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ENRICHED CATEGORIES AND ENRICHED MODUL ES

by Harald LINDNER

CAHIERS DE TOPOLOGIE
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Vol. XXII-2 (1981)

3e COLLOQUE SUR LES CA T EGORIES

DEDIE A CHARLES EHRESMANN

Amiens, juillet 1980

Our purpose is to show that most of the results on categories en-

riched over a symmetric monoidal closed category v can be formulated and

proved in the merely monoidal case. This permits to apply the theory of en-

riched categories to further examples, to gain a better understanding of the

basic notions of ( enriched ) category theory, and to present enriched cat-

egory theory more concisely.

An important tool is the notion of enriched modules ( Benabou : « ac-

tions of multiplicative categories»), i, e., categories on which a monoidal

category acts. We hope to show that the two notions of enriched categories
and enriched modules are equally important. These two kinds of objects
are the 0-cells of two well-known 2-categories. We have described in pre-
vious papers how these two 2-categories can be embedded into a 2-categ-

ory C by introducing 1-cells (and 2-cells ) from v-categories to V-modules,
and vice versa. Our examples prove that such 1-cells and 2-cells occur nat-

urally even in the familiar symmetric monoidal closed case.

The key result ( 1.9) is a characterization of tensored v-categories
in terms of isomorphisms between enriched categories and enriched modules.

We discuss duality, limits and Kan-extensions in our context. Details on

further topics such as functor categories will be considered elsewhere.

Proofs are usually omitted.

1. THE 2.CATEGORY G OF ENRICHED CATEGORIES AND ENRICHED
MODULES.

We recall the definition of the 2-category (5 (cf. [15, 17 ). Let

V = ( vo, X, I,a, L, p) be a monoidal category, i.e., X: v0 X V0 -&#x3E; v0 is

a functor (written between its arguments),l is an object of f 0 , and
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are compatible natural transformations.

1.1. DEFINITION. A P- (left-) module consists:

of a category Ao , a functor and two natural transfor-

mations 

such that three evident diagrams commute. A is called normal if aA and

L A are both isomorphic ; their inverses are then denoted by Q4 and v A , 
respectively.

(Cf. [1], 2.3 «( actions of multiplicative categories »); [2], 3, Section 1;

[15], 5.1; [16], 2; [17], 5.1. )

(v0, X V ,a V,LV) is an example of a normal module which we usu-

ally denote by V, if there is no danger of confusion. Also, we often drop
the indices if the context

seems to exclude any danger of confusion. We often write I j I instead of

I A 0 I for the class of objects of a v-module A . If I A I is a set, A is call-

ed small. If A is a tensored 1/-category, A is canonically equipped with

the structure of a normal v-module ( cp. 1.9 below).

1.2. DEFINITION. A 1-cell F: A -&#x3E; B in 1 consists of a functor

( we often omit the index «0 »),

together with a natural family of morphisms in V0 or B o , indexed by pairs
of objects resp.

are 1/-categories,

category, B is a V-module,

v-module, B is a 1/-category,

1/-modules,
such that two evident corresponding diagrams commute, e. g. in case c :
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1.3. EXAMPLES. ( i ) Let C be an object of a v-category A . The hom func-

functor 40(C, e): 40 -&#x3E; fo, together with the family

is a 1-cell in the sense of 1.2 (b). (Cf. [19]; [17],5.7.)
( ii ) Let C be an object of a V-module B . The functor (-0 C): Vo - B0

together with the family

is a 1-cell from V to B in the sense of 1.2 ( d ).

1.4. D EFINITION. The composition of 1-cells F; A -&#x3E; B and G: B - C in

@ is defined by composing the underlying functors Fo and Go and by, e. g.,

if A is a 1/-category and B, C are v-modules.

1.5. DEFINITION. A 2-cell g: F-&#x3E; H: A -&#x3E; B in C is a natural transfor-

mation g: Fo - Ho such that an evident diagram commutes, e, g, in case c :

The composition of 2-cells is evident. We leave to the reader the straight-
forward proof that these definitions yield a 2-category I (cf. [ 15J, 5).

1.6. EXAMPLES OF 2-CELLS IN 0. Let F: A -&#x3E; B be a 1-cell in @ and

let A 6 141. We consider the four cases a-d in 1.2:
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This is a

specialization of

This is a spe-
cialisation of d

In this setup we are able to extend the usual definition of tensored

y-categories (cf. [8], 4), in which 1: had to be symmetric monoidal closed,
to the case of a merely monoidal category (cp. [10], 9).

