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ON CATEGORICAL SHAPE THEORY

by Armin FREI

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

Vol. XVII-3 (1976)

0. Introduction.

The notion of shape was first introduced by Borsuk [2] in the study
of homotopy properties of compacta. Several others, e . g . [7], [8],[14] ,
[15], used the same principle in topological contexts. Roughly speaking
the principle consists in the following : Given a homotopy category 5 of

spaces and a full subcategory 9 one forms a category S having the same
objects as 5 but larger hom-sets ; a morphism in S is a system of mor-

phisms in 5 . However, for pairs of objects (X,A) in 5 with A in P,
S(X, A) is equivalent to F(X, A).

Mardesic [14] gave the general definition of shape for the homotopy

category of shapes and the full subcategory of spaces having the homotopy

type of CW-complexes, and showed that this definition agrees with many

of the previous ones. In [11] Le Van introduced the notion of shape for full

embeddings of abstract categories.

In the present paper we introduce the notion of the shape category
for a general functor K : P -&#x3E; F . The shape category S K of K has the same
objects as 5 and

the composition being composition of natural transformations. A canonical

functor D : 5 - SK is defined as being the identity on objects and
on morphisms.

Two morphisms in 5 are said to be K-shape equivalent or to have

the same K-shape if they are equivalent in SK. Any two objects which are

equivalent in 5 have, of course, the same K-shape, but two objects may
have the same K--shape even if there is no morphism in 5 between them.
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By imposing on the functor K the condition that the function

is a bijection for all pairs (X , K A ) in 5 with A in 9 , we call it condi-
tion C , we preserve one of the main features of « classical» shape theory

and obtain many results, some of which generalise facts known for full em-

beddings in Topology. It appears that C is most suitable to make shape

theory work nicely.

Throughout the paper we make frequent use of right Kan extensions.

In Section 1 we collect, for further reference, some facts about Kan exten-

sions along functors having an adjoint and along composite functors.

In Section 2 we introduce the notion of the shape category SK of
a functor K : P -&#x3E; F and the canonical functor D: F-&#x3E; , S K giving three equi-
valent descriptions. We show that every pointwise right Kan extension along
K factors through D , i. e. is shape invariant. We recall from [13] the notion
of codense functor and show that K is codense if and only if D is an iso-

morphism.

In Section 3 we introduce our condition C for K and give two con-

ditions which are equivalent to C and are better suited for several proofs.
We also give some consequences of C which lie outside the actual frame-

work of shape theory.
Section 4 is concerned with consequences of condition C. Thus, if

K satisfies condition C, then L = D K is codense; the pointwise right
Kan extension of a functor exists along K if and only if it exists along L ;
the factorization of a pointwise Kan extension over D is unique and is it-

self a pointwise Kan extension over D and over L ; D is the pointwise
Kan extension of L along K and D is codense. We also show that if K

satisfies C, then SK and D are characterised by a universal property, i. e.

D is terminal among the functors V: F-&#x3E; e where has the same objects
5 and V is fully faithful on pairs (X, K A ) .

Section 5 is devoted to the case where K has a left adjoint F. It

turns out that SK is isomorphic to the Kleisli category of the triple induced

by the adjunction F -1 K ; in particular D then has a right adjoint H and
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the adjunction D -l Hl induces the same triple as F -1 K . Furthermore the

functors F , D , K F and the left adjoint FT in the Kleisli situation render

invertible the same saturated family of morphisms in 5.

In Section 6 we investigate the implications of condition C in the

case where K has a left adjoint F . We show that for any adjunction F-l K
the induced triple is idempotent if and only if the induced cotriple is idem-

potent. If the functor K :P -&#x3E; F has a left adjoint F , then K satisfies con-

dition C if and only if the induced triple and cotriple are idempotent, if and

only if the category SK is isomorphic to the category of fractions F [S-1 ]
with respect to the family S of morphisms in 5 rendered invertible by F ,
or which is the same, by D . Also K satisfies C if and only if every mor-

phism f : K A - K B in 5 is of the form f = K go(K r)-1 where r is a mor-

phism in P rendered invertible by K .

