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CA UCHY-COMPLETION AND THE ASSOCIATED SHEAF

by R. BETTI and A. CARBONI *)

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE

Vol. XXIII-3 (1982)

INT RODUCTION.

We will fellow the point of view that categories based on a bicat-

egory B (briefly B-categories) should be thought as general spaces. Such

categories arose by considering a variable base for homs and the sugges-

tion for regarding them as spaces comes directly from a paper (Walters [4])
where it is shown that sheaves for a general site are equivalent to symmet-

ric, skeletal, Cauchy-complete categories based on a bicategory construct-

ed out of the site.

For a category, Cauchy-completeness means that any adjoint pair
of bimodules can be represented by one functor and, in order to express

fundamental constructions of sheaf theory by means of B -category theory,
we need to show the existence of the general process of «Cauchy-comple-
tion ». The experience of metric spaces developed in [3] suggests that this

construction should be done by taking adjoint pairs of bimodules. We will

prove that in fact we get in this way the general process of Cauchy-com-

pletion and that it particularizes to the associated sheaf. This last result

will be obtained by showing that such completion is left adjoint to the em-

bedding of a particular kind of symmetric B-categories (called adjoint-in-

verse, briefly a. i. ) , and by constructing a «comparison functor». This func-

tor also leads to compare the B-categorical one with an already known one-

step construction of the associated sheaf [ 2].

The following diagram summarizes the whole subject:

*) Work partially supported by the Italian C.N. R.
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where Rel j ( C ) is the base bicategory associated to the site (C,J).

We will use a different (but equivalent to that of [4] ) construction

of the base bicategory and because the absence of papers on B-categories
we feel the need to give the main definitions, though they are simply trans-

lations (from one to many objects) of classical V-category ones.

1. We introduce now a notion which corresponds to that of «polyad» in

the terminology of [ 1].

DEFINITION. When B is a bicategory, a B-category X is defined by as-

signing :

i ) objects x, y, ... ;

ii) to every object x an «underlying» object e (x ) of B ;

iii) to every ordered pair x, y&#x3E; of objects an «object of morphisms »

in the category B ( e (x), e ( y) ) ;
iv) to every ordered triple  x, y, z &#x3E; a « composition» in the category

B(e(x), e(z) ) :

v) to every object x an «identity» in the category B( e(x) , e (x))

The above data have to be subjected to the associativity and unity laws,

which can be expressed by commutative diagrams of 2-cells in B. The base

bicategories involved in the following are locally partially-ordered, so that

these conditions hold trivially.

DEFINITION. If X and Y are two B-categories, a B-functor f: X -&#x3E; Y is a

function on objects which preserves underlyings : e (f x) = e (x ) ; moreover,
for each ordered pair x, x’&#x3E; of X-objects, a 2-cell must be assigned:
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which preserves identity and composition (always satisfied in the partially-
ordered case ) .

D E FINITION . If X and Y are B-categories, a bimodule X --+--&#x3E; Y assigns to

every ordered pair of objects x in X and y in Y a 1-cell

subject to actions

satisfying unity, associativity and mixed associativity (always true in the

partially-ordered case).

If any hom-category of B allows arbitrary sups preserved by com-

positions, then bimodules O : X---l---&#x3E; Y and 0: Y---l---&#x3E; Z can be composed by

Any B-functor f ; X -&#x3E; Y becomes a bimodule

and the essential feature of such bimodules is that there exists an adjoint
bimodule

defined by f

where a djointness O --l Y means

for each

for each

and

If u is an object of B , let us denote by a the trivial B-category
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with just one object over u.

DEFINITION (Lawvere [3]). A B-category Y is said to be Cauchy-com-
plete (shortly C.c.) if for each u and each pair of adjoint bimodules

is representable by a functor y ; u -&#x3E; Y , i. e., O = y* and 0 - y*.
For this reason, in the following, dealing with adjoint pairs of bi-

modules, we will simply use O to mean the pair, and to denote the
left and right adjoint parts.

We now prove that Cauchy completion still exists in the B-categor-
ical framework.

