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ON MEASURES IN FIBRE SPACES

by Anthony Karel SEDA

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

Vol. XXI - 3 (1980)

INTRODUCTION.

Let S and X be locally compact Hausdorff spaces and let p : S - X

be a continuous surjective function, hereinafter referred to as a fibre space
with projection p, total space S and base space X . Such spaces are com-

monly regarded as broad generalizations of product spaces X X Y fibred

over X by the projection on the first factor. However, in practice this level

of generality is too great and one places compatibility conditions on the

f ibres of S such as : the fibres of S are all to be homeomorphic ; p is to be a

fibration or 6tale map; S is to be locally trivial, and so on. In this paper
fibre spaces will be viewed as generalized transformation groups, and the

specific compatibility requirement will be that S is provided with a categ-

ory or groupoid G of operators. This approach is by no means new and was

used early on in efforts, especially by Charles Ehresmann and his school,
to give coordinate-free definitions of fibre bundles.

Certain features of the point of view adopted here are worthy of

comment. Firstly, one is free to place a variety of conditions on G and on

its action on S . At one extreme we may simply require that G be an untop-

ologised category, in which case we are not really placing any conditions

on S . At the other extreme G may be required to be a locally trivial top-

ological groupoid whose action on S is continuous, then S will itself au-

tomatically be a locally trivial fibre bundle. Indeed, charts are most easily

introduced by introducing them into G . In between these extremes lie a

variety of interesting examples and, as shown in Section 4, Cartan’s cons-

truction [4] is one such and need not be locally trivial. Another feature of

this approach is that one may form the space 51G of orbits provided with

the canonical quotient map q: S- S/ G . Thus, S really does look like a
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product now fibred over its two projections. In fact S/C coincides with Y

and q with the projection on the second factor ( with the obvious G ) if S

is a product X X Y . This fact enables us to give a general form of Fubini’s

Theorem concerning iterated integrals, Theorem 3.4 and Section 3 .5.

Thinking of X X Y as a product bundle over X with projection p ,
consider positive measures g defined on X and v defined on Y and let

m = p X v be their product. Then each fibre {x} X Y of S supports a copy

/Lx of v and the assignment x k ftx is a disintegration of m with respect

to p and g . Equivalently, m is the integral m = fX ux du (x ) of the fami-

ly flux } with respect to g . This example leads one to propose generally
that in studying measures m on S one might reasonably consider measures

which are the integral with respect to a measure u on X of a family of

measures {ux) I Xf X I, where ltx is supported by the fibre Sx - p-1 (x)
over x . In other words, we are studying g-scalarly essentially integrable

mappings from X into the cone M+(S ) of positive measures on S as treat-
ed by Bourbaki [2], and called simply p-integrable families of measures
here. However, our aims are more specific and geometrical than those of

Bourbaki. We have in mind applications of the results here to the construc-

tion of convolution algebras which can be functorially assigned to mani-

folds and foliated manifolds, see [21] for a preliminary announcement of

this programme. Moreover, in paying regard to our compatibility condition

it is entirely natural to require that the family {ux} be invariant w ith res-

pect to the action of G , as defined in Section 1. Invariance in this sense

implies associativity of the convolution product alluded to above. For rea-

sons such as these we have considerable information about the measures

ttx , and we will be seeking conditions under which the family {ux} is it-

integrable for a given g . When such is the case, the measure m defined

by m = f X /Lx dp. (x) will l be called C-invariant. Such a measure clearly

generalises the idea of an invariant measure for a transformation group,

and it is the purpose of this paper to develop some of their properties. For

technical reasons discussed in Section 1 all measures used here will be

Baire measures, and we note that Baire measures are general enough for
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all geometrical applications. Actually, certain geometric examples partial-.

ly motivated this study and will be examined as we proceed. In this con-

text, another natural and desirable property of m is that m should be po-

sitive on non-empty measurable open sets, and this is discussed in The-

orem 3.4.

Other authors have investigated the problem ( and associated pro-
blems) of constructing measures in locally trivial fibre bundles [7,8,9, 12],
and some of their work is related to ours in Sections 4 and 5. In particular,
the results of [9] are used to obtain a classification theorem, Theorem 5.1,
for G-invariant measures in locally trivial fibre bundles. The reader is re-

ferred to [12] for some remarks concerning applications of measures in

fibre bundles to integral geometry, and to [7, 8] for a treatment of the pro-

blem of integrating sections of a vector bundle.
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1. G-INVARIANT MEASURES.

Let p : S - X be a fibre space, suppose G is a category with ob-

ject set X and suppose G acts on S with respect to p , see [18, 19, 20]
for definitions and term inology used here. We employ synonymously the

terms: G acts on S ; G is a category of operators on S ; G is a transfoy-
mation c ate go ry of S ; S is a G-space.

Given a c G ( x, y ) , w e denote by 95a the induced m ap Sx - Sy de-
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fined by oa(s) = a . s . Note that the fibre Sx of S over x is closed in

S and hence is locally compact.
The following standing assumption will be made at all tim es :

1.1. ASSUMPTION. For all a E G, the map øa is continuous.
Often, G will be a groupoid, in which case Oa is a homeomor-

phism. Often, too, G will be a topological groupoid, and its action on S

will be continuous, in which case 1.1 holds automatically.

