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A GENERALIZED DUALITY THEOREM FOR STRUCTURE FUNCTORS

by Manfred B. WISCHNEWSKY

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

Vol. XXI - 2 ( 1980 )

INTRODUCTION. 
dedicated to Charles Ehresmann

One aim of this paper is to introduce a new concept for functors

which is in fact a class of concepts - called structure functors, resp.

structure functor sequences - containing as special instances some of

the most important concepts introduced during the last two decades in

category theory as well as a whole host of new concepts.
Structure functors appear everywhere. Examples are the q-functors

in the sense of Ehresmann [6] , proclusion functors in the sense of 1lyler
[41], reflective or coreflective subcategories of sketched structures in

the sense of A. and C . Ehresmann [2], in particular of locally presentable

categories in the sense of Gabriel-Ulmer [7], reflective or coreflective

subcategories of topological categories ( Brummer [4,5], Herrlich [10,
11], H errlich - Strecker [12], Hoffm ann [13, 14 , 15], Husek [18], Kenni-
son [19], Roberts [23], Tholen [26,27,28], Wischnewsky [31,32],
Wolff [37,38], Wyler [39,40] ), reflective or coreflective subcategories
of Eilenberg-Moore categories ( Lawvere [20], Linton [21] ) as well as

compositions of the functors in question.
The breakthrough in connection with these new concepts is given

by the notion « connectedness with respect to a sequence of functors »,

which turns out to be the key for solving several fundamental problems in

connection with structure functors ( cp. [30,34,35,36]).
The duality theorem for structure functor sequences proved in

this paper is extremely general. The usefulness as well as the importance
can be seen from the corollaries derived from. It contains as special ins-

tances the duality theorems for topological functors (Antoine [1], Ro-

berts [23]). for ( E , M )-topological functors ( Hoffmann [13]), for semi-

topological functors (Tholen [28] ), for locally orthogonal Q-functors ( cp.
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Wolff [38], Tholen [30]) as well as for topologically-algebraic structure
functors [33].

In several subsequent papers [34,35,36] the theory of structure

functors is completed.

Finally one should mention that special instances of this new no-

tion - called otopologically-algebraic structure functorsv (Ikischnewsky

[33] ) describe completely all full reflective or coreflective restrictions

of semitopological functors. The previous attempts by the author [32] as
well as W. Tholen [30] to describe this particular class of functors, by

introducing the notions (O, h )-structure functor [ 32], resp. equivalently
(O, r )-concrete functor [30] failed. Both of these notions turned out to

be not general enough (cp. [33]). A systematic study of Top-algebraic
structure functors can be found in [33 .

Finally I would like to thank V. Tholen in particular for many sti-

mulating discussions.

0. NOTATIONS.

Let S : A -&#x3E; X be a functor. A S-cone is a triple (X, tjJ, D( d))
where X is an X-obj ect, D ( 4 D -&#x3E; A is an A -diagram ( D may be void
or large) and Y : AX -&#x3E; SD(A) is a functorial morphism (A denotes the

c anonic al functor into the functor category ). Often (X, Y, D(A)) shall
be abbreviated by tjJ. Cone (S) denotes the class of all S-cones. If D =1

(one point category) then Vf is called a S-morphism denoted by (A, a)
where A is an A -object and a : X- S A is an X-morphism .

The dual notions are S-cocones and S-comorphism. The corres-

ponding classes are denoted by Co-Cone (S), resp. Co-Mor(S).

Epi(S) denotes the class of all S-epimorphisms e : X -&#x3E; S A where

a S-morphism (A, e) is a S-epimorphism if the equation

(Sp)e = (Sq)e for A-morphisms p,q:=&#x3E;B ,
implies p = q . The dual notion is S-monomorphism. The class of all S-

monomorphisms is denoted by Mono (S).
ISO(S) denotes the class of all S-isomorphisms, i. e., of all ob-

jects (A, a) in Mor(S) with an isomorphism in X .
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Init(S) denotes the class of all S-initial cones, i. e. of all A-cones

a :AA-&#x3E;D(A) such that for any A -cone B:AB -&#x3E; D(A) and X-mor-

phism x: SB -&#x3E; SA with SB = (Sa)(Ax) there exists a unique A-mor-

phism a : B- A with B= a(Aa) and S a = x .

1. CONNECTEDNESS.

1.1. DEFINITION.

Let Si: Ai -&#x3E; X, i = 0, l, ... , n be functors with the same codom-

a in X .

(Ai)n 1) with Ai e Ob(Ai), i = 0,1, ... , n is connected in X

with respect to (Si)n ( or for short (Si)n-connected) if for each i = 1,

2, ... , n there exists a X-morphism

We denote this by Si-1(Ai-1)- Si(Ai) for i = 1,2, ..., n The corres-

ponding chain

is denoted by (Ai, xi)n where x0: = id(So (A0)).
Let (Ai, xi)n and (Bi, yi),, be two (Si )n-chains. A morphism

(ai)n: (Ai, xi) - (Bi, yi) is a (n+l )-tuple of morphisms ai, i = 0, 1,..

... , n with ai : Ai -* Bi in Ai for all i , such that each cell in the follow-

ing diagram commutes :

FIGURE 1

This defines the category Chs ( Si)n of all (Si)n -chains. If the

1) (Xi)n:(X0, X1, ..., Xn ).
2) This notion generalizes the notion «path-connected» in a category.
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codomain-category X is a functor-category [D, Cl 1), we call the (Si)n-
chains sometimes (Si )n- functorial chains or n-functorial chains if there

is no confusion.

