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TOPOLOGICAL PROPERTIES OF THE REAL NUMBERS OBJECT

IN A TOPOS *

by Lawrence Neff STOUT

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

Vol. XVIl-3 (1976)

In his presentation at the categories Session at Oberwolfach in 1973,

Tierney defined the continuous reals for a topos with a natural numbers ob-

ject (he called them Dedekind reals). Mulvey studied the algebraic proper-
ties of the object of continuous reals and proved that the construction gave
the sheaf of germs of continuous functions from X to R in the spatial topos

Sh(X).
This paper presents the results of the study of the topological prop-

erties of the continuous reals with an emphasis on similarities with classi-

cal mathematics and applications to familiar concepts rephrased in topos
terms.

The notations used for the constructions in the internal logic of a

topos conform to that of Osius [11]. For what is needed of basic topos

theory the reader is refered to the early sections of Freyd [ 51 and Kock

and Wraith [7] , or to Lawvere [8] for a quick introduction with less detail.

Useful lists of intuitionistically valid inferences may be found in

Kleene [6] on pages 118, 119 and 162.

1. Definition and Characterizations of the Reals.

In a topos with a natural numbers object N , we can form the object
of integers Z as a ring with underlying object!!.. +!Y.+ , where N+ is the

image of the successor map s . If we take the N+ summand as the positive s,
then the isomorphism of N with N + 7 gives rise to the validity of

* Work completed while the author was supported on a grant from the Quebec Minis-
try of Educ ation.
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The rational numbers object Q is the ring of quotients of Z ob-

tained by inverting the positives. The positive integers give rise to posi-
tive rationals and hence an order relation  . Trichotomy for the integers
then implies the validity of

Once we have the rationals we may define the reals in a number of

inequivalent ways. The characterizations of the objects defined in various

topoi make the continuous reals of significant interest.

DEFINITION 1. 1. The object of continuous reals, R T is the subobject of
P Q X P Q consisting of pairs (r, r) satisfying the following conditions :

EXAMPLES.

In the topos of sheaves on a topological space X , Mulvey proved
in [10] that R T is the sheaf of germs of continuous functions from X to

R . His techniques may be used to get several other characterizations.

For a measurable space (X,E) we may construct a topos on the
site with category I (morphisms are inclusions ) and covers countable

families

wi th

As for sheaves on a topological space, we can show that global sections
of RT in this topos are real-valued functions. The first condition is enough
to guarantee that the functions are measurable into the extended reals with

measurable subsets generated by the set of intervals (-oo, q) with q ratio-

nal. The second condition gives extended-real-valued functions measurable
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with respect to the Q-algebra generated by the set of intervals ( q, + oo) with

q rational. Combined with the remaining conditions this is enough to gua-
rantee Borel measurability.

Similarly, given a uniform space ( X, U), we may define a site with
the open subsets of the associated topological space as category ( again
the morphisms are inclusions) and covers generated by the uniform covers.

The resulting topos has RT the sheaf of germs of uniformly continuous func-
tions from X with the associated locally fine uniformity to R with the ad-

ditive uniformity.

For a measure space (X, E, 03BC) there are two interesting topoi. The
first, studied by Scott in [12] and [13] in the guise of Boolean valued mod-
els of set theory, has category I with morphisms inclusions, and covers

given by countable collections

He identified the continuous reals as that sheaf having as sections over

a measurable subset X’ the set of all random variables on X’ ; that is,

equivalence classes of measurable functions to R under the equivalence
relation with

The second construction uses the same category but takes the collection

of covers generated by the set of all countable collections I B i -+ B}, such
that :

This gives the sheaf of random variables with equivalence classes under

the relation:

f:= g if the stationary sequence If } converges to g in measure.

There are other constructions of the reals which may be of interest

in a topos. Dedekind’s original’definition, Cauchy’s definition, and a defi-

nition traced back as far as Lorenzen by Staples giving a constructive form

of the Dedekind definition are all possible.



298

DEFINITION 1.2. The object of Cauchy reals, RC is the quotient of the
subobject of QN given by those f satisfying the statement 

by the equivalence relation with f equivalent to g if

EXAMPLE. In sheaves on the unit interval, RC is the sheaf of germs of

locally constant functions. Here N and Q are the sheaves of locally cons-
tant N and Q valued functions. Since the interval is locally connected,
the formation of RT also gives locally constant functions. The two res-

trictions guarantee that the values are in fact real numbers. This shows

that RC is distinct from RT -

DEFINITION 1.3 (Staples [15]). The object of Staples cuts RS is the sub-
object of P Q XP Q consisting of those pairs (S, T) satisfying the follow-

ing condition s :

The object of Staples reals Rs is the quotient of R’S by the equivalence
relation with (S, T ) - (S’, T’) if and only if

EXAMPLE. In sheaves on the unit interval, R’S is the sheaf of germs of

real-valued functions with only jump discontinuities. The equivalence rel-
ation identifies functions which differ only at their points of discontinuity.
Thus -Staples reals are in general a larger collection than the continuous
reals.

