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EQUATIONAL CATEGORIES

by Jiri ROSICKÝ

CAHIERS DE TOPOLOGIE

E T GEOM ETRIE DIFFEREN TIEL L E

3e COL LOQUE SUR LES CATEGORIES

DEDIE A CHARLES EHRESMANN

Vol. XXII-1 (1981)

This paper contains some structure theory of equational categories

(in the sense of Linton [3] ), of Beck categories (see Manes [5] ) and of

completions that they provide. It continues the previous author’s investig-
ations [10 and 11].

We shall work in a given universe 11 in Zermelo- Fraenkel set the-

ory with the axiom of choice. The universe ’lie of hereditarily finite sets

is permitted. Elements of ’U will be called sets, subsets of It classes and

sets (in the sense of ZF ) will be called metaclasses. It would be possible
to work more generally in a suitable set theory with the above three levels

of sets. There are the corresponding levels of categories : small categories,

categories and metacategories.
The category of all sets will be denoted by 8( h ) (briefly by $ ).

Under a concrete category we will mean a couple ((f, U) consisting of a

category 1i and of a faithful functor U: A -+ 8 . Sometimes we will denote

it briefly by 1i . A concrete functor F:(A, U) -+ (A’, U’) is a functor

F: A -+ 1i’ such that U’. F = U. A concrete subcategory means a subcat-

egory such that the inclusion functor is concrete. More generally, we could

work with categories over 8 , i, e, without the assumption of faithfulness of

U. But the much more important generalization consists in the replacement
of 8 by an arbitrary category !( . In order to be more concise we shall work
over 8 and shall not present the results in their full generality.

I. EQUATIONAL CATEGORIES.

A type t is defined as a metaclass of operation symbols. Their ari-

ties are arbitrary cardinals ( i, e, the cardinals belonging to ’U ). tn will
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denote the metaclass of all n-ary operation symbols from t. An equational
metacategory (t, I ) -Alg consists of all t-algebras satisfying a given meta-

class I of equations. If 31 is a t-algebra and f E t then fR denotes the

interpretation of f in -N . The reasons why t and I are metaclasses will

appear gradually. Now we only indicate that if t is a class then t-Alg need
not be a category. Some smallness conditions on equational categories are

discussed in Reiterman [7].

It is well-known that monadic categories coincide with equational

categories (A, U ) such that U has a left adjoint ( see Linton [3]) and

that Beck’s theorem characterizes them as concrete categories such that

the underlying functor into 8 has a left adjoint and creates coequalizers
of U-absolute pairs. -We remark that equational metacategories are quite nat-

ural from the point of view of universes. In the case of llf’ (t, I)-Alg con-
sists of all finite universal algebras from a variety given by a set ( in the

sense of ZF) of finitary operations. Since a variety often has infinite free

algebras over finite sets, ( t , I )-Alg generally is far from being monadic.

Under an oo-filtered limit we mean a limit taken over an ordered me-

taclass such that any of its subsets has a lower bound. The dual concept

is an oo-filtered colimit. 1re remark that class-indexed colimits of categ-

ories are categories, which is not true for limits (even oo-filtered).

1.1. THEOR EM. Any equational metacategory is an oo- filtered limit o f equa-
tional categories. I f u # Uf then equational metacategories coin cide with
--filtered limits of monadic categories (limits in the sense o f concrete

categorzes and concrete functors ).

P ROOF . Let @ = (t, I)-Alg be an equational metacategory. Assign to each

set s C t the category ES = (s, Is)-Alg where Is consists of all equations

from I written by means of operation symbols of s ( i, e. (t, I) is the con-

servative extension of ( s Is) ). We get the concrete functors

of reducts and similarly Rs : E -+ Es. It is easy to see that R s form the

limit cone for Rs’. s . Moreover, if It A Uf then Es is monadic.
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Conversely, let Fd : A -+ Nd be an oo-filtered limit of Fd d’ : Md -+ mdl . 
If md = (td, Id)-Alg then Fd . d’ induce morphisms

of equational theories. Then 1i is isomorphic to (t, I)-Alg where (t, I) is

the colimit of ed., d .