1.2. REMARKS.

1. If all Si’ i = 0 , ... , n are identity functors, then the chains in

X represent path-connected objects in the usual sense.

2. If n = 7 then the category Chs (S0, S1) contains the comma cat-

egories (50 t 51) and (S1 l S0) in the sense of Lawvere (cp. [22], II . 6).
Hence this notion is at the same time a generalization of Lawvere’s com-

ma categories [22] .

3. If n = 1, So = S and S1 = I d then the category Chs ( S0, S1) con-
tains the categories Mor(S) and Co-Mor(S) of all S-morphisms, resp.
S-comorphisms.

1.3. Let 

be functors. Then we obtain a sequence of induced functors for every dia-

gram category D ( D may be void or large) by

Let Ol , Q2 be subsets of the index-set 10 1, 9 .... n I . Denote by

Chs (Si; o1, o2)n
the category of all (Si)n-functorial chains

where :

Si=Id for i e o1,
D(Ai ): D -&#x3E; 4i, i f a2 , is an arbitrary functor, and

D(Ai): = A Ai is a constant ( = diagonal ) functor for i c Q2 .

Sometimes we omit o1 in the above notation.

1) may be void or large
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If all functors D (Ai), i = 0, 1, ... , n are constant functors, then

the functorial chain is called a constant functorial chain. The subcategory
of all constant (Si)n-chains is denoted by A-Chs(Si)n. Morphisms from
constant ( Si )n -chains to arbitrary ( SI ; o1 I Or2 )-chains are called co-ext-

ensions (dually extensions ). If furthermore the constant functorial chain

is pointwise in a class 2 of (Si)n -chains, the coextension is called a
2-co extension ( m ore exactly a (Si)n - 2-coextension ). Let 2 C Chs (Si)n
be a class of (Si )n -chains. We say that a (Si ; al ’ Or2 )n -functorial chain
is a ( Si ; orl o2)n-Z-chain if it is pointw ise in 2 ( sometim es it is just
called a 2 -functorial chain if there is no confusion ).

2. SEMIFINAL STRUCTURE FUNCTOR SEQUENCES.

In order to define the notion « structure functor sequences » we

need at first the following notion.

2.1. DEFINITION.

Let C be an arbitrary category and II be a class of C-objects.
An object A e 0b(C) is called fl-initial if it is initial with respect to

all objects in II U {A}, i. e. for all objects C E II U {A} there exists ex-

actly one C-morphism A - C . The dual notion is II- final. In particular
the set of C-morphisms C(A, A) has precisely one element. If fl Ob(C)
then one has the usual notions initial, resp. final ( = terminal) object in

a category.

Let (Si )n be a sequence of functors with the same codomain and

aj’ , v2 be subsets of the index-set {0,1, ... , n}. Let 0, I-’ , 2 be

classes of (Si)n -chains. Denote by O (n) the class of all ( Si ; vI’ u2)n-
functorial chains being pointwise in Q.

Given (Si;al,a2)n’ let p be another subset of the index-set

{0,1,, ...,n}. Let

be a morphism between functorial chains. The morphism (ai)n is called

a p-morphism if for all 1 c p, al - Id . This defines the subcategory of
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F’IGURE 2
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all p-morphisms, i.e, the subcategory of all ( Si ; o1, Q2 )-functorial chains
with p-morphisms as morphisms. This subcategory is denoted by

2.2. DEFINITION (Semifinal structure functor sequences).
Notation as above. Let furthermore p be a subset of the index- set.

The sequence (Si)n is a (O (n), T,Z)o1, P-semifinal structure func-
tor sequence if for any functorial chain in O(n) there exists a l-ext-

ension which is a p-morphism and which is initial with respect to the

subclass of all p-extensions of the given functorial chain lying in P -

The corresponding initial object is called a semifinal extension (with

respect to (O (n), T, Z) Ol 1 021 P
2.3. REMARKS.

There are several possible generalizations of the notion introduced

here. I will not pursue these possibilities here.

1° The sequence ( Si )n has (O(n)(n),T, Z)o1,o2,p-semifianal ext-
ension only for a subclass S(n) C O(n). In the examples in mind these

subclasses are defined by restrictions of the index-categories D . In most

cases D = 7 (e.g. q-functors in the sense of Fhresmann [6], or proclu-
sion functors in the sense of Wyler [41] ).

2° The second possibly important generalization is given by the pro-

perty that in Definition 2.2 the universal object is not a I-extension but

an arbitrary functorial chain and that the universal property is valid with

respect to a class S(T) C O (T) and is not necessarily unique i)

The generalizations 1 and 2 can be obviously combined to the fol-

lowing generalization.
3° Let S(n) CO (Q), S(T) C O (T) and S(Z) C O(Z) be classes

of functorial chains. The sequence Si)n is a (S(D) , S(T), S(l) )a l’ a 2’ 9 P
semifinal structure functor sequence if, for any functorial chain in S(n),

(Di (Ai), Yi), exists a p-morphism
1) See Appendix for the corresponding « weak» notions.
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w ith

such that with respect to the (meta-)class of all p-morphisms

the chain is initial ( in the sense of Definition 2.1 ).

