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COMPACT AND SMALL RANK PERTURBATIONS OF CONFORMALLY

SYMPLECTIC STRUCTURES

by Heikki HAAHTI

CAHIERS DE TOPOLOGIE

E T GEOME TRIE DIFFERENTIELLE

Vol. XIX -3 ( 1978 )

I. INTRODUCTION AND SUMMARY.

1. In what follows almost symplectic C3-manifolds (m,n) modeled on
Banach spaces and with a C2-fundamental form n are considered. The tens-

orfield n defines, by definition of the almost symplecticity, for each XEm,
a skew-symmetric bounded bilinear form n(x): ’"x x mx -+ R of the Banach

m etrisable tangent space mx, such that the following conditions of « strong
regularity » holds 1): 

The linear and bounded map of the Banach space mx into its dual spa-

ce 2) m**= L(mx; R) given by

is bijective.

1) Instead of i strong regularity» the notions 4 regularity&#x3E; and « non-singularity » al so
are used in the litterature. If instead of bijectivity merely injectivity of the map in

question is postulated, the term « weak regularity » is used [1]. Strong and weak reg-
ularity are equivalent conditions in the finite-dimensional case, implying that the
dimension of ? must be even.

2) If A , B , ... , C and D are m+1 given Banach spaces, the symbol

denotes the Banach space of all bounded m-linear functions M : A x B x ... x C--&#x3E; D;
the values of M are denoted sometimes without parenthesis, writing

if no misunderstanding can arise. Of the topologies in L(A x B x C. x C; D) only
that one is used which is given by the supremum norm I M I = sup I M h k ... l ( for

I h I = IkI = ... 
= I I I = 7 ). In the case A = B = ... = C = E we write

and the closed linear subspace in Y-rn(E; D ) consisting of all skew-symmetric m-
linear functions with values in D is denoted by î’; (E ; D).
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By Banach’s theorem this linear map is then a linear homeomorphism.

The postulate of the strong regularity implies in particular that all tangent

spaces ? and hence also all parameter spaces of the manifold ? are re-

flexive Banach-metrisable vector spaces ( see [22], 5).

2. Two almost symplectic manifolds (11 , Q ) and (m,n), are conformally
diffeomorphic ( resp. isometric ) if there exists a C3-diffeomorphism

satisfying

where a is a real function ( resp. where a (x) = 0 ) and where y* denotes

the « pull-back » from y .
An almost symplectic manifold (m, n) is locally con formally sym-

plectic ( and shortly « conformally symplectic » or « conformally flat»), if a

neighborhood U of every point xo E m is conformally diffeomorphic to a

neighborhood in some Banach space ( E , A), where

is a strongly regular, skew-symmetric bilinear form. Denoting by

the derivative of the map y , the conformality reads explicitly:

for all h, k f m x and x E U.

In the case a (x) = 0 of isometry, (m, n) is symplectic. Evidently
the Banach space (E, A) above is symplectic. In the case where the dim-

ension dimlk = 2n is finite, (m, n) is conformally symplectic ( resp. sym-

plectic) iff near every point local coordinates can be introduced, such that

Q transforms to

where a is a real function ( resp. where a (x) = 0 ).

3. Since ea (x)n(x) can be transformed on a conformally symplectic ma-
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nifold (m, n) to a form A not depending on the point y(x) , we have in

particular for the outer derivative :

Hence, by Poincaré L emma, the conformal flatness of ()R,Q ) implies the

existence of integration factors» À (x) = ea(x) such that the differential

equation d X =,kQ has locally defined 1-form s X as solutions.

Also the conformal flatness implies that the «distribution » of isotrop-
ic linear subspaces is «integrable» 3) on ()R,Q ). Indeed, given a conformal
map y: (m, n) --&#x3E; ( E, A) defined on a neighborhood It of xo E m, an isotrop-
ic linear subspace g C (mx, n(xo)) of the tangent space at xo is mapp-

ed by the value y’(xo ) of the derivative to an isotropic linear subspace
N C (E, A). Furthermore, the intersection of V = y(U) C E with the plane

y (xo)+N = J is mapped by y-1 to a submanifold

for which every tangent space 71X is an isotropic subspace of (mx,n(x)), 
since y’(x)nx = N, and g %0 is the tangent space of n at xo .

4. The well-known tensorial condition - vanishing of the Riemannian cur-

vature tensor - for Riemannian and pseudo-Riemannian manifolds to be loc-

ally euclidean has the Theorem of Darboux as an analogue in the almost

symplectic geometry. This latter reads :

An almost symplectic manifold (m, n) is locally flat, that is, symplec-

tic, iff the outer derivative dQ vanishes.

This for the finite-dimensional case classical theorem has been proved by
A. Weinstein [21,22] for infinite-dimensional manifolds, using a method

due to J. Moser [ 171.

The vanishing of the conformal curvature tensor of Hermann Weyl

again, which characterizes the conformal flatness of Riemannian and pseudo-

3) By this we mean the following: For each pair (xo ,9 ), where xo f m and where

9 is an (xo )-isotropic linear subspace of the tangent space:nIx ’ there exists a

submanifold n c m having isotropic tangent spaces 71 x and with X0 f n, n = gx . 
In such a case one also calls the 2-form fl « integrable » [4].
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Riemannian manifolds [23,6] corresponds to theorems due to Lee, Ehres-

mann and Liberrrtann in the finite-dimensional almost symplectic geometry

[4, 13, 14, 16]. One of the classical results can be stated as follows :

An almost symplectic 2n-dimensional manifold (m, Q ) with dim m&#x3E; 4

is conformally symplectic iff the outer derivative dQ is « divisible » by Q ,
that is, iff there exists a one-form R on k such that in the equation

we have

Furthermore, if such a factor R exists, it is (in all cases dimk j 4 ) uni-

quely determined by the expression R(x) = W(x), where

is defined by means of tensor-contraction : For all points x f m and tangent

vectors h E mx, 

Here the « trace » of the bilinear form

is defined in a familiar way as that of the linear transformation

coming from B by «raising the index » with Q :

for all

Thus, the conformally symplectic case can be equivalently characterized

4) Denoting in a local chart representation by nii = n (x)( ei , e.) the values of the
bilinear form n(x) for basis vectors ei i (i = 1 , 2 , ... , 2 n ) and writing

the formula ( 2) is written in the index notation

where Krone cker symbol.
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by the vanishing of the tensor of C.H. Lee :

an analogon of the lbeyl conformal curvature tensor. Furthermore, this con-

dition is equivalent both to the existence of an «integration factor » near

every point and to the «( integrability of the distribution » given by the iso-

tropic linear subspaces nx C mx ( indeed, even to the integrability of the

distribution given merely by the maximal isotropic linear subspaces ). If the

dimension is 2n = 4, then L = 0 and W = R for all almost symplectic mani-

folds and (m, n) is conformally symplectic iff:

5. In the present generalizations of finite-dimensional geometry to the

infinite-dimensional one, the key point of the solution goes back to the way
in which one avoids the use of the usual trace-operator occuring in ( 2 ). The

solution is based on a simple lemma according to which a bounded linear

operator T of an infinite-dimensional real Banach space has at most one

representation T = X I + K , where I is a given non-compact and bounded

operator ( in particular the identity operator occurs in the sequel) and where

K is compact, / being a real number. It comes out that the operator

can be replaced by the operator

the «reduced tracer to get the generalization in question. Furthermore, if

in the decomposition T = X I + K the compact operator K has in particular
a finite rank ( or if it is, more generally, nuclear), then the usual trace of

K exists and one has besides of the above operator «to» the linear operator

The operators tr and d induce corresponding « contraction opera-
tors » on multilinear forms in an analogous way as does the usual trace-ope-
rator in finite-dimensional tensor calculus. In particular there exists on an
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infinite-dimensional almost symplectic manifold (m, n) at most one repre-

s eatation

of dQ as a «compact perturbation » of a multiple of Q , whereby

and we prove that (m, n) is conformally symplectic iff C = 0 ( see Theorem

1, number 16). Also this condition is equivalent to the existence of an in-

tegration factor ( see Corollary 3, number 18 ) and to the integrability of the

isotropic distribution, the latter fact being proved in [11].

