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OPEN COVERS AND INFINITARY OPERATIONS IN C~-RINGS 1)
by Eduardo J. DUBUC

CAHIERS DE TOPOLOGIE

E T GEOMETRIE DIFFERENTIELLE

Vol. XXII -3 (1981)

3e COLLOQUE SUR LES CATEGORIES
DEDIE A CHARLES EHRESMANN

Amiens, Juillet 1980

INFINITE ADDITIONS.

In the C°°-ring Coo (Rn) of smooth real valued functions, one can

define elements (functions) by adding certain infinite families. A typical
application of this method is the following: Suppose M- Rn is a closed

smooth submanifold, and let h : M - R be a smooth function defined on M.

By definition this means that there are open sets Ua C Rn, a c h , such that
they cover M , and smooth functions ha: U-&#x3E;R such that

Let U 0 be Rn -M , and take any function (e.g. the zero function) h0:U0 -&#x3E; R.
We then have an open covering Ua , a E F + {0} , of the whole space Rn,
and functions ha: U - R such that

(since UOn M = Ø). This family does not agree in the intersections

UQnUB ; thus it does not define a global function f: Rn -&#x3E; R which extends

h . However, we can construct an extension of h . Let Jq be a locally finite

refinement of Ua , for each i take a such that ?. C U a , and let gi: Wi-&#x3E; R
be equal to A lGi . Let O i be an associated partition of unity. The func-
tions fi = Oi gi are defined globally, fi ; Rn -&#x3E; R , and have support cont-

ained in ?.. (This is so since support (Oi) C Wi by definition. ) It follows

that the equality f = W fi defines a function f : Rn-&#x3E; R such that

(which is a finite sum on an open neighborhood of x ). If we compute f at

1) Partially supported by the Danish Natural Science Research Council.
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a point p E M , we have:

Thus f is an extension of h.
Two questions arise :

1. Which is the algebraic meaning o f these in fcnitary additions ?
Il. To which extent can they be defined and performed in arbitracry Coo-

rings o f finite type A = C °°( Rn)/ I ?

In particular, can we give a meaning to expressions of the form

a = I a , aa c A ? In a way such that if aa = [fall fa c C°°(Rn ), and
the fa can be added in C°° (Rn) defining a function f = "fa ( as before),

then a = [f] ( where brackets indicate equivalence class modulo I ). That

this is not always possible is seen as follows : Let

is of compact support)

and let cP be a partition of unity such that Oa E I for all a . Let

Then a = 1 since in Coo(Rn). But a ls o aa =[0] and then

a = 0 since 0 = S 0 in C°°( Rn). Thus 1 = 0 in A , which is impossible
a

since 1E I . We see that a condition is needed in the ideal that presents

A . Namely, that if la E I and the la can be added in C°° (Rn) defining
a function 1 = 2/ (as before), then l c 1. This leads to the notion of

a

ideal o f local character ( cf. Definition 6, iv).

ANSWER TO QUESTION II.

The first step is to define the open cover topology in the category

D°f.Pt , dual of the category of C°°-rings of finite type. Given a Coo-ring A
and an element a E A , we denote A -&#x3E; A {a-1} the solution in d to the

universal problem of making a invertible (cf. [1, 2]). The following is

straightforward:
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1. PROPOSITION, Given any morphism 0: A-&#x3E; B and element a c A, the

diagram

is a pushout diagram iff C = B I q5 ( a)-’ 1 .
We recall the following

2. PROPOSITION. Let UC Rn be acn open set, and let f be such that U =

Then

P ROO F . The basic idea is to consider the map

which makes U the closed sub-manifold of Rn+ 1 defined by the equation

1-xn+1f(p)=0. Then use the fact that this equation is independent to
deduce that the equalizer is preserved when taking the Coo -rings of smooth

functions (cf. [1, 2] ). A different proof of the preservation of this equaliz-
er is given in [4].

3. DEFINITION. The open cover topology in (toP is the topology generated

by the empty family covering {0} , and families of the form

for all n and all open coverings U a of Rn .

It follows from Propositions 1 and 2 that basic ( generating) covers

of an arbitrary COO-ring of finite type A are families A-&#x3E; A a- a 1} which can
be completed into pushout diagrams

where Va = {x l ga (x) # 0} is an open cover of R’ and O (ga) = aa .
The morphism q5 can be chosen to be a quotient map. Let A = Coo (Rn)/l;
then, since C°° ( Rs ) is free, there is a smooth function f : Rn , Rs making
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the following triangle commutative :

One checks then that the following diagrams are pushouts :

where

is an open cover of R’ and aa = [fa] .
Open covers C° (Rn) -&#x3E; C°°(Ua ) are effective epimo7phic families.