Under a monadic completion of a concrete category A we shall mean
a reflection of 1i into monadic categories. It therefore consists of a mon-

adic category M(d) and of a concrete functor MA: A -+ M(A) ( briefly

denoted by M ) such that for any concrete functor F : 1i - 11 monadic there

exists a unique concrete functor F:M(A) -+ M with I . M = F . Following

Linton [4]? ?(8) exists iff (8, U ) is tractable, i.e. iff there exists the

codensity monad RU of U , and RU then is the monad of m «(1) . Of course,
an equational comple tzon o f (f is a reflection E (1 : (1-+ Cg( A) of Cl into

equational categories.

1.2. COROLL ARY. An equational completion of (i is a reflection of (t into

equational metacategories. ( Proof follows by 1.1. )

If (A, U ) is a concrete metacategory then its canonical type tet con-
sists of all natural transformations Un -+ U where n runs over cardinals

(Un(A) is defined as U(A)n ). Any A E 1i gives rise to the t(1-algebra
L( A ) by the setting

If I (f denote s all the equations which hold in L(A) ( i, e , for any L ( A ),
A c Q ) then we get the equational metacategory L(A) = (tA, IA)-Alg (see
L inton [4]). Then LA:A -+ L(A) is a concrete functor. Following [4], if

1i is tractable then L: A -+ I( 1i) is the monadic completion of d . If

F ; (I, ( t , I )-Alg is a concrete functor then any term p of type i defines

the natural transformation p F E ta by means of

1.3. LEMMA. Any concrete functo r F : A -+ (t, I)-Alg can be factoriz ed
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through L (I 
PROOF. The desired concrete functor

is given by means of

A concrete category 8 will be called canonically equational if L (1
is an isomorphism. An exemple of an equational category Q which is not

canonically equational and such that L(A) is a category (see [6]) shows

that, in spite of 1.3, La need not be an equational completion of (1 ( and
not only owing to the size of î( (1) ). The reason is that L(A) may con-

tain too many operations. Nevertheless, 1.3 makes a monad from Y- , which
implies that whenever L(A) is not canonically equational then the same

holds for L(L(A)) (see [11]).

2. BECK CATEGORIES.

We recall that a Beck category is a concrete category (Q, U) such

that U creates limits and coequalizers of U-absolute pairs. A Beck com-

p letion of a concrete category (A, U) is a reflection BA: d - B(A) of A
into Beck categories.

2.1. THEOREM. Let (A, U) be a small concrete category. Then M (î is

the Beck completion of Q (it even is the reflection of Q into Beck meta-

categories) .

PROOF. Consider a concrete functor F:A -+ B into a Beck metacategory

(B, V). Denote the forgetful functor of M(A) by W and let S or T be the

right Kan extension of F or M resp. along U . We recall that R denotes

the codensity monad of U . Let

be the natural transformations exhibiting the corresponding Kan extensions.

C le arly
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There are unique natural transformations such

that

Evidently, Wr = Vo- = Il is the multiplication of the monad R .

Any R-algebra ( X, h) gives rise to the absolute coequalizer

The parallel pair on the left is the image by W or V of

resp. The R-algebra (X, h) is the creating object in M(A) and we shall

denote the creating object in 53 by F(X, h). It is easy to see that
w

F : M(A) -+ B is a concrete functor. Since M(A) = (U A, pA), F. M = F

holds. The unicity of F is proved in [10] (see 3.7).

2.2. THEOREM. Any concrete category N has a Beck completion which

even is a reflection o f Q into Beck metacategories.

PROOF. S is an 00 -filtered colimit of the diagram consisting of all small

full subcategories of 1i together with the inclusions. 5H takes this diagram
to the diagram D of monadic categories. Theorem 2.1 together with the

fact that an oo-filtered colimit of Beck categories is a Beck category im-

plies that the colimit of D is the Beck completion of (I.

2.3. COROL L ARY. Beck categories coincide with oo-filtered colimits of
monadic categories.

2.3 is proved in [10] ; the indicated colimits are c lass-indexed and
of concrete categories. B Q is full iff there is a full concrete functor from

8 into a Beck category. If B A is full then U reflects limits and coequal-

izers of U-absolute pairs. The converse is true provided U creates limits

( see [10], 4.3 ).
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3. BIRKHOF F SUBCATEGORIES.