DEFINITION 1.4 (Dedekind [4], p. 317). The object of Dedekind’s cuts,

R’D, is the subobject of P Q X P Q consisting of those pairs ( L , U ) such
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that:

The object of Dedekind’s reals, RD , is the quotient of R’ by the equival-
ence relation identifying cuts which differ only on the boundary ; that is

( L , U ) is equivalent to ( L ’, U’) if and only if

and

EXAMPLE. Conditions 1 and 2 specify that the cuts consist of detachable
subobjects of Q . In topoi of the form Sh (X) this means that the statements
q£ L and q£U must hold on , clopen sets. The rest of the conditions spe-
cify that the fibers must be real numbers, so the object of Dedekind reals
is the sheaf of germs of real-valued functions constant on components.

PROPOSITION 1.5. In any topos with a natural numbers object,

PROOF.

The inclusion of Q into R c is accomplished using stationary se-
quences.

The inclusion of R c into R T is obtained from two maps R C-&#x3E; PQ ,
one giving the lower cut and the other giving the upper cut. For the lower
cut the map is the exponential adjoint of the characteristic morphism of the
subobj ect of Rc X Q consisting of those pairs (r f] , q) satisfying :
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The upper cut is defined analogously using

It is immediate from the definition that conditions 1 through 3 in the defi-

nition of R T are satisfied. The Cauchy condition gives condition:

4° For a given n find m such that for k and h larger than m ,

then i s in the upper cut and f(m)-1 i s in the lower cut.
3n

The resulting morphism is monic because the pullback of the equality re-

lation on R T is the equivalence relation used in defining R C .
To show that R T C B S observe that condition 4 in the definition of R T

implies condition 1 for RS . Condition 3 for R T is condition 2 for Rs From
conditions 1 and 4 for R T we may obtain condition 4 for RS as follows:

in the hypothesis of the statement

q is a lower bound of the upper cut. For any s  q we can find an n such

that 1  q- s . For that n there are q’ and q" such that

From this we may conclude that s  q’ and thus, by 1, s £ r . A similar ar-

gument using 2 and 4 yields 3.

It remains to show that no two continuous reals are collapsed by the

equivalence relation on R S . By condition 1 on R T the upper bounds may

be replaced by strict upper bounds, which are in fact members of the upper
cut. The equivalence relation on R S then says that the two continuous re-
als have the same upper cut. If r and s have the same upper cut, then for

any q £ r we may conclude that qE s as well: there is an n such that we

h ave q + 1 £ r . For th at n we c an find q1 through q4 s uch th at

Now since the upper cuts are the same, since otherwise
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either q3  q2 or q4  q, would occur. But this implies that

so q  q2 and hence qE s .

PROPOSITION 1.6. RD C R
PROOF. First we construct a function from the object of Dedekind cuts to

BT and then show that its kernel pair gives the equivalence relation used

to define the Dedekind reals. The desired function takes a cut ( L , U ) to

the pair

It is clear from conditions 3, 4 and 5 in the definition of a Dedekind cut

that this maps through the object of pairs satisfying conditions 1 through
3 of the definition of R T . It is also clear that the kernel pair of this map
is the equivalence relation used to define the Dedekind reals. The delicate

point is in showing condition 4 of the definition of RT is satisfied. This

uses two facts from the work of Coste and Sols.

LEMMA (Sols [14]). In any topos any nonempty detachable subobject of
N has a least element.

COROLLARY (Coste [3]). Any recursive function from N n to Nm can

be constructed in any topos.

From 6 we know that there are q and q’ with qc L and q’E U . From

5 this tells us that q’- q is a positive rational. The process of reducing
a rational to lowest terms is recursive, so we may write this difference as

18 with m and n relatively prime and both positive. For each keN there
n t 

-

is a subobject of N consisting of those n’ such that q+ n 4kn £U. Since
U is detachable in Q , this set is detachable in N . By Sols’s lemma it must
have a smallest member q * . The desired rationals for condition 4 are
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2. Order Properties of the continuous Real s.

In defining the rationals in Section 1, we obtained a concept of po-

sitive for rationals which satisfies the usual trichotomy axiom. From this

we derived an order on Q which also satisfies trichotomy. The order on

RT which we wish to study is the order extending this order on Q . It need

not sati sfy th e trichotomy axiom.

DEFINITION 2.1. The order relation  is the subobject of RTxRT con-

sisting of those pairs ( r, s ) such that

PROPOSITION 2.2.  is an order relation extending the order on Q.