Next a few remarks and conventions concerning measure Theory.
All topological spaces will be assumed to be Hausdorff and locally com-

pact, unless otherwise stated, and our ultimate concern will be with inte-

grating continuous functions having compact support. We let k(Y) denote

the set of real valued continuous functions having compact support defined

on a topological space Y . For such purposes Baire measures are both ade-

quate and natural; they are the measures which are defined on the a-ring

(of Baire sets) generated by the compact G8 s , which give finite mea-

sure to each compact Ga [1]. Baire measures are automatically regular and

integration with respect to such a measure yields a measure in the sense

of Bourbaki [2]. Moreover, they behave technically better than regular Bo-

rel measures and can always be uniquely extended to regular Borel mea-

sures if so desired. Thus, Baire measures will be employed throughout and

the term measure will mean Baire measure unless stated otherwise. Finally

a measure u on Y will be called non-trivial if there is a B aire set E in

Y with u (E) &#x3E; 0 , and we will denote by B (Y) the class of Baire sets

in Y . Our first main definition may now be stated.

1.2. DEFINITION. For each x E X let Ilx be a Baire measure defined on

sx . The indexed collection {uxl x E X} , or more briefly {ux} , w ill be

referred to as a family o f measures on S . If each fix is non-trivial, then

lllxl } will be called a non-trivial family. A family [fix } will be called G..

invariant if q5a is measurable and measure preserving for each a E G . Thus

for all x, y E X and a E G (x, y) we have the relation

ux (oa-1 (E))=uy (E) for each Baire set E in Sy .
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Notice that a continuous function need not be Baire measurability

preserving and so this assumption must be stated in our definition. How-

ever if G is a groupoid, the measurability statement in Definition 1.2 holds

automatically, in view of 1.1, and the equality there may be cast in the form

for each B aire subset E of Sx .

Notationally, one may write Ity = CPa (ux) here, for l1y is the image of /Lx
under 95a -

The reformulation given in (1.2)’ is valid, too, if G is a category

in which each operation Oa is injective and each S, is compact metric.

except that one replaces Ily by its restriction uyloa(Sx) to 95a (Sx), see
Example 1.7.

In the case of a groupoid G , the construction of any ( non-trivial )
G-invariant family can be achieved as follows. Let I1z be a (non-trivial)

measure defined on Sz and invariant under the action of the group G {z} .

For e ach x c X with G (z, x ) non empty, choose 7y 6 G (z, x ) and lest tax
be the image Or x(ftz ) of 11 z . If a E G(x, y) , then we may write

a = T yB r -1x for a unique choic e of BE G{z},

and it follows that

for any B aire set E in Sx .

It follows also from this fact that the definition of Jlx is independent of

the choice of r x in G (z , x ) . forking in this way over the transitive com-

ponents of G one obtains the (non-trivial) G-invariant family {ux}. Clear-
ly, any such family arises thus, and the existence of a non-trivial family

is equivalent to the existence of non-trivial G { xi-invariant m easures ux
on Sx for each x c X . This latter requirement implies conditions on S and

G for in general such an invariant measure on Sx need not exist. "We will

make the implicit assumption usually that non-trivial G {x} -invariant mea-

sures do exist on Sx , for each x E X , since trivial families are of no par-
ticular intere st.

1.3. Let {ux} be a family of measures on S . Given any Baire set E in
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S , the set Ex - E nSx is readily seen to be a Baire set in Sx . However,
the or-ring ! {E n Sxl E E B (S)} can be properly contained in the or-ring

B (Sx ) of Baire sets of S,, , unless for example S, is actually a Ga in S .

Nevertheless, we shall regard each measure Ilx as a Baire measure de-

fined on S , with support contained in Sx , in accordance with the relation
This leads us to our second main definition.

1.4. DEFINITION. Let {ux} be a family of Baire measures on S and let

IL be a non-trivial Baire measure on X . The family I tt, } will be called

It-integrable if the function M

is u-measurable for each Baire set E in S and the set function m on S

defined by the expression

is a Baire measure. If, further, {ux} is G-invariant, then m will be called

a G-invariant measure on S.

A few remarks are in order at this juncture. Firstly, m will be de-

noted by m = fX ux du(x) and the expression for m in Definition 1.4 al-

ways determines a measure in the general sense, provided the integrand is

g-measurable for each E . It does not, however, determine necessarily a

Baire measure, that is, one giving finite measure to each compact G 8 , even
if {ux} is G-invariant. Thus, we include this condition in our definition.

Secondly, given IfL,l } arbitrarily, non-trivial Baire measures it always
exist on X with the property that {ux} is g-integrable ; for example, it

may be chosen to be atomic with finitely many atoms. It follows from this

remark, by placing unit mass at the point x E X , and 1.3 that each measure

llx in a G-invariant family is actually G-invariant. It is of interest to know

when M is universally integrable, that is, when it can be chosen arbitra-

rily here and sufficient conditions for this to hold are given in Section 3.

It will be convenient to elaborate a little upon 1.3. Suppose A is a

closed subset of a locally compact Hausdorff space Y and IL is a Baire
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measure defined on the Baire sets of A , that is, defined on the o-ring of
subsets of A generated by the compact Ga ’s of the topological subspace
A of Y . Then one may regard jn as a Baire measure defined on Y by means

of the expression

for each Baire set E in Y .

This means that questions involving regularity arguments can be approach-
ed by consideration of sets in A or in Y as desired. An example of this
is the proof of the following proposition :

1.5. PROPOSITION. Let A be a closed subset o f a locally compaèt Haus-
dorf f space Y . Suppose that III and 112 are Baire m easures de fined on A
and extended to Y in accordance with the definition above. I f

for all Baire sets E of Y,

then u1(F)=u2(F) for all Baire sets F of A.

P ROOF. Suppose that the conclusion is false. Then there exists a Baire

set in A , and hence a compact Gd , C , in A such that u1 (C) # lu2 (C) .

