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Differential Algebra ( cf. [13, 10] ) has as its main goal the deve-

lopment of a theory of differential equations from an algebraic point of

view. Thus, a differential (ordinary, in one variable y ) equation is a pol-

ynomial equation ( in the variables y, dy, d2 y, ... , etc. ) over some dif-

ferential ring.
In order to develop this sort of DA (short, from now on, for « Dif-

ferential Algebra» ) in a topos, all one needs is to be given a differen-

tial ring object in the topos. Yet an interesting kind of DA exists already
within the context of Synthetic Differential Geometry ( cf. [11, 6J) in which
the derivation process is not an added structure, but is intrinsic and arises

from the «line-type» property of the ring object considered.

It is my aim in this paper to conciliate these two points of view.

The key is the interplay, first pointed out by F. W. Lawvere in [11], bet-
ween derivations on an algebra and vector fields on the Spec of the al-

gebra. I wish to thank F. W. Lawvere for several good suggestions concern-

ing the work contained here. Useful conversations with R. Diaconescu,

D. Dubrovsky, E. Dubuc, G. Reyes, and R. Rosebrugh, are also gratefully

acknowledged.

If 6 is a topos (with natural numbers object, N ), a differential

ring S in Fg is a ring object in’ &#x26; (commutative, with 1 ) equipped with
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Univ. de Montr6al, during 1979-80, on sabbatical leave from McGill University.
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a derivations, i. e., a morphism d: S -&#x3E; S for which the statements

and

hold for S in &#x26;. Denote by dn the nth iterate of d ; i. e.,

For each r, m &#x3E; 0, let Erm be the subobject of S defined by the
formula :

DE FINITION. A differential ring S in 6 is said to be o f differential line
type o f order r (r &#x3E; 0 ) if, for any m &#x3E; 0 , the canonical morphism

given by the rule (which also makes explicit the cardinality

is an isomorphism.
E

Whenever this property holds for S , the exponential S rm may

be thought of as «the object of differential equations over S of order ’ r

and degree  m ». It may also be regarded as an object of « differential jets»
of order  r and degree  m (cf. [9 ); this is correct in some models to

be considered below.

DEFINITION. By a model of Differential Algebra (in the context of Syn-
thetic Differential Geometry) we mean a differential ringed topos (E, S),
where S is of differential line type of order r , for any r &#x3E; 0, and for any

E

r, m &#x3E; 0 Erm is an atom (i.e., (-)rm has a coad’oint .
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THEOREM. Let k be a commutative ring with 1, and let T be the theory
o f di f ferential k-algebras. Then, the classifying topos (E[ T], G[T] ) is

a model o f DA.

PROOF. E[T] = SC, where C is the category of finitely presented dif-

ferential k-algebras, and G[T] = S , the underlying set functor. S is re-

presented by k {y}, the k-algebra of differential polynomials in one dif-
ferential variable over k . Denote by krm E } the k-algebra of differential

polynomials in a new element c , with k-algebra operations and derivation
determined by the conditions :

dr+l,c = 0 and any product of m+1 or more of the diE, i &#x3E; 0, is zero.

(It may alternatively be given as the quotient of k y I by a suitable dif-

ferential ideal. ) Similarly, one defines Crm {E}, given any object C of

C . It is the case that Crm {E} = C O k krm {E} and one has the canonical

bijections :

where is the Yoneda embedding. Therefore, for any

which says that S is of differential line type of any order. In S L, the ob-

jects B are atoms because they are representable. 0

REMARK. In fact, each krm {E} is exponentiable in Cop and the exponen-

tials of the form Ckrm {E} are jet bundles (cf. [5] ). A s an example, let

C = k{y} mod f{y}, where f tyl is a differential polynomial of degree
s &#x3E; 0 . For r = 1, rra = 2 , calculating the exponential gives a quotient of

k {x0, xl , X2 } by the differential ideal generated by the differential pol-
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ynomials

Also, the full subcategory of C consisting of the krm {E} weakly generates
(cf. [11]); such is the content of the differential algebraic version of Hil-
bert’s Nullstellensatz (cf. [14] ).

REMARK. A model of DA need not become a model of SDG (meaning «Syn-
thetic Differential Geometry» in the restricted sense of having a ring ob-

ject R satisfying the Kock-Lawvere axiom, or «line-type» axiom, and

such that the

are atoms) by simply forgetting the derivation. For example, for S in SC,
the exponential S D , with D the subobject of S defined by the formula

« y2 = 0 » is isomorphic to the cartesian product of a countable number

of copies of S.