NOTATION. We write lim for inverse or left limits. If K: P-&#x3E;F is any

functor and X any object in 5, we denote (X l K) the obvious comma cat-

egory and QX : (X l K ) -&#x3E; P th e projection functor. An object in ( X l K )
will be denoted

If G is any functor P -&#x3E; C ,

stands for :

G’ is the right Kan extension of G along K with universal transfor-

mation 0 -
We sometimes write RanK G for the functor G’ . RanKG indicates that the

Kan extension is pointwise, i. e. that

or equivalently, that the Kan extension is preserved by all representable
functors ( see Theorem 3 on page 240 of [13]). RanK G indicates that the

Kan extension is absolute, i. e. is preserved by any functor. Where the term
natural transformation appears very often we abbreviate by n . t.
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The author is very grateful to Peter Hilton for much valuable infor-

mation, especially for the statement of Theorem 2.1 asserting that the point-
wise right Kan extension along K of any functor is shape invariant. While

writing the present paper, the author learned that Aristide Deleanu and Peter

Hilton are writing a paper on the same subject [6]. The two papers, although
of nonempty intersection, are quite different. Botk. introduce the same no-

tion of the shape category of K , and the statement mentioned above is con-

tained in both, though with different arguments ( cf. Theorem 1.5 of [6] ), as
well as the assertion that the functor D is an isomorphism if and only if

K is codense (Proposition 2.2, cf. Proposition 2.7 of [6] ). In order to have

the theory working nicely, Deleanu and Hilton impose on K the condition

of being rich, which turns out to be stronger than condition C . In the Appen-
dix to the present paper we compare the two conditions.

There is of course a dual to shape theory, coshape theory, with dual

properties. However, in the present paper we do not formulate any duals,

except in Section 6 where an equivalence of some conditions with their own

duals appear.

1. On Kan extensions.

Proposition 3 on page 245 of [13] asserts that if a functor F: C-&#x3E; Ð

is left adjoint to G : D -&#x3E; e with counit f : F G -&#x3E; 1 , then RanG 1 D exists

and is equal to F with universal transformation c . From this we infer im-

mediately :

P R O P O SIT IO N 1. 1. I f the functor F :C -&#x3E; D is left adjoint to G : T C

with counit E : F G -&#x3E; 1 of the adjunction, then for any functor H with dom-

ain J9 , RanG H exists, and is equal to H F with counit H E : H F G -&#x3E; H .

As in the sequel we shall have to consider Kan extensions along

composite functors, we state and prove

LEMMA 1.2. Let
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be a commutative diagram o f functors and F : C-&#x3E; E an arbitrary functor.

then there is a uni que £ : FH -&#x3E; F such that £ 1o £ H1 = f 2; furthermore

(iii) The statements (i) and (ii) remain valid if Ran is replaced by
Ran or by Ran.

P RO O F. (i) Let G:D2-&#x3E; E be an arbitrary functor and G H2 = G HH1 -&#x3E; Y F
a natural transformation. As F = Ran Hi F , there is a unique n. t.

As F = Ran H F , there is a unique n. t.

Then

v is the unique n. t. satisfying this last identity. Indeed if

then

thus, by the universal property of EI , E o v H = £ o v’H , and by the universal

property of £ , v = v’.

determines a n. t.

Let now G : !D2 -), iS be an arbitrary functor, and Y: G H -&#x3E; F a n. t. As
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the n. t.

determines a unique n. t.

This entails £1o £H1o nH H1 = £1oYH1, and by the universal property of .f1’
E o q 11 = Y. One verifies that q is the unique natural transformation with

this property.

( iii ) Suppose that

and let G : 6 - bi be any functor. Then

and

hence, by (i) ,

The same argument works if we replace Ran by Ran and «G any functor»

by «G any representable functor». By a similar argument one shows that

( ii ) still holds if Ran is replaced by Ran or by )?an .

2. Shape.

We generalize the notion of shape theory for inclusion functors of

[11] to general functors. Let K : 9 - 5 be any functor. We define the shape
category SK of K by:

SK has the same objects as 5 ,
SK(X , Y) = Nat [F (Y, K-), F(X, K-)]
the composition of morphisms in SK is the composition of natural trans-

formations.
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Notice that in general 8K does not belong to the same universe

’U as 3- but to a higher universe 11’ of which 11 is an element. In most

« practical » cases however, SK does belong to the same universe as F.
We define a canonical functor D: -&#x3E; S K by: I) is the identity

on objects, and for a morphism f : X , I’ in % , 

We denote by L the composite functor L = I) K - The situation is illustrated

in the diagram

If X , Y are objects in 5 we say that they are K-shape equivalent
or that they have the same K-shape if they are isomorphic in -,SKI i. e. if

D X = D Y . If two objects X , Y in Y are equivalent in 5J , , then they are

of course K-shape equivalent, but in order that they be A.-shape equivalent,
it is not even necessary that there be a morphism in F het ween them as the

following trivial example shows. Let 5 be any discrete category, F = 1 ,
the category consisting of one object and its identity and K : it -&#x3E; F any
functor. Then any two objects of 5 are K-shape equivalent.

We say that a functor G: 5’ , (t is K-shal)e invariant if there is

a functor G : S K -&#x3E; A such that G D = G .
As J and SK have the same objects and h is the identity on them

we will often ( but not consistently) write Y for DY where Y is an object
of 5 .

Before we proceed to prove any theorems we give two alternative

descriptions of the shape category and of the canonical functor. This will

enable us to keep some proofs rather simple and to establish connections
to other concepts.