6. The unique representation T = k/+ C of a linear operator T as a

compact perturbation of Xl ( which was the basis for the above mentioned

solution in the infinite-dimensional geometry) has the following simple lem-

ma as « an analogous in the finite-dimensional linear algebra: There exists

in a m-dimensional vector space E at most one representation T = k/ + C

of a linear transformation T EL (E; E), where I is the identity-operator and

where rank C  m2 . For such a T we have the two operators
and

related to the usual trace of T by

the domain of these two operators being, however, not a linear subspace of

L ( E ; E ) anymore. These operators induce corresponding operators for multi-

linear forms. In particular there exists on a 2n-dimensional almost symplec-
tic manifold (!)R,H ) at most one representation (4) of dQ = R!B Q + C such

that «the perturbation C has small-rank », that is, for all x E m,

where by definition

( see number 30). If an almost symplectic 2 n-dimensional manifold (m , Q)
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admits such a small-rank perturbation C = dQ - RAQ then the perturbation
tensor is related to the classical «conformal curvature tensor »

given in ( 2’ ), by

Here the expression Trace C is defined analogously to the right-hand side

of ( 2 ). In the case of conformal symplecticity, C = L = 0, W = R.

7. To get a uniform interpretation of the above mentioned classical re-

sults and their generalizations, a family, say p , of almost symplectic C3_
manifolds (m,, n); the manifolds with «perturbed conformally symplectic
structure », is introduced as follows: an infinite-dimensional ( resp. finite-

dimensional) space em, Q) belongs to p iff the outer derivative of the C2
fundamental form Q admits a representation dQ = R/l Q + C as a compact

(resp. small-rank) perturbation of a multiple of Q . It comes out (Proposi-
tion 4, number 42) that every almost symplectic C3-manifold (m, n) which
is conformally diffeomorphic to a (m, n) Ep also belongs to p , whereby
the characteristic tensor fields R and C obey simple laws of transformation.

The family p divides into conformally invariant equivalence classes. In

particular all conformally symplectic spaces (m, Q) belong to p . They are
included in the bigger conformally invariant class given by the tensorial

condition

these are just those spaces (m, n) of p where d R = 0 or, equivalently,
which are ( locally) conformally diffeomorphic with a «perturbed symplec-

tic spaces (m, n), that is, with an almost symplectic space for which

d5 = C is compact (resp. has a small-rank; see Proposition 5, number 44).

In Section 3 and in Appendix we present some lemmas on multilinear

forms in Banach spaces which may have an interest of their own.

For the sake of self-containedness, we have preferred an elementary
and detailed tratment rather than shorter considerations with more referen-
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ces. That part of the material presented here which concerns the infinite-

dimensional case of the conformal flatness theorem alone is based on [9],
the geometry of the compact perturbations of infinite-dimensional conformally
flat structures is - with some improvements - from [5], and the material was

completed with the finite-dimensional case of the small-rank perturbations
later.

8. ACKNOWLEDGEMENT. By means of financial aid of the Finnish Academy
I was able to visit the Warwick University in May 1974, and working then

with [5], I had opportunity to inspiring discussions with J. Eells and D.

Elworthy. This remark I add with gratitude.

2. THE THEOREM ON CONFORMAL SYMPLECTICITY.

9. Suppose em, 0,) is a conformally symplectic (or as we also called

it, a conformally flat) C3-manifold with the C2_fundamental form n, and
with

Given xo Em there thus exists a Banach space E with a bilinear, strongly

regular skew-symmetric form

a local C3-diffeomorphism y: m - E and a real function a , such that in a

neighborhood 11 of xe the derivative y’ = d y of y satisfies

for all tangent vectors h, k E mx and x f’U . Since for any given x EU, two
C -vector fields h, k can be chosen so that n (x)[h(x), k(x)]+ 0 in a

neighborhood of x , the function

is necessarily C2 . 5e may apply the usual rules of differentiation by tak-

ing on both sides of (6’ ) the outer derivative d . The symmetry of the sec-
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ond (usual) derivative then implies

sofor all xcil,

10. We get from here conditions for the fundamental form 11 alone by
means of the following

L EMMA 1. There exists at every point x of an almost symplectic C3-mani-

fold (m, 11) with the C2-fundamental form n at most one linear function
R (x) : mx -+ R in the Banach-metrisable tangent space mx, satisfying

I f such a function R (x) exists for every x E m it is necessarily bounded,
the mapping m 3x --&#x3E; R (x) defines a Clone form R on m and when the dim-
ension 2n is finite, R = W is given by (2) number 4.

In the finite-dimensional case, Lemma 1 follows by means of tensor

contraction on both sides of (6" ). In the case dim m = 00 , it follows as a

corollary of Proposition 3, number 33.

11. The space (m, n) being conformally symplectic it follows from ( 6 )

that the one form R exists and satisfies the equation

so we have the representation

with

for dQ and the condition

The necessary conditions (7") and (8) are conditions for Q alone.

12. 5e go on proving that in the case 4  dim m oo the existence of the

linear function R(x): mx --&#x3E; R with
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and in the case dim)R = 4 the condition dR = 0 is sufficient for the con-

formal symplecticity of (m, n). By Lemma 1 the one form R is C1, so ex-
terior derivatives can be taken on both sides of the equation C = dQ - R A Q -

Since ddn= 0 , we get

so by R A R = 0,

13. Now in the case dim)R &#x3E; 4 our condition C = 0 implies d R = 0 , the

equation which was postulated if dim m = 4 . We namely have from (9) for

all x E m:

and since the dimension of the tangent space is dim mx ---&#x3E;= dim m &#x3E; 4 , and

since Q (x) is regular, it follows from ( 9’ ) that dR = 0 ( see Appendix,
Lemma 9, number 46 ).