THEOREM. The embedding of Cauchy complete B-categories in B-Cat has

a left adjoint in the appropriate two-dimensional sense.

P ROO F. When X is a B-category, define its Cauchy’-completion X , by tak-

ing as objects all pairs of adjoint bimodules x : u ---l---&#x3E; X. The underlying
object of 0 is u and the hom is defined by X (O,Y = O* Y* (observe
that O *o Y* has just one component u - v if e(Y) = v).

Easily the adjointness conditions provide the necessary B-category

operations in X .

There exists a B-functor c ; X -&#x3E; X sending obj ects x of X into the

adjoint pair it represents ; c is fully faithful :

Therefore we can identify without any ambiguity each X-obj ect with its

image in X . A direct calculation shows that:

With these identities we can prove that c* and c * are inverse bimodules:
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because

follows by adjointness, and in the other direction it suffices to take

X is Cauchy complete : If O : u ---l---&#x3E; X is an adjoint pair of bimodules,
the composites c * o O * and O * 0 c* are still adjoint because c * and c *

are inverses each other, so give rise to a point Vf of X which lies over

u . Consider the B-functor which takes the only object of û to Y. The ad-

joint pair 0 is represented by Vi :

In the same way it can be shown that X ol Y) = O * (8).
To show the universal property of the Cauchy-completion, extend any

B-functor g : X - Y ( Y Cauchy complete) along c to a B-functor

g:X-&#x3E;Y by g (O) = the object of Y which represents g o O.
The functor g is determined up to invertible 2-cells in B-Cat ; in the par-

tially ordered case g equivalent to g’ just means that for each x the ob-

jects g(o) and k’(0) are B-isomorphic, i. e.,

2. Following the line of Lawvere’s «Metric spaces) [3], where the pursued
aim is that « fundanental structures are themselves categories ... by taking
account of a certain natural generalization of category theory within itself »

(namely V-category theory), the further generalization from V to B leads

to consider sheaves also as categories.
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If (C , J ) is a site, we con struct a bicategory Relj ( C ) as follows :

objects of Rel J (C) are those of C , 1-cells R : u -&#x3E; v are families of spans

which are saturated by composition, i. e. if h, k&#x3E; E R, then fh, fk&#x3E; c R
for all f : w’ -&#x3E; w . We write {  h, k&#x3E; I for the 1-cell in Relj ( C ) generated
by h, k&#x3E; . Composition R S is defined as the family of spans  h, k &#x3E; for

which there exists a g with

Identities are given by {1,1&#x3E;}. It is straightforward to verify that in this

way we get a category which defines the 1-dimensional part of RelJ (C) .
The 2-cells of Relj (C) are essentially depending upon the topology:

R  S iff for all  h, k &#x3E; c R there exists a covering family
such that

The proof that RelJ (C) is a bicategory (in fact, a 2-category) in-

volves directly the axioms of the topology J . Moreover Relj (C) is loc-

ally a lattice and each Reli (C)( u, v) is sup-complete: the sup is simply
set-theoretical union of families, and it is easy to verify its strict preser-

vation by composition. Observe that RelJ (C) is a symmetric bicategory,
in the sense that there exists a natural isomorphism of categories

such that and (

We have a faithful functor

This functor allows to identify arrows in C with corresponding ones in

Rei J (C) . By this identification, arrows h of C satisfy

The symmetry of the base allows to define symmetric Rel i(C) -cat-
egories as those for which X (x, x’) 0 = X (x’, x) .
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DEFINITION. L : S Cop -&#x3E; Rel ( C ) -Cat ( Rel ( C ) denotes the bicategory as-
sociated to the minimal topology) is a functor defined as follows : L F has

objects the sections x c F u whose underlying object is u . If x c F u and

y E FV, then LF(x, y) is the family of spans

such that

Let us observe that the functor L takes its images in the full sub-

category of symmetric and skeletal Rel(C)-categories, where skeletal, for
a B-c ate gory X , m e an s :

It is easy to check that the property to be skeletal is equivalent to the

uniqueness of representability of bimodules u ---l---&#x3E; X , and observe that skel-

etality destroys the 2-dimensional part of B-Cat .