A Birkhoff subcategory is defined as a full subcategoryof an equa-
tional metacategory closed under products, subalgebras and homomorphic
images (see Manes [5]). Birkhoff subcategories behave well in weakly

compact universes. A universe 11 is weakly compact if for any tree which

is a class and all its levels are sets there exists a path through it. 11 f is

weakly compact following K6nig’s Lemma. Concerning weakly compact car-

dinals, see e. g. [2] .

The use of weak compactness in our situation lies in the follow-

ing lemma (if 93 C D c Q then an extension of 0 to J9 means a natural

transformation y: Wn -+ W, where W is the restriction of U on T such

that VJB = OB for all B E S ).

3.1. LEMMA. Let It be weakly compac4 ( 93, V) be a full concre te subcat-

egory of a concrete category (A, U ) and 0 : Vn -+ V be a natural transfo r-
mation which can be extended to 93ue for any s e t C o f objects o f Cl. Then

q5 can be extended to A.

PROO F . The class of objects of 8 which do not belong to 93 is a union

of an ascending chain eo c ... ea C ... of its subsets indexed by all ord-

inals. Consider the tree T which consists of all extensions of 0 to Ca
with the ordering given by the restrictions. Since any ea is a set, levels

of T are sets too. Then a path through T provides the extension of q5

106.

3.2. THEOREM. Let 14 be weakly compact and A be a concrete category.

Then the concrete functor K : 93 (CI) - f (A) given by 2.2 is the full embed-

ding making B(A) a Birkhoff subcategory o f L(A).
PROOF. The fullness of K is proved in 6.9 of [10] in the case of Ilf . The
proof for a weakly compact universe is the same because 3.1 plays the role

of 6.8 of [10]. Since the underlying functor W of 93 (Ct) creates limits any

morphism f : A - A’ of B(A) with
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must be the identity on A = A’ . Hence K is a full embedding. The fact

that is a Birkhoff subcategory of 2 (A) is proved in 6.10 of [10]
for TL and the weakly compact case is the same, again.
3.3. COROL L A RY. If U is weakly compact then Beck categories coincide
with Birkho ff subcategories o f equational metacategories.

3.4. COROLL A RY. L et ’U be weakly compact and (A, U) be a concrete

category such that v creates limits. Then the following conditions are

equivalent:
(i ) There exists a full concrete embedding of Q into an equational

m etacategory. 

(ii) U re flects coequalizers o f U-absolute pairs.

Proof follows by 3.3 and Theorem 4.3 of [10].

3.5. LEMMA ( Goralcik, Koubek). Let 11 be weakly compact and (B, Y) be

a Birkhoff subcategory of an equational category (E , U). Then any natural

transformation 0: Vn - v can be extended to E .

PROOF. Let ( t, I )-Alg . For any set C of algebras from 93 there ex-

ists a term p ( d ) of type t such that

( s ee the proof of the Propos ition from [11] ).
L et Z be a set of algebras from l$ not belonging to 9 . Define the

equivalence relation on the metaclass of all n-ary terms of type t as fol-

lows :

Since - has only a set of equivalence classes, there is an equivalence

class T such that ij3 is the union of all C such that p (e) f. T . The set-

ting VI gi = pR for p c T gives the extension of 0 to B3 uZ.

Thus the result follows from 3.1 .

In an arbitrary U, 3.5 holds for any é such that the number of its

objects has the tree property. Goralcik and Koubek (see [1] ) have proved
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3.5 in lif for any equational metacategory @ by means of the following

argument. Under a regular extension of 95 we shall mean an extension of

~ which is induced by a term (in the sense of the beginning of the proof
of 3.5 ) on any set of algebras. The proof of 3.5 shows that 0 can be regul-

arly extended to each ? 6 @ . The assertion now follows from the fact that

there is a maximal regular extension of 0 . Indeed, any filtered set of regul-
ar extensions has an upper bound. However, the last statement holds only
for Up because otherwise oo -filtered does not mean filtered.

The next theorem is the extension of Birkhoff variety Theorem to

the equational case (for E= ( t, I)-Alg being monadic implies that tE = t ).
This theorem was proved by Reiterman ( see [8] ) in ’If - Goralcik and Kou-
bek (see [1] ) have generalized the theorem to any equational metacategory
( in Up again; see the above remark) and they have also simplified Reiter-
man’s original proof. Their proof starts from 3.5 and works for a weakly

compact universe, too. For the reader’s convenience, we write down how 3.6

follows from 3.5. We remark that this derivation is analogous to the proof
of 6.10 of [10] (6.10 uses the types t Ca, 3.6 tM(Ca); these types gener-a 03B1 )

ally are distinct). We mention that 3.6 does not infer that 93 is equational.