We need several notions from SDG in order to state the next result.

By «ring object R of line type» and «Euclidean R-module S », we mean

always «in the extended sense » ( cf. [6]). Also, letting Doo C R be the

colimit of D, C D2 C .... , where R is a ring object of line type in F, ,
by vector field we shall understand a pair  X, ç&#x3E; where X is an object
of 6 and f: X -+ X Doo is such that 6: X X Doo -+ X is an action of the

additive monoid Doo on X . In this context we can define the intrinsic

nth derivative of a morphism g : X , Y (where X is a vector field with

, and Y is a Euclidean R-module) to be n! dnf(g), where dnf(g) is
the composite 

_ 

PROPOSITION. Let E be a topos, and S a Ritt algebra in E (i. e., a dif-

ferential ring which is also an algebra over the rationals), such that S

is of differential line type of order 0. Then, there exists a ring object R

in E, which is of line type, and relative to which S is a Euclidean R-

module and a vector field with ç, and such that, if d is the internal der-.
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ivation of S, dn is also the intrinsic nth derivative of the identity on S

in the direction of ç.

P ROO F. Define

Then, as subobjects of R, E0m = Dm, from which it follows readily that
R is of line type and S Euclidean. Define f: S - SDoo so that

(hence, b nilpotent). The first equation ç( a, 0 ) = a is clear, and the

second, which says that

follows from Leibniz rule for higher derivatives (using that every b c Doo
is a constant ) and the binomial theorem. 0

REMARK. The above process for deriving a model of SDG given one of

DA can be reversed under certain conditions. The object RR has a can-

onical vector field induced by the sum +: R X Doo -+ R , hence there is an
intrinsic derivation ’: RR - RR which is, in fact, internal, as one has the

equations (-cf. [6]):

valid for RR in 6 , Suppose that R is recoverable as

Then, R R is at least of differential line type of order 0 .

In connection with this, we point out that, although the sum -t- :

R X Doo -+ R also induces a vector field + : R -+ R D. hence an intrinsic

derivative ’: R -+ R , the latter is not, in general, an internal derivation.

For example, let R be the generic k-algebra, represented by the k-algebra
k[x] of ordinary polynomials over k , in one variable. The intrinsic der-

ivative on R is induced by ordinary derivative of polynomials, but a sim-

ple calculation shows that already the equation (a + b )’ = a’ + b’ fails

for R in SA, the k-algebra classifier, i. e., with A the category of finite-

ly presented k-algebras.
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There is also a trivial way of regarding any model (6, R) of SDG

as a model of DA, namely, by letting R be a differential ring with trivial

derivation, i. e., with d = 0 . This reflects the idea, current in DA (cf.

[ 10]) that DA should contain ordinary algebra as being trivially diffe-

rential.

Other models of DA will be derived as suitable subtoposes of the

differential k-algebra classifier, after stating the differential analogue of a

theorem of M.-F. Coste, M. Coste and A. Kock (cf. [31, also [4] ).

DE FINITION. Let T* be a geometric quotient of the theory T of differen-

tial k-algebras. Say that T* is differentially c-stable if, for each r, m &#x3E; 0,

if A is a model of T*, so is Arm {E}.
PROPOSITION. I f T* is a differentially c-stable geometric quotient of
T, then the classifying topos (E[T*], G[T*]) is a model o f DA. ,

P ROO F. Alon g the lines of [4], using that the krm{E} are of finite (lin-

ear) dimension a (r, m ) over k and their duals are exponentiable in Cop,
and also that Arm {E} = A O k krm {E}. But it can also be derived directly
from a general result proven in [3]. 0

Consider the theory Tdj of differential local k-algebras, a geom-

etric quotient of T with the sequents

where U means «units». The differential Zariski topology (described in

[2] in order to define the differential local spectrum of a differential ring)
makes C°p into a site, where a cocovering of C is a family of localiza-

tions

provided, given any differential prime ideal P of C , there exists L 0 E I

for which a..P . Let us call the topos CopdZ ar of sheaves for the diffe-

rential Zariski topology on CoP, the differential Zariska topos. Let SdZ ar
be the associated sheaf of S f SC.

