>ed*(x, )b, (%)

This means that there exists m, such that

<ka,m >€¢*(xa) and <ma,ka>e¢>*(xa).

a
By Lemma 1 we have /rafgb*(xa/m). So the family
fitvoulF, #0]

contains a covering family, namely U.
Condition 3: if x, ye J,, then iio ]< é,(%) $*(y) . By the adjoinmess con-
dition

b, (%) d*(y) § L'F(x,y)
and because ] < iio, we have ] < L'F(x,vy), which proves condition 3.

J

Condition 4: we have to show that for each {: v>u and each y¢ Fuv, if

U={k:w-v|y/keFy;}

is a covering family, then i]< gS*(y) and ;o0 7 d*(y). So

25%



CAUCHY-COMPL ETION ANLC THE ASSOCIATEL SHEAF 13

ki S, (y/k) and ivko < @*(y/k).
Because k° ¢ L'F(y,y/k ), then
{<k,ki>}=kek: S L'F(y,y/k) ¢, (y/k) 7(75*()')
holds for each £ in U. It follows i <]¢*(y) . Analogously ;o <g*(y).
I
Let us check that the two correspondances are inverse each other,

when the first one is restricted to closed families. If F' is the family as-

sociated to ¢ (F) , then "}i C 3:; for each i:v->u : ffi' being

{ye Fo | i?l/'L'F(y,x')/c })
it is enough to take £ =i and x’ = y. Suppose now F closed; let

yc?i‘ , i.e. i< VL'F(y,x')k,

J x!
which means there exists a covering U = {ha Pwy > v} such that for each
a there exist x  and ka with
%, e?ka and <ha,hai>e L'F(y,xa)/ca .

It follows there exists ¢ with

y/ﬁa:xa/t and h,i=tk,.

So by condition 1, y/h € 5, k, = ?ha ; - Therefore the family

{h:ws>v | y/hed,,;

contains a covering family. Because § is closed, y ¢ ffi .
In the other direction, if ¢’ is the adjoint pair of bimodules corresp-

onding to F( @), it is easy to check ¢ = ¢’ : for each y ¢ gi it holds
L'F(x,y)ij L'F(x,y)é.(y) <] NEVE

thus

’ =V 4 A .
Bi(x) = Vo L'F(r,y)i < d,(%) ;

12

conversely, if {<h, k>§7 ¢,(%) , then by Lemma 1 we get k qu*(x/h),
i.e. x/h ¢ 3:k ; so<h, k> eqS;(x) , because it belongs to L'F(x,x/h )k .

PROOF OF THE THEOREM. The proof of Lemma 2 shows that L'F is an
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BETTI & CARBONI 14

a.i. category. The stated bijectivity proves one commutativity, namely

aF = L'F. The other one is trivial.
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ADDENDUM IN P ROOFS.

After this work was submitted, it has been shown that the a.i. hypo-
thesis of Lemma 2 and of the Theorem of Section 3 is not necessary, be-
cause from a result by Betti and Walters (The symmetry of the Cauchy-com-
pletion of a category, to appear on the Proc. of 1981 Hagen Conference) it
follows that in the Rel;(C) case the Cauchy-completion preserves sym-

metry (see the remark after Lemma 1, where this problem was posed).
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