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LOCALIC GROUPS

by Gavin C. WRAITH

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DI FFER ENTI ELL E

3e COLLOQUE SUR LES CATEGORIES

DEDIE A CHARLES EHRESMANN

Vol. XXII - 1 ( 1981 )

Perhaps the most significant recent development in topos theory

since the publication of P. T. Johnstone’s book [2] has been the under-

standing of the importance of locales. Charles Ehresmann ( 11 was the first

to stress the localic aspect of topology, that open sets are more fundam-

ental than points.
Recall that a locale is a complete lattice in which finite infima

distribute over arbitrary suprema. In symbols, for any element x and subset

S of the locale, we have the rule

A map f of locales from L to M is defined to be a function f *
from M to L (note the reversal of direction ) preserving finite infima and

arbitrary suprema. We include among these the maximal element T and the

minimal element L .

The lattice O(X) of open subsets of a topological space X is a

locale. 0 is evidently a functor. On the full subcategory of sober spaces
and continuous maps it is full and faithful, so it is convenient to identify
a sober space with its locale of open sets. The notion of locale is straight-
forward to formulate in a topos, and it is now well established that the

localic approach is the right way to do topology in a topos [4].

To set out notation, let us denote by Loc(E) the category of loc-

ales in the topos. The subobject classifier Q FD of 6 has a canonical
locale structure, and is terminal in Loc(E). For the map of locales

we denote h *(u ) by [u] so that, for example
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Direct image functors of geometric morphisms preserve locale struc-

ture [7]. It follows that for any geometric morphism

we have a locale v*(S2F) in Fg . In fact, all locales in &#x26; are of this form

[3], and we have an equivalence between Loc(E) and the category of

localic 6-toposes,.
We shall write

so that Points is a functor from Loc (E) to &#x26;. It is right adjoint to the

functor which takes an object A of 5; to the discrete locale P(A). An

open sublocale of a discrete locale is discrete, but in general a discrete

locale may have sublocales that are neither open nor discrete.

We say that a locale L has enough points if the end adjunction

is surjective, i. e. if e* is faithful. In Sets a locale is spatial, i. e. is of

the form O(X) for some topological space X , if and only if it has enough

points. Locales without enough points arise naturally. If f : Y -+ X is a

continuous map between sober topological spaces, we obtain a locale

f*(S2Y) in shv(X) which determines it completely. Points (f*(S2Y)) is

the sheaf of sections of f , so f*(S2Y) has enough points only if f has

enough local sections. It should be clear that f *( Q y ) is discrete only if

f is a local homeomorphism.

The point that I want to make in this article is that certain math-

ematical structures often carry a natural topology - we shall see some

examples below - which it is easy to overlook. For most purposes it may

be harmless to do so. However, when it comes to formulating these struc-

tures in a topos, it is vital to take account of the topology, so that one

gets localic structures. To forget the topology is tantamount to applying
the Points functor, which sometimes throws the baby out with the bath-

water in a manner which I hope the examples below will make clear.

If A and B are sets, we can think of them as discrete topological
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spaces and we can form the product space II B whose points correspondA

to functions from A to B . If A is infinite, this space is not discrete. An-

alogously, if A and B are objects of a topos 6 we can form the locale
Map ( A, B ) in 6 by taking an A X B-indexed family of generators

satisfying the relations

It should be clear that we have

and that in Sets we have Map (A, B) = 4 B with the product topology (note
that we have suppressed the use of 0 ).

By adding the further relations

we get a locale Inj (A, B ) , or by adding the further relations

we get a locale Suri(A, B ) , or by adding both we get a local Bij(A, B ) .
It should be clear what their points are.

In the case 5; = Sets , a completeness theorem of Makkai and Reyes

t 61 says that if B is finite or countable, then Surj(N, B) is spatial. How-

ever, if B is uncountable Surj(N, B) has no points, but is nonetheless

a nontrivial locale.

We define Perm ( A ) to be Bij(A, A ) ; it is clearly a localic group,
i. e. a group object in Loc(8). Let us describe its structure in slightly
more detail. It has an identity

It has a multiplication

given by
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where Pl, P2 are the projections from the product Perm(A) X Perm (A).
The inverse map is clearly given by

Let us consider localic groups acting continuously on objects. If

A is an object of iS and G is a localic group, this means that we have

an action

This is exponentially adjoint in L oc ( ff,) to a homomorphism of localic

groups a : G - Perm ( A ) and ac * is completely determined by its values

on the generators  a l-+ a’&#x3E; of Perm (A). Thus or is completely deter-

mined by the map A X,4 - G in 6 given by

The fixed point subobject of A under the G-action ar is given by

Dually,

is an equivalence relation on A , whose classes we call the orbits of the
action. 

Perm (A) has a canonical action on A , and since

we deduce that every element of A belongs to the same orbit under Perm (A).
In other words, Perm(A) acts transitively on A , as indeed it should.

By applying the functor Points we get from a continuous G-action

on /4 an action of Points (G) on A . It is not the case that

acts transitively on A . To see this, consider the case l$ = shv(I), the

category of sheaves on the unit interval, and take A to be the sheaf pic-
tured below : 

n
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Suppose that P and Q lie in the stalk At at t E I and that P is a bifur-

cation point and that Q is not. Clearly, there is no open neighborhood U

of t for which there is an automorphism A/ U interchanging P and Q.

In general Fix ( G, A ) is contained in Fix (Points (G), A), but

these two subobjects of A do not necessarily coincide. A convenient exam-

ple, due originally to M. Fourman, and used by Kennison [5] and the au-

thor [8], concerns Galois groups.
The fundamental theorem of Galois theory states the following:

let K C L be an algebraic separable normal extension of fields, and let

G(L/K) be the group of K-automorphisms of L with the Krull topology.
Then there is a bijection between the intermediate extensions K C F C L

and the closed subgroups H C G(L/K) given by

Provided we interpret G r L/K ) as the localic group of K-automorphisms of

L , this results holds in a topos [8]. Consider the case when 6 = shv (I)

again, and where K C L is the inclusion of constant sheaves on I induced

by the standard inclusion R C C. It is no surprise to find that G ( L / K ) is
then the discrete localic group P(Z2). Let F be the intermediate sheaf
of fields given by

In pictures :

Then G(L/F) is p*( ly) where p: Y - I is the group object in topolo-
gical spaces over I with trivial fibre over t  1 and fibre Z2 over l. In

pictures 
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It is clear that p has no non-zero local sections, so that

This example demonstrates two things :
a) that Galois theory does not work in a topos if one looks at the group

of automorphisms objects, instead of the localic group of automorphisms,

b) that the fixed point subobject of L under G(L/F) is not the same

as that under Points (G (L/F)).

Of course this is a phenomenon which does not manifest itself with

topological groups in Sets . If one has a topological group acting continu-

ously on a set, the fixed point subset is clearly unaltered if we happen
to forget the topology. As we have seen this circumstance is misleading
when we look at the analogous situation in a topos.
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