PROOF. Transitivity of  on RT is a direct consequence of properties 1

and 2 in the definition of RT 
If q  q’ in the order on Q , then q’- q is positive. From this it fol-

lows that

giving the needed rational between q and q’ .
If there is a rational q such that q  q" and q"  q’ , then q  q’, by

transitivity.

EXAMPLE. Trichotomy fails for  on RT: In sheaves on the reals con-
sider the global sections of RT corresponding to th e functions

The statement f  g is true on (-oo, 0), f = g is valid only at 0 and f &#x3E; g
on (0, + oo ). This means that there is no neighborhood of 0 on which one

of the three alternatives hold globally. Hence the statement

is not valid.

Besides the strict order, which will give us open sets, there is an-
other order relation on R T useful for defining closed intervals and «intuit-
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ionistic» open intervals.

DEFINITION 2.3. The order relation  is the subobject of R T x RT con-

sisting of pairs

PROPOSITION 2.4.  is transitive, reflexive and antisymmetric.

P ROO F . All three follow from the same properties of C -

REMARK. It is not the case that r  s is the same as

In sheaves on R , f (x) = I x I and g(x) = 0 satisfy

PROPOSITION 2.5. ( r  s ) =&#x3E; ( r &#x3E; s ) .

PROOF. If r  s and r &#x3E; s , then there is a rational in 7 which is also in

E and thus in s , producing a contradiction. Thus 

For the reverse implication we will need the following lemma :

L EMMA 2.6. In any topos the rationals satis fy the following statement:

PROOF. Write q in lowest terms as k h (this can be done recursively). 2h
is the desired n. 

This fits in the proof of the proposition by guaranteeing that, if q£ r,

then there is an n such that q + 1 n £ r . Using that n we may choose q’ and
q" such that

By trichotomy for the rationals,

In either of the first two cases then
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and so q’6 r . This says s  r , contradicting our assumption. Thus

An exactly analogous proof shows that s C T .

This Proposition is rather unusual in intuitionistic Mathematics in

that it shows the equivalence of a negative statement with a purely positive
one. We will encounter another such Proposition ( an important corollary of

thi s one) when we study the apartness relation on RT 

EXAMPLE. (R-T,) need not be order complete : In sheave s on the unit
interval consider the subsheaf S of B T consisting of the germs of those

continuous functions less than or equal to the characteristic function of

interval (0, 1). This is bounded by the constant function 2 , but the least
2

upper bound ( which is forced to be the characteristic function of (0, 1 2)
is not continuous at 1 and thus will not be continuous in any neighborhood

2

of 1 . Thus it is not possible to cover the interval with open sets on which
2

there exists a continuous function which is the least upper bound of S , so

the internal statement saying that there is a least upper bound is not valid.

The failure of RT to be order complete is not critical - constructive

Analysis ( as in Bishop [1]) shows that its use can be avoided, although
extensive use of various forms of choices distinguishes constructive Ana-

lysis from topos Analysis. The failure of the continuity theorem of intuit-

ionistic Analysis in the topos of sets shows that topos Analysis is also

distinct from intuitionistic Analysis.

Even though we cannot form the least upper bound of arbitrary bound-

ed collections, we can form the maximum ( and minimum ) of a pair.

P ROPOSITION 2.8. There is a function max: R T x RT-&#x3E; RT such that
lo max(r, s) &#x3E; r and max(r, s) &#x3E; s,

PROOF. Consider the function
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We will show that m factors through RT giving rise to the function desir-

ed. It is clear that m factors through the subobject specified by the con-

ditions 1 and 3 of the definition of R T The only difficulties are in show-
ing conditions 2 (upper cut) and 4 ( cuts at zero distance).

Observe that we may define max: Q X Q - Q in the usual case-by-case
fashion using trichotomy. The resulting function satisfies the conditions

in the Proposition and the further condition that

To show that m ( r, s ) is an upper cut, we observe that q£ m ( r, s ) im-

plies q£ r and q£ s . Thus there exist q’ and q" in r and s respectively r

such that q &#x3E; q’ and q &#x3E; q" . Then q &#x3E; max(q’, q"), which is in m (r, s ) .
Now for any n £ N , choose ql through q4 such that

Then

Furthermore

Thus m factors through R T giving the map max: R Tx RT -&#x3E; R T’
Properties 1 and 2 are immediate from the definition and the universal

properties of union and intersection.

The topology we wish to study is the smallest topology containing
the object of intervals with respect to the order  . There are at least two

traditional inequivalent ways to define intervals which lead to objects with

distinct properties and topologies on RT with different peculiarities.
DEFINITION 2.9. The interval (r, s) for r  s is the subobject of R T con-
sisting of those t such that r  t  s .