14. It follows that the initial value problem

for an unknown real function a : ? - R has a unique solution in a neighbor-
hood 11 C lll of xo f m (where U = m can be chosen, if fil is simply connec-

ted). Define for all x: n(x) = ea(x)Q (x) . Then in 11 ,

so

15. In the case dim m&#x3E; 4 we have here by hypothesis C = 0 . If, how-

ever, dim m = 4 , this equation holds identically for all almost symplectic

manifolds, whether conformally symplectic or not 5). Consequently, for all

cases in question we get from (10):
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16. Now the theorem of Darboux-Moser- Weinstein comes to use. Choose

a chart (V, Y) around xo E m with the Banach space E as a parameter spa-

ce. The representant

of Q at Uo = r/J (xo) defines in E a skew-symmetric and strongly regular
bilinear form. By the theorem the conditions 11) and (12) imply that there

exists a local C3-diffeomorphism y of em, Q) in (E, A ) with y( x0) = 0,
say, such that the isometry condition !I = y* A holds. Sinct

the diffeomorphism y is, together with the real function a, a solution of

our conformal mapping problem. Summing up we get

THEOREM 1. Let (m, n) be an almost symplectic C3-manifold modeled on
Banach spaces, with the fundamental form Q o f class C2 and with

Then (m, n) is locally con formally symplectic if and only if the following
condition ( C ) is satis fied :

(C) For every point x E m there exists a linear function R(x): mx-+ R
defined in the Banach-metrisable tangent space mx and satis fying

with

Furthermore, if such an R(x) exists, it is uniquely given and bounded, de-

5) Indeed, denoting ? = E , Q (x) = A, we have in the 4-dimensional symplectic
vector space (E , A) the nonvanishing determinant function D = An A and the skew-

symmetric trilinear functions M EL3a (E; R) are in (1-1)-correspondence with the

vectors uMEE by M = i (vM)D, as is directly verified taking for instance an « or
thorormal » basis (ei)4i = 1 with A (e1, e2) = 1 = A ( e3 , e4) and A (e., ej) = 0 ,

f or I i- j I &#x3E; 2 . Developing M = i ( vM ) D = i (uM) (A A A) one gets M = R A A, with
R E E*, so in particular for dfl = M, dn = RAn.
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fining on m a closed one-fonn m3 x , R (x), which in the finite-dimensional
case has for all x f m and h f mx the expression 6 ) 

In the case dim)R = 4 the condition (C) is true for almost symplectic mani-

folds, and (m, Q) is locally conformally symplectic iff R is closed:

17. In the formulation of Theorem 1 the «conformal flatness » condition

was given in the weak form, where the flat Banach space ( E , A ) was not

a priori there. On the other hand, one may ask whether an almost symplectic
manifold (m, n) is locally conformally diffeomorphic to a given symplectic
Banach space ( E , A ) .

By Darboux Theorem the question is equivalent to the following map-

ping problem: Can (m, n) be mapped locally and conformally on a given

symplectic manifold em, 0 ) ? From Theorem 1 it follows :

COROLLARY 1. Suppose that of the two given almost symplectic C 3-mani-

folds (m, n) and (m,Q) the one, say (m,Õ), is symplectic: dO = 0 .

Suppose furthern2ore that 4  dim m  oo ( resp. that 4 = dim m). Given two

points xo fm and X0 fm, a neighborhood of Xo can be mapped by a confornz-
al C3-diffeomorphism

with

in t iff the condition (C) (resp. (C’)) of Theorem 1 holds and if further-
more the linear symplectic spaces (mx’ n(x0 )) and (mx, n(x0)) are

isometrically isomorph.

The last mentioned condition means that there exists a linear homeo-

morphism 
such that

The proof of Corollary 1 is immediate ( see for instance [5L page 27 - 28 ).

6) Here the trace of the bilinear function is defined as indicated in number 4.
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Now suppose ? and m are modeled on Hilbert spaces. Then the

tangent spaces mx 
0 

and lllg 
0 

are Hilbert-metrisable and if they have same

dimension (see [2], IV.4.15 ), they are isometrically isomorphic as Hilbert

spaces. In this case (mx0, n(x0)) is symplectically isomorphic (see Ap-

pendix, number 48) with XO The dimension of a manifold being
equal to the common dimension of its tangent spaces, it follows from Co-

rollary 1 :

COROLLARY 2. Suppose the manifolds (m,n) and (t,Q) are modeled

on Hilbert spaces, dQ = 0 and

Then (m, n) is locally con formally di f feomorphic with (m, Õ) iff the con-
dition (C) ( resp. the condition ( C’)) of Theorem 1 holds.

18. Recall that by Poincaré Lemma there are locally defined p-forms X

satisfying d X = Y iff the given (p + 1 )-form Y is closed : d Y = 0 . The so-

lution of the conformal mapping problem at hand can be equivalently reform-

ulated in the context of integration of forms, as follows.

COROLL ARY 3. Let (m,n) be an almost symplectic C3-mani fold with the
C 2- fundamental form Q and with 4  dim m  oo (resp. 4 = dim m). Then,

there exists in a neighborhood of every point x, E m a real function

an « integration factor» such that the equation

i s locally integrable iff the conditaon ( C ) ( resp. condition ( C’) ) o f Theorem
1 holds.

Indeed, if X is a solution of ( 16), then

so

with and

On the other hand, in the numbers 12 -15, we have seen that the conditions
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imply the existence of an integration factor X(x) = ea (x) such that the

form n (x) = h (x)n(x) is closed: dn=0. By Poincare Lemma hence

Corollary 3 is true.

19. As mentioned in the Introduction, the conformal flatness of (m, n)
also is equivalent to the integrability of the distribution consisting of all

maximal isotropic linear subspaces of the tangent spaces when dim m&#x3E;4.

To show that the integrability implies the condition (C) of conformal flat-

ness one needs a lemma on multilinear algebra, a generalization of a result

due to L epage and Papy [15,19]. The proof s are given in [11].

3. LINEAR SPACE THEORY OF COMPACT AND SMALL-RANK PERTUR-

BATIONS.

20. The trilinear form C (x ) in ( 13 ), being zero, is in particular « com-

pact ». To prove Lemma 1 in number 10 on which Theorem 1 was based, we

first consider independently skew-symmetric trilinear forms in an infinite-

dimensional Banach space, which are «compactly perturbed multiples » of a

fundamental bilinear form. In fact, all the paragraph is not needed for the

proof of Lemma 1 alone; also the generalizations of conformally symplectic

spaces given in 5 as well as the proofs of [11] are based on Section 3.

21. A vector h c E of a given Banach space E defines a linear map

between spaces of multilinear functions given by

for all M ELn+1 (E; F ) ( F is a Banach space). For h1, ... , hm E E, we
write

getting a linear map
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w i th

Suppose there is given in the Banach space E a bounded bilinear

form A =  . , . &#x3E; satisfying the condition of strong regularity: The linear

and bounded map

given by

is a bijection. Then Abl is bounded and we get for every in = 1, 2,... a lin-

ear homeomorphism

which sends the m-linear form N E Lm (E; E) to the real-valued (m+1 )-lin-

ear form M = LmN given by

(h1,h2,...,hm+1eE). The inverse map L-1m is given by

for all h1, h2, ..., hmeE, and we have

and

for all m= 1, 2, .... To be shorter we write henceforth, when possible, for

all m = 1, 2, ... :

This notation is applied in particular for the case E = mx = a tangent space
and A = n (x) = the value of a fundamental tensor field.