Finally, observe that by construction the partial order of topologies
is preserved, i. e., if J  J’, then there is a canonical embedding

which does not preserve skeletality. 

We now need some remarks about symmetry and Cauchy-completion.
First observe it is not always true that the Cauchy-completion of a sym-
metric B-category still is symmetric: consider the monoid M = Set ( A, A )
as a symmetric Set-category with just one object. It is known that Cauchy-

completion for ordinary categories is the universal process of splitting id-

empotents [ 3, page 164] ; this means that M is not symmetric but in trivial

cases. However, in particular cases (e. g. metric spaces) the Cauchy-com-

pletion of a symmetric B-category is symmetric. So far we don’t know whe-

ther the same property holds for all Relj ( C ) -categories. The following
lemma provides a characterization for the general case.

LEMMA 1. Let X be a B-category. The Cauchy-completion X is symmetric

iff each adjoint pair 0 : u ----l----&#x3E; X is an inverse pair (i. e., O*(x)0 = 0*(X) ).
P ROO F. In one direction the proof comes directly by the definition of X.
In the other one, just consider the formulas ( *) in the proof of the theorem
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on Cauchy-completion and take into account the symmetry of X .

Observe that the a. i. property implies the symmetry of X ; it suf-

fices to particularize the a. i. property to representable bimodules. As we

have already remarked, we don’t know if the a. i. property is equivalent to

the symmetry of X in the Reli ( C ) case.

The previous lemma implies that the Cauchy-completion restricts :

(C.c. = Cauchy-complete) and that B-Cat a. i. is the biggest full subcat-

egory through which the adjunction restricts.

In view of Walters result [4], in the case B = Relj ( C ) let us def-

ine a functor FJ which will provide a useful description of the "-process.

is defined in the following way:

hJ X (u) = isomorphism classes of adjoint pairs of bimodules

Ikhen h : v -&#x3E; u is an arrow in C , the restriction is defined by the ad-

joint pair over v :

Functoriality of T J X is an easy matter. For sheaf conditions, let

be a 1-covering family, and Oi : 5. H- X be a compatible family. Define

They are adjoint: to check

it is sufficient to take i = j , and so to check
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But cPo ---l 0*. , , so it is enough to check 7  Vho ihi , which is true be-

cause thil } is a covering family. To verify the other adjointness condi-

tion, first observe that compatibility means that, for each commutative

square kihi - k j h j, it holds

for each i, j.
Hence:

So, for each  ki, kj&#x3E; in hi hqj , it holds

hence

L EMM A 2. There exas ts a functo r Li

such that Tj -1 Lj e, in the appropriate 2-dimensional sense.

P ROO F. L i is defined as in Walters [4], Proposition 1, by the composi-
tion :

where it is shown that it factorizes through Rel j (C) -Cat sym. c. c. and

that it is fully-faithful. Observe now that for each X in Reli (C) -Cat a. i. ,
it holds X = Lj (Tj X ). Clearly both categories agree on elements (up to
isomorphisms); for homs :

Indeed, let  h , k &#x3E; be such th at then
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. Conversely,

; then , therefore

Now

because h 0 k  cP*o lp and the a. i. property implies-1 *

Now the following chain of equivalences proves the adjunction :

by the theorem on-

by the previous remark

Li is 2-fully-faithful

T HEO REM (Walters [4] Pmposition 2). The functor L j is a 2-equivalence.
A direct proof may be obtained by considering the adjunction:

Fj --1 Lj e. Because Lje is 2-fully-faithful, it is enough to prove that

7ix: X - e (LJ (TJ X)) is an equivalence iff X is Cauchy-complete.

By this theorem, we will call Fr simply ".

3. We want now to compare the previous adjunction with the associated

sheaf functor.