Suppose u1 ( C) &#x3E;u2(C) and let n=u1(C)-u2 (C). By regularity of u1
and 112 applied in the first instance to their regular Borel extensions there

exists an open Baire set U in Y such that C C V and simultaneously

Since

these inequalities yield

This gives a contradiction since we have

for a B aire set v in Y .

This proposition has an obvious, equivalent statement in terms of

integrals and permits us to reformulate the notion of a G-invariant measure

in terms of integrals as follows, for some details see [19].

1.6. THEOREM. For a Baire measure m on S the following statements are
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equivalent:
a) m is G-invanant.

b) For any non-negative Baire measurable function f on S:

It further, G is a groupoid, then a and b are each equivalent to :

c) For any non-negative function f c k(S):

This theorem is analogous to the classical theorem of Tonelli and

asserts that if f is m-integrable, then for u-almost all x E X, J Sx f d f1 x
is finite and the equality ( i ) in b is valid. 

This section will be concluded with a discussion of an example.

1.7. EXAMPLE (Transverse measures on foliations ).

Ruelle and Sullivan [16] introduced the notions of transverse m ea-

sure on a (partial) foliation of a manifold, and that of geometric current.

Following the exposition of [5], let M be a smooth m-dimensional manifold

smoothly foliated by l-dimensional leaves, where m = k +l. Suppose that

I 9/a X Rl} oEE 
is a locally finite collection of foliation charts for M whose

interiors cover M , where each Wo is compact. The Wa ’s are called trans-

versals and are assumed to be smoothly embedded in M . Suppose further

that each Wo has defined on it a Baire measure it, . Then [51 the collec-

tion {uol oEE} is called translation invariant provided that « for each

B aire subset F C Wo and for each leaf invariant homeomorphism h: M - M

such that hl F embeds F into another transversal Wr (with t = o pos-

sibly), we have ju, (h(F)) = uo (F). &#x3E;&#x3E; This definition may be formalised
within the terms of this work as follows. Let H be the group of all leaf

preserving homeomorphisms of M and X be the set
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For and define

and let G be the union of the sets G(x, y), x, y E X. Then G is a cat-

egory over X with composition defined by

Now let Sx =aXF,where x=(a,F), put S = U Sx and let p be the
xEX

obvious projection S - X ; X is regarded as a discrete space and S as a

disjoint union. The category G acts on S by evaluation, thus

F inally, each Sx supports a Baire measure ux defined by u(o,F)=uolF
It is easily seen that translation invariance of {uo} in the sense of [5]
is equivalent to G-invariance of {ux} as in (1.2)’ .

Ruelle and Sullivan have used geometric currents to obtain, in cer-

tain cases, non trivial real homology classes by means of integrating dif-

ferential forms. The technique uses partitions of unity and the demonstra-

tion of indeperidence of the choice of the partition of unity makes essen-

tial use of the translation invariance of {uo}. In [5] it is shown that im-

portant translation invariant measures can be constructed by  counting in-

tersections with a compact leaf» and then passing to a limit.

These ideas can be taken further and we may consider  cocycles »

and «measures associated with a cocycle » due to Ruelle [15]. Let G be

a category acting on S . We define a co cycle associated with the pair (S, G)
to be a family f a l a E G } of functions such that

a) fa : STT’(a)-R is continuous and strictly positive, where 11’ (a)

denotes the final point of a .

b) If a, B are invertible elements of G such that f3a is defined,
then fBa =fB. (fa ooNB-1) .
We define a family {ux}lx ( x c X} of measures on S to be a measure asso-

ciated with the cocycle f a } if we have the relation
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for each a c G , where 11 (a) denotes the initial point of a and fa 1111 ’(a)
the scalar product of f a with the measure uTT’(a).

Ruelle’s original definitions may be recovered as above by taking
for the set of Wo the set of all transverse open k-dimensional submanifolas

of M .

REMARK. I am indebted to Mr"’e Fhresmann for drawing my attention to the

fact that the category G discussed here and the idea of a cocycle are but

special cases, respectively, of the «structure transversale d’un feuille-

tage» given by Charles Ehresmann, «Structures feuillet,6es,), Proc. Fifth
Canad. Math. Congress, Montrial (1961), 129 - 131, and of the crossed ho-

momorphism associated (by Fhresmann ) to a fibration, Catégories et Struc-

tures, Chapitre II, Dunod, Paris, 1965.

2. MORPHISMS AND G-INVARIANT MEASURES.

This section will be devoted to studying morphisms f : 5- S’ of

G-spaces which preserve G-invariant measures m and m’ . Specifically if

and f preserves m and m’ , we want to investigate the effect of the in-

duced map fx : Sx - S’ on It., and /L;, and vice versa. To do this it is

necessary to examine certain uniqueness questions involving m, {ux} and

p , and we consider these next. Under the topological hypotheses adopted
here concerning S and X, G will not play a significant role and therefore

the results will be valid for an arbitrary fibre space S . Such a space can

always be regarded as a G-space where G is, for example, a disjoint union

of groups. For this reason and because of the ultimate applications we will

continue to use the terminology G-invariant measures, etc... In later sec-

tions, the same sort of results will be obtained under certain conditions

on G which will play an important role.

Let m = f X /lx d/l (x) be a G-invariant measure on S . It is clear

that m is uniquely determined by 11 and {ux}, It is also easy to see that
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we can have

Indeed this can happen with {u’x) not even G-invariant, nor even ft’-almost
everywhere G-invariant in an obvious sense. Nevertheless, the next theo-

rem shows, under quite mild restrictions, that m and it determine {ux} 
and that m and {ux} determine f.1.