22. VGe call a bilinear function C : E x E - R compact iff the correspond-

ing linear map Cb = 1 x ’ i ( x) C } from E to the dual space E * is com-

pact 7). The Banach spaces 2(EXE; R) and L(E; E*) being isometric-

7) In the above definition the compactness of C « with respect to the first argum-

ent» is merely postulated. However, the dual map C*beL(E**; E*) of the compact

map Ch being compact and the linear map C b = {y --&#x3E; C (. , y)} being the restric-

tion Cb = C*bl E of C* to E C E **, also C b is compact. Hence the above defini-

tion implies that C is in fact «compact with respect to both of its arguments».
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ally isomorphic by the correspondence

and the set of all compact linear transformations E - E * being a closed lin-

ear subspace in L(E; E*), the set of all compact bilinear functions C of

2(EXE; R ) is a closed linear subspace C(ExE; R ) in î(EXE; R).
VUith the strongly regular bilinear form A we have on the other hand

the linear homeomorphism

given in number 21. If T = A-1 B corresponds to B E L(E x E; R), then

A b o T = Bb , and since here Ab ={x--&#x3E; i(x)A} is a linear homeomorphism
it follows that the bilinear function B is compact iff the corresponding lin-

ear transformation T = A-1 B of E is.

23. Denoting

the space of all compact bilinear functions E x E - R , the inverse image of

2 by the bounded linear map i( hi ... , hm) given in number 21 is a closed

linear subspace of Lm+2 (E; R) for every (h1, ... hm),eExEx ... XE,
and thus also the intersection

is a closed linear subspace in Lm+2(E; R), m = 1 , 2, .... We say the ele-
ments C e Cm+2 are compact with respect to the pair (m + 1, m + 2) of ar-

guments 8).

8) By the above definition a bounded (m+2 )-linear form C belongs to Cm+2 iff the
bilinear function i (h1, ... , hm )Ce C2, or - equivalently - iff the linear transforma-

tion 

with

for every A k e E, is compact for all h1, ... , hmeE. In 181 pages 6-7, there is giv-
en an analogous condition for multilinear forms C , which is called the finiteness
with respect to a pair of arguments and where the above compactedness of K is re-

placed by the finiteness of the rank of K and the closure fm+2 of the set in ques-

tion is taken. Ve have fm+2 C Cm+2.
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24. In what follows we need skew-symmetric multilinear forms. "We de-

note by 2’(E;F) the space of all bounded m-linear and skew-symmetric

functions, with values in the Banach space F. Lma(E, F) is a closed sub-

space in 2’ (E; F) , and hence a Banach space.
We denote bye: = Cma (E, R ) the space of all m-linear and skew-

symmetric forms which are compact with respect to one pair and hence - be-

cause of the skew-symmetry - with respect to any pair of its arguments. As

an intersection

of closed subspaces, C’(E; R) is a closed linear subspace in 2- ( E; R);
we call the forms C e Cma (E; R) shortly compact.

25. In the space 1i5(E ; E) of linear transformations of an infinite-dim-

ensional Banach space E there is a unique representation T = k I + C for

elements T which are compactly perturbed multiples of the identity I in

L (E; E). Furthermore, the mappings
and

are continuous. We are going to prove the following analogous property on

trilinear and skew-symmetric forms :

PROPOSITION 1. L et ( E , A ) be a real infinite-dimensional Banach space
where there is given a strongly regular and skew-symmetric bilinear form A

o f L2a (E; R). Given a trilinear and skew-symmetric form M eL3a(E; R),
there exists at most one linear function h: E --&#x3E; R and at most one compact

trilinear form CeC3a(E; R) such that

and in such a representation À is necessarily bounded. Furthermore, the

s et (E*/BA)p o f all forms M eL3a (E; R) admitting a decomposition (21)
is a clos ed linear subspace in the space L3a (E; R) o f all bounded skew-

symmetric trilinear forms, the correspondence

resp.

being a bounded and linear map from (E *A A)p to 2(E; R), resp. to
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C3a(E; R). For the bound 9 ) we have :

REMARK. Suppose there is given a bounded set p C L (E; E ) consisting
of projection operators, with finite rank and such that:

a) for all n e N there exists a P c T with rank P &#x3E; n ;

b) the restriction A I P ( E ) X P ( E ) of A to the finite-dimensional lin-

ear subspace P (E) C E is regular for all P 6? .

Given h c E the value X(h) of the one-form h = trM can be calcul-

ated by usual tensor contraction in the finite-dimensional spaces P ( E ) if

E is a Hilbert space. Indeed, contraction of P* i (h )M in (P (E ), A) gives

where T is the linear transformation of P ( E) with

for all

As in [7,8] it is verified then

In particular this holds choosing the elements of T as orthogonal projec-

tions ; in this case the operator tr is denoted in [8] by .sp .

26. The proof of Proposition 1 is based on the analogous property for

bilinear forms and linear transformations :

L EMM A 2. Let A, B e L (E X E; R ) be bounded bilinear functions in the

infinite-dimensional Banach space E with Ab = { x , i (x) A} bijective.
Then there exists at most one representation 

where XeR and C is compact. I f B admits a representation (23), then,

denoting lAb-1l = I A-1 I ,

P ROOF. Write Op = {wl lxl  p} and recall that in infinite-dimensional

9) For the definition of A 1 see number 21.
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Banach spaces balls Op never are compact when the radius p &#x3E; 0 . A lin-

e ar map T : E - E * being compact iff T (01) is compact, u Ab, and hence
f.1 A , can be compact only for p = 0 , since, by the postulated bijectivity,

implying that the ball of radius 03BC lAb-1l -1 is contained in (03BC Ab)(O1). Hen-
c e from

h, X ’ real and C, C’ compact, we get with 11 = A -h’,

so and

The compactedness of Cb = I x -* i(x)C} implies furthermore that for given
e &#x3E; 0 there exists a unit vector h such that l Cb (h) I  E , since otherwise

Cb would be invertible and - as we saw above - consequently not compact.

H avin g B =XA + C , we get B b = ÀAb + C b , h enc e

so the inequality (23’ ) follow s.

PROPOSITION 2. The bilinear function A being as in L emma 2 there exist
at most one representation 10 )

o f a bounded trilinear function ME23 ( E ; R), where XcE* and where C

is compact with respect to the pair ( 2, 3 ) of its arguments. The set

of all trilinear and bounded functions M admitting a decomposition (24)
is a closed linear subspace in L3 (E; R), the mapping

10) Here X 0 A denote s the triline ar form with value s
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d e fining a bounded linear function from E*O A + e3(E; R) to E * with :

PROOF. Since by assumption i (x) C is a compact bilinear form for any

x E E, we get from M = X @ A + C the equation

between bilinear forms where, by Lemma 2, h(x) is uniquely given and

The set E* O A + C3 ( E ; R ) is a closed linear subspace in L3 ( E ; R ) as

a direct sum of the closed linear subspaces

(which is homeomorphic with E * , by the linear map tr: h @A --&#x3E;h) and

C3(E; R).

27. The proof of Proposition 1 goes back to Proposition 2 if we first

show the boundedness of the linear function h : E - R in the representation
M = h li A + C . The boundedness of h in turn will follow from Lemma 3

below.

Given a unit vector h E E , denote by

the space orthogonal to h with respect to the strongly regular and skew-

symmetric form A .

being the unit sphere, we write

getting:

LEMMA 3. There exists a positive constant p such that

for all

The proof of Lemma 3 with a lower bound for p is given in Appen-
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dix, number 45.