The object o f intervals is the subobject Int of P RT consisting of

those S satisfying the condition
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Observe that with this definition an interval always has global sup-

port ( indeed it always contains a rational). This keeps the object of int-

ervals from being closed under finite intersections. In sheaves on R, the

interval s ( 1, 2 ) and ( x, x + 1 ) intersect in a subobj ect of RT which does
not have global support.

DEFINITION 2.10 (Troelstra [18] or [19] ). The intuitionistic open interval

(r, s )I is the subobject of RT consisting of those t such that

The object llnt of intuitionistic intervals is the subobject of P!1 T
consisting of those S such that

Intuitionistic intervals need not have global support, and even if

they do they need not contain a rational. For example, in sheaves on the

reals let

The interval ( f, g), is the sheaf of germs of functions from R to R such

that the subobject of R on which the graph lies in the set

has empty interior. The function h (x) = 2 x is such a function since its

graph falls in the forbidden zone only at 0 . The statement

is false sinc e no such rational can be found in any neighborhood of 0 .

PROPOSITION 2.11. (r,s)I =(min(r, s), max(r, s) ),. -

PROPOSITION 2.12. llnt is closed under pairwise intersection.

PROOF (sketch). Let f&#x3E; g and h &#x3E; k . Then ( g, f)In(k, h)I is the int-

erval (max(g, k), max( min(f, h), max(g,k)))I.

DE FINITION 2.13. The closed interval [r, s ] is the subobject of R T con-
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sisting of those t such that r  t  s .

EXAMPLE. It need not be the case that

In sheaves on the interval [ 0, 21 , let f (x) = x . Then

but there is no open cover of [ 0 , 2] such that f is globally in one or the

other of the two intervals on each set in the cover. In particular it cannot

be done in any neighborhood of 1 .

3. The Interval Topology on RT.

In [17] I showed that the usual construction of a topology on A

(that is, a subobject of P A closed under pairwise intersection and arbitrary
internal union and containing A and 0) from a subbase works in the topos

setting. The interval topology T is the result of applying this construction

to the object of intervals. In fact it is not necessary to take closure under

pairwise intersection, so Int is in fact a basis rather than just a subbase.

PROPOSITION 3.1. Int is a basis for T .

PROOF. Every real is in an interval, so the union of the intervals is all

of RT. What needs to be shown is that the closure of Int under unions is

all of T . To do this it will suffice to show that there is a subobject of T

which is closed under intersections, contains Int , and is contained in the

closure of Int under internal unions.

The desired object is the object of truncated intervals Int T obtained
by omitting the condition r  s in the definition of Int . It is clear that Int

is contained in IntT . It remains to show that IntT is closed under pairwise
intersection and that Int is contained in T .

The intersection of intervals (r, s ) and (r’, s’) in IntT is

This works for IntT where it failed for Int because there is no way to gua-

rantee that max(r, r’)  min(s, s’).
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The unrestricted interval (r, s) is the extension by zero of the partial
section of Int defined on the subobjects of 1 for which r  s . In forming
the closure under internal unions all such extensions are added as global
sections ( Proposition 1 in C 161 ).

COROLLARY 3.2. Q is dense in BT.
PROOF. Int is a basis and every element of Int has a rational member.

This is one statement of density. Since every element of an open subob-

ject has a basic neighborhood contained in that open subobject, this im-

plies the following form of density :

R EMARK. The topology obtained using llnt does not have Q dense as the

example following Definition 2.10 shows. Hence intuitionistic intervals give
rise to a distinct topology.

PROPOSITION 3.3. (RT , T ) is second countable, i. e., it has an internally
countable base.

PROOF. The proceedure for showing that the set of pairs of rationals (p, q)
with p  q is countable is recursive and hence may be mimicked verbatim

in a topos. Thus it will suffice to show that the object of intervals with

rational endpoints is a basis for T . For this it will suffice to show that

Int is contained in the closure of the object of rational endpoints intervals

under unions. The interval (r, s ) is the union of the internally specifiable
collection of those intervals (p , q) with r  p  q  s .

A large number of the desireable properties of the reals may be

thought of as dealing with its uniform structure, rather than its topology.
Intuitionism introduces fewer complications in uniform space theory than

it does in topology. The uniformity of RT arises from the topological group
structure.

PROPOSITION 3.4. (RT, T, +) is a topological group object.
PROOF. The operation of taking additive inverse is its own inverse and
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takes open intervals to open intervals, so it is a homeomorphism.
To show that addition is continuous observe that in sets this may be

proved by the direct calculation

This is an internally specifiable collection of basic open sets in the prod-
uct topology, so the same proof may be used in any topos.

DE FINITION 3.5 ( Bourbaki [2] ). A uni form space object in a topos is a

pair ( X , U ) with U a subobject of P ( X x X ) satisfying the following con-

ditions :

where A -1 is the image of A along the map interchanging the factors in

the product.

