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ON A THEOREM OF BAUMSLAG, DYER AND HELLER
LINKING GROUP THEORY AND TOPOLOGY

by Aristide DELEANU

CAHIERS DE TOPOLOGIE

E T GÉOMÉTRIE DIFFÉRENTIELLE

Vol. XXIII - 3 (1982)

The object of this paper is to construct a direct proof for the follow-

ing recent result of G. Baumslag, E. Dyer and A. Heller [ 1] showing that

homotopy theory can be reconstructed within group theory:

THEOREM 1. The category of pointed, connected CW-complexes and pointed
homotopy classes of maps is equivalent to a category of fractions of the

category o f pairs ( G, P), where G is a group and P is a perfect normal

subgroup.

The proof is direct, and somewhat elementary and self-contained, in

that it uses as ingredients only the result of Kan and Thurston that every
connected space has the homology of an aspherical space, the «plus cons-

tructions of Quillen, and some standard facts of algebraic topology and

category theory. The original proof of the theorem, given in the ample paper

[ 1], is based on a rather elaborate machinery, involving some general no-

tions of realizations of abstract simplicial complexes, as well as explicit
use of deep considerations of group theory, such as the fact that any group
can be imbedded in an acyclic group; this machinery is also used to ob-

tain a strengthened version of the Kan-Thurston result, which is not assumed

in [1].

We first recall the details of the ingredients mentioned above. A

space X is said to be aspherical if it is pathwise connected and 77i X = 0

for i &#x3E; 2. A group G is said to be perfect if G = [G, G] or, equivalently,

if H1 (G) = 0 .
The following result is due to D. M. Kan and W.P. Thurston [ 6] :

THEOREM 2. For every pointed connected CW-complex X there exists a
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Serre fibration tX : T X -&#x3E; X which is natural with respect to X and has

the following properties :
(i) The map tX induces an isomorphism of singular homology and co-

homology with local coefficients

for every rr 1 X -mo dul e A .

(ii) T X is aspherical, the sequence

is exact, and the group Ker rr1 tX is perfect.

The following result is due to D. Quillen [8], but is stated in an

explicit manner by J . B . Wagoner in [10] :

TH EO R EM 3. For every pointed CW-complex X and for every perfect normal

subgroup P o f rr1 X there exist a CW-complex (X, P)+ and a co fibration

i (X ,P ) : X -&#x3E; (X , P)+ which have the following properties:
(i) The sequence

is exact.

(ii) The map i(X,P) induces an isomorphism o f singular homology with
local coe fficients

for every rr1 (X, P )+-module A .

(i ii ) If f : X -&#x3E; Y is a m ap s uch that rr1 f( P ) = 1, th en th ere exists a

map f unique up to homotopy, which gives a homotopy commutative diagram

We will also need the following generalization of the classical the-

orem of J. H. C. Whitehead, which can be proved by using universal cover-
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ing spaces and the Serre spectral sequence :

THEOREM 4. Let f: X - Y be a map of pointed connected CW-complexes
such that

and

fo r every. rr 1 Y-m o dul e A .
Then f is a homotopy equivalence.

Finally, we will also use the following result, whose proof follows

straightforwardly from the definition of a category of fractions (see [4] ; if

A is a family of morphisms of a category , then @ [ A-1] denotes the

category of fractions of d with respect to A , and QA is the canonical

functor from 8 to @ [A-1]).

L EMMA 5. Let @ and 93 be categories, 0 and !1 families of morphisms
of @ and :J3, respectively, and U, v: @ -&#x3E; 93 functors u;ith the property

that U(A) C Q, V( A) C Q, so that there exist induced functors U, V

rendering the following diagrams commutative :

Then every natural trans formation E: U -&#x3E; V induces a natural transforma-
tion E: U-&#x3E; V defined by E A = QQ (E A) for each A E l@l. 