Now, by definition of the skew-product A, the equation

implies

for all h, k, I E E . Given a unit vector h c S choose k, l to be A-orthogonal
to h : k, I c A . Then ( 25 ) becomes

There exists for a given E ( 0  E  I A l. 1) unit vectors
h

such that

Put in ( 25’ ). Then we have, by Lemma 3,

so for all unit vectors h:

the linear form h thus being bounded.

28. Since A is bounded, the trilinear function F given by

for all

is bounded and B = i (x)F has 11 ) finite rank  2 for all x ; the image 12)

Bb(E) of

is namely spanned by Ax= i(x)A and k in E * . It follows that

is compact, being a perturbation of the compact bilinear form i(x)C by the

11) The rank of a bilinear function B is the dimension of

12) For convenience we write 
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finite rank form - i (x) F . This means that the trilinear form C = C - F is

compact with respect to the pair ( 2, 3 ) of its arguments ( see number 23 ).

Having

we thus conclude from Proposition 2 that X = trM and C , hence also C

equal to C + F , are uniquely defined with X I l A-1llMl. It follows im-
mediately also that the set

is a closed linear subspace in 23( E; R), and we have

The proof of Proposition 1 is ended.

29. Suppose for an element

the number m - rank (2,3) C (defined in number 30) is finite. Then for all

given h c E the rank of the linear operator K = A-1 i (h) C ( defined by

for all

see number 21) also is finite with

Consequently K has the usual trace given as the trace of the linear trans-

formation KllmK of the finite-dimensional vector space IrrLK - K(E) C E.

We get thus in this case a new one-form h - T race K which is denoted by

dM= T race C .

30. We come to the finite-dimensional «analogous of a compactly per-
turbed multiple h/BA + C of X A A namely the « small-rank perturbations.
Recall that in any vector space E - finite-dimensional or not - the rank of

a m-linear skew-symmetric function M can be defined as

(27) rankM = codim ker M,

where ker M = {x I i (x) M = 0 1 . If M is trilinear we define
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In the case where E is finite-dimensional, these numbers always exist.

L EMM A 4. For all skew..symmetric forms (0 # )M eL3a (E; R),

Also we have:

L EMM A 5. In a symplectic vector space (E, A) with dim E = 2n &#x3E; 4,

fo r all

The proofs of these lemmas is given in Appendix, number 47.

The following proposition can be viewed as an analogue to Proposi-
tion 1, number 25 :

PROPOSITION 1’. Let (E,A) be a sytnplectic vector space with

Given a trilinear and skew-symmetric form M eL3a (E; R), there e’t-ists at

most one lin ear function h. e E* = L (E; R) and at most one trilin ear form

C eL3a(E; R), with

such shat

In particular there exists at most one representation ( 28’ ) with

P ROOF. The last consequence follows from Lemma 4 above. To prove the

first part of the proposition, suppose we have

where C and C’ satisfy the rank-condition ( 28 ). Then, with

hence
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For all

so, having

we get

By the previous lemma this is possible only with 0 = 03BC = À’ - À , from which

Proposition I’ follows.

31. (E, A) being a 2n-dimensional symplectic vector space, denote

by abbreviation d ; these skew-symmetric trilinear forms we call in the se-

quel the forms «with small -rank » . Since the rank of every skew-symmetric

bilinear form is even, it follows that for every C e C the number

is even. Consequently we have:

LEMMA 6. If the dimension 2 n of E is 4 or 6 , then C’= {0}. 

The set of all « small-rank perturbations » of multiples of A given by

reduces hence in the cases of the two lowest dimensions 4 and 6 to the

linear subspace E*A A C L3a (E; R ) . In general, however, (E* A A)P is not
a linear subspace of L3a(E; R) . One easily verifies :

LEMMA 7. If M e (E*AA)p, then 03BCM e(E*AA)p for all 03BCeR. If N, M+N
are in (E */B A)P, then the operators
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satisfy

Furthermore, the operators tr and 6 are related to the usual contraction

operator T race : L3a(E; R)--&#x3E; E * ( de fined in the next number) by

32. With the notations introduced in number 21 we denote by

the one-form, derived from a trilinear form M eL3a (E; R ) by means of tensor
contraction with respect to the symplectic form A eL3a (E; R) ; for the ex-

pression of TraceM in index notation, see Footnote 4 in number 4 where

(dn)ijk must be replaced by Mijk = M (ei, ej, ek). It is easily verified

that in a 2n -dimensional space (E, A) we have for M= X A A :

Consequently, the linear space

is the kernel f-1 (0) of the linear transformation f of ?3(E; R) which

transforms M to the corresponding « Lee-form » ( see ( 2’ ) and ( 2 ), number 4 )

Having, w ith 2 (n -1) h = T race M, 

it follows that f is a projection operator and it projects the space Y-3 ( E; R)
on the linear subspace

which is a complementary subspace to E*AA = ker f . In particular for a

« small-rank perturbation »

the projection L = f (M) becomes
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or explicitly

(3 2’)

This is the relation between the perturbation tensor C and the Lee-tensor

L derived from a M e (E*A A)P.

4. DIFFERENTIABILITY OF THE TENSOR FIELD R.

33. We have now sufficiently information about the linear space theory

in order to return to almost symplectic manifolds (m,n), Every tangent

space mx gives rise to the linear symplectic Banach space (mx, n(x)),
which is infinite-dimensional ( resp. 211 -dimensional) and we denote by

’1’ x = (m*A n(x))p = {h A n (x) + C l hem*x, Ce C(x)} 
the fiber of all compact resp. small-rank) perturbations of multiples of

n (x), whereby C(x) = C3a(mx; R) is the set of all C eL3a(mx; R) which
are compact resp. which have a small-rank, see number 24 resp. 31). We

prove :

P ROP OSIT IO N 3. Suppose that on an infinite-dimensional (resp. 2n-dimen-

sional) almost symplectic Cm+ i-manifold (m, n) with the Cm-form n there
is given a 3- forrn M which is em-i and which admits at every point xem a

representation

where R (x) is a linear function mx --&#x3E; R and where C (x) eC3a (mx; R) is
compact ( resp. has a small-rank). T h en R (x) and C (x) are uniquely de fin-
ed and R ( x) is bounded, so

for all

Furt,hermore, in the cases where the dimension of m is 4, 6 or 00, the ten-

sor field R : x - R(x) and hence also C= 11 -R An is Cm-1. In the cases

6  dim m  00 the tensor fields R and C are em-l under the extra hypothe-
sis that Trace C is Cn-1.
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Here r = Trace C is the contracted tensor field with

defined as indicated in number 32. The first part of the proposition express-
es the fact that M defines a Cm-1 section in the bundle p =Um px (see

x e mx 
number 37).

REMARK. I have tried, without success, to strengthen the above proposi-
tion in the following directions:

Claim 1. The differentiability condition for the tensor field r = Trace C

can be replaced by the rank-invariance condition

Claim 2: The differentiability conditions for M and Q do not alone en-

sure the differentiability of R and C , when 6  dimlll  oo, that is, in this

case there may exist a one-form R and a 3-form C which are not Cm-1, such
that C (x) has small-rank and M = R Ii Q + C is Cm-1 .