2.1. THEOREM. Let S and X be locally compact Polish spaces.
a) Suppose {ux} and {u’x} are two u-integrable families of measures

on S with the property that

Then ux = /L; fo r u-almos t all x .

b) if {ux} is a non-trivial family which is both fl- and 11 ’-integrable,
an d

then u = u’ .

P ROO F. a) Since S is the union of a sequence of compact sets, p is Baire

measurability preserving. Also, if m is the common value of the two in-

tegrals, then It is a pseudo-image of m by p , see proof of Part b. Thus,

{ux} and {u’x} are two disintegrations of m and by [2], Chapter 6, Sec-
tion 3, nO 3, Theorem 2, I1x = gi u-almost everywhere.

b) We prove first that It and It’ are absolutely continuous each with

respect to the other. To do this, suppose A C X is It-null and denote by
E the set p -1 (A). Then

Hence

where XA denotes the characteristic function of A . Hence, xAux (E) = 0
u’-almost everywhere. But ux (E) &#x3E; 0 for all x since {ux} is non-trivial,

and it follows therefore that /L’( A) = 0 , that is, A is It-null. The rever-
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se implication follows in the same way.
Let f be the Radon-Nikodym derivative dp.’1 dp.. It follows from

the Radon-Nikodym theorem that

for every measurable function g on X . Thus, if E is any Baire set in S,
w e can take g (x ) = ux (E) to conc lude that ,

Consequently, we obtain

and so by Part a it follows that f (x)ux = ILx for g-almost all x . Hence,

f (x ) = 1 for u-almost all x and so u = u’ as required.

Part b of this theorem is true in general, that is, without the res-
triction that S and X be Polish spaces, but the proof given here has been

included because of its important consequences in Remark 2.2 below. How-

ever, Part a is not in general true. There are no invariance conditions plac-
ed on {ux} and {u’x} here, but if such conditions are suitably imposed,
then the required conclusion can be drawn under no metrizability condi-

tions, see Theorem 3.6. The same comment applies to Theorem 2.4, see

Corollary 3.7. I am indebted to MM. Cartier, Choquet, Mokobodzki and bright
for valuable conversations concerning these questions.

2.2. REMARK. Suppose m = fX ux du (x) is G-invariant and f : X - R is a

non negative p-essentially bounded u-measurable function. By setting

m’ = fX f (x) ux du (x) , we can obtain significant Baire measures on S

associated with m , depending on the choice of f . However, the proof of

Theorem 2.1 b shows that m’ = fXux du’ (x) and is, hence, actually G-

invariant, where fl’ is defined on X by

for each Baire set A C X.

For an example of the use of this remark, see Section 3.3.

2.3. DEFINITION (see [18, 20] ). Let G be a category acting on two fibre
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spaces p : S - X and p’: S’-X. A fibre preserving continuous function

f:S-&#x3E;S’ is called G-equivariant or a morphism if f (a.s)=a.f (s) for

all a E G, s E S such that a . s is defined.

Such mappings are the appropriate morphisms in the category of

G-spaces over X , where G is fixed, but they are not quite the right ones

for measure theoretic questions : One needs to assume in addition ( or prove
in appropriate contexts) that f is Baire measurability preserving. We let

fx denote the restriction of f to Sx. The main result of this section is the

follow ing theorem :

2.4. THEOREM. Suppo se S’ and X are locally compact Polish spaces and

f : S - S’ is fibre preserving, continuous and a proper map. Let {ux} and

{u’x} be u-integrable families o f Baire measures on S and S’ respectively
and let m and m’ be the corresponding measures on S and S’. Then f is
m, m ’ measure preserving iff fx is Ilx’ u’x measure preserving for Il-al-
most all x .

P ROOF. Since f is proper, the preimage f -1 (C) is a compact Go in S

whenever C is one in S’ , whether or not S’ is a Polish space. Likew ise,

the same is true of fx , for each x , and so f and each fx are Baire mea-

surability preserving.

Suppose fx is ux , u’x measure preserving for u-almost all x . Let

E’ C S’ be any B aire set, then

and f pre serv es m and m ’.

For the converse, define for each x E X a Baire measure u’’x on

5; by

u’’x (E’)= ux ( f- 1x (E’)) for each Baire set E’ in 5;.

The function x l-u’’x(E’) coincides with the function xl-ux (f-1 (E’))
and is therefore u-integrable for each Baire set E’ in 5’. Hence, we may

set m"=f X u’’x du (x). Since f preserves m and m’ , we have
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Hence, by Theorem 2.1 a, u’x = 11;’ for f.1-almost all x or, in other words

fx preserves ux’ , u’x for f.1-almost all x as required.

3. A CONTINUITY THEOREM AND FUBINI’S THEOREM.

Relatively few conditions have been placed on G so far or on its

action on S . Here and in subsequent sections we will investigate the effect

of imposing successively more conditions both on G and on its action. The

following standing hypothesis will be made for the whole of this section:

3.1. G denotes a lo cally compact, locally transitive Hausdorff topological
groupoid; for each x E X the final map rr’: 7T-1 (x) -+ X is assumed to be

an o pen map *) ; the action o f G on S is continuous.
Here, rr and rr’ denote respectively the initial and final maps of

G and the condition conceming 17’ is always valid if G has compact tran-

sitive components, or if G is locally trivial. Another case when these con-

ditions are fulfilled is discussed in Section 4.

Under the conditions of 3.1 we have the following result, see [17] :

3.2. THEOREM. Let {ux} be a G-invariant family of Baire measures on
S and let f: S - R be any continuous function having compact support.

Then the function 0 defined on X by 0 (x) = fs f d Ilx is continuous and

has compact support.

