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AUTOMATA AND CATEGORIES

by Sym eon BOZ AP ALIDES and Anestis FIRARIDES
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E T GÉOMÉTRIE DIFFÉRENTIELLE

Vol. XXIII - 2 (1982)

3e COLLOQUE SUR LES CATÉCORIES

DÉDIÉ 4 CHARLES EHRESMANN

Amiens, Juillet 1980

Throughout this paper h denotes a monoidal closed category with

tensor product 0 and internal- hom ’We assume that 11 has countable

c olimits and kernel pairs.

I. Given a sequence il = (On) of objects of U, an Q-alge bra is sim-

ply a pair ( A, a ) with A c U and a : H +An -&#x3E; A . (Q is the object of
n n n n

symbols of n-ary operations of the algebra. ) Homomorphisms are defined

classically : they are morphisms which respect the 9-algebra structure:

We can now construct the free Q-algebra generated by an object A ;
its carrier object is the coproduct H(X) = U Wn where the objects W

n&#x3E;I 

(trees of length n ) are inductively defined as follows :

II. One thing of central importance in this paper is the «free approxima-

tion» of the translation- monoid of an Q-algebra (A, an).
Consider the object
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where « A» means omission of the underlying factor, and úJ denotes the first

infinite ordinal.

We have a morphism a*: A *-&#x3E; [A, A] such that the adjoint trans-

form of a*o in i. n is an followed by a symmetry morphism.
Call tA the free monoid generated by A *, i. e., tA = II (A*)n .

n&#x3E;0

Then a * is uniquely extended to a monoid homomorphism

This says that t A acts on A by sA : t A ® A -&#x3E; A obtained from a+ via

0 -l [,].

III. In the framework described above we examine the realization pro-

blem for tree or algebra automata ; precisely an f2-algebra automaton in 11

is a 5 -tuple (I = ( Q , X, r , Y , f3 ), where Q = ( Q, 0 n) is an 0 -a I g e bra (Q
the state ob ject, 5n the transition arrows ) and T : X - Q, 8 Q , Y are

morphisms of 11 called initial state and output.

The reachability map of (1 is the Q-algebra homomorphism induced

by t , t : H(X)-&#x3E; Q

where jX is the morphism «insertion of generators.
Call d E-reachable if T belongs to a certain class E of 1J -epi-

morphisms.

Finally the arrow

is the response of (t. Now given a morphism f : 0 (X) -&#x3E; Y , we say that
ti realizes f iff its response is just f .

Our scope is to construct an E-reachable automaton ( E = coequal-
izers of reflexive pairs) af = ( Q f, X , r f, Y, t3f) which realizes f in the
most economical way, i. e, for every 6-reachable automaton Q which also
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realizes f , there exists a unique algebra- homomorph ism À: Q -&#x3E; Qf making

commutative.

THEOREM. Any morphisme f: H (X ) -&#x3E; Y has a re fl exive coequaliz er-reach-
able minimal realization.

P ROO F. Let

be the adjoint transform of sQ(X),

the kemel pair of the morphism

and rf: H(X ) -&#x3E; Q f the coequalizer of ( a, y) .
We use Theorem 2.6 [A.A. M.]. Postulates i and iv of this theorem

are evident. To prove Postulate iii, we need the following lemma :

L EMMA. The monoid ti2(X) acts on the object Qf in such a way making
r f can action homomorphism.

PROOF. WE have

m the multiplication of the monoid tH(X). Similarly

Using the identity
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and passing to adjoint transforms we obtain

Because ( a, y) is the kernel pair of [1, f] o s H(X) the above equality

implies the existence of a morphism 03C8: tH(X)+Ef -&#x3E; E f such that

and consequently

But then the fact that

gives us the desired action 

Return to Postulate iii . We must prove that Q f admits an il-algebra
structure making r f an algebra homomorphism. If we define the morphism

to be the composite

then from the previous lemma we get

’where II H +H(X)n -&#x3E; H (X) are the structural arrows of the free 0-
n n

algebra H(X) ); therefore
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Combining the last relations and the fact

we deduce

for all n E N and 1  i n . 

Using successively (Ani,j) and (Ain) we obtain the following string ofn n

isomorphisms :

Our next step is ’to define inductively morphisnis

such that
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Ve take k 1 = hn , kl coequalizes

( This comes if we put ( 1 ) together with

and the fact that

is reflexive.) Consequently there exists a unique

k3 results from k2 by a similar as above argument, and so on. Finally, we

determine kn :Hn +Q nf -&#x3E; Qf which is the n-th structural arrow of Qf .
It remains to show that rj is an algebra homomorphism. We have
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We now establish the postulate i. It suffices to prove that f co-

equalizes the pair (ä, ) in a universal way, i. e. wherever fop = f 0 q
also holds for a reflexive pair

there exists a unique arrow h : R -&#x3E; Ef such that a o h = p , y o h = q. ( a ,

y, p, q are the unique algebra homomorphisms deduced by a, y, p, q re sp-

ectively.) The equality f o a = f o y comes easily if we prove that f o a =

be the unique arrow such that

If u : I -&#x3E; tOr X) is the unit of the monoid tH(X), then we have

because Vf is an action. Therefore

where O is the transform of 0 via 0 -l [ , ]. 

Now, let E : H (X)-&#x3E; f2(R) be the common right inverse of F and q :

p of =Id=qoE. We have

where t p, t q are the free monoid homomorphisms induced by p, q resp-

ectively. Hence

or
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by adjoint transformation. Therefore there exists a (unique) arrow

It is now clear that the morphism

has the desired property, and this concludes the proof of the theorem.
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