This just means that given a compatible family fa c C°°(U ) (meaning
that they agree in the intersections), there exists a unique f E C°°( Rn )
such that fl Ua= f. (Remark th at C°°( U a n U B) is the pushout of C ° (U )
with C °’° (U B) over C °° ( R" ) . ) However, they are not universal. open
covers of an arbitrary A will not, in general, be effective epimorphic fa-

milies. For example, let as before I be the ideal

I = (h l lt is of compact support) ,

and let 0 a be a partition of unity such that q5a c I for all a . Then the

diagrams

are pushout diagrams for all a , where tJa is the open covering

, an d 

On the way we see that the empty family covers A since it covers { 0 }
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( use composition of coverings).

Consider now an open covering of an arbitrary i

its image in A {a-1 a}. Suppose b, b’ E A are

such that

Thus [f l U a] = [f’ l Ua ] , which means that (f-f’) l Ua E I l U a . If the cov-
ering is going to be effective epimorphic, it should follow that (f-f’) E I.
This leads to the notion of ideal o f local character ( cf. Definition 6, ii).

We recall the following elementary facts in order to fix the notation.

4. PROPOSITION. Let A be a Coo-ring and p: A - R a morphism into R ,

which we will also call a point of A . We denote A-&#x3E; Ap the solu tion in

the category of COO-rings to the universal problem of making invertible all

the elements a c A such that p (a) f- 0. There i.s a factorization of p ,

A -&#x3E; AP -&#x3E; R, and AP is a Coo.local ring. I f a f A, we denote a l P lAp its

image in Ap. Suppose A = C°°(Rn )/I, let U C Rn open, f such that

U = { x l f (x) # 01}, and a = [ f ] . Consider th e following diagram (where
the upper square is a pushout):

Given a point p o f A, p: A -&#x3E; R, since C°° ( Rn ) is free, p can be iden-

tified with a point of Zeros (l) C Rn which we will also denote p . When
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there exist factorizations (necessarily unique) as shown in the dotted ai-

rows, p can be identified with a point o f A {a-1}, which we will also de-
note by p . Then

p is a point o f A{a-1} =&#x3E; p ( a ) ?10 =&#x3E; p E U.

It follows that i f A - A {a-1 a} is an open cover and p is a point o f A then

there exists a such that p is a point o f A {aa-1 } (since there exist a

such that p c Ua ).
P ROO F . This is all rather straightforward. For a proof, cf. [2, Expose 11].

Suppose now b, b’ E A are such that b j p = b’lp for all points p
Then

Thus [f l p.] = [f’l p ], which means that (f - f’ ) ’p E I l p . If we want to

deduce that b = b’, it should follows that ( f - f ’) E I. This leads to the

notion of ideal o f local charnccter ( cf. Definition 6, i).

5. DEFINITION. A family li E COO (Rn,) (indexed by an arbitrary set) is

locally finite if there is an open covering Ua such that, for every a ,

li Va = 0 except for a finite number of i . Equivalently, if each point p

of Rn has an open neighborhood U such that li U = 0 except for a finite
number of i .

Given a locally finite family li , the finite sums
form a compatible family. Thus there exists a unique

We denote this 1 by the fonnula 1

6. DEFINITION. An ideal I c C°° (Rn) is of local character if it satisfies

any one of the following equivalent conditions :

for some open cover

for some partition of unity
for every locally finite family li . 
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PROOF OF THE EQUIVALENCE. The antecedents of the first three im-

plications are themselves equivalent, cf. [1], Lemma 10, and for detailed

proof, [2] Theoreme 1.5 ; thus the equivalence of the first three conditions.

That iv » iii is immediate since (ba f is a locally finite family and f =

E O a f . Finally, it is evident that ii=&#x3E; iv. Notice that the implications in

the first three conditions always hold in the other sense.

It is clear that any ideal I has a «closure» of local character ;

namely

I can also be seen as the closure of I under additions of locally finite fa-

milies. Let 93 be the category of C9-rings presented by an ideal of local

character. Let

Then we have a canonical (quotient) map A - rA and the passage A -&#x3E; r A

is clearly a left adjoint for the inclusion B -&#x3E; (Gf.t. Thus 93 is closed under

all inverse limits and has all colimits. These colimits will not coincide in

general with the respective construction in (Gf.t. We remark that, since

Zeros(1) = Z eros(1), A and rA have the same points.

7. EXAMPLES. lo Let Then By

construction, A X oo B = C°° ( R2 ) /I, where

This ideal is not of local character:

I = { f I f = 0 on an arbitrary neighborhood of the y-axis J .