It is shown in [17] that this theorem has the consequence that for

any Baire set E in S , the function M , where M (x )=ux(E) , is Baire

measurable. Thus, we may choose any Baire measure It on X and set

m = f X ux d p (x). Moreover, m is a Baire measure for any choice of f.1.

Thus, Theorem 3.2 provides quite natural conditions under which M is un-

iversally integrable, and we will now illustrate this theorem with a simple

example.

*) This condition actually implies that G is locally transitive.
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3.3. EXAMPLE ( ,Surfaces and volumes of revolution).

Let X - [x0, x1] be an interval in R with Xo  xl , and suppose
f : X, R is continuous and such that f (x) &#x3E; 0 for all l x E X . Let S be

the region of the plane bounded by the x-axis, the curve y = f (x) and or-

dinates at x = x0, x = x, , and let p : S , X be the projection on the first

factor. Given x , y E X , let T x y : Sx - Sy be the map obtained by linear

projection, thus

Let G -17-xy l x, YE X} and identify G with X X X . Then G satisfies

3.1. Moreover, evaluation determines an action of G on S which is con-

tinuous because f is continuous. Let lix be the measure defined on Sx by

ttx 
= (1/ f(x))Bx , where Àx is Lebesgue measure on Sx . Then {ux} is

G-invariant. Thus by Theorem 3.2 and Section 2.2, we may define a G-in-

variant measure m on S by m = fX f (x)px d/l (x), where /l is the Lebes-

gue measure on X. The total mass of m, m ( S) , is f X f (x) du (x) and is

the «area under the curve y = f (x) ». If we rotate the curve y = f (x) about

X , we obtain a surface S (respectively volume) fibred by circles (respec-

tively discs ). A trivial modification of the foregoing yields G-invariant mea-

sures on S which include the classical notions of «surface area of revo-

lutions and «volume of revolutions of elementary calculus. In particular,
if f is continuously differentiable, then

A

is G-invariant and m (S) is the classical surface area of revolution.

3.4. THEOREM (Fubini). Let S be a locally compact Polish space, sup-

pose that the transitive components of G are compact and let q : S , Y be

the canonical map of S onto the quotient space Y = SIG of orbits of G.

a) Let m be a G-invariant measure on S and let v be a pseudo-im-

age on Y of m by q, then there is a corresponding family lky I y c Y I of
Baire measures on S with the properties :

1° The support of Ày is contained in the orbit y.
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2° {By I y E Y I is uniquely determined v-almost everywhere. 

for each m-integrable Baire measurable function f on S.

b) There exist G-invariant measures m on S with the property that

m(0) &#x3E; 0 for all non-empty open sets 0 C S.

PROOF, a) Let d be a metric on S compatible with the topology and let

dx denote the restriction of d to Sx . Then {dx I x E X) will constitute

a metric family and by [20), Theorem 1, Y is metrisable and q is an open

map. Thus, Y is a Polish space and a pseudo-image v of m exists on

Y . Apply now Bourbaki’s theorem, as in the proof of Theorem 2.1, to ob-

tain I Xy I y E Y} with the properties 1 and 2. The final property follows

from the definition of a disintegration and Theorem 1.6.

b) We first show that X is metrisable. To see this we note that the

object set of each transitive component of G is compact and both open and

closed in X , and hence X is paracompact. Now each orbit of G is com-

pact and metrisable, and each object set of each transitive component is

the p-image of an orbit and is, hence, metrisable, since X is Hausdorff

and p is continuous. Therefore, X is paracompact and locally metrisable
and it follows that X is metrisable by Smirnoff’s metrisability theorem.

Secondly, X is separable since S is separable and we may choose

a countable dense set {xnln = 1,2,...} in X . By placing unit mass

an at xn and setting

we obtain a Baire measure on X which is positive on open sets. The re-

sults of [22] show that the measures lix on Sx can be chosen to be G{ x} -

invariant and positive on open sets. By Theorem 3.2 we can use Il as de-

fined above to obtain a G-invariant measure m , where m = f X ux d u(x),
and we claim that m (0) &#x3E; 0 for each non-empty open set 0 C S . To prove

this, let s c 0 and let x = p ( s ) . Then p (O) is a neighborhood of x since

p is open, see [20], Theorem 1. The action of G restricts to a continuous

function (.) : TT-1 (x)X Sx - S, so on using local compactness of G and
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of S , there are compact neighborhoods U of the identity, Ix , in TT-1 (x)
and B of s in Sx such that, if W= "’( U ) , then

Moreover, is a neighborhood of x and U. B is compact. Therefore, U. B

is a Baire set since S is metrisable. Now choose t z E G(x, z) for each
z f W in such a way that t z c U and, in particular, T x - Ix. Then the set
V= U r B is contained in U . B and has the property uz (V)=ux (B)

ZEW

for all z f W. Therefore,

since W and B have non-empty interiors. Thus, m has positive value on

non-empty open sets and the proof is complete.

3.5. This theorem actually contains Fubini’s theorem for the product of two

locally compact Polish spaces X and Y as we will now briefly demons-

trate. In fact, we may suppose that X and Y are compact by use of Bour-

baki’s localisation principle [2]. Thus let it be a Baire measure on X and

v be a Baire measure on Y . Let S be X X Y and p the projection on the

first factor, and take for G the product X X X , thus

with the obvious law of composition. Then G acts on S in accordance with

Thus, if a - ( x , x’), then oa : {x} X Y -{x’}X Y behaves as the identity
on the factor Y . For each x c X let px be the image of v by the map

y l- (x, y ) and set m = fX uxdu (x) . Then m is G- invariant and
m(A XB)=u(A) v(B) for Baire sets A C X, B C Y.