4° The definition 3 can be generalized once again by assuming that

the s equence (Si)n can not be described by just one triple (n, T, Z) but

by a sequence of triples

This leads to the notion (S(nj), S(Tj), S(Zj))oj, oj, -semi final s truc-

ture functor. 
o1 ,o2, Pj

5° In all the previous definitions we assumed that the semifinal ext-

ensions are also p-morphisms. But there is a wider concept by assuming
that the extensions are p’-morphisms for another subset p’ of the index-

set. It is obvious that p and p’ must be compatible in a natural way if

they are equivalent. For this more general case we will write

3. SEMIFINAL STRUCTURE FUNCTOR SEQUENCES.

The « dual » notion of a semifinal structure functor sequence is

the notion semiinitial structure functor sequence. Hence we have the fol-

lowing :

3.1. DEFINITION (Seminitial structure functor sequence).
Notation as in Definition 2.2.

The sequence (Si)n is a (O( Q) , T,Z)o1, o2, P-semiinitial struc-
ture functor sequence if for any functorial chain (D(A), Yi)n in O (n)

there exists a p-coextension

such that (ai) n is final with respect to all p-coextensions

1) Remember that ei :Si-1 Ai-1 -SiAi is an X -morphism.
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FIGURE 3
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i. e.

10 for any (si)n-chain (Bi,yi)n in rand p-functorial chain-mor-

phism (Bi)n: (A Bi, A yi)n -&#x3E; (D (Ai), Yi)n there exists a unique morphism

(ti) n: (Bi,Yi) n -&#x3E; (Ai,ei)n with (Bi)n = (ai)n ( Ati)n .
2° for any morphism (gi)n: (Ai,ei)n -&#x3E;(Ai, ei)n the equation

(ai) n = (ai) n (Agi) n implies

The corresponding universal object is called semiinitial coextension.

Furthermore one should remark that one has similar possibilities
to generalize the notion « semiinitial structure functor sequence » as for

semifinal structure functor sequences (Remark 2.3).

4. THE DUALITY THEOREM.

4.1. DEFINITION.

1. Let C be an arbitrary category and Q and T be classes of C-

objects. The pair (n,T) is called pointed if each set C (A, B), A c Q

B e T has at most one element.

2. Let 4J, fl be classes of Chs (Si; o1, Q2 )-objects. (O, II) is cal-

led p-pointed if it is pointed in the category Chs (Si; o1, o2, P)n -
This condition is fundamental for the proof of the generalized

duality theorem. In many concrete cases it is automatically fulfilled (cp.

the examples in Section 5 ).

Now we are able to prove the main theorem in this paper.

4.2. THEOREM (Duality Theorem for structure functor sequences).

L et Si: Ai -&#x3E; X , i = 0,1, ... , n be a sequence of fun ctors. L et o1
be the subset of all indices l with Sl = Id. Let Or2 and p be further
subsets of the class o,f indices 0, 1, ... , n 1. Let Q , 1,:£ be classes

of (Si )n-chains such that I eland (Q ,1) be p-pointed. Then the

following two assertions are equivalent :
(i) (Si)n is a (O(n), T, Z) o1, a 2’P -semifinal s tructure fun cto r
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s equence.

(ii ) (Si)n is a (O(T),n,Z)o1-semiinitial structure functor
s equence.

P ROO F. (ii) =&#x3E; (i). Given a (Si)n-functorial chain in O (n):

i . e ., (.pi) n is pointw is e in n, denote by Ç( i) the subc ategory of

Chs ( Si, P) n consisting of all (Si)n-chains (Bi, xi )n in T such that

there exists a p -morphism

Since (Yi)n is pointwise in n, (Bi, xi )n is in rand (0,1) is p-

pointed, the p-morphism (Bi)n is uniquely determined by the (Si )n-chain
(Bi, xi)n. Hence we w ill denote it by Bi(Bj, xj)n)n. By the assignment

we obtain a sequence of functors. By the assignments

we o btain a ( Si )n’functorial chain in 4Y ( r ) :

Let d c 0 b Dom ( D( AI)) be an arbitrary object. We obtain a p-functorial

morphism

by the assignments :

i = 0,1, ..., n. This is a well-defined assignment since (f3 i ( B l’ xl) n)n
is uniquely determined by (Bl, xl )n e G(T’). The functoriality of the

Yi,d follows from the functoriality of the Bi (Bl, xl) and the p-pointed-
ness of (n, r) , i.e. let
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be a morphism in C(T, then the following diagram is commutative :

FIGURE 4

Since the sequence (Si)n is a O(T), n;Z)o1,o2p-semiinitial struc-

ture functor sequence by assumption we obtain a (Si i)n -chain ( Ai, ai)n in

I, a (Si)n-functorial 1 chain (Ti)n: (AAi,Aai)n -&#x3E;(C(Ai),Ki)n and a

unique morphism
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The uniqueness of the chain-morphism

implies that the assignment

defines a functorial morphism. We claim that the extension

is the (O(n),T,Z)o1, o2, p-semifinal extension of the O(n)-chain

(D(A)i),Yi)n looked for. Let (Bi, xi)n be a T-chain and

be a p -functorial morphism . Then ( Bi, xi )n is in C ( r) . L et

Since

is a functorial chain-morphism, the sequence (tl )n : (Al, al)n -&#x3E; (Bl, Xl)n
is a chain-morphism. Hence ( tl), is a morphism in C( r) since (A,, aZ)n
is in 2 and Z C T. Let

be another chain-morphism in C(r) . Since

is a functorial chain-morphism over C(T), we obtain for each i = 0, 1,

... , n the following commutative diagram :

Since (Aig ai)n is a semiinitial extension of (C(Ai), K i)n and

(Ti (Al, al)n): (Ai, ai)n-&#x3E;(Ai, ai)n
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is a chain-morphism it follows from the definition of semiinitial structure

functor sequence, resp. from Definition 3.3, that

Hence ti = si for all i=0,1, ... , n.