3.6.THEOREM (Reiterman). Let 11 be weakly compact and B be a Birk-

hoff subcategory of an equational category &#x26;. Then B is determined in

&#x26; by equations o f the type t 
B ( i. e. if ~ R = t/1 gi for any cp, t/1 c t E hav-

ing the same restriction on B then 31 E B ).

PROOF. Let ( t,1 )-Alg and U be the forgetful functor of Follow-

ing [10] 6.5, $l is a union of an ascending chain mo C ... ? C ... of

monadic categories indexed by all the ordinals. Let 91 be an algebra from

@ not belonging to and n be the cardinality of U(R) . For any a there

are n-ary terms Pa q a of type t such that the equation p a = qa holds

on ? and not on R . Since there is only a set of mappings U(R )n - U(R )
we may assume that
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Since terms induce natural transformations, following 3.1 and 3.5 there are

~, U E t E having the same restriction on $3 and such that ~ R # U R

4. EQUATIONAL COMPLETION.

4.1. LEMM A. Let 8 be a concrete category and ~ , U f t E Q ) such that

cP E (j = t/J E (1. Then ~ = U. 
PROOF. Let E (A) = (t,l)-Alg and consider the type t’ = t u {~, U} .Then
I is a theory of type t’, and let I ’ = I u {~ = U }. Then

are equational categories. Denote by T: iS’- E the inclusion and by

R: L(E(A))-E the reduct. Since ~ EA = UEA , there is a concrete func-
tor F : (î -+ 8’ such that

Hence there is a concrete functor

But it follows that 0 = U.

Now, we can state the main theorem.

4.2. THEOREM. Let 11 be weakly compact and 8 a concrete category.

Then an equational completion of (f exists iff 93(Cf) is e quational and

B Cf is in this case the equational completion of (i .

PROO F . If B(A) is equational then B (t evidently is the equational com-

pletion of 8..Assume that E(A) = (t ,1 )-Alg exists. There appear con-

crete functors

w ith

(concerning L see 1.2). Since L.E is the functor K from 3.2, B (A) is

a Birkhoff subcategory of L(A) and hence of E (A) , too. Following 3.6
and 4.1, @(8) = B(A) holds.
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Hence a Beck category which is not equational can not have an

equational completion. Concerning such a Beck category see [10], 6.1.

A concrete category 1i will be called stable if

4.3. THEOREM. Consider the following statements for a given concrete

category (f:

( i ) L (1: A - L (Ct) is the Beck completion o f (i.

(ii) L (1: A - L (A) is the equational completion o f Ct.

(iii) (f is stable and 2- ((1) is a category.

Then (i) =&#x3E; ( ii ) &#x3E; (iii). 1 f U is weakly compact, then all three state-

ments are equivalent.

P ROO F . Clearly (i) ( ii ). A ssume ( ii ) and let 0,E tL(A) . Let UE tL(A)
be given by the setting

Since ~ L =UL , ~ = U holds by 4.1 and thus Q is stable.

Let U be weakly compact and ( iii ) hold. Following 3.6, B (A) is det-

ermined in L(A) by equations of type tL(A) and hence by equations of

type tA because 1i is stable. However, if an equation of type tA holds

in B(A) then it also holds in 1i and thus in 2 (A) , too. Therefore we
have B(A) = L(A) and ( i ) is proved.

If L(A) is monadic then A clearly is stable and thus 4.3 implies

that 2.1 holds for any tractable A in a weakly compact 11. Concerning an

example of a stable concrete category 1i such that is not monadic,

see [11]. If Q is stable then it is easy to see that is canonically

equational. I do not know whether the converse is true or not. Notice never-

theless that the consequence of 3.6 is that if 11 is weakly compact and

L(A) a canonically equational category, then B (t is the equational com-

pletion of Q .

4.4. PROPOSITION. Let (t, I)-Alg be an equational completion o f ct. Then
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(tA,IQ) is a conservative extension o f ( t , I ) .
PROOF. The result is given by the fact that for all terms p, q of type t,

pEA = qEA implies, by 4.1, that the equation p = q follows from 1.
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