Therefore, m =uxv.
Now if (x, y)E S, then the orbit G.(x, y) coincides with the set

Xxt yi and can be identified with X . This means that, as a set, S/ G can

be identified with Y and q with the projection on the second factor. How-
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ever, q is open and so is a quotient map which implies that S/ G = Y as

topological spaces. It is obvious that v on Y is a pseudo-image of m by

q . Applying Theorem 3.4, we obtain lk, l y E Y} and by a simple argu-
ment using the uniqueness there, we conclude that for v-almost all y ,

Ay = /l under the identification of each orbit with X . The conclusion of

Theorem 3.4 now asserts that

for each m-integrable function f on X X Y , which is Fubini’s Theorem.

Theorems generalising Fubini’s can be found in [9] and [12]. They
are more like our Theorem 1.6 and do not involve interchange of the order

of integration. Indeed, it is not clear what Y should be if one does not

consider G and its action on S .

The next theorem is complementary to Theorem 2.1 a. Here the me-

trizability restrictions on S and X are removed and exchanged for the con-

ditions on G of 3.1. This has an immediate corollary in that Theorem 2.4

remains valid under the same exchange.

3.6. THEOREM. Let G and S satisfy 3.1, where S and X are supposed

only to be locally compact Hausdorff spaces. Suppose {ux} and {u’x} are

two G-invariant families on S and

for some measure u on X. Then flx = u’x for all x in the object set of
any transitive component on which f.1 is non-trivial.

PROOF. It suffices to consider the case when G is transitive.

Suppose ux# u’x for s ome x and let C be a compact Go in Sx
with ux (C) t= u’x(C). Assume

By regularity there is an open Baire set U in S such that C C v and

There exists a compact neighborhood V of C in S such that C eVe U
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and by Urysohn’s Lemma a function fEk (S) such that

Then we have

and

Therefore

But 4Y is continuous by Theorem 3.2 and so there is a neighborhood W of

x in X , which may be taken to be a Baire set, such that for all y E W we

have

Consequently,

Therefore,

That is,

using Theorem 1.6. If y is any other point of X , we may choose a f G(x, y)

and, by using the invariance of {ux} and {u’x}, we can apply the above
argument to each point y E X . In this way we obtain , for each y 6 X , a

neighborhood Wy of y and a function f y c k(S) such that

But at least one W y has positive measure, since f1. is always supposed

non-trivial, and for such W y the inequality above gives a contradiction.
This completes the proof.

3.7. COROLLARY. Suppose G, S and S’ satisfy the condition of 3.1. Let

f : S -S’ be G-equivariant and a proper map. Suppose finally that {ux}, 
and {u’x} are G-invariant families on S and S’ respectively. Let p be a
measure on X ’which is non-trivial on each transitive component in X and
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let m and m’ be the corresponding G-invariant measures. Then f is m ,

m’ measure preserving iff fx is I1x’ u’x measure preserving for all x c X .

P ROOF. The proof is exactly the same as the proof of Theorem 2.4 not-

icing only that the measures 11;’ as defined there form a G-invariant family
since f is equivariant, and use is made of Theorem 3.6 instead of Theo-

rem 2.1 a.

4. FIBRE BUNDLES.

In this section we will interpret the construction of fibre bundles,
due to C artan [4], within the framework of transformation groupoids *) . The
results of the earlier sections will then be applied to construct measures

in their total space, and certain of the results of [9] will be recovered by

imposing the condition of local triviality.

Suppose E is a principal H-space, where H is a topological group

acting continuously on the right of E , and let X = E/H be the orbit space
endowed with the quotient topology of the orbit map p : E - X . Contrary to

the earlier sections, we are not at present supposing that E, H and X are

locally compact Hausdorff spaces. Then p is both continuous and open and

E is a principal bundle over X with projection p , see [4] or [11]. Let

Ex denote the fibre over x . We make the following definition.

4.1. DEFINITION. Let x, yE X . A map 0: Ex -Ey will be called admis-

sible if co is an H-map, that is,

An admissible map is a homeomorphism and we denote by G(E) the

groupoid of all admissible maps between the fibres of E . We have the fol-

lowing elementary fact.

4.2. PROPOSITION. Let x, y E X and e’ E Ex, e"E Ey. Then there ex-

ists a unique admissible map úJ: Ex -+ Ey such that w( e’) = e’.

*) See a Categories topologiques et categories diff 6rentiables* by Charles Ehres-

mann, Coll. Gio. Diff. Glo. Bruxelles (1959), 137- 150, for similar results in the

case where local triviality is assumed.
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Thus G(E) is transitive and an admissible map oi is uniquely
determ ined by any pair ( e’, e") such that w (e’) = e" . Let H act on the

right of E X E according to

A

Then E XE is a principal H-space and we may form the space E = (E XE)/H
of orbits of this action endowed with the quotient topology of the orbit map

p : E X E - E . Then E is a topological groupoid over X . Proposition 4.2

implies that there is an identification T : E -G(E) defined by setting
T ( [e ’, e"]) to be the unique admissible map a) such that w (e’) = e ",
where [ e’, e"] denotes the orbit of ( e’, e ") . Thus G (E) becomes a to-
pological groupoid over X and, moreover, 7T’: TT-1(x) - X is an open map

for each x c X . There is, too, an action of G (E) on E defined by evalua-
t ion, that is w . e - w (e) . This action is continuous and we w ill prove a

more general result concerning fibre bundles later. The facts stated here

lead to a natural equivalence between certain categories of topological

groupoids and of principal bundles. In particular one has the following

4.3. PROPOSITION. Two principal H-bundles E and E’ are isomorphic iff
G(E) and G (E’) are isomorphic topological groupoids.