( i ) =&#x3E; (ii). Start with (D(Ai), Yi)n e O(T), run through the proof
(ii)=&#x3E; ( i ) and dualize at the corresponding parts or interchange 0 and

r and interprete the result in the dual of the comma-category of all ext-

ensions over (Ð(1i),t/Ji)n. This completes the proof.

4.3. REMARK.

Let p’ be another subset of the index-set {0, 1 , n}. Then the

semifinal extensions are p’-extensions iff the semiinitial extensions are

p’-extens ions .
This duality theorem is extremely general. The usefulness as well

as the importance of this theorem is shown by a whole host of corolla-

ries deduced from. The most important special instances are discussed

in the sequel.

The interpretations of the classical examples in the language in-

troduced in this paper is carried through in details only for the first ex-

ample. For all subsequent examples we will restrict ourselves just to ad

hoc definitions. The corresponding obvious translations are left out.

5. APPLICATIONS.

5 .1. Duality for sem itopolog ica I functors .

Semitopological functors represent exactly the full reflective

restrictions of topological functors (Tholen-Vischnewsky, Oberwolfach

I 977 ; Tholen [27]; Herrlich - Strecker [12]). They were first 1) introduced
cum grano salis by Hoffmann [13,14,15], Tholen [27, 28], Wischnewsky
[31 . Hoffmann used at least the semifinal [13] (up to the «wrong uni-

verses) as well as the locally Q-orthogonal characterisation [14], up to
the assumption that Q is closed under composition - a condition which

implies that the functor in question is already topologically-algebraic in

1) V. Trnkova, Automata and categorie s, Lecture Notes in Comp. Sc. 32, 8pringer.
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the sense of Hong [17]; but he was not aware of the equivalence of these
two definitions as well as the fact that functors fulfilling one of these

definitions are reflective restrictions of topological functors (at least in

the same universe ).

Semifinal functors ( with respect to the right universe) as well as

even a generalization were used in [31] in order to study adjoint liftings
along topologically-algebraic functors (and more general for semitopolo-

gical functors ).

The key for all further generalizations was Tholen’s duality The-

orem 
1) generalizing the corresponding duality Theorem for topological

functors, resp. (E,M)-topological functors ( A ntoine [1], Roberts [23],
Hoffmann [13]).

Hoffmann [13], Tholen [27] as well as the author in this paper

used an idea going back to Herrlich [10] Lemma 6.1. One has to read

Herrlich’s diagram [10] page 133 just in «both directions.

The correct definition of locally orthogonal Q-functors as well as
the characterization as semitopological functors were first given by Tho-

len [28] and independently at the same time by the author ( unpublished ).
The characteristic diagram for the internal dual of locally orthogonal Q-
functors was first given by the author supposing that this class of func-

tors describing all left extension functors (cp. Guitart [8], Rosicky [24] )
is larger than that of semitopological functors. But in fact H. 1’olff could

show [38] using the corresponding external characterization which he had

obtained independently from Tholen-Wischnewsky 2) that these functors
aie semitopological. Hence by applying the previous results this is no-

thing else that another duality Theorem for semitopological functors (more

exactly for locally orthogonal Q-functors ) containing Tholen’s original
one as special instance. By applying our general duality Theorem this

1) In connection with this duality theorem he introduced the notion semiinitial

factorization.

2) THOLEN, W. &#x26; WISCHNEWSKY, M. B., Structure functors II : External charac-

terizations ( preprint), J. Pure and Appl. Algebra 15 ( 1979), 75-92.
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is a trivial consequence from the definition.

Let n = 2,

Then we have o1={1, 2} and or2 = {2}. Let

be a class of S-morphisms closed under composition with isomorphisms
from the left. Let Q be the class of all S-double-morphisms of type

Let T=Mor(S) and Z=Q. Let p=p’={2}. (n, T) is p-pointed,

since Q C Epi(S). Hence we obtain :

5.1.1. DEFINITION (Hoffmann [13], Tholen [27], Tholen-Vischnewsky
[29], Wischnewsky [31], V’olff [38] ).

Let S: A -&#x3E; X be a functor.

1. S is a (O(n), Mor(S), Q) 1,2,2- semifinal structure functor ( for

short semifinal functor) iff for every S-double-cone

with Y being pointw ise in Q , there exists a S-co-cone a : D (A) -&#x3E; A and

a S-morphism ( A, e : X -&#x3E; SA) in Q with (Ae) O = (Sa) Y such that, for

every S-co-cone (3: D(A) -&#x3E; AB and every S-morphism

there exists a unique A-morphism t : A - B with



207

2. S is a (O(Mor(S)), n, Q)1,2,2-semiinitial structure functor ( = lo-

cally orthogonal Q-functor) iff for every S-cone (D(4 ), 0: AX -&#x3E; SD(A))
there exist a S-morphism ( A, e:X-&#x3E;SA) in Q and a functorial morphism
a: AA -&#x3E; D (A) with O= (Sa) (Ae) such that for every S-double mor-

phism in

and S-cone B.AB-&#x3E;with O(Ay)=(SB)(Ab) there exists exact-
ly one A-morphism w:B -&#x3E; A with (3 = a (A(D) and e y = (Sw) b.