THEOREM. There exists a comparison functor L’:

To prove the theorem we need a suitable description of the asso-

ciated sheaf functor a. For our purpose we found the best one to be that
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in [2], where aF (u ) is given by «u-locally compatible families of ele-

ments of F , with covering support and closed», which means:

D E FINITION 2. If F is a presheaf and u an obj ect of C , a u - Locally
compatible family with covering support is the assignment for each arrow

i : v -&#x3E; u of a family Fi C F v such that :
1° if X C Fi, for each h : w -&#x3E; v, x/h c Yh i
2o the crible {i: v-&#x3E; u | Fi # Ø} is J-coverin (« covering support ») ;
30 if x, y E Fi ,{k: w -&#x3E; v I x/k ylk } is J-covering («local com-

patibility») .
Such a family is closed if moreover :

40 if x C Fv and k ; w -&#x3E; v I x/k 5:ki } is a J-covering family, then

x c Fi . 
Define L ’ F as L F but thought in Rel J (C) -C at sym.

L EMMA 1. If 0: L’F is a bimo dule, and {h,k&#x3E;}0 (x) then
k  0(x/h). 

J

j

P ROO F. Directly we h ave kh{h,k&#x3E;}.
j

By the bimodule property and the a s sumption :

LEMMA 2. I somorphism classes o f pairs o f adjoint bimodules 0 : a -+, L’F
are in 1-1 correspondance with u-lo cally compatible, with covering sup-

port, closed families o f parts o f F.

PROOF. Let us consider such a u-family F. Define a pair of adjoint bi-

modules 0 = 0 (F) by

The proof of the adjointness condition is the same as
J

that in the proof of sheaf conditions for 17 1 , by using condition 2 on F .
The other adjointness condition 0*(x) 0*(y)  L’F(x,y) holds becauseJ

for each x’ E 5:. I and x" f 5: i we h ave
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 r, s&#x3E; C L’F(x, x’) i jo means that there exists t such that x/r = x’/t,

t i = s j ; by 1,

by 3, x/r and x"/ s agree on a covering.

Conversely, given an adjoint pair of bimodules 0: û+ L ’F, define

I by

for each i : v -&#x3E; u . 

Condition 1: if i  0*(y) , then for each k : 1J - v also
i 

*

which by Lemma 1 implie s , follows in a

similar way from i 0  0*(y) and a « dual» of Lemma 1.
i

Condition 2: by the adjointness condition 1  cP 0 0*, it follows that there
I *

exists a covering

such that for each a there exists xa with

This means that there exists ma such that

By Lemma 1 we have So the family

contains a covering family, namely 11 .

Condition 3: if x, yf Fi , then i i 0  0*(x) 0*(y) . By the adjointness con-
i 

*

dition

and because , which proves condition 3.

Condition 4: we have to show that for each i : v -&#x3E; u and each y c F v, if

is a covering family, then and So
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Because ko C L’F(y,y/k), then

holds for each k in ’U . It follows i  i 0*(y) . Analogously
Let us check that the two correspondances are inverse each other,

when the first one is restricted to closed families. If ?’ is the family as-

sociated to 0 (F) , then Fi C -Fi for each i: v -) u : ’ii’ being

it is enough to take k = i and x’ = y . Suppose now if closed ; let

which means there exists a covering 11 = I ha : Wa -&#x3E; v} such that for each

a there exist xa and ka with

It follows there exists t with

So by condition 1, . Therefore the family

contains a covering family. Because F is closed, y c Fi.
In the other direction, if 0’ is the adjoint pair of bimodules corresp-

onding to bi( 0) , it is easy to check 0 = 0’ : for each y c j=i it holds

thus

conversely, if then by Lemma 1 we get I

because it belongs to L’ F (x, x/h ) k .

PROOF OF THE THEOREM. The proof of Lemma 2 shows that L’F is an
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a, i, category. The stated bijectivity proves one commutativity, namely

a F = L’ F . The other one is trivial.
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ADDENDUM IN PROOFS.

After this work was submitted, it has been shown that the a. i. hypo-
thesis of Lemma 2 and of the Theorem of Section 3 is not necessary, be-

cause from a result by Betti and Walters (The symmetry of the Cauchy-com-

pletion of a category, to appear on the Proc. of 1981 Hagen Conference) it

follows that in the Relj (C) case the Cauchy-completion preserves sym-
metry (see the remark after Lemma 1, where this problem was posed).
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