The coproduct of A with B in 93 does not coincide then with the one per-

formed in (1.t. t .
Then

where and
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We see this because the following is a pushout diagram :

(cf. Proposition 1 ). Now, the ring A { a-1} has the presentation

where I is the ideal in 1 above. Thus the localization A { a-1 } in 93 does

not coincide with the one performed in Qr . Since Zeros (1, 1-x y) = 0 ,
we have that 1 E (1, 1-x y) . Thus A { a -1} = {0} in 93. This means that

if 0: C°°0 (R) -&#x3E; B is any morphism, B is in 93, and 0 (x |0) invertible,
then B = {0} . This is not so if B is not in 93.

In what follows we will utilize the same notation as in (if. t for the

constructions performed in 93. Since they are defined by the same universal

propertie s, we have:

8. P ROP O SITION . Propositions 1 and 4 remain vali d fo r the category 93.
In addition, since all finitely generated ideals are o f local character (c f.
[1,2]), if A is of finite presentation, then for any a E A, A a-1J } cons-

tructed in (if t as already in 93. Thus Proposition 2 remains valid also for
the category 93. FurtheTmore, i f A is in 93, then for any elements b, b’ £: A,

b = b’ iff b | p = b’l p for all points p o f A .

9. PROPOSITION. The open coverings are universal effective epimorphic

familie s in the category 93°P.

P ROO F. The proof is essentially a repetition of the argument given at the

beginning of this article. Let A = COO( Rn) I I, I of local character, Ua an

open cover of Rn , fa such that Ua = { x I fa (x) # 0 } and aa E A, aa=
[fa] . We consider the pushout diagram in 93 :
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Let b c A a } be a compatible family. This implies that for all pointsa 
1 

a

of A {aa -1, a- B 1}, ba |p = bB |p. Thus, for all p in A there is a well defined
b (p) C Ap , b (p) = b a I p for any a such that p is in A a . We shall cons-

truct an element

Let h a E C°° (Ua ) such that ba=[ha ],let Wi be a locally finite refine-

ment of Ua, for each i take a such that JP c TJQ , and let g
be equal to ha|Wi. Thus, for all p in W., [gi| p ] = b(p). Let 0. be an
all 1, p 1,

associated partition of unity. The functions 1. 
i 

= 0, 1, g. i are defined globally,
1i c C°°(Rn), and have support contained in W.. Thus, given any p in A , 
i i

Since the family l. 
i 

is locally finite (Definition 5), we have a function l =

Z li . Let b= [l]. Then, for any p in A ,

Given any a, b la = ba since for all p in and

A {a-a 1} is in B . In the same way one checks the uniqueness of such a, b,
since all points of A are in some A a-a 1} . This finishes the proof.
10. DEFINITION - PROPOSITION. Given any COO-ring A presented by an

ideal of local character, a family b, 1, f A ( indexed by an arbitrary set) is

locally finite if there is an open covering A - A a-a1} such that for every
a

a, bi |a = 0 except for a finite number of i . Given such a family, the fin-
i a

ite sums b.1 f A { a -a 1} form a compatible family. It follows then from
i i a a

the previous proposition that there exists a unique

b E A such th at 

We denote this b by the formula b = I b.. Given any morphism 0: A -&#x3E; B
I i

in 93, the family 0 ( bi ) C B is also locally finite, and

This finishes the answer to Question II. Infinite additions of locally
finite families make sense and can be performed in certain Coo-rings. The
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COO -rings which have this extra structure are precisely those presented by
an ideal of local character. Before passing to Question I, we make a final

remark on the open c overin g topolo gy.

11. P R OP O SIT IO N . Given any COO-ring A c (if. t and a famil y a 
a 

c A, 
A , A {a a-1} covers in the open covering topology iff for all points p in A

there exists a such that p is in A { aa-1}. Thus any C°°=ring without points
is covered by the empty family.

P ROO F . One of the implications has already been seen ( Proposition 4).

Suppose then that for all p in A there is a such that p is in A aa-1 }a

Let j such that

The h ypoth esis means that for all p c Z eros (I ) C R’ there is a such that

p c Ua . If p i Z ero s (I), there is

1 E I such that

Thus the Ua together with the lJl l form an open cover of Rn . Let b, E A ,
bl = [l]. Then A -&#x3E; A { aa-1} together with A -&#x3E; A {bl-1} form an open cover

of A . But A { bl-1} = {0} ; thus it is covered by the empty family. By com-
position of coverings, it follows that A - A a" } is an open covering of A ,

ANSWER TO QUESTION I.