5.1.2. COROLLARY (Duality Theorem for locally orthogonal Q-functors -
Wolff [38]).

Let S: A -&#x3E; X be a functor. Then there are equivalent:
(i) S is a locally orthogonal Q-functor, i. e. a semiinitial structure

functor (in the sense of Definition 5.1.1 ).
(ii) S is a semifinal structure functor ( in the sense of De f. 5.1.1).

The definition of locally orthogonal Q-functors delivers just ano-
ther characterization of semitopological functors. W. Tholen’s original

duality Theorem for semitopological functors is obtained by taking 0 =
Co-Mor( S) in the previous Definition 5 .1.1 .

5.1.3. COROLL ARY (Duality Theorem for semitopological functors - Tho-
l en [27]).

Let S: A -&#x3E; X be a functor. Then there are equivalent:
(i) Every S-co-cone has a semifinal extension, i. e. S is a

(O (Co-Mor(S)), Mor(S), Q)1,1,1-semifinal structure functor.
(ii) Every S-cone has a semiinitial coextension, i. e. S is a
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(O (Mor(S)), Co-Mor(S), Q)1,1,1-semiinitial structure functor.

By taking for Q the class Iso(S) of all S-isomorphisms we ob-
tain the classical duality Theorem for topological functors.

5.1.4. COROLLARY (Duality Theorem for topological functors - Antoine
[1], Roberts [23]).

Let S: A - X be a functor. Then there are equivalent:
( i ) S is a topological functor.
(ii ) S°p is a topological functor.

This Corollary implies immediately a representation Theorem as

well as a duality Theorem for co-semitopological functors. By the repre-
sentation Theorem for semitopological functors as full reflective restric-

tion of topological functors and the above Corollary, the co-semitopologi-
cal functors are exactly the full coreflective restrictions of topological
functors, i. e. we obtain the following :

5.1 .5. COROLL ARY (Representation, resp. duality Theorem for co-semi-

topological functors - Tholen [30], Wischnewsky [32]).
Let S: A -&#x3E; X be a functor, Id( S) c P C Mono (S) be a subclass

of S-monomorphisms clos ed under composition with A-isomorphisms from
the right. Let Q = Co-Mor(S), T’ - P and Z be the class of all S-double

morphisms

Then the following assertions are equivalent (where a 1 = {1, 2} ):

(i) S is co-semitopological.
(ii) S is a full coreflective restriction o f a topological functor.
(iii) S is a (O(Co-Mor(S)), Z, P)o1,2-2-semifinal structure functor.
( iv) S is a (O (Z), Co-Mor(S ), P)o1,22-semiinitial structure functor.
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«Semiinitial characterization of co-semitopological functors ».

Herrlich-Strecker [12] and Borger-Tholen [3] showed that the

follov ing concepts are equivalent:

(a) topologically-algebraic functors ( Y. H. Hong [16], S. S. H ong
[17]).

( b ) M-functors (Tholen [27], Wischnewsky [31] ),
( c ) orthogonal Q-functors ( Tholen [26] ),
( d ) locally orthogonal Q-functors and is closed under composition

(Tholen [28] ).

By the characterization (d ) we obtain immediately diagrammatical-

ly the same duality theorems as for locally orthogonal Q-functors only
with the additional assumption that Q is compositive. But there is ano-

ther duality theorem for topologically-algebraic functors. A similar one

can be obtained for locally orthogonal Q-functors. In this case one has to

replace the class Semi-Univ(SJ by the class of all S-semifinal morphisms.

Recall from Herrlich -Strecker [12] that a S-morphism e : X -&#x3E; S A

is called semi-universal provided for any initial cone 03BC:A A’- D(i

any A -c one a : AA-&#x3E; D(A) and any S-m orphism

there exists a unique A-morphism g: A - A’ such that the following dia-

gram commutes :

i. e ., e is in Initi(S), the class of all S-morphisms being orthogonal to

all S-initial cones (in the sense of cone-factorizations ). We denote the

class of all semi-universal S-morphisms by Semi-Univ(S).

The following definition of a topologically-algebraic functor differs
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from the characterization given in ( a ) , ( b ) , ( c ) , ( d ) . The equivalence
is easily shown. For the rest of part 5.1 we assume that the functor in

question S: A-&#x3E; X is faithful ( without any loss of generality ! ).

5.1.6. DEFINITION.

Let S : A -&#x3E; X be a functor.