PROOF OF PROPOSITION 3. Fixing Xfm replace the symplectic vector

space ( E , A ) occuring in Section 3 by (mx, n (x)). By the propositions in
the numbers 25, resp. 30, R (x) and C (x) are uniquely given, R (x) is

bounded and hence M (x) e (m*x A n(x))P. In the cases where the dimension
2 n of ? is 4 or 6 , we have by number 31 :

so

and consequently by (32) in 32 ,

so the tensor field R is Cm-l since M is. In the cases 6  dim)R  oo , we

have R AU - M - C , so by (32)

the one-form R and also C = lll - R A n being thus C’-l , since M and

Trace C are.

34. Suppose now that dimm = 00 . By Proposition 1 , number 25, the op-

erator hAn (x) + C(x) --&#x3E;h is bounded; we denote it by tr(x) , so that



250

To prove the differentiability of R we take a local chart (V ,0 )
around xo with the Banach space E as parameter space, denoting by the

same symbol s x, M, Q, R,... the representants

of

Furthermore, we write O-1*n(x0) = A , so the Banach space E becomes a

linear symplectic vector space (E, A).

For all xeO (W) we have

where C (x) is compact, X --&#x3E; n (x) is Cm and x --&#x3E; M (x) is Cm 1 . We prove
that x --&#x3E; R(x) = tr(x)M(x) is Cm-1 by showing that

where

operates on the same Banach space E*OA+ C3(E, E) for all x , and

x --&#x3E; N(x) is Cm-1.

35. The tangent spaces being identified with the parameter space E we

h ave for each x in the parameter domain O(W) C E the representation

of n(x), where U(x) = A-1n(x)eL(E; E). Since A --- Q(xo)’ so

identity operator of E.

By the strong regularity of n(x) the linear transformation U(x) is bijec-

tive, and since x --&#x3E;n (x) is Cm it follows that the function

is Cm as well. For brevity let us omit the symbol x for a moment. Def-

ining a trilinear form F analogously to the discussion in number 28 by

we have RAn + C=R@n+C, with

Since R is a bounded linear function it follows, as in number 28, that C is
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compact with respect to the pair (2, 3) of its arguments. The equation ( 33 )

becomes

and having T = U-1 , we get here by (34) for the first term on the right

so

for all h, k, l f E. Defining trilinear forms N = N(x) and D = D(x) by

(k,k,lEE ), we have for all xeO)((W),

It follows that, according to Proposition 2, number 26, the linear function

R = R(x) has the representation R(x) = tr(x0)N(x) provided D(x) is

compact with respect to (2, 3). Since by Proposition 2, tr(xo J is a bound-

ed linear operator operating in the Banach space E*@A + e3 ( E; R), we
conclude that x - R (x) is Cm-1 if besides of the compactedness of D the

differentiability of x - N(x) will be proved.

36. By definition given in number 23 the trilinear form D in (36) is

compact with respect to the pair (2, 3 J of its arguments if for every h c E

the bilinear form i(h)D = B is compact, that is, iff for every h the cor-

responding linear map

is compact; here

Writing
and

we get by (36), for all k E E, the equations between elements of E * :

Accordingly Bb = Bb o T , and because C is compact with respect to ( 2, 3),
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the factor Bb is compact. A s a product of compact and bounded operators,

b is compact.
In (36) the form N is a linear expression of NI and T ; in fact we

have the bounded and bilinear function

given for all by

and according to ( 36 )

Since both the factors M(x) and T(x) are here Cm-1 functions of x , then

by the product rule of Calculus, x - N(x) is Cm-1. Proposition 3 is proved.

37. With px = (m x A n(x))p as fibers, we have the bundle

over ? with projection TT: (x, M) --&#x3E; x. If (W, O) is a chart of m around

x0 e M then, writing with the derivative (1)’, f(x) = (O’(x))-1 oO’(x0), a

local trivialization

is defined : for x e m and

w ith

Here f*(x) h, and f*(x) C are the pullbacks of the one-form h e m*x and the

compact (small-rank) trilinear form CfC (mx ; R), respectively. In the

cases dim M= 4, 6 and oo, any Cm-1 sectioncases dim m =4,6 and oo, any Cm-1 section

of T gives, according to Proposition 3, rise to Cm-1 sections x - R(x) and
x --&#x3E; C (x) on the bundles

and
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of one-forms and compact small-rank) skew-symmetric trilinear forms, res-

pectively, whereby for the dimensions 4 and 6, C is the zero section.

R EM ARK. In the cases dim m = 4, 6 , the typical fiber (E */B A)p of
is a closed linear subspace of L3a (E; R) (see 25 and 31; (E, A) is a

s ymplectic Banach space). Now it is known that the closed linear subspace

C(E; E ) consisting of all compact operators C e L (E; E ) of an infinite-

dimensional Banach space E is not a direct subspace of L (E; E) that is
it hasn’t any closed supplementary space in L (E: E). It follows that the

typical fibre (E*A)p is not in general a direct linear subspace in L3a(E; P).
The latter space bein,e the typical fiber of the tensor bundle L3 ( T(m ; R )
of trilinear and skew-symmetric forms, it follows that in the case dim’m = 00

the vector bundle p L3a (T (m); R ) is not a suh-hundle of L3a (T (m): R )
in the sense of [12], page 49 ( see also [3] ).

5. COMPACT AND SMALL-RANK PERTURBATIONS OF CONFORMALLY

SYMPLECTIC STRUCTURES.

38. We say that the structure of an infinite-dimensional (resp. 2n-dim-

ensional) almost symplectic manifold (’nl, n) is a compact resp. small-

rank) perturbation of a conformally symplectic structure iff dn defines a

section in

(see number 37 ). By the first part of Proposition 3 this happens iff for every
x e m there exists some linear function R (x):mx --&#x3E; R and some compact

(resp. small-rank) form C(x) eC(x) such that

Furthermore, by Proposition 3, in the case where the dimension of IR is 4,

6 or 00 , the tensor fields R and C are C1 if Q is C2 and a sufficient con-
dition for R and C to be C 1 in the cases 6  dim)R  oo is that Q is C2
and Trace C is C1 . In what follows we denote by p the family of all al-

most symplectic C3-manifolds (11 , Q ) with a C2 fundamental form n, which
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have the above mentioned structure, whereby the characteristic tensor fields

R and C are supposed to be C1 .

39. By number 31 the perturbation tensor C = 0 in all spaces (m, n) of

p with dim)R  6 . By number 15 all almost symplectic 4-dimensional mani-

folds belong to p and by 16 all 6-dimensional members of p are just those

which are conformally symplectic. By number 32 the connection between the

«conformal curvature tensor » L given in (2’ ), number 4, and the perturbation
tensor C is on a 2n-dimensional manifold (m,n)ep:

40. Let (m, n) ep be given, with

so

If X: x - À(x) = ea(x) is a given positive C2-function on ? , then the form

satisfies

so we have

with the laws of transformation

where h, (x) = ea(x). In particular it follows that C(X)= h(X)C(X) is

compact and

so C ("X) c C3a (mx; R ) . Consequently (m, n ) c p.
41. From the first equation C 39" ) , we get, taking outer derivatives on

both sides,

where w denotes the common value of the outer derivatives ; w is a closed

two-form defined on 11 .