5° VA£P(XxX)(A£U =&#x3E; 3 B£U (BoB A)),
where B o B is the image of B x BnA2,3 along the projection removing the

middle two factors.

As in ordinary topology we can use a uniformity to define a notion

of neighborhood which can then be used to define a topology.

Topologies arising in this way are called uniformizable.

PROPOSITION 3.6. Every topological group is uniformizable.

PROOF. As it is in sets-based topology.

The most important property of the uniformity on the reals is that

it is complete. Completeness involves several non-emptiness conditions

in the definition of filters and convergence which are taken in the strong-

est sense.

DE FINITION 3.7. A filter on A is a subobject F of P A satisfying the fol-
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lowing conditions:

The object of filters, FiltA , is the subobject of P 2 A specified by
the conditions in the definition of a filter.

The convergence map, conv: FiltA -+ P A, is the exponential adjoint
of the characteristic morphism of the subobject of FiltA X A consisting of

those pairs (F, a) such that

A Cauchy filter is a filter satisfying

A uniform space object is called complete if the image of the object
of Cauchy filters along conv is contained in the object

THEOREM 3.8. (RT, U+) is a complete uniform space object (U+ is the

additive uni formity).

PROOF. The proof consists in the construction of a morphism lim from the

object of Cauchy filters, Cauchy filt , to RT such that th e map

factors through c .

The first step is the construction of lim as a map to PQxPQ with

components lim and lim . lim is the exponential adjoint of the characteris-
tic morphism of the subobject of Cauclty filt x Q consisting of those pairs
( F, q ) satisfying

lim is defined analogously using
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It is clear, from the definition, that lim factors through the subobject of

P Qx P Q satisfying the first three conditions in the definition of RT This
leaves the zero distance condition.

For this we need the Cauchy condition on filters. For any n6N , the

1 ball around 0 gives rise to an entourage E of the additive uniformity
6n

on RT . By the Cauchy condition of F , there is an

This implies that for r in A (which must exist by condition 1 for filters)

are outside A and

By the cut conditions on the reals , there are rationals q

respectively such that

are both less th an 1 . Thus
6n 

The construction guarantees that

Thus lim factors through R T . 
It remains to show that lim F is a limit point of F . For this it will suf-

fice to show that every interval with rational endpoints containing lim F

is in F . If ( d, b ) contains lim F , then

so there are elements of F such that a is less than every element of A
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and b is larger than every element of B .. Then A n B  (a, b) , so ( a, b )
is in F.

PROPOSITION 3.9. RT is a Hausdorff uniform space, that is, the inter-

section of the entourages is the diagonal.

PROOF. It will suffice to show that the intersection of all of the neighbor-
hoods of 0 is ( 0 ) . It is clear that 10 } is contained in the intersection.

Now suppose r is in every neighborhood of 0 . If q  0 , then ( q, - q ) is

a neighborhood of 0 so q6r . If q &#x3E; 0 , then (-q, q) is a neighborhood of

0 , so q £ r . Conversely suppose that qE r . Then by trichotomy

If q &#x3E; 0 , then q £ r , giving a contradiction. If q = 0 , then there is a q’ &#x3E; 0
in r , giving the same contradiction. Thus q  0 . Similarly q£F yields q &#x3E; 0
so r=0. 

These two propositions, together with the proof of the universal pro-

perty of the Hausdorff completion of a uniform space as in Bourbaki ( which

is intuitionistically valid), show that RT is the completion of the additive

uniformity on the rationals. This has the advantage of allowing us to de-
fine functions from RT (and spaces derived from R T ) to RT using exten-

sion by continuity.

PROPOSITION 3.10. llni forml y continuous functions preserve the Cauchy

property for filters.

PROPOSITION 3.11. I f C is the Hausdorff completion of A and f: A - B is

uniformly continuous with B a complete Hausdorff uniform space, then there
is a unique uniformly continuous function from C to B extending f.

PROOF. The Bourbaki construction of C identifies elements of the Haus-

dorff completion with minimal Cauchy filters on A . Such a filter is taken

to the limit point of the Cauchy filter on B whose base is given by the di-

rect images along f of its elements. The proof that the resulting map is

the desired extension is exactly as in Bourbaki.
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This proposition may be used to extend the definition of multipli-
cation from the rationals to the reals. In general it is quite difficult to de-

fine multiplication directly in terms of cuts.

4. Metric properties of RT -

DE FINITION 4. 1. The norm function l l : R T-&#x3E; RT takes r to max(r, - r) .

PROPOSITION 4.2.ll is a norm in the usual sense, that is, it satisfies
the following prop erti es :

PROOF. Using Proposition 2.5 we may replace each inequality with the ne-

gation of the strict inequality of the opposite sense. This gives the norm

the intuitionistic properties used by Troelstra [18].
To show 1 assume that l r l  0 . Then there is a rational q  0 with

qE,l r l . Now this means that

But q  0 implies that - q &#x3E; q , so this gives a contradiction.