1. S is a semiinitial topologically-algebraic functor iff for every S-

cone Y: AX -&#x3E; SD(4), D( A ): D - A arbitrary, there exist a S-semi-

universal morphism ( A, e : X -&#x3E; SA) and a A -cone a : A A -&#x3E; D (A) w ith

tA (Sa)/1 e such that for any chain of type

any S-cone B:AB-&#x3E;D(A) and any S-cone B: AB, D(A) such that

there exist unique morphisms I: B - A and t: B -&#x3E; A with

2. S is a semifinal topologically-algebraic functor if for all func-

tors D (A), D (A): D -&#x3E; A , and all functorial morphisms

!//- pointwise in Semi-Univ(S), there exist a semi-universal morphism

(A, e: X, SA) and S -co-cones I: h(j)-&#x3E; AA and a: D(A), AA with

such that, for any S-morphism ( B, b : X - SB) and S-co-cones

w ith Ab = (SB)Y an d SB = (SB)Y, there exists a unique morphism
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t : A , B with

Applying our general duality Theorem we obtain the following

5.1.7. COROLLARY ((Duality Theorem for topologically-algebraic func-
to rs ).

Let S: A - X be a functor. Then the following assertions are

equivalent:
( i ) S is a topologically-algebraic functor (in the sense o f Y. H.

Hong).
(ii ) S is a semiinitial topologically-algebraic functor.
(iii ) S is a semifinal topologically-algebraic functor.

5.1-8. REMARKS. 

1. By taking e* e in Definition 5.1.6 (1) it is obvious that the 1.-
cone a : A -&#x3E; D(4) is a S-initial cone.

2. By the equivalence of the notions topologically-algebraic functor,

M-functor, and orthogonal Q-functor the above corollary is also a duality
Theorem for orthogonal Q-functors, resp. M-functors.

3. By taking e = e in Definition 5.2.1, 1 and the remark that S-semi-

universal morphisms are S-epimorphisms (Börger-Tholen [3], Herrlich-

Strecker [12]) it follows immediately that every topologically-algebraic
functor is semitopological (=&#x3E; Definition 5.1.1, 2).

4. By taking S = Id: A - A we obtain duality theorems for cone-fac-

torizations ( F , M ) in a category A .

5 .2. Duality for full coreflective restrictions of semitopologica functors.
It is well-known that the composition of semitopological functors
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is again a semitopological functor. Thus in particular full reflective res-

trictions of semitopological functors are again semitopological. Hence

for the study of full reflective restrictions of semitopological functors

one can apply again the theory of semitopological functors. In contrast

to this property full coreflective restrictions of semitopological functors

are in general no longer semitopological, e. g. the corresponding restric-

tion has in general no left adjoint. Hence similar questions and problems
do arise as for semitopological functors. Both Tholen [30] and the author

[31,32] introduced generalizations of the notion semitopological func-

tor. These were called « concrete functors » by Tholen [30], semifinal fac-

torization functor [31], resp. structure functor [32] by the author. But

an analysis of these notions in connection with several examples as well

as the problem mentioned above showed that these definitions are not

general enough. This led to the notion « structure functor » as it is defined

in this paper. By this new notion not only the problem started with could

be solved [33] but it turned out that this notion is far more general.

5.2.1. DEFINITION (Tischnewsky [33] ).

Let S : A - X be a functor. Let

be an arbitrary factorization. Let

be classes of Q-morphisms, resp. Q-comorphisms. Let n = 3,

Then a = {2, 31}. Let

Let y (II, O) be a subclass of the c lass of all ( Si )3 -chains of type

containing all chains of type
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w ith arbitrary (A, g) e T and (B, x) e Co-Mor(Q). Let n (T) be the

class of all (Si )3 -chains

(S, Q, Id,Id) is a (O(n(T)), y(TT,(D), n(T)) op3,3-semiinitial struc-
ture functo r iff, for every functorial chain in O (n (T)).

with y pointw is e in r there exist a(Si)3-chain

and functorial morphisms

w ith

such that

1. for any (Si)3-chain in y (TT, O)

and any pair of functorial morphisms (3’: 0 B -&#x3E; D ( B ), a’: A A’ -&#x3E; D (A)
w ith

there exists a unique pair of morphisms a: A’-&#x3E; A and b : B ’ - B with

FIGURE 13
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2. For any pair of morphisms s : A - A and t: B , B the equations

imply s = Id(A) and t = Id(B).

Let S: A - X be a functor. If there exist a factorization S = Q Q ,
and classes

and y (II,O) such that (S, Q, Id, Id) is a semiinitial structure functor

in the sense of Definition 5.2.1, then S is called a topologically-algebraic
structure functor or for short a Top-algebraic structure functor ( with res-

pect to (Q, Q, O, T, TT, y(II, O))).
If X is the category of all sets, then all reflective or coreflec-

tive restrictions of monadic functors or topological functors are topologic-

ally-algebraic functors.

5.2.2. THEOREM 1) (Representation Theorem, Wischnewsky [33]).
Let S be a functor. Then the following assertions are equivalent:

S is a full reflective or coreflective restriction of a semitopo-
logical functor.

(ii) S is a topologically-algebraic structure functor.

If one takes in particular the trivial factorization S = Id S , i. e.

then the topologically-algebraic structure functors with respect to (S, Id,

O, T, Id(S)) are the (O, r) -structure functors in the sense of [32] Part

1, resp. the (O, T)-concrete functors in the sense of Tholen [30]. Hence

from the above Theorem we obtain the following Corollary:

5.2.3. COROLL ARY ( Tholen [30]).
Let S be a (O,T,)-structure functor in the sense of [32], resp.

1) This theorem can be sharpened [ 33]. 
2) Take in this case for Y (Id (S),O) the class of all S-double comorphisms of
type SA-4-f- Y x., -X with (A, f) e O.
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a ((D, r)-concrete functor in the sense o f [30] 1). Then S is a full core-

flective restriction o f a semitopological functor.