We now proceed with the

P ROO F OF THEOREM 1. Consider the following diagram of categories
and functors :

in which the cast of characters is as follows:

Ha CW is the category whose objects are pointed connected CW-com-

plexes and whose morphisms are pointed homotopy classes of maps;
e is the category whose objects are pairs (X, P) , where X is a point-



234

ed connected CW-complex, and P is a perfect normal subgroup of rr1 X ,
and whose morphisms f : (X, P) -&#x3E; (X’, P’) are pointed continuous maps

f: X -&#x3E; X’ such that 77, f (P )C P’ ;
K is the full subcategory of C whose objects are pairs (X, P ) where

X is an aspherical CIP-complex ;
HaC (respectively YaK ) is the category having the same objects as

C (resp. K), but whose morphisms are homotopy classes of morphisms of
e (resp. K);

§9 is the category whose objects are pairs ( G, P ) , where G is a

group and P is a perfect normal subgroup of G , and whose morphisms

g: ( G, P ) - (G’, P’) are homomorphisms g: G - G’ such that g(P ) C P’ ;
J is the full embedding of Ha CW into HaC, which sends each

X E lHa CWl onto (X, 1) E l Ha Cl ;

( ) + is the functor which associates with each (X , P) E l Ha C l the

space (X, P )+ E l Ha CW I provided by Theorem 3, and which is defined

on morphisms by using Theorem 3 (iii) (one sees immediately that, if one

identifies JtaC(O under the embedding / with a full subcategory of HaC,
then ( ) + yields a reflection of HaC onto Ha em) ;

C denotes the functors which are the identities on objects and send

each map to its homotopy class;
I is the full embedding of K into e ;
77 is the functor which carries each (X,P) E l HaKl onto (rr 1 X, P)

in I 
B is the classifying space functor [7], which assigns to each (G, P )

in l9Pl the pair (K(G, 1), P) E l HaKl ;

T is the functor which sends each (X, P ) E l Cl onto

where the space T X and the map tX are provided by Theorem 2. ( T X is

an aspherical space by Theorem 2 (ii), and to verify that (77. tX) 
-1 
(P) is

perfect, it is sufficient to consider a portion of the 5-term exact sequence

[5, page 203]
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associated with the short exact sequence

and to observe that, by Theorem 2 (ii), Ker 77 1 tX is perfect. )

This concludes the description of the categories and functors in-

volved in the above diagram. We now introduce five families of morphisms
as follows :

’II will denote the family of the morphisms f: (X, P) - (X’, P’) of
e such th at

for every rrl X ’/ P’-module A ;
(D will denote the subfamily of T consisting of all those elements

which belong to the full subcategory K ;
I (respectively A) will denote the family of morphisms of J(o, e (resp.

HaK) which is the image of T (resp. O) under the functor C ;
I-’ will denote the family of the morphisms g: (G, P ) -&#x3E; (G’, P’) of

§ P such that

for every G’/P’-module A .

Now, we observe that 2 coincides with the family of all those

morphisms of HaC which are carried into isomorphisms by the functor

( ) + . This follows by utilizing Theorem 4 from the commutative diagrams
induced by a map f: (X , P ) -&#x3E; ( X’, P’)

and
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where A is an arbitrary rr 1 X’/P’-module and the vertical arrows are iso-
morphisms by Theorem 3 (i) , ( ii ) . Thus, according to Proposition 1.3 on

page 7 of [4], the unique functor S which makes the diagram

commutative is an equivalence of categories.