PROPOSITION. The differential Zariski topos, together with SdZ ar’ class-

ifies models of Tdl in S-based toposes.
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PROOF. A simple argument shows that, if C E |C| is a differential local

ring, then [-, C]: Cop -+ 8 is continuous for the differential Zariski topo-

logy, since the inverse image of a differential prime ideal under a differen-

tial homomorphism is a differential prime ideal. Conversely, assume that

[-, C] : Cop -+ 8 is continuous. The family

is a cocovering of k{y} ; this shows that C (assumed to be differential,
and proven local in the usual way) is differential local. D

COROLLARY. The pair (CopdZ ar, SdZ ar) is a model of DA.
PROOF. Let A be a differential local k-algebra, and let r, m &#x3E; 0. Then,

Arm {E I is also differential local because an element of the form

is a unit if and only if a is a unit. 0

Consider next the geometric quotient of T given by the theory T¡in
of finitary differential k-algebras. We define this notion by adding the ( in-
finitary) geometric sequent :

to T.

By means of general results on classifying toposes (cf. [12]) the

classifying topos for T/in-models in 8-based toposes is easily described.
Make C°p into a site where the topology is generated by the cocovering
of k {y} given by the family

wh,ere B is the category of finitely presented finitary differential k-alge-
bras. Denote by Sfin the associated sheaf of S in this topology.

~op COROLLARY. The pair (C fin, s fin ) is a model of DA. -
P ROOF. If A is a finitary differential k-algebra, so is Arm {E } for any

r, m ? 0. D
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We have introduced the small category B above, in order to des-

cribe the finitary topology on CoP. We now have :

THEO REM. L et S E |SB| be the underlying set functor. Then, there exists
an equivalence SB = 8ft: of S-based toposes, under which S is mapped
onto Sfin.
P ROO F. Let : SB -+ Cffn be the geometric morphism for which o03BC Sfin = S,
which exists since S is a model of Tfin in SB. The left exact functor

(where i is the inclusion, and c is the composite of Yoneda and the asso-

ciated sheaf functor) induces (by letting y* be the Kan extension of the
above along Yoneda) a geometric morphism ifI: 2;r! -+ 8 B . We now prove
that y*S --z Sfin. Indeed, compare the colimit diagram

which is the image, under 0/*, of the canonical colimit ending in S, with

which is obtained by the continuity of r i . By definition, y*h = E i ; hence

The two geometric morphisms are easily shown to be inverse to each o-

th er. 0

We shall now strengthen an observation of Lawvere ( cf. [all] ) con-

cerning a relationship which exists between derivations and vector fields.

We shall make the assumption that k is a field of characteristic 0.

PROPOSITION. Let A be the category of finitely presented k-algebras.
For A E |A| , the following structures are in bijective correspondence :

( i ) a derivation d on A ;

(ii) a vector field 6 on X = h A A 
P ROOF. The bijection is given by the canonical correspondences:
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where the correspondence between {am} and d is : given d (hence all

higher order derivations d"2 as well) define

conversely, given I a,, I , let d(a) be the second projection of the element
of A x A corresponding to a1 (a) E A[E] under the canonical isomorphism
A[E] = A x A. 0

This leads us to a deeper connection between vector fields and

derivations, below. But note first that the vector fields arising from Ritt

algebras are always vector fields in the «strong» sense, i. e., Doo-«sets».
A weaker notion (cf. [ll, 6] ) is usually considered. Also note that, in

the strong version of vector field we use here, a certain «integrability con-

ditions (involving infinitesimals ) is added to the usual notion of vector

field ; a condition satisfied by all integrable vector fields, i. e., by the

restrictions of total flows ( cf. [11]).

Denote by Vect ( S A) the category of ( strong ) vector fields in 8 ,
the latter regarded as a model of SDG with the generic k-algebra R as ring
of line type. Let A be the category of differential k-algebras which are fin-

itely presented as ordinary k-algebras, and consider the functor
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This induces an adjoint pair

where Hom(F, - ) assigns, to a vector field X, f&#x3E; in SA, the functor

A -+ 8 which, to ( A , d ) assigns

and where FO- assigns, to an object Y of SA the vector field

Denote by 8 the counit of this adjointness. For a vector field X, f&#x3E; in

SA.

is the canonical isomorphism such that 8  x f&#x3E;. u 77 = n, in Vect (S A )
( wh ere uq is the injection corresponding to 17 ).

DE FINITION. A vector field X, ç&#x3E; in 8 A is said to be algebraic if

8x, f&#x3E; is an isomorphism.