Applying our general duality Theorem we obtain a duality Theorem
for topologically-algebraic structure functors.

5 .2.4. COROLLARY (Duality Theorem for topologically-algebraic struc-
ture functors).

Let S: A , X be a functor and (Q, Q, O, T, II) as in 5.2.1. Then

there are equivalent:
(i) (S,Q,Id,ld) is a (O(n(T)),y(TT,O),n(T)op,3,3-semiini-

tial structure functor sequence, i. e. S is a topologically-algebraic struc-
ture functor.

(ii) (S, Q, Id, Id) is a (O(y(II,O)),n(T),n(T))op3,3-semi-
final structure functor sequence represented by the following diagram

5.3. Duality for arbitrary sequences of reflective or coreflective restric-
tions ( over topological functors ).

The basic idea of 5.2 can be expressed as follows: « Start with

an arbitrary factorization

of the functor in question. If this factorization (Q, Q) fulfills a certain

universal property then we can construct from it a factorization

1) The idea looking at functors of this type goes back to W. Tholen.
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where E and T belong to a certain class of functors ( in 5.2, T is semi-

topological and E is a coreflective restriction of T ). This idea is hea-

vily used in [34] in order to study (and to characterize) compositions of

structure functors, i. e.

where each Ei, i = 1 , ... , rt is a structure functor. In the following part
we will restrict ourselves to the important special instance where

El - topological functor and

Ei = (reflective or coreflective ) full embedding for i = 2, ... , n .
The examples considered in 5.1 and 5.2 are special instances of compo-
sitions of structure functors of this type. The idea expressed above can

be considered as an inductive step. Hence we obtain the following prin-

ciple : Start with an arbitrary factorization

which fulfills the « semifinal ( resp. semiinitial) structure functor sequence

property » with respect to :

Then construct (by induction) the factorization (*). This idea leads to

the following definition :

5.3.1. DEFINITION (Wischnewsky [34] ).
Let S: A -&#x3E; X be a functor. Let

be a factorization of S . Let yl , y2 be a partition of the index-set

{2,...n}. Let
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and

S is called a (y 1 ’ y2) -( topologically-algebraic ) 2) structure functor if,

for all (Si)n-functorial chains (*)

where

and Oi being pointwise in I-’i for all i - {1 , ... , n-1}, Yn arbitrary, there
exist a sequence ((Ai,gi))n (**) with

g0= Id(A0), gi e Ti for i=1, ... , n and An = X ,
and Bi-co-cones ai : D(Bi) -&#x3E; AAi rendering the corresponding diagrams
commutative ( cp. Figure 15 ) such that for every sequence (Bi, fi)n (***)
w ith

Bn = X , fi e Ti if n - i+1 E y2 and fi e Mor(Qn-i+1) otherwise

FIGURE 15

1) The ri i must fulfill the usual compatibility criterions with respect to composi-
tions with isomorphisms from the left or right.
2) In the following we will omit the adjective « topologically-algebraic ».
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and Bi-co-cones (3i: D (Bi) -&#x3E; OBi rendering the corresponding diagrams

commutative, there exists a unique sequence

such that

and the following cells commute :

FIGURE 16

The class of (Si )n-chains of type (*) (domain D(Bi) = 1!) is denoted

by Q (ri ) , of type (**) 2 (fli) , and o f type (***) by F (Fi
Hence a(Y1,Y2)-structure functor is a (O(n))Ti),T(Ti)), Z(Ti))-

semifinal structure functor in the language of Section 2. The pair (y l’ Y2
is called the index o f S.

From the previous results, it is clear how one has to define a

(O(T-(Ti)),n(Ti),Z(Ti))-semiinitial structure functor.

5.3.2. THEOREM (Representation Theorem [34].

Let S: A -&#x3E; X be a functor. Then there are equivalent:
(i ) S is a (y 1,y2)-structure functor.
(ii) There exists a factorization o f S :

with E1 = (semi-)topological functor and
full reflective embedding (if i E Y 1 )

E - = [ full Coreflective embedding (if e Y 2 ).
Ei = 

full core flective embedding (if ’ i e y2).

5.3.3. THEOREM (Duality Theorem for (y l’ y2)-structure functors.
The following assertions are equivalent:

10 S (more exactly (Si)n) is a (O(n(Ti),T(Ti), 2 (Ii) )-semi-
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final structure functor.
20 S is a (O(T(Ti Q (T), I(r i ) )-semiinitial structure functor.

5.3.4. REMARK.

The class of all (y1,Y2)-structure functors for arbitrary ylg Y2
has many nice properties. So for instance it is closed under composition
and external duality, and so on ( cp. [34] ).

5.4. The connexion between internal and external duality of topologically·
algebraic structure functors.

The external (= categorical) dual notions of semiinitial, resp.
semifinal structure functor sequences are co-semiinitial, resp. co-semi-

final structure functor sequences which are obviously again structure

functor sequences in the sense of Definition 2.2, resp. 3.1, butwith res-

pect to a different set of characteristic data. The duality between semi-

initial and semifinal structure functor sequences given in Theorem 4.2

is called an internal duality to distinguish it from external duality. The

striking result of this paragraph is now that there is a strong connection

between internal and external duality, at least at the level of topological-

ly-algebraic structure functors. Using the representation Theorem 5.3.2,
we will show that the internal duality can be considered as a sort of

« truncated» external duality.