255

Going in the second equation (39" ) by multiplication with n (x)-1
( see number 21 ) over to mixed tensor fields

and noting that because of the conformality condition (39) we have

it follows

and hence

Also taking outer derivatives on both sides of the second equation

( 39" ) and using then both equations ( 39" ), one easily verifies the trans-

formation law

of the fourth order skew-symmetric tensor field D defined by

A conformally invariant one-form r is defined in finite-dimensional

cases on (m, n) e p also by

( see number 29). In the infinite-dimensional case r is defined in the same

way provided rank(2, 3)C(x) is finite for all Xfm (see number 29).

42. Let n (x) = h(x )n (x) as above. Looking at

and

as two distinct almost symplectic manifolds, the identity map y: x - x of

? defines a conformal diffeomorphism (m, n) --&#x3E;(m ,n). If, on the other

hand, (lll’ , n’) is an almost symplectic manifold, then a conformal C3-diffe-

omorphism

defines an almost symplectic form 12 = y*Q ’ on lfl and by the conformality
we have n(x) =h(x)n(x). Taking instead oft and m’ merely neigh-
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borhoods 11 and U1 of any xo 6’II and 0 respectively, the discussions
of the previous numbers can be applied to spaces (m, n) and ()R 0’ )
which are locally conformally diffeomorph, and they imply :

PROPOSITION 4. let Cnl, Q) be a member of the class p o f all almost

symplectic manifolds which have a perturbed conformally symplectic struc-

ture, so dn = A n R + C . De fine a 4-form D on m by (42). I f an almost

s ymplectic mani fold (m, n) is locally con formally di f feomorph with (m, n)
then (m,n)ep: dn= R A n + C. Furthermore, y : (m, n)--&#x3E; Cm,Q) denot-

ing a local conformal diffeomorphism, hence ex(x) n(x) = y*(x)n, and
having D = d C - R , the follolving transformation .formulas are valid:

for the corresponding mixed tensor fields K = n-1 C and G - n-1 D : 

and

the closed 2- form ic - dR being hence conformally invariarzt:

Also we have

and if this number is finite ( as it is especially for all finite-dimensional

manifolds), then one more conformally invariant form r = y* r is given as a

contraction of the perturbation tensor ( see number 29 ) :

Recall that for dim m 6 we have G’ = 0 , so all tensors K, D , G , r , and

in the case dimll = 6 , also w = d R , vanish.

43. The class p divides in conformal equivalence classes, two spaces

(M,n) and (m’ ,0’) of p belonging to the same class iff for all couples

(xo , x0’)em xm’ there exist conformally diffeomorphic neighborhoods of xo

and xo . On every equivalence class the tensor fields w, K, G and r are
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common in the sense of Proposition 4. In particular by Theorem 1, number

16, and Proposition 4, number 42, there are equivalence classes where C = 0

and they consist of conformally symplectic spaces.

44. Let us say that an almost symplectic infinite-dimensional (resp.
2n-dimensional) manifold (m, n) is a «perturbed symplectic space » if

dn (x) c C3a (mx; R ) is compact (resp. has small-rank). In this case (m, n)
is in p and the characteristic tensor fields R and C satisfy R = 0 and

dn = C . This structure reduces to the symplectic one in all cases dim m  6

since no non-zero perturbation then occurs ( see Lemma 6, number 31 ). We

h ave :

PROPOSITION 5. An almost symplectic manifold (m, 0) with dim m &#x3E; 6 is

locally con formally di f feomorphic with a perturbed symplectic space (t, a)
iff (m,n)ep (hence dO = R A n + C ) and iff one of the two equivalent
conditions (45) and (45’) holds:

PROOF. The calculations in number 12 first give for all members (m,Q)
of p the tensor identity

which shows by Lemma 9 in number 46 that the conditions (45) and (45’)

are equivalent. By d R = 0 there exist local solutions a of d a = - R and

for n(x) = ea (x) n (x), we have, by Proposition 4,

Consequently (m, 5) has a perturbed symplectic structure, the identity map
x , x giving a local conformal diffeomorphism ’between (m, a) and (m, n).
On the other hand, if (m,n) is locally conformally diffeomorph to a per-

turbed symplectic space (t,5) , then from (m, n) ep it follows (m, n) e p, 
and y being a local conformal diffeomorphism, y*5 = e Ot Q implies by Pro-

position 4

so

or equivalently D = 0 , the conditions being hence necessary.
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6. APP ENDIX.

45. We denote by ( E, A) a Banach space with a strongly regular skew-

symmetric bilinear form A e L2a (E; R). For X e E write

When

is the corresponding linear homeomorphism E - E* =L(E; R) we have

and setting

we prove the following

LEMMA 8. There exists a positive constant p such that for all Xo c E:

and we have

PROOF. Since L is bijective we have for all X c S:

and, having

so

Hence, given a small number s ( 0  s  1 ) and a unit vector X0 e S, there
M

exists a Y, c S such that A X0 Y0 l &#x3E; 1 m - s, that is, such that

The symplectic vector space (E, A) divides in a direct sum E = F ø F1 of

mutually A-orthogonal complementary spaces
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and

so every Z e S is represented as a corresponding sum Z = U + V , with U c F,

V c F1, where

For the length lV I of the «normal vector) V we get from (51):

so, by (50),

where

Suppose first that the normal component V of Z = U + U does not vanish,

and denote by W = lV 1 -1 V the corresponding unit vector; thus W e S n F1,
and choosing also X f SnF1 , we have by U f F, A X U = 0 , hence

so by (52),

This inequality holds in fact for all unit vectors Z , because if the normal

component V of Z vanishes, then Z = U e F and, by X f F1, A X Z = 0 .

By (49) we thus get from ( 53 ), having X f S n F1 ,

so

This inequality holds for all values 0  s  1 m of s and, letting s --&#x3E; 0, we

get k (0) = 1 + 2m lAl , and by (47’),

Since here F’ = X’ 0 n Y’0, we have XD n S D F1 n S, so ( 54’ ) is a stronger
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result than (48), the lemma being hence proved.

46. Recall that in the space ( E, A ) with the strongly regular skew-sym-
metric bilinear form A there can be constructed «A-orthogonal system s » by
means of the well-known Schmidt orthogonalization procedure. In particular,
for dim E &#x3E; 4 there exist two pairs ( Xo , Y0) and (up , Vo) of vectors such

that (X0, Yo, Vo , Vo) is a linearly independent set and the «orthonormality
conditions »

and

hold. We have the following

L EMM A 9. L et ( E, A ) be a Banach space with a strongly regular and skew-

symmetric bilinear form A and with dim E &#x3E; 6: I f for a bilinear and skew-

symmetric form B eL2a (E, R)

then B = 0 .

P ROO F We have by definition of the skew-product A :

for all X, Y, U, V e E. Because of the strong regularity of A , there exists

a bounded linear transformation T = A-1 B e L(E; E) such that

for all Z, W f E. Substitution of ( 56 ) to the previous equation gives, tak-

ing V as « common factor

for all V e E, so by the regularity of A ,

for all U e E, I denoting the identity operator of E . Here the linear trans-

formation in the parenthesis [ ] operating on U vanishes, so for all X , Y e E
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where K(X, Y) is the linear transformation

whose range is spanned by the four vectors X , Y, TX , TY, so for all X , Y

in E its rank dim K (X, Y) E 4. 