1.7. DEFINITION. A tensored V-category consists of a V-category C to-

gether with an adjunction ( 5 ) in I for every A f ( C I ( cf. 1.3 ( i ) ) :

Although a tensored 1/-category consists of a v-category C together
with additional data, rather than a specific property of C, it is customary

to denote a tensored V-category by the same symbol as the underlying&#x3E;&#x3E;

v-category C . This is of course justified to some extent, since (co-)ad-

joints are determined uniquely up to isomorphism. The reader is invited to

draw the commutative diagrams, provided by 1.7, for later reference.

As an example we list the adjunction equations :
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forall A, B C |C|, X C |V|. 

The Definition 1.7 can be « translated» to the case of 1/-modules

(cp.1.9 below):

1.8. DEFINITION AND PROPOSITION. A tensored y-module consists of a

1/-module C , such that L C is isomorphic, together with an adjunction (8)
for every A 6 C I . Every tensored 1/-module is normal.

Although the adjunctions (5 ) and (8) look equal, we should like

to emphasize that they are different because C denotes a 1/-category in

1.7 and a v-module in 1.8. In particular, the «structure maps» of the 1-cells

in ( 5 ) and (8 ) in the nontrivial cases are :

1.9. THEOR EM. There is a canonical bije ction between:

( i ) tensored V-categories,
(ii) tensored f-modules,

(iii) isomorphisms between V-categories and V-modules such that the

underlying functors are identities.

We must leave the proof to the reader (cp. [17], 5.11 ).

On applying the Theorem 1.9 to A - v if V is symmetric monoidal

closed we recognize the Definition 1.7 of tensored v-categories as compa-
tible with the classical case (cf. [8], 4).

1.10. REMARK. We stress the importance of the statement (iii) in 1.9: if

A and/ or B are tensored 1/-categories, the different notions of 1-cells

A -&#x3E; B in 1.2 are in a bijective correspondence, set up by composing with

the isomorphisms between the v-category and V-module structures. In par-

ticular, these notions are compatible. In this way we can extend most no-
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tions in enriched category theory from monoidal closed categories v to

merely monoidal categories r.

In the next sections we take the first steps in this direction. Most

results are contained in a slightly different form in previous papers (e,g.,

[ 17] ). The present setting - the 2-category U) - permits a nice formulation.

A common generalization of the two notions of objects in C appears

to be very tempting. In fact, in [18] such a generalization was given. In

this way v-modules and 1/-categories can be treated simultaneously. On the

other hand, it appears as if additional work were required in order to re-

interpret results in terms of the familiar notions of 1/-modules and h-cat-

egories. Also, the translation of a notion from V-categories to V-module

and vice versa is often quite straightforward.

With regard to 1.9 we may consider 1-cells from a v-category A to

a P-module B ( in particular B = V ) as genuine generalizations of v-func-

tors. We shall therefore often call these 1-cells and the corresponding 2-

cells, V-functors and h-natural transformations, respectively.

2. DUALITY.

The dual of a I-category as well as contravariant v-functors bet-

ween V-categories cannot be defined unless V is symmetric. In particular,
the definition of extraordinary v-natural transformations requires a symme-

try. However, certain parts of this duality for v-categories are independent
of a symmetry ( cf. [ 19, 17]).

To a monoidal category f = (V0,X, I , a , L, p) we may assign an

opmonoidal (cp. (2); the brackets are shifted the other direction ) category

Vt = (V 0, X t , I, a t , Lt pt,), the transpose o f E by :

( T w denotes twisting of the arguments,
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Clearly ytt = 1: . Symmetries y for v are in bijection with monoidal func-

tors r = (1V , y, 11): Vt -&#x3E; V which are quasi-involutive, i.e., T(Tt) = 1
( but rr is not defined ). By inverting a t we obtain an (honest) monoidal

category V S = (vo Xt, (at)-1, Lt, pt) (cf. e.g. [17], 1.3). To a v-cat-
egory :1 we assign a yt-category At by

This construction extends to 1-cells and 2-cells. It is a 2-functor, contra-

variant with respect to 2-cells (cf. [17],2.9-2.11). The extension to the

2-category C is straightforward. The general idea is to reinterpret the dia-

grams in terms of yt. This turns a 1/-Ieft module A into a 1/-right module

At = (A0, Xt,at ,Lt):

and correspondingly for 1-cells and 2-cells (cp. [2], 3 Section 3).