To show 2, 1et l l r l = 0 ; then

If q  0 then - qf Q+ . Then - q£-r, so qf r . This shows r

then - q£ - r , so - qf Q- . This shows r - Q + .
To show 3, suppose that l a I + l b I  l a + b l. Then there is a rational

q such that 

and . The conditions on q’ and q" say that

This means
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Thus qr l a + bl, giving the needed contradiction.

COROLLARY 4.3. (BT, T ) is a metric space with metric d taking (a, b)
to la-bl. 

PROOF. The fact that d satisfies the usual axioms for a metric follows

directly from the properties of the norm. The topology associated with d

has a basis given by the balls of positive real radius around each point.

Each interval ( a, b) i s the b - a ball of b + a and each ball
2 2

is an interval ( a- r, a+r) .

Thus we have shown that the interval topology on R T is metrizable.

The density of Q shows that the metric space is separable; it remains to

show that it is complete.

DEFINITION 4.4. A Cauchy sequence in a metric space object (A, 8) is a

function f : N - A such that

N
The object of Cauchy sequences, Cauchyseq, is the subobject of A y

specified by this predicate.
The convergence map form Cauchy seq to P A is the exponential ad-

joint of the characteristic morphism of the subobject of Cauchy seq X A con-

sisting of those pairs ( f, a) satisfying

A metric space is called complete if conv factors through

COROLLARY 4.5 (to Theorem 3.8). (R T’ d) is complete.
PROOF. We define a map
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such that

Metric completeness will then follow from uniform completeness.

We start by defining I as a map from RT N to p2RT as the exponen-

tial adjoint of the characteristic morphism of the subobject of RT LV X P R
consisting of those pairs ( f, A ) satisfying

We need to show that this takes Cauchy sequences to Cauchy filters. It is

clear that I factors through the object of filters. To get Cauchy filters it

will suffice to show that for any fundamental entourage E of the uniformity
and any Cauchy sequence f there is a subobject B of RT such that:
B X B C E and ( f , B ) satisfies the predicate used to define I .

A fundamental system of entourages is given by the N-indexed family
of pairs

For any n the Cauchy criterion on f guarantees the existence of an m such
that, for k and h larger than m ,

This says that the object B of values of f at natural numbers larger than
m is E-small for the entourage E associated with n . By construction the

pair ( f, B ) satisfies the predicate used to define I .

To show the convergence condition it will suffice to show that the pull-
back along I xX RT of the obj ect of pairs ( F, r) such that

is the object of pairs ( f, r) such that
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Now (r- L, r + 1) is in the image of f under I if and only if there is an m
n’ n

beyond which all the values of f are in (r-1 n, r+-1 n), which is precisely
what is required.

Applying this result to the topoi mentioned in Section 1 gives some
new results. In his book on stochastic convergence [9], Lukacs gives proofs
that for non trivial probability spaces convergence in measure and conver-

gence almost everywhere are incompatible with a norm in the classical sen-

se. In appropriate topoi these kinds of convergence of random variables

become convergence of real numbers with respect to the internal norm. Fur-

thermore, the resulting spaces are internal Banach spaces. As a concrete

application it may be shown that a regular stochastic matrix with random

variables as entries instead of real numbers ( corresponding, for instance,
to a Markov chain with uncertain transition probabilities) converges almost

surely ( or in measure) to a steady state matrix of the same type.
The same application may be made with continuous functions and

uniform convergence merely by changing to a spatial topos ( even though
the computational technique normally used to find the steady state matrix

is not continuous).

5. Separation properties.

Separation properties in topos topology are a bit delicate. In general
the conditions used in ordinary topology using inequality and disjointness
need to be replaced with conditions using various forms of apartness.

EXAMPLE. RT need not satisfy the Hausdorff axiom

In sheaves on the reals the identity function f and the constant function
0 satisfy f # 0 , but they cannot be separated in any open neighborhood
of 0 .

The problem here is that # is not a strong enough form of inequal-

ity since it allows sections to agree so long as the set on which they agree
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has no interior. We need a statement which says « nowhere equal» or «every-
where apart ».

DEFINITION 5.1. The apartness relation w is the subobject of RTxRT
consisting of those pairs (r, s) such that (r&#x3E; s ) v ( r  s ).

PROPOSITION 5.2. r w s =&#x3E; I r- s l &#x3E; 0.

P ROO F. Direct.

PROPOSITION 5.3. w is an apartness relation in the sense.of Troelstra

( [19] p. 15); that is, it satisfies the following conditions :

P ROO F. Condition 2 and the reverse implication of condition 1 are trivial.