We assume that a given functor S: A -&#x3E; X has a representation
of the form (*)

where T is topological and the functors Ei are by turns full reflective

or coreflective embeddings. We call n the length of the factorization (*)
of S . T AS(n ) denotes the « class » of all topologically-algebraic func-

tors which have a factorization of at least length n . The minimum of all

lengths of a given topologically-algebraic functor S is called the index

of S and denoted by ind(S). Hence topological functors have index 0

and semitopological functors index 1 ( if they are not topological).
Let n be even. Let
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be the subclass of TAS(n) consisting of all S having a factorization

(*) with Eo reflective, resp. Eo coreflective. Hence S (TAS(n) has

a representation of the form (**):

( S A 4 X)= (A corefl. refl. corefl. refl. top. -&#x3E;X) 

The external (categorical) dualization Op gives a bijection

Hence using the representation Theorem 5.3.2 which gives an internal

characterization of functors of type (*) we obtain by categorical dual-

ization an internal characterization of the elements in T ASc (n) which

is dual to the internal characterization in 5.3.2. Now TASr(n-1) can

be considered as a subclass of TASr(n) as well as of TASc(n) assum-
ing that E n-, is the identity, resp. E0 is the identity. But this implies
that each S e TASr (n-1) has two different internal characterizations. It

is now easy to see that these are just the semiinitial, resp. the semifinal

characterization. If n is odd, then a similar consideration by interchan-

ging « r » and « c » leads to the same result. Hence the internal duality in

Theorem 5.3.3 can be considered as a truncated external duality since

it can be obtained from the external duality simply by restricting corres-

ponding data.
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APPENDIX . LOCALIZABLE STRUCTURE FUNCTORS,

B ASIC DEFINITIONS

Originally the author pianed 1) an extended paper on localizable
structure functors motivated by Y. Diers paper 2) on localizable algebraic
functors. But in the meantime W. Tholen submitted a paper on Mac Neille

completions of concrete categories with local properties 3) where all basic
definitions and theorems are given for the special instance of localizable

semitopological functors as well as an excellent list of examples. Hence

I will restrict myself to the fundamental definitions for localizable struc-

ture functors. The major difference between the special instance of local-

izable semitopological functors and arbitrary structure functors lies in

the fact that arbitrary structure functors admit locally as well as globally

corresponding generalizations, where at the level of semitopological func-

tors these different types of notions coincide. By this notion we are able

to describe internally the composition e.g. of localizing right adjoints with

locally left adjoints. The idea behind is simply to weaken the notion : «II-

initial object » in definition 2.1. I will use Tholen’s terminology in 3).

Aj. DEFINITION. Let C be an arbitrary category, II a class of C-ob-

jects and A be a C-object.
10 A is called locally II-initial if for all objects B , C in II U{ A 1,

and all C-morphisms g: A -&#x3E; C, h : B -&#x3E; C there exists a unique f : A -&#x3E; B
with h f = g.

2° A is called strongly locally II-initial if for all B, C, g, h as

above there exists a unique f: A - B .

30 A is called prequasL- II-initial if for all objects B in flu A },
and all C-morphisms u , v: A - B there exists a unique j:A -&#x3E; A with

uj - v.
4° A is called pre-11-initial if it is prequasi-II-initial and if j can

always be chosen as the identity.

1) Announced in [35].
2) Y. DIERS, Categories localisables, These, Univ. Paris VI, 1977.
3) W. THOLEN, Mac Neille completion of concrete categories with local pro-

perties, submitted.
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5° A is called weakly II-initial if for every B - A there exists at

least one morphism A -&#x3E; B .

6° A is called quasi-II-initial if A is both weakly II-initial and pre-

quasi-II-initial.

The following diagram (Tholen in 3) for II - Ob C ) shows the

hierarchy

A .2. DEFINITION. Let C be an arbitrary category and II be a class of

C-objects.
- C has (strongly) locally fl-initial objects if for all C , there exist

a (strongly) II-initial object A and a morphism g : A - C in C .

- C is called (strongly) II-localizing if C has ( strongly) locally
II-initial objects and if there exists only a set of non-isomorphic ( strong-

ly) locally II-initial objects in C .

A.3. DEFINITION (Globally localizable structure functors). Notations as
in Definition 2.2. The sequence (Si), is called a (strongly) localizable

(O(n),T, Z)o1,o2,P -semifinal structure functor sequence if for any func-

torial chain being pointwise in 0 the category of all p-extensions has

( strongly) locally n-initial objects where 11 is the class of all h-ext-

ensions and where (strongly) locally II-initial objects are Z-extensions.

A.4. REMARKS. 10 In the same way one defines (strongly) localizable

(O(n),T,E)o1,o2, P- semiinitial structure functors. There exists a cor-( O ( n), T,Z) 
o1, o2, P -semiinitial structure 

responding duality theorem. Hence we speak just of ( strongly ) localizable

structure functors.

20 Locally localizable structure functors are obtained if each object

Si(Ai) in Fig. 2 fulfills a different «weak universal property » in the sen-
se of Definition A.1, 1-6 ; hence the different types of such functors.
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