THEOREM. Denoting by Vectalg(SA) the full subcategory of Vect(SA)
consisting of the algebraic vector fields, there exists an equivalence of
categories Vectalg(SA) = SÃ.
P ROO F. The composite

is naturally equivalent to the identity. The image of F O - is

DE FINITION. Let 0: X -+ SA be a geometric morphism. By a 0-vector
field in X we mean a pair X, f&#x3E; where X is an object of X and where
v

r X X o*Doo -+ X is an action of the monoid object o*Doo in X. De-
note by Vecto (X) the category of 0-vector fields and their morphisms
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( it is the topos Xo*Doo ). A 95-vector field is said to be algebraic if the

canonical morphism of 0-vector fields -1..

defined by

is an isomorphism.

THEOREM. The pair SA, S&#x3E;, where SA is an SA-based topos with the

geometric morphism Y: 8 A -+ 8 A induced by the functor ’A -Y.A which for-
gets the derivation, classi fies algebraic 0-vector fields in SA-based topos-
es o: X -+ SA .

PROOF. S is a y-vector field with

defined by

Hence, if 7o : X -+ A is a geometric morphism over 8 A, 7o*S is a ;6-vector
field in X. Since S is algebraic, so is 7o*S. Conversely an algebraic

0-vector field X is also a finitary differential k-algebra in I and therefore
induces a geometric morphism rp over 8, also over 8 A . 0

00-
Denote by A and A, respectively, the completions of A and A

with respect to inverse limits of countable chains. Thus, for example, to-
o

gether with A f I A one also has

alternatively ( cf. [1]), A*[t] is a power series ring over A , in which

there are only finitely many terms of any given order.
0

Let AOP be made into a site taking as cocoverings the families

It follows that X f I ( is a sheaf if and only if
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Notice that SAop as well as the category Aop of sheaves for this topology,
can both be regarded as models of SDG with R = h k {x}.

We end with the following result :
~ 0

THEOREM. There exists an equivalence of categories , Vect(Aop) = SB. .

P ROOF. As in the proof of the previous theorem, we consider the functor:

9 0

using that there is a functor u : A -+ A forgetting the derivation, which

we take for granted. Here, too, there i s an adjoint pair with one of the

composites being naturally equivalent to the identity on 81. The other com-
posite is also naturally equivalent to the identity, since a vector field

X, f&#x3E;, with X a sheaf, must be algebraic. Indeed, the commutativity of

the diagram

( on account of the vector field structure), when evaluated at an object

A , gives

commutative. It follows that, for each a f X(A), there exists a differen-
tial k-algebra ( C, d ) , together with a map f : C 4 A , as well as

and such that

is defined using d («Taylor series»). This says that the category
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hence that the canonical morphism

induced by forgetting the derivation is an isomorphism.

Mc Gill University
Department of Mathematics

805 Sherbrooke Street West

MONTREAL, P. Q., CANADA H3A 2K6



44

1. N. BOURBAKI, Commutative Algebra, Hermann, Paris, 1972.

2. M. BUNGE, Sheaves and prime model extensions, J. Algebra ( to appear).

3. M. F. COSTE &#x26; M. COSTE, The generic model of an 03B5-stable geometric exten-

sion of the theory of rings is of line type, in [8], 29- 36.

4. E. J. DUBUC &#x26; G. E. REYES, Subtoposes of the ring classifier, in [8], 101-

122.

5. C. EHRESMANN, Les prolongements d’une variété différentiable, I: Calcul des

jets, prolongement principal, C. R. A. S, Paris 233 ( 1951 ), 598- 600.

6. A. KOCK, Taylor series calculus for ring objects of line type, J. Pure and App,
Al ge bra 12 ( 1978 ), 271- 293.

7. A. KOCK, On algebraic theories of power series, Cahiers Topo. et Géom. Diff.
XVI- 3 (1975), 266- 270.

8. A. KOCK ( editor ), Topos theoretic methods in Geometry, Various Publications
Series n° 30, Mat. Inst. Aarhus University, 1979.

9. A. KOCK, Formal manifolds and synthetic theory of jet bundles, Cahiers Topo.
et Géom. Diff. XXI- 3 ( 1980), 227 - 241. ( Preprint Aarhus Univ. 1979. )

10. E. R. KOLCHIN, Differential Algebra and algebraic groups, Academic Press,
New York and London, 1973.

11. F. W. LAWVERE, Categorical Dynamics, in [8], 1- 28.

12. M. MAKKAI &#x26; G. E. REYES, First order categorical Logic, Lecture Notes in
Math. 611, Springer ( 1977 ).

13. J. F. RITT, Differential Algebra, Amer. Math. Soc. Colloq. Publ. 33, A. M. S.,
New York, 1950.

14. A. ROBINSON, Introduction to model theory and to the Metamathematics of Al-

gebra, North-Holland Pub. C° Amsterdam, 1963.


