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0. INTRODUCTION 

In a forthcoming paper [4] ( summarized below) a version of Ascoli’s

Theorem for topological categories enriched in bomological sets is proved.
In this paper it is shown how the two classical versions as found in [1] or

[9] fit into this format.

1. GENERAL THEORY

Let Born denote the category of bomological sets and bounded

maps. (See [7 .) It is well known that Born is a cartesian closed topolo-

gical category. ( See (6 ] . ) Let T denote a topological category ( cf. 5] or

[11] ) which is enriched in Bom in such a way that the enriched hom func-

tors T (X, -) preserve sup’s of structures and commute with f *, with dual

assumptions on T (-, Y) . If H C T(X, Y) belongs to the bomology we

shall call H bounded.

1.1 LEMMA. Let f: X, Y be a function and let ( Y, n y) c T. Given HC YX
then there is a largest I-structure TJx on X such that H c T (X , Y) and

H is bounded.

1.2 DEFINITION. i) Let S E Sets and ( Y, ny C T . The uni fonn T-struc-

ture Fu (S, Y ) on YS is the largest structure such that

is bounded.

1.3 PROPOSITION, T is tensored and cotensored over Born . The cotensor
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is FB ( X , Y) and the tensor is a suitable structure on X X Y.

1.4 D EFIN ITION . i) Let B T denote the pullback of T and Born over Sets .

( X, BX’ nX) c BT is called 8X-generated if

where

ii) Let (X, BX,nX) c BT. Then TB(X, Y)C F B (X, Y)denotes the
induced T-structure on the set of T-maps from (X, 71 X) to ( Y, -q y).

iii) Let G: T , Borrt be a functor over Sets . (X, TJ X) is called a G-

space if G(X , 17X) = (X , 1X) where 1X denote s the discrete bornology
on X .

iv) Let i: (A, 71X [A ) -&#x3E; (X, 77X ) be an inclusion. A is called G-closed

in X if G(A, nX |A) = i *(G(X, nX )).

1.5 AXIOMS.

B. i ) G pre s erve s products.

ii) T B (X, Y) is G-closed in FB (X, y).
iii) Let H C T (X ,Y) be bounded. Then H C H’ C T (X,Y) where

H’ is bounded and G-closed with respect to the product structure Fp(X, Y).
Furtherm ore, if prX(H ) C G ( Y), then prX(H’) C G (Y).

C. If (X , n X) is a G-space and H - T (X , Y) is bounded, then

1.6 THEOR EM. Let (X, BX , TJX) be BX -generated and let ( Y, 77y) c T.
i) (Weak Ascoli) I f G, X and Y satis fy A, the

ii) ( Sttnng Ascoli ) If BX has a co final subset consisting o f G-spaces
and G, X and Y satisfy B and C, then the opposite inclusion holds.

2. UN IFORM SPACES

The most straightforward example of this theory is given by the cat-

egory Unif of uniform spaces and uniformly continuous maps. It is well
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known to be a topological category and one defines an enrichment in Bom

by calling a set H C Uni f(X , Y) bounded if it is unifonnly equicontinuous
(cf. [1]), i. e., if V c Uy is an entourage for Y, then

To see that this is a hom-functor, observe that if

are bounded, then so is K o H C Uni f ( X , Z ) since

The other properties are easily checked.

If S is a set and Y is a uniform space, then the uniformity of uni-

form convergence on YS has as a basis the sets

i, e., it is the smallest uniformity ( - largest structure in the sense of top-

ological categories) such that lprs L S is uniformly equicontinuous. The

definition of FB (X, Y) agrees with what is called the unifonnity of G-

convergence in [1]. It is a standard calculation that FB (X, Y) is the co-

tensor, i, e., given (X, BX ) C Borrt and (Y,u Y), (Z, u Z) C Uni f then there
is a bijection

The tensor product has not been discussed before, but it follows immediate-

ly from Wyler’s Taut Lift Theorem [11] that given (X ,BX ) C Born and

( Y, uY ) in Uni f , then X X Y is the largest uniformity (smallest struc-

ture) on X X Y such that 77y: Y-&#x3E; F B (X,Xx Y) is uniformly continuous.