Suppose first that 8  dim E ç 00 . An equation fll = C between linear

transformations of E being impossible for fl 1= 0, ran C  dim E (1 = id-

entity operator), every linear transformation T eL (E; E ) has at most one
representation

with

Having rank K(X, Y)  4 « we apply this fact to (57). IfAXY t- 0, by (57)

so it follows, À is a constant such that, for all X , Y with AXY+ 0 ,

If AXY = 0 , then , by (57), BXY = 0 , since rankK(X, Y)  dim.E , so

( 58) holds for all X, Y E E. In fact, it holds also in the cases

by taking the Trace in ( 57 ), one gets

so (58) holds with A =-(Trace T)(2n- 4)-1. Substitution of

and

to ( 55’ ) gives

47. Denote by M eL3a(E; R) a trilinear and skew-symmetric form in a

real vector space E . Then

and, for a bilinear form B e L2a (E; R), we have analogously
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which can also be written with help of the linear function Bb = I y -* i (y) B} :

{where Im Bb = {Bby ly e E}). Having

we get

LEMM A 10.// If 0 +M eLa(E;R), then rank (2,3) M  rank M.
P ROO F . It is sufficient to show that, for all x e E,

properly. Since

we first have

so

Given x e E, if keri(x)M = E , then (59) is true since otherwise kerM = E

which means that M = 0 . If again ker i (x)M + E, then there exists x f E

w ith

so x $ ker i (z)M and, by the skew-symmetry of M, x f ker i ( x) M . Conse-

quently

from which (59) follows.

L EMMA 1 l. In a 2n-dimensional (n &#x3E; 2 ) linear symplectic space (E,A),

fo r all

Indeed, since A is regular, that is, the corresponding linear map
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A b = I h --&#x3E; i (h) A I is bijective, there exists a vector

w ith

For all h, k, I e E, the value of ft A A is

and denoting

and

we get

so, since Ab is a bijection E - E *

If ( h , v ) is a linearly dependent pair, then one verifies directly that

s o rank

If, on the other hand, one takes (v, h) linearly independent and such that

A ( v, h ) + 0, then from the last equation it follows that

for all k e ker i(h)(03BC A A),

and one verifies easily that all such linear combinations belong to the kernel

in question. Hence dim ker i (h ) (03BC A A ) = 2, so

The last possibility is to take h such that A ( v, h) = 0 with (u, h) linear-

ly independent. In this case,

iff

so dim ker i(h)(03BC A A) = 2n-2 and hence rank i (h)( fl.1B A) = 2. Conse-

quently

48. LEMMA 12. L et E and F denote two real Hilbert spaces with a
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common dimension 13) dim E = dim F . Given strongly regular skew-symme-
tric fonns A ey2(E; R) and B C22(F; R), the linear symplectic space

( E, A ) is isomorph with ( F, B ).

PROOF. Following the idea given in [22], Section 5, we first have :

L EMMA 13. Suppose that in a Hilbert space (R, G) there is given two sym-
plectic forms A and ! and a pair of closed mutually G-orthogonal and com-
plementary subspaces U and V, which are maximal isotropic with respect
to the two forms A and Ã. Then the symplectic spaces (R, A) and (H, A)
are isomorph.

P ROOF. Since V is maximal isotropic with respect to A we have

for all 03BC e V.

Indeed, every u e V satisfies this condition because of the isotropy of V,

and conversely from the condition it follows that the linear subspace spann-
ed by V and v is isotropic, which is possible only if v c V , since V is

maximal. Denoting with h, k&#x3E; = G(h, k) the values of the Hilbert scalar

product, we have

for all

Here T is (because of the strong regularity of A ) a linear homeomorphism
H --&#x3E; h . Given h c V, by the isotropy

for all

so The V1 = U and, given u c U , by the orthogonality of U and V ,

for all

so T -1 u c V. Thus T (V) = U, and equally, with

T(V) = U . Denoting by P and Q = 1- P the complementary orthogonal pro-

jection operators on U and resp., it is easily verified that the linear

transformation

of

13) The dimension of a Hilbert space is defined as the cardinality of its orthonormal
basis (see [2], IV-4-15 ).
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is toplinear isomorphism (R, T) - (h, A ).

LEMMA 14. Suppose in the Hilbert space E there is given a strongly regular
symplectic form A and a maximal A-isotropic linear subspace U C E. Then
there exists a maximal isotropic subspace V and a Hilbert scalar product
G =  . , . &#x3E; such that U and V are G-orthogonal complementary subspace
with equal dimensions and G defines the Hilbert topology of E .

PROOF. Denoting by « h , k » the original Hilbert scalar product of the

E -vectors h and k , we first have in the space ( E, « . , . &#x3E; &#x3E; ) the represen-
tation

of A by means of the corresponding skew-adjoint linear homeomorphism

S = - S *e L (E; E ). In the canonical representation ( see for instance [20] ,
110) S = J H = H J of the linear homeomorphism S as a product of a posit-
ive operator H = H * with H2 = S *S and a unitary one J , the two factors

are linear homeomorphisms, and from

we get

the scalar product G =  . , . &#x3E; with values

defining the same topology in E as does « . , . » . Furthermore,

for all

and because of (61), f is isometric with respect to both G and A . Since

U C E is A -isotropic and A is bounded, also the closure U is isotropic,

so by the maximality U = 6 is closed and we have the representation of

E as a direct sum E = U + V of mutually G-orthogonal Hilbert spaces, with

for all

To prove Lemma 13 we show that
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from which the equality of the dimensions of U and V and the maximal A-

isotropy of V follow, the former by the G-isometry and the latter by the A-

isometry of the linear homeomorphism J. Indeed, we have by (61) and by the

maximal A-isotropy of U the following equivalent relations

for all I-

for all

so (63) holds.

To prove at last Lemma 12, note that by Zorn’s Lemma there exist

in the symplectic Hilbert spaces ( E, A ) and ( F, B) maximal isotropic li-

near subspaces U C E and U",7 F . By Lemma 14 a Hilbert scalar product

G , resp. G , can be defined in E , resp. in F , in such a way that the com-

plementary orthogonal space V = U’, resp. V’ = U’-, is maximal A-isotro-

pic, resp. maximal B-isotropic, and

Since the dimensions of the Hilbert spaces E and F are by hypothesis equal,
also

and there exists consequently an isomorphism T : (E, G) --&#x3E; (F, G) of the

H ilbert spaces such that T(U) = U’, T ( V) = V’. We now have in the Hil-

bert space (E, G) two strongly regular skew-symmetric forms A and A = T*B

which satisfy the conditions of Lemma 13, since by construction U and V

are closed complementary and Hilbert-orthogonal linear subspaces of E ,

which are maximal isotropic with respect to both A and A . Consequently
there exists a symplectic homomorphism X : ( E, A) --&#x3E; ( E, A ) and the linear

homeomorphism X T-1 eL (F; E) satisfies

the lemma being thus proved.
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