2.1. DEFINITION. Let A be a f-category and let B be a right ( ! ) v-mo-

dule. A contravariant 11-functor from A to B is a yt-functor from the vt

category At to the vt-left module Bt.

A contravariant f-functor F; A -&#x3E; B consists therefore of a contra-

variant functor Fo : A0 -&#x3E; Bo , together with a natural family of maps

such that two evident diagrams commute ( cp. [17], 3+6; [19]). The con-

tra variant hom functors

are an example (here I/ denotes the 1/-right module (V0 ,X, a , P) ). V-
bifunctors ( distributors ) may be defined in this situation (cp. [3], 6 Section

2; [17], 7.4 ( d ) ). An important example is the Hom-bifunctor A ( -, -) for

a V-category A . There is an evident way of defining extraordinary v-nat-
ural transformations from A’6 I C I to a distributor with values in a v-bi-

module ( cp. [1], 2.3) in the case C = V, X = I , such that cA ( A a V-

category) is extraordinary jl-natural. In the general case a symmetry for

v is required. The extraordinary v-naturality of 111,R,C with respect to
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B can be defined for a merely monoidal category I ( cp. 3.6 below).

3. LIM ITS. 

We consider the notion of ( v- ) limits in the 2-category U. This ge-
neral notion combines and generalizes the two essentially equivalent ( in
the spirit of 1.9) notions of v-limits as considered in [4], [17] 6.3, [19].

3.1. D E FIN IT IO N . (i) A V-natural pair (P, IT) from E : A -&#x3E; V to F : A -&#x3E; B

consists of an object P 6 ) I g I , together with a 2-cell n :

( i i ) A V-limit ( m ean cotensorproduct) of E and F is a 1/-natural pair

(P , rr ) from E to F which is universal, i. e.,

a) the commutative diagram (1) (for all A C 14 1 ) sets up a bijection
(2) ( for all X C If! ) between V-natural pairs (0, w) from ( -0 X) o E to

F and morphisms p: X -&#x3E; B(0, P) in Bo .

If (2) is a bijection merely for X = I , then (P, IT) is called a limit (weak
mean cotenso7pro duct) of E and F.

b) the commutative diagram (3) ( for all A 6 I 41 ) sets up a bijection
(4) between V-natural pairs (0, w) from E to F and morphisms p: O -&#x3E; P

in !l 0 .



169

If B is a tensored v-category, both notions of v-limits 3.1 a, b are

easily seen to be compatible, i, e., the canonical bijection between (con-

jugate ) 2-cells

preserves V-limits ( for the calculus of conjugate 2-cells, cp. e. g. [7], 1.6;
[11]; [17], 4; [20], IV .7).

3.2. THEOREM (Covatiant Yoneda-Lemma). Let A be a f-category and
let !1 be either a F-category or a V-module. If C C A I and F:A-&#x3E;B is

a ]-cell, then (F C, FC’.) is a V-limit of 4( C, -): A -&#x3E; rand F.

(Cp.e.g. [4], 3.1; [3], 3.1; [17], 6.4; [19], 2, Theorem 3.)

PROOF. Let B be a V-category.

is a 1-cell according to is any morphism in

V0 , the composition yields a 1-cell

(cp. 1.6 a, e). The morphism p is uniquely determined by o via

The converse is now obvious. The proof is analogous for a 1/-module B .

The weak Yoneda-Lemma is a consequence of 3.2 for B = Ti : there

is a bijection between morphisms l -&#x3E; F C in V 0 and 2-cells A( C,-) -&#x3E; F.

3.2 also implies the usual Yoneda-Lemma (cf. [4], 3.1) in which F is

assumed to be symmetric monoidal closed and B is a v-category.

3.3. DEFINITION. A 1-cell G: B -&#x3E; C preserves a (v-) limit (P, 7T) of

E: A -&#x3E; v and F; A-&#x3E; B iff
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b) if B is a 1/-category, C is a 1/-module:

(GP,(Gp- o F)(IT X GP )) is a (V-) limit of E and GF.

c ) if B is a v-module, C is a V-category :
is a(V-) limit of E and G F.

d) if B , C are V-modules:

limit of E and G F .

3 .4. PROPOSITION. L et B be a V-category.
(i) For every C c|B I the 1-cell B( C, -): B -&#x3E; f preserves 11-limits

(«hom-functors&#x3E;&#x3E; preserve V-limits).
(ii) Let E : A , f and F: A , B be 1-cells, P c I g I , and let

is a 1/-limit of E and B ( C, -) o F for every C C | B | , then (P , IT ) is a

f’-Iimit of E and F (« hom- functors » collectively detect V-limits).