By Proposition 5.2,

so by Proposition 2.5, 1 r- s l  0 . Thus r- s l = 0 , .so r = s . This proves

condition 1.

To show 3 it will suffice to show that

Now r &#x3E; s says that there is a qc Q such that q£ s and qE r . By the cut

properties we can sharpen this to saying that there is an n6N such that

Now find q’ and q" such that

If q  q’ , then

So q" £ s and t &#x3E; s . If q = q’ , then t  r . If q &#x3E; q’ , then certainly q £ t .
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This tells us that r &#x3E; t . This exhausts the three choices allowed by tri-

chotomy for rationals. 

PROPOSITION 5.4. (RT, T ) satisfies the Hausdorff axiom

PROOF. r w s says that there is a rational between r and s ; call it q .

Then U and V are the intervals (-oo , q ) and (q, +oo ), the choice depend-

ing on whether r &#x3E; s or r  s .

COROLLARY 5.5. (RT, T) satisfies the Hausdorff axiom

PROOF. This is a direct consequence of Propositions 5.4 and 5.3.

It would be desireable to have a more topological positive form of

the Hausdorff property. Forms using convergence and closure are convenient

PROPOSITION 5.6. Filter convergence for (RT , T) factors through RT 
PROOF. This is the same as saying that two limt points of the same filter

must be equal. Suppose that r and s are limit points of F and r w s . Since

r and s have disjoint neighborhoods by Proposition 5.4, it is not possible
for F to converge to both since that would require F to have two disjoint
members. Thus -l ( r w s ) , but this says r = s by Proposition 5.3.

DEFINITION 5.7. The closure operator cl: P A , P A associated with a

topology TA on A is the exponential adjoint of the characteristic morphism
of the subobject of P A X A consisting of those pairs (S, a) satisfying

A subobject is called closed if it is fixed by the closure operator.

This closure does not have all of the usua I properties desired for
a closure operator; in particular, the union of two closed subobjects need

not be closed (Stout [ 16], last Section). It does have the advantage of be-

ing the right concept in terms of filter convergence and in agreeing with
the standard intuitionistic concept ( Troelstra [ 18] , p, 26).
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Using this concept of closure and the Hausdorff property of the uni-

form space structure of R T , we can prove the following propositions pre-
cisely as in set-based topology.

PROPOSITION 5.8. The diagonal is closed in R T XBT.

PROPOSITION 5.9. Each r£ RT has a fundamental system of closed neigh-
borhoods.

In ordinary topology the normality of a metric space ( and hence of

R ) follows directly from the existence of a continuous function giving the

distance from a point to a closed set. In topos topology such a function need

not exist (or at least need not have a real value), as the example used to

show that (RT,  ) is not complete shows. Following the lead of the intuit-

ionists we obtain the following definition.

DEFINITION 5.10. For a metric space object (A, 8) and a subobject S of

A , the map d (-, S) from A to P Q X P Q is defined as the map with com-

ponents given by the exponential adjoint of the characteristic morphism of

the subobj ect of A x Q consisting of those pairs ( a, q) satisfying

for the first component, and a similar construction using

for the second. If this defines a continuous morphism to 8. T’ S is called

lo cated.

It is possible that the hypothesis of continuity in the definition of

located is superfluous. In intuitionistic Mathematics the continuity follows

from the continuity theorem, which fails for general topoi. In the classical

case the proof depends heavily on trichotomy in a way that apparently can-

not be dodged using trichotomy for the rationals. In any case located closed

subobjects are still not good enough for normality.

EXAMPLE. There exist disjoint located closed subobjects of R T which
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cannot be separated. using open subobjects : In sheaves on the reals let A

be the sheaf of germs of continuous real-valued functions whose value is

always greater than or equal to that of the absolute value function and let

B be the sheaf of germs of continuous non-positive real-valued functions.

Then A and B are disjoint, but they cannot be separated in any neighbor-
hood of 0 .

This example shows that disjointness is not sufficient; we need

apartness. One such condition may be given for located closed subobjects
and another for closed subobjects in general.

PROPOSITION 5.11. The internal statement which says

if C and C’ are located closed subobjects o f 9 T such that

then there is a continuous ftcnction f from f T to 10 1] such that

is valid.

P ROO F. The desired function is the one which takes x to

This is continuous because the functions it is composed of are and the de-

nominator is a unit. To show that the function has the desired property it

will suffice to show that for any x and located subobject A ,

If d (x, A ) = 0 , then for any qE Q+ there is a member a of A such

that d( x, a)  q . But the intervals (z- q, x + q) form a fundamental system
of neighborhoods of x , which is all that needs to be considered in forming
closures. Thus xE cl A .

DEFINITION 5.12. Two subobjects A and B of R T are called apart ( writ-

ten A # B ) if they satisfy
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For singletons this is the same as the apartness relation a w b .