We consider the free Coring in X generators, E F, cf. [2] . This

ring, which we denote Coo ( R r ), is the ring of functions R T -&#x3E; R which

depend only on a finite number of variables, and which are smooth on these

variables. Clearly, this is a ring of continuous functions ( for the product

topology in R r ) . If we take a locally finite family of functions RT -&#x3E; R
in C °° ( R T ) , and add it up, we get a continuous function which will not
be in general in Coo (R r) . However, every point will have a neighborhood
in which this function will coincide with the restriction of a function in

Coo (R r ) . We consider all functions 0 which locally depend on a finite

number of variables. More precisely, functions for which there exists an
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open cover U/ C R T, finite setts / , smooth functions h a and factoriza-a a a

tions as indicated in the following diagram (where p is the projection) :

for all a . Thus we add to C°° (RT) all the functions needed to render the

open covers of Rr effective epimorphic families. We will, for the lack of

a better notation, denote this ring by oo C°° (RT). Thus a function 0 is

in ooCoo (Rr) iff for each point p c Rr , there is an open neighborhood U
of p , a finite set of indices *{L1, L2, ... , Ln} and a smooth function of n

variables h such that for all ( xL ) c U, x c r,

We leave to the reader the proof of the following (where r and A are any

sets, including finite):

12. PROPOSITION. Given any and a h-tuple

the composite

It follows then that there is an infinitary algebraic theory in the

sense of Linton (cf. [3]) which has as r-ary operations the rings oo Coo (RT).
We shall call this theory the in finitary theory o f C°°-rings. Its finitary part
is the theory of COO-rings, since ooC°°(Rn) = COO( Rn ). Thus, this ring is

still free on n generators for the infinitary theory. (The action of a r-army

operation on Coo (Rn ) is given in Proposition 12, with A = n . ) All MC m -
rings of finite type are then quotients of Coo (Rn) presented by 00 Coo-
ideals, that is, ideals I such that the congruence 

is an 00 Coo -congruence. Recall that this congruence is always a C°° -con-

gruence ( cf, [1, 2]).
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13. P ROPO SITION . Let A = C °° ( Rn ) / I be a COO-ring presented by an id-
eal I of local character. Then, A is an oo C °° =ring. Or, equivalently, I is

P ROOF. Let

Let p be any point of R’ and let tJ eRr be an open neighborhood of the
two points j where 0 depends on a finite number

of variables :

for some be an open neighborgood of p such that

Then

because

since all ideals are Coo-ideals. Thus the term ( is in

I/p . Since I is of local character, this implies

The converse of this proposition says, in a way, that there are en-

ough operations in the infinitary theory of C°°-rings to force any 00 Coo-
ideal to be of local character. This is actually the case, and we prove it

by showing that given any locally finite family lL c C°° ( Rn ), there is an
infinitary operation that adds it up.

14. P ROPO SITION. L et lL c COO(Rn), À c T , be any lo call y finite family.
Then, the following function:

PROOF. Given any point , take an open

neighborhood U C Rn of (a1 , ... , an) , where all but a finite number of l a
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are zero. Then the open set U X RT is a neighborhood of p where L de-

pends on only a finite number of variables.

Let hllh 2,... hn and fL be any (n+T)-tuplet of smooth func-
tions in k variables. The family (indexed by T ) lL (h1..., hn) fL is a

locally finite family in Coo (Rk), and it follows from Proposition 12 ( with
k = h ) that the action of L for the 00 Coo -ring structure of C°°( Rk ) is

given by the formula

We have

15. PROPOSITION. Let lL and L be as in Proposition 14.
i) Given any n-tuple

and any locally finite family

P ROO F. i is clear, and ii follows clearly from i . We get iii by putting

k - n and hi 
i 
= 

ITi the projections.

Finally, observe that given any open set U C R n and any smooth function

f with Supp ( f ) C U , then there exists a function l with supp (l) C U and

such that f = f l . To prove iv, we apply this observation to each of the

functions fL. The family 1X so obtained is also locally finite; thus it has

an associated operation L. iv follows then from iii.

16. COROLLARY. Let A be a ooCOCJ-ring o f finite type. Then A is a C°°-

ring presented by an ideal o f local character.

P ROO F . Immediate from iv in the previous proposition and Definition 6, iv.

Thus, the ideals o f local character are exactly the congruences for



300

the in finitary theory o f COO-rings. Remark that we have also proved that

given any locally finite family fX in Coo (Rn), X c T, there is a ( n + T)-

ary operation L such that

where 77i are the projections. Suppose now I is an ideal of local character,
be the generators of A , and let

Then, by Definition-Proposition 10, b x is a locally finite family, and

. But since I is a , we also h ave

Thus, given any locally finite family b L = [ fL ] in a C ’-ring A presented

by an ideal of local character, A = C’ ( R’ )II, if fX is locally finite in

Coo (Rn ), there is an infinitary operation L such that

where e 1 ’ ... , en are generators of A . With this we finish the answer to

Question I.
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