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In this paper it is shown how to obtain Mackey’s induced represen-

tation theorem by means of a simple categorical argument. This is done

in the situation where we are given a finite group G , a subgroup H , and

where we consider G/H as a discrete measure space ( see, for instance,

1 C], page 88 ). The method employed indicates generalisations to the si-

tuation where G and H are non-discrete topological groups. Therefore,
the categorical argument will again be described in detail, although it is

already fully explained in [F-].

1. A THEOREM ON COSHAPE-INVARIANT FUNCTORS.

Let 0 be a (fixed) closed category. All categories, functors, etc.,
are to be regarded as 0-categories., 0-functors, etc. All Kan extensions

are supposed to be pointwise, that is, given by their K an formula ( see [D],
Theorem I.4.3, formula (1)).

DEFINITION 1. l. Let K : 9 - 5 be a functor, T a small category, and 0

a complete closed category. Then the coshape of K is the category Ks
which has the same objects as 5 and where

the 0-objects of natural transformations between the functors 5(K-, X )
and 5’ K - , Y).

The identity map between the objects of 5 and of Ks can easily
be made into a functor D :
*) This paper was written while the author was on leave of absence and visiting
Queen’s University, Canada.
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DEFINITION 1.2. We say that a functor F: fi - V is coshape-invariant
(with respect to K ) if it factors through D.

THEOREM 1.3. Assume that the base category V is complete. Let K: P - T
be a functor between small categories, and let F: T - V be a coshape-
invariant functor F = F D. If the functor F can be extended along the em-

bedding E:K S - eo p to a cocontinuous functor F, then F is a left Kan
extension along K.

Let Y: P- V POP denote the Yoneda functor. By the definition of
the generalised tensor product (see [A], page 2) and by the Yoneda lemma
we have

whence G~P Y = G. Now, F is cocontinuous, so that

and therefore,

Since E: K S rjP°p is an embedding, the left Kan extension Lan F is
an ordinary extension of F along E , which can be computed by means of

the Kan formula

This yields the following corollary of Theorem 1.3.

COROLL AR Y 1.4. In the situation of Theorem 1.3, if L anE F is cocontin-
uous, then F is a left Kan extension along K .

2. APPLlCATlON TO COSHAPE-INVARlANT REPRESENTATIONS.

We shall apply Corollary 1.4 to the following special situation.

As base category 0 we choose the category k-Mod of k-vector spaces.

Let T = k G and P = k H be the group algebras over k of a discrete group

G and of a subgroup H of G , and let K : P - T denote the canonical em-

bedding. We consider P and T as single object categories ( enriched over

k-Mod ) and K : P + T as a ( enriched ) functor.
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Then the coshape of K is again a ( enriched ) single object cat-

egory, given by the endomorphism algebra S = End P o p 
T of T considered

as right P-module. The algebra homomorphism D: T- S which associates

with each element t of T the left multiplication x t x in T yields the

corresponding functor D.

A linear representation R: G - GL (V) of the group G by linear

transformations on the vector space V can be considered as a kG-module

that is, a (enriched) functor R:kG - k-..Mod. Hence the following def-

inition.

DEFINITION 2. I. We say that a linear representation R: k G - k-Mod is

cosh ape-in variant ( with respect to K ) if it factors through D: k G - S ; in
other words, if the representation module admits an S-module structure ext-

ending its kG -module structure. 

A linear representation R: k G - k-Mod is a left Kan extension

along K of a linear representation Q: k H - k-Mod if it is of the form

in other words, if it is induced by Q.

Corollary 1.4 of Theorem 1.3 yields now the following result.

THEOREM 2.2. Let C be a group and H a subgroup of finite index and
denote by K: k H - k C the canonical embedding of the corresponding group
algebras. A necessary and sufficient condition for a linear representation
R : G - GL ( V) to be induced by a linear representation Q: H - CL (V) is
that the functor R: k G - k-Mod is coshape-invariant with respect to K.

The necessity of the condition is obvious. In order to show that it

is also sufficient, by Corollary 1.4 it suffices to check that LanE R is co-

continuous, where R is an extension of R along D.
The Kan formula for LanER becomes

where Hom KHOP (kG,M) has the right S-module structure induced by the
natural S-module structure on k G . By hypothesis, the subgroup of G

has finite index so that k G considered as right kh-module is finitely gen-
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erated and free. Hence, the functor Hom kHoP(kG, - ) is cocontinuous,
- kH

and therefore also the functor L anE R .

It remains to be shown that Theorem 2.2 is a version of Mackey’s

induced representation Theorem, namely in the situation where G/H is a

discrete measure space.

A spectral measure P on the discrete measure space G/H is a

function P on G/H with values in Endk V where V is a finite dimension-

al k-vector space (that is, an element of 0 = k-Mod ), satisfying the fol-

lowing properties :

If we choose k = C , we can find a scalar-product on V such that all endo-

morphisms P ( x ) are projectors, that is, 1-lermitian idempotent operators.

Now let V be the representation module of a linear representation
R : G - GL ( V). Mackey speaks of an imprimitivity system P of R based
on G/H if a spectral measure P satisfies the following additional property:

(2.4) R(g)P (x) = P (g x)R (g) for all g in G and x in G /H .

Mackey’s induced representation Theorem (see [C), Theorem 10)
says that a linear representation R: G - GL ( V) is induced by a linear

representation of a subgroup H of G if and only if it possesses an im-

primitivity system P based on GIH . It is obtained from Theorem 2.2 by
means of the following easily proved lemma.

LEMMA 2.3. Let G be a group and H a subgroup. Denote by k G and k H
the corresponding group algebras. Every k HOP-endomorphism s o f k G can

be written in a unique way as sum

where the TT x are projectors given by
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Suppose the linear representation R to be coshape-invariant, that

is, R = R D for some ( enriched ) functor R: S- k-Mo d . Defining P by

setting

we obtain an imprimitivity system of R based on G/H .

Conversely, assume that R possesses such an imprimitivity system.
Then we define R: S- k·Mod as follows. Let

an element of Put

and verify the functor properties (of an enriched functor). Since

we also have R D = R.

REMARK 2.4. There are other versions of Theorem 2.2, where G and H

are non-discrete topological groups, and where, of course, the hypothesis
that H is a subgroup of finite index is replaced by another condition assur-

ing the sufficiency of coshape-invariance for a linear representation to be

induced. The new hypothesis depends on the choice of the closed categ-

ory V (replacing k-Mod ) and the form of the single object categories P
and T (replacing the group algebras k H and k G ).
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