P ROP OSITION 5.13. I f A and B are closed subobjects of 1? T with A # B,
then there are open subobjects 0 and 0’ such that

and

P ROO F. 0 is the subobject of RT consisting of those x satisfying

0’ is defined similarly with the roles of A and B reversed. It is clear from

the definitions that 0 and 0’ are disjoint. The condition A # B guaran-
tees that A C 0 and B C 0’ . The only remaining point is to show that 0

and 0’ are open.

Let x£ 0 . Then for each ac A there is an n£ N such that, for bf B ,

Take the 1 ball of x . Then if y is in this ball around x , we have
3n

Now from the properties of the metric,

Combining these two results gives

Thus y is also in 0 (with 3 n giving the required excess distance).

We conclude this Section with a complete regularity condition which

does not follow from any of the forms of normality we have considered.

PROPOSITION 5.14. I f a£ O £ T , there is a continuous function f:RT-&#x3E;RT
such that 

P ROO F. First choose intervals with rational endpoints such that
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Using trichotomy for the rationals we may use piecewise definitions to de-

fine a function g: Q -&#x3E; Q which is uniformly continuous as follows:

Extension by continuity gives the function g from RT to RT - The desired
function f is defined by

6. Connectedness.

In set-based algebraic topology R is used as a yardstick with which

to measure the connectivity of other spaces. Positive f6rms of connected-

ness play an important role in Analysis, at least in the classical setting.
In more general topoi RT satisfies the negative continuity conditions used

in topology but not the positive forms used in Analysis.

THEOREM 6.1. (RT, T) is connected in the following sense:

PROOF. Suppose that, on the contrary, there is such a disconnection of

RT . Then there is also a disconnection of the rationals obtained by

Since the rationals are dense, there are rationals p and q such that p f U’
and gf v’ . Let us assume p  q . Then we obtain a Dedekind cut (L, W)
as follows :
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It is clear that the pair of subobjects so constructed satisfies conditions

3 through 6 in Definition 1.4. The difficulty is in showing that L and

are complementary subobjects of Q.
If the logic were classical this would be no problem since the state-

ments defining L and U have the forms

In this case P is a subobject of Q x Q which has a complement ( since
U is the complement of V and trichotomy holds for the rationals). This re-

duces the problem to showing that

when P is fixed by double negation. Existantiation along a projection pre-
serves terminals and conjunctions, so

Now Q has global support, so

Thus we may conclude that

Thus L LJJl’ = Q . It is always the case that

which implies that L n W = 0 .

By Proposition 1.6 this induces a continuous real r. If rf U , then there

is a rational greater than r in U’ , which is not possible. If re v , then there

is a rational less than r in V’, which is also not possible. Thus it is not

possible that UU V = RT .

EXAMPLE. (RT, T) need not satisfy the following form of connectedness :

In sheaves on the reals truncate the open - subobject RT to the subobject
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of one corresponding to the open interval (0, 1) . This is an open subobject
as a result of the union axiom (it is the union of the subobject

It is not difficult to show that it is also closed, but there is no neighborhood
of 7 on which either A = O or A = RT holds globally.

EXAMPLE. The intermediate value theorem may fail for (RT, T) : In shea-
ves on the unit interval we may represent a continuous function from RT
to RT as a continuous function g: I x R -&#x3E; R (whether or not all continuous

functions can be so represented is a side issue - we will only need one).
On an open subset U C I , RT has global sections corresponding to con-

tinuous functions f: U - R. The function defined by g takes f to the func-
tion from U to R taking x to g ( x, f ( x ) ) . Since f and g are continuous,
so is this composition. Thus we have defined a function from RT to RT 
An interval in the codomain is specifiable as the collection of germs of func-

tions which have graph in an open strip between the graphs of two functions

in I x R . Imbed the graph of g into I x R X as a surface. The intersection

of the surface with the subobject which is the strip in the first and third

factors and all of R in the second (the inverse image of the strip under the

projection removing the second factor) is open. Since the graph of g is

homeomorphic to IxR by the projection removing the third factor, the image
of the open section of the surface under that projection is an open region
in / X R. Since open rectangles form a basis for the product topology and

each open rectangle may be thought of as an interval truncated to its 1-factor,
the inverse image of an interval in RT along the map we have constructed

is open in RT - Hence we have described a proceedure for obtaining exam-
ples of continuous functions from RT to RT 

Now restrict both R -factors to intervals [- 1 , 1] and consider the con-

tinuous function giving rise to the surface with level curves as illustrated

in Figure l. The level curve giving the value 0 is not a function in any

neighborhood of 1/2 , so there is no cover on which every element has a

global section taken to 0 by g . However, g is 7 at the constant function
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1 and - 1 at the constant function -1 . Hence this is an example where the

intermediate value theorem fails. 

FIGURE 1
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