PROOF, (i) is an immediate consequence of the Definition 3.1. In fact,
if only the notion 3.1 ( ii ) b were known, we would use the assertions in

3.4 as a gauge for the choice of the definition of V-limits in V-categories.

(ii) According to our last remark we have only to prove that n is a

2-cell in 0 . This follows easily on choosing C: = P .

We can also consider the dual notion of colimits if h is merely

monoidal.

3.5. DEFINITION. Let A be a 1/-category, let F: A-&#x3E; B be a 1-cell and

let E: A - r be a contravariant V-functor. A V-natural pair (P TT) for E
and F consists of an object P C  |B| , together with a natural family IT =

IT A I Af |A| 11:

a) ITA : E A -&#x3E; B ( FA , P) if B is a V-category;

b) IT A : E A X F A -&#x3E; P if B is a v-module,
such that an evident diagram commutes. A couniversal V-natural pair is call-
ed a tensorp roduct o f E with F ( over A ).
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3.6. THEOREM ( Contravariant Yoneda-Lemma). Let A be a Y-category
and let B be either a f-category or a f-module. I f C C 141 | and F: A -&#x3E; B

is a 1-cell, then ( F C, F-, C) is a V-colimit o f the contravariant V-functor
A(-, C): A -&#x3E; V and F.

( Cp, e, g. [17], 6.10 ; [ 19]. ) The proof is dual to the proof of 3.2.

The proof of the following proposition is straightforward.

3.7. P ROPO SITION . Adjoint 1-cells preserve 11-limits.

4. KAN EXTENSIONS.

The definition of Kan extensions can be formulated in any 2-cat-

egory : ( K , K ) is called a K an extension of a 1-cell J: A -&#x3E; D along a 1-

cell F: A - B iff K; B -&#x3E; D is a 1-cell and K: KF - J is a 2-cell ( c f,

(1) ), such that the assignment (2) is a bijection (3) for every 1-cell

L : B - D.

A 1-cell R: D -&#x3E; E respects a Kan extension (K, K) of J along F iff

(RK, RK ) is a Kan extension of Rj along F . If, in particular, D is a

1/-category, the hom-functors of D need not respect Kan extensions. The

Kan extensions respected by all hom-functors are called pointwise Kan

extensions ( if we assume ( R K, RK ) to be a Kan extension for every hom-

functor R, then (K, K) can be shown to be a Kan extension ).

4.1. DEFINITION. Let V be a symmetric monoidal category, and let

be 1-cells and let K: KF-&#x3E;J be a 2-cell (cp. (1)). (K , K ) is called a

V-Kan extens ion o f J along F iff :

a) (if D is a v-category ) the commutative diagram (4) ( for all A 6 I AI)
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sets up a bijection ( 5 ) ( for all X C V I and 1-cells L : B -&#x3E; D ) between

extraordinary v-natural transformations y and o .

b) ( if D is a 1/-module) the commutative diagram (6 ) ( for all A 6 14 1 )
sets up a bijection (7) between 1-cells X and a).

A 1-cell R: D -&#x3E; E is said to respect a 11-Kan extension (K, K) iff

(RK, RK J is a 1/-Kan extension of R J along F .

4.2. THEOREM. L et v be symmetric monoidal and let D be a V-category.
(i) Every V-Kan extension (K, K) o f J: A -&#x3E; D along F: A, B is a

Kan extension.

(ii) ,Every poantwise Kan extension (K, K) Of J : A -&#x3E; D along F: A, B
is a V-Ka.n extension.

We remark that every Kan extension is a V-Kan extension in the

case p = Ens, the category of sets. This is certainly the reason why _E-
Kan extensions apparently have not yet been considered in the literature.

The usual connection between pointwise Kan extensions and v-limits re-

mains valid if v is merely monoidal :

4.3. THEOR EM. (K,K) is a pointwise Kan extension of J: A -&#x3E; D along
F : A -&#x3E; B iff ( KB, IT B), determined by
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is a v-limit of B(B,-)o F and J for every B 6 |B| .

4.4. REMARK. Several other notions may be defined for merely monoidal

categories Y by means of Kan extension. E. g., a 1-cell F: A - B is call-

ed codense iff (1B,1F) is a Kan extension of F along F. Also, final

and initial 1-cells ( in the non-topological sense) may be defined ( cf. [15],

4 (10) - (12)).
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