The other important ingredient is the functor G . Here we take

T b; Unif- Bom where Tb(Y, uY ) denotes the set of totally bounded ( pre-
compact) subsets of Y . It is immediate that these form a bomology which
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is functorial in Y . It is proved in [9], I, 5.10 that Tb preserves arbitrary
initial structures, thus inf’s and f *. Hence, by [11] again, Tb has a left

adjoint Tb ; namely, given (X,BX) C Born, then Tb(X, BX) is the largest
uniformity (smallest structure) on X whose totally bounded sets include

BX . Note well however that neither Tb nor Tb is an enriched functor. A

Tb-space is a totally bounded space in the usual sense. Furthermore, an

inclusion map i: (A ,l1x A -&#x3E; ( X , uX ) is an equalizer and hence preserved

by T b, so every such A is Tb-closed. Therefore the properties in Axiom B

are automatically satisfied by Tb . Axiom A says that a totally bounded

subset of uniformly continuous functions for the uniformity of uniform con-

vergence is uniformly equicontinuous, which is a standard result. Axiom C

says that if X is totally bounded and H is equicontinuous, then the uni-

formities of uniform convergence and of pointwise convergence coincide

on H , which is also a standard result. Theorem 1.6 then is a restatement

of [1], X, 2.5, Theorem 2, for the case of uniform structures.

3. MIXED TOPOLOGICAL AND UNIFORM STRUCTURES

The pre-Bourbaki version of A scoli’ s Theorem refers to compact

subsets of the set of continuous maps from a topological space to a uni-

form space ( or, even more classically, to a metric space l. In order to deal

with such mixed structures one has to consider more general tensor-hom-

cotensor situations as described in [3]. In this case, instead of a single

topological category enriched in Bom, one has a pair of topological cat-

egories, T1 and T2 , together with a hom »-functor H’; Top1 X TZ -&#x3E; Born .
The tensors and cotensors are functors

In our case, Ti = Top and T2 = Unif. If S l Bom , X C Top and Y X Unif,
then writing

the required natural isomorphisms are
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This can be interpreted either at the level of sets or in Born providing a

meaning is given to the last term.

In Section 2 , we described such a situation for Top replaced by

Unif. There

and SOX was a suitable structure on S x X . Let | - |: Unif- Top be the

forgetful functor with left adjoint F: Top , Uni f . ( F for fine, cf. [8].)

In [3], Proposition 1.2, let G, = G3 = id, and G2 = | - | . Then

is a THC-situation for Born , Top and Uni f .
Classically, H’(X ,Y) = Top (X , |Y| ) with the bornology given

by equicontinuous sets. However, the cotensor which is contructed ( e.g.,

in [1]) is easily seen to be |F B (S, Y ) | Since the cotensors agree, so
do the other functors and hence

holds in Born ( i. e., an equicontinuous family of maps from X to Y is the

same as a uniformly equicontinuous family of maps from FX to Y ).

We cannot take G(X) = Cp(X) to be the compact subsets of X

since they don’t form a bornology. However, they generate a bornology ;

namely

Sc(X ) is called the subcompact subsets of X . It clearly defines a functor

Sc: Top - Born over Sets . Since it does not preserve equalizers, it has no

left adjoint, but it does preserve products so Axiom B i is satisfied. An

Sc-space is a compact space while an Sc-closed subspace is a closed sub-

space. For Axiom A, it is sufficient to show that a compact set of continu-

ous functions for the topology of uniform convergence is equicontinuous.
Here we have
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Axiom B ii is the statement that continuous functions form a closed set

with respect to the topology of uniform convergence on sets in BX . In Ax-
iom B iii , one takes H’ to be the closure of H, which is equicontinuous
if H is. Axiom C is a standard result and then Theorem 1.6 yields the other

case of [1], X, 2.5, Theorem 2.
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