Next suppose H acts continuously on the left of a space F , though
the action is not supposed here to be effective or faithful, etc, and F need

not be locally compact Hausdorff. Then H acts on the right of E X F ac-

cording to

Let S be the orbit space ( E X F )/H of this action endowed with the quo-

tient topology of E X F by the orbit map 8: E x F - S. Finally, define

where [e, f] is the orbit of ( e , f ) in E X F . Then p is continuous and

open, and S is the fibre bundle over X with fibre F , group H and asso-

ciated principal bundle p : E - X as defined by Cartan [4] .

We are going to define an action of G(E) on S . First, however, it
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is necessary to recall the concept of the translation function r: E * - H,
where

The function r is defined by r((e, e. h)) = h and is continuous. Here,

G(E) XX S is the set

and the desired action is defined by

where we identify w with [e’, e "] using T . One readily shows that (. )

is a well defined action and continuity follows from the following commu-

tative diagram of fibred products :

Here

and is continuous, p X6 is open and so therefore is its restriction to the

(pxd)-saturated set (EXE)XX(EXF). This means that the map pX5
in the diagram is a quotient map, and so ( . ) is continuous by the univer-

sal property of quotients.

4.4. REMARK. The constructions made here do not suppose any form of

local triviality and the introduction of charts and atlases will shortly be

considered. However, it is worth noting that it is shown in [4] that any

fibre space p : S- X which is locally trivial in the most general sense,
and has locally compact fibre F , may in fact be thought of as a fibre bun-
dle with group H as above. One takes for H the group of all homeomor-

phisms of F with a topology derived from the compact-open topology, due

to Arens. The associated principal bundle E can be constructed directly
and so S can be viewed as a G (E) -space. 
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4.5. In order to apply the results of Section 3 it is necessary to assume

that E, F and H are locally compact Hausdorff spaces and that H pre-

serves a non-trivial Baire measure v on F . It follows then that X, G(E)
and S are all locally compact, being open continuous images of locally

compact spaces. They need not be Hausdorff however. We will therefore

make the assumption that they are Hausdorff. This will be the case, for

example, if H is compact, or if E is locally trivial and also under suit-

able restrictions on the action of H , see [3].

Each fibre S, of S may be identified with F by choosing e E Ex
and defining

Changing e to e’ - say - has the effect of operating on F by the element

r( e, e’) of H , that is, i’(f) = i(r(e, e’).f). Thus, v is carried to a

well defined measure li-x on Sx and {ux} is G(E)-invariant. Choosing
p on X and applying Theorem 3.2, we obtain a G(E)-invariant measure

It follows that m is uniquely determined by and uniquely determines v for

a fixed 11 .

A more intuitive description of m is available if S is locally tri-

vial. In fact, if I Vj, Oj} is an atlas for S , then as shown in [17], Tn has

the property

for each j and each Baire set A C Vj X F . Thus, m is «the product of

11 and v in the fibre bundle S » as defined in [9] by Goetz, and called a

local product measure here.

4.6. EXAMPLE (Foliated bundles).

Let E= ( p , E, M ) be a C 1 - bund Ie over M as in [10] or [13] and

suppose J" is a foliation of 6 , thus the leaves of 5: foliate E and are

transverse to the fibres with complementary dimension. Suppose E has

compact fibres and let V denote the representative fibre of E . Let y f EB

then, as shown by Ehresmann, the leaf ? through y has a unique topology
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making P : Yy - M a covering space. Let  B:[0,1]-M be a path in M

from a to b and define

where Ay denotes the unique path in 9y starting at y which covers A.

Then h (À) is a homeomorphism and by the covering homotopy property ho-

motopic paths in M from a to b yield the same homeomorphism Ea - Eb ; 
we obtain in this way a homomorphism of groupoids h : II1(M ) - H (E) ,
where II 1(M) denotes the fundamental groupoid of M and H ( E ) denotes

the groupoid of all homeomorphisms between the fibres of E .

Fix a base point aE M , identify U with Ea , let Q be the image
under h of the group III (M, a) and give Q the discrete topology. Then

[10] E is a bundle with fibre and group Q acting effectively. L et E

be the associated principal bundle. Then the groupoid g(E ) is a locally

trivial topological groupoid acting continuously on E and is the image

h(II1 (M)) in H(E) and called the holonomy groupoid o f ( ç, j=) ,
REMARK. II1(M) can be identified with the groupoid G (M ), where M is

the universal covering space of M, and is hence a topological groupoid.

Moreover, the action of II 1(M) induced by h on E is then continuous.

An important hypothesis in [10, 13] is that Q preserves a non-

trivial Baire measure v on V, in which case certain homomological and

cohomological conclusions are made. This hypothesis is equivalent to the

existence of G(E)-invariant measures m on E which are locally the pro-

duct of a measure fl on M and v . Moreover, jn can be chosen arbitrarily

and m depends only on p and v .

Now form the leaf space Q = EIJ: with projection (DJ’ E - Q and

suppose Q is standard as a Borel space and that a) is Borel measurable.

This is the case, for example, if Q is Hausdorff and each leaf is compact,

see [5 . Applying Rohlin’s theorem [14] we can disintegrate m relative

to (V (m) on Q and obtain measures 11 L on each leaf L c 5: . It would be

interesting to relate m and {vL l L c ? } to the families of measures on

the leaves arising from leaf diffusion processes and Markov processes [6] .
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5. TWO CLASSIFICATION THEOREMS.