Next, we note that the functor T carries elements of W into ele-

ments of (D . This follows from the commutative diagrams induced by the

map f: (X, P ) -&#x3E; (X’, P’)

and

where A is an arbitrary n, X’/P’-module and the vertical arrows are iso-

morphisms by the «third isomorphism theorems and by Theorem 2 ( i ). Thus

T induces a functor T rendering commutative the diagram
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Since obviously I carries elements of ID into elements of’ll, it

induces a functor I rendering commutative the diagram

Now, define a natural transformation

for every ( X , P ) c I C I , and a natural transformation 0 : Tl - 1 k by

for every (X, P ) c l K l . By Lemma 5, tfr and x induce natural transfor-
m ation s

defined by

Inspection of the vertical arrows in diagrams ( 1 ) and ( 2 ) shows

that Y (X,p) (respectively O (X,P) belongs to T (resp. O) for every

( X , P) fie I (resp. ( X, P) E K ). Therefore, Y (X,P) (resp. O (X, p)) is
an isomorphism for every (X, P) C[T"l l (resp. ( X , P ) 6 l K[O-1]l)
so that Y and § are natural equivalences. In conclusion T and I are equi-
valences of categories.

Now by the definition of the functor C carries elements of Y 

into elements of 3i ; thus, there exists a functor C making commutative

the diagram
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Furthermore, since every functor which carries homotopy equivalences to

isomorphisms carries homotopic maps to the same map ([2], page 244),
there exists a functor F such that the following diagram is commutative:

Moreover, since F carries the elements of I into isomorphisms, there

exists a functor E such that the diagram

is commutative. It is easy to see that

and

so that E and C are isomorphisms of categories.

In an entirely analogous manner, one can construct a commutative

diagram

in which L and C are isomorphisms of categories.

Finally, it is evident that the functor 7T (respectively B ) carries

elements of A (resp. F) into elements of F (resp. A). Thus, there exist

functors % and B rendering commutative the following diagrams :
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There clearly exists a natural equivalence n : rr B =-&#x3E; 1 q g);there
also exists a natural equivalence 8 : 1 HaK =-&#x3E; B7r, as can be seen by
using the natural bijection ([9], page 427 )

Y aspherical,

and defining 0(X,P) for each (X , P) 6 X«K ( , to be the homotopy class
corresponding under this bijection to 7 X when (Y,P) = B" (X ,P ) .
According to Lemma 5, n and 0 induce natural equivalences

defined by

Thus 77 and B are equivalences of categories.

To complete the proof of Theorem 1 it is sufficient to observe that

the composition SCI L B establishes an equivalence between the categ-

ories HaCW and §P[ r-1] , and that the composition rr C T E Q Z J is its

equivalence - inverse.

As a corollary of the above proof, we obtain the following theorem,
which is a more precise form of a result stated without proof in [ 6] :

THEOREM 6. For every pointed connected CW-complex X there exists a

natural homotopy class

which is an isomorphism in HaC W and has the property that the following
diagram is commutative in HaCW: 

P ROO F. The morphism of e
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gives rise to the following commutative diagram in HaCW: 

i(X,1) is clearly the identity map of X , and (C tX )+ is an isomorphism, 
since (C tX )+ - SQ Z C(tX) and we have seen above that C tX belongs

to E. Thus it is sufficient to take TX = ( C tX )+ . The verification of the
naturality of TX is a straightforward manipulation of diagrams.

REMARK. One can say that, in a certain sense, the Kan - Thurston cons-

truction inverts the Quillen plus constructions. This assertion is justified

by Theorem 6 and by the fact that, for each object ( X, P ) of it. c , there
exists a natural isomorphism in Ya C [E-1

This follows from the diagram in C

and the observation that both + belong to T for every

so that we can take

Another consequence of the proof of Theorem 1 is the following

description of the Quillen «plus construction » as a generalized Adams com-

pletion in the sense of [ 3] :

THEOREM 7. The generalized Adams ’2-completion of every (X , P)f l Ha Cl 
is ((X, P )+, 1) - s
PROOF. We have to show th at there exists for every ( X, P ) 6 lHaCl a
natural equivalence of functors from Ha e to sets :
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But we have seen above that S is an equivalence of categories, and that

,j is a right-adjoint of ( ) + , , so that

REMARK. By Theorem 3 (i) the map i (X,P) defines a morphism of C

Then, for every ( X, P ) E l Ha Cl, the canonical morphism from ( X, P ) to

its E-completion is C i (X P ) . 
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