Given p : S - X and a category or groupoid G of operators on S ,
the question arises of giving usable criteria to determine when an arbitra-

rily given measure m in S is G-invariant. A more specific related problem
is the following: given a non-trivial G-invariant family {ux} on S and

non-trivial measure m on S , find criteria which imply the existence of u
on X such that m = fXux d u (x) . This question will be settled, next, in

an important case.

CONDITION C ( due to Goetz [9]). For any two Baire sets E and E’ in

S, i f ux (E ) = kux (E’) for all x E X, then m (E) = k m (E’), where k

is any positive real number.

5.1. THEOREM. Suppose G is a locally trivial topological groupoid acting
continuously on S. Then m = fX 1-tx du (x), and hence is G-invariant, for
some IL on X iff m and {ux} satis fy Condition C.

P ROO F. The necessity is clear.

Conversely, let t Uj ,Àj } be a local trivialisation for G . "W’e may

suppose G is transitive and choose a base point z c X. Thus, Bj: Uj- G
is continuous for each j and Bj (x) E G (z, x) for each xEUj. For each
index j define

Then the collection {Oj}, Uj} gives an atlas for a locally trivial fibre bun-

dle structure on S with structure group G {z} and transition functions

It is easy to see that a measure m on S is G-invariant iff it is the pro-

duct in S of fLz and some measure ii on X . Hence, if m and I flx } sat-

isfy Condition C, then [9], Theorem 2, shows that there exists ft on X

such that m = fX /lx du (x) . Indeed, 11 is uniquely determined as follows :

for any Baire set A C Uj,
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for any Baire set E C Sz such that It,, (E) is positive and finite.

5.2. REMARKS.

1° In [9] it is shown that Condition C is quite accessible and can be

interpreted in the special case of the bundle B- B/H, where B is a group
and H a closed subgroup, as Weil’s necessary and sufficient condition

A (g) = d (g) for B-invariant measures in the coset space B/ H.
20 Pepe’s work [12] does not shed any more light on G-invariant mea-

sures than does Theorem 5.1 and it is assumed there that S is locally tri-

vial 1 throughout. Let p: S - X be a locally trivial 1 fibre bundle with fibre

F . Pepe associates with S a bundle p : M - X of Borel regular measures

whose fibre consists of the set M(F) of Borel regular measures on F .

This construction uses known results to be found in [23], Section 3. The
basic idea in [12] is that a section Q: X - lll associates to each x c X a

measure o(x) supported on p-1 (x), and that evaluation on such a sec-
tion describes a wide class of measures on S . There is some hope of ext-

ending these ideas to the setting of C*-algebra bundles as described else-
where by Danos, Hofmann and Fell. In so doing, one aims to obtain integral

representations of « functionals » defined there, and it is hoped to pursue
this elsewhere.

5.3. DEFINITION. Suppose H is a topological group acting continuously
on S and on X . Then p : S - X is called an H-fibre space if p is equi-

variant, that is,

For example, an H-vector bundle as defined in K-theory.

Let G - H X X be the associated topological groupoid over X , thus

A ctions of G on S via p correspond in 1-1 fashion with actions of H on

S and X such that p is equivariant according to the relations

The final result relates G-invariant measures on S to H-invariant
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measures.

5.4. THEOREM. Suppose (Jlx } is a G-invariant family on S which is ft-

integrable, where Jl is an H-invariant measure on X. Then m = fXux du(x)
i s an H-invariant measure on S. Conversely, suppose that H is separable,
S and X are Polish spaces and p is a proper map. Given an H-invariant

measure m on S, there exists a G-invariant family {ux I x c X } on S and

an H-invariant measure Jl on X such that m = f X ftxdiu(x), and there-
fore m is G-invariant.

PROOF. For the first part, a direct calculation shows that m (h . E ) = m (E)
for each h c H and each Baire subset E of S , that is, m is H-invariant.

For the converse, let u - p(m), thus u(A) = m(p-1 (A)) for

each Baire set A in X and it is clear that 1L is H-invariant. Applying
Bourbaki’s disintegration theorem [2], Chapter 6, Section 3 n°1 Theorem 1,
once more, we can write m = f X u,x du (x) for a ii-almost everywhere un-

iquely determined family {ux} l x E X } . Let {hn } be a sequence of ele-

ments in H . Then m ( hn . E ) = m (E) for each Baire set E and each po-

sitive integer n , and so

For each n define Baire measure In on Sx by

Then we have

on using the H-invariance of 11 , and therefore

So by essential uniqueness of the disintegration of m , there is aIL-null
set N ( n ) C X such that unx =ux whenever x E XBN (n), or in other words,

where O (h,x) denotes the operation of the element g - (h, x) E G. Con-

sequently, this last equality holds for all n and all x in the complement



274

oo

of the g -nu11 set U N (n) = N . But H is separable and so f A ! } may be
n = 1

chosen to be dense in H , in which case a straightforward continuity ar-

gument implies O(h,x)(ux)=uh.x for all h E H and all x in the com-

plement of N . Thus, we can assume this equality for all x and then {ux}
is G-invariant, which completes the proof.

REMARK. Let T be a pseudogroup of local isomorphisms of a fibre space

p : S-X , and let G be the sheaf of germs of elements of T. Then G is

a topological groupoid which acts continuously on S . By techniques si-

m ilar to those used in proving Theorem 5.4, one might hope to relate 1’-in-

variant measures in S to G-invariant ones and indeed some partial results

can be obtained thus. It is hoped to treat these questions more fully else-

where, particularly those concerned with invariant measures for holonomy

pseudogroups of foliations.
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