A. For any object X in 5 the functor 5(X, K-) can be identified
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with the comma category (X l K), and a natural transformation

can be identified with an obvious functor Q: (Y l K) -&#x3E; (X l K ) for which

the diagram

commutes, and the composition of natural transformations corresponds to

composition of functors. Thus SK is isomorphic to the dual of the category
having objects the comma categories (X l K) for all objects X in 5 and

morphisms the functors 12 for which (2.2) commutes. If f: X , Y is a mor-

phism in 5", then in this interpretation, D(f) simply becomes the functor

(Y+K) -&#x3E; (X + K) induced by f-
B. Let n&#x26;) 0 be the dual of the category of functors P -&#x3E; &#x26;n6-

and S : F -&#x3E; (P, Ens)o the functor defined by :
sx = F(X, K-) on objects,
and for f: X-&#x3E; Y, Sf = 5" ( f, K - ) .

Thus SKis the full subcategory of &#x26;&#x26;)0 generated by the objects
which are images under S of objects in 5’ . The functor D is the same as

S , considered as a functor with codomain SK 
This point of view is closely related to the dual of the theory of

categories with models of Appelgate-Tierney [1]. In a forthcoming paper
we will consider the relationship between categories with models and co-

shape.

We now proceed to prove a few facts about shape:

THEOREM 2.1. In the situation (2.1) let F: P -+ (f be a functor for which
F = RanK F exists. Then there is a functor F: SK-&#x3E; , (i with F = FD , i. e.

pointwise Kan extensions along K are shape invariant.

PROOF. We consider the description of SK given in A and define F on
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objects by F(XIK) = FX. If Q: (Y l K) , (X l K) is the dual of a mor-

phism in SK we define F[2 to be the canonical morphism:

with this F becomes a functor F : S K -&#x3E; (1 and clearly F D - F on objects
and on morphisms.

REMARK, We will see in Section 4 that F is unique provided that K sa-

tisfies condition C .

We recall from [12] that a functor F: C -3, D is codense if it satis-

fies one of the equivalent conditions :

( i ) For each object X in D, with limiting cone given

( iii ) For all objects X, X’ in D, the correspondence sending f : X -&#x3E; X’

to Ð (f, F- ) is a bijection

From ( iii ) and the definition of shape category we have immediately:

PROPOSITION 2.2. A functor K: cP , 5. is codense if and only if the cano-

ni cal functor D :F -&#x3E; SK is an isomorphism.
EXAMPLES. 10 In [12] Linton defines a category TU , the (full) clone o f
operations on a functor U: X-&#x3E; (f, and T u is the dual of the shape cat-

egory of U .

2° Let S, R be rings with identity, K : S -&#x3E; R a ring homomorphism pre-

serving the identity, considered as an additive functor. The shape category

SK is then a category with one object 1R and morphisms

A set map 71: R - R is a natural transformation if and only if
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Thus SK(1 R, 1R) consists of those maps R- R which respect the

operation of S on R via K . Under composition and addition in R , then

SK(1R, 1R) is a ring. The functor D : R - SK is the ring homomorphism
taking r in R to - . r in Sk.

3° Let 5 be a category, S a family of morphisms in F, F[S-1] the

category of fractions and FS : F-&#x3E; F-[ S-1] the canonical functor. Assume

that every object Y in 5 is S-completable, i. e. that the functor

is representable for all Y£ l F l , which is the same as to assume that FS
has right adjoint GS . If q denotes the unit of this adjunction, then the S-

complete objects are those objects X in 5 for which q X: X - GS FS X is

an isomorphism. Let K: Fs -&#x3E; 5 be the embedding of the full subcategory

generated by the S-complete objects. As pointed out in[9], there is an iso-

morphism I rendering commutative the diagram

thus the shape category SK may be identified with the category of frac-

tions F[ S-1] .

3. Condition C.

In order to have shape theory working nicely we have to impose some

condition on the functor K . Condition C below appears to be quite suitable.

DEFINITION 3. 1. We say that a functor K : 9 - 5 satisfies condition C if,
for any object A of P and any object Y of 5, the correspondence which
takes f: Y -&#x3E; K A to 5(f, K - ) is a bijection
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In terms of (2.1) K satisfies condition C if and only if the functor

D is fully faithful on pairs ( Y, K A ) of objects.
From Proposition 2.2 it follows immediately that K satisfies con-

dition C whenever it is codense. It is also quite easy to see that if K is

full then it satisfies condition C.

We defer studying the implications of condition C on shape theory
to the next section. We first exhibit some conditions which are equivalent
to C and some consequences which lie outside the strict framework of shape

theory. In Section 6 we shall see the implications of C in the theory of

triples.

LEMMA 3.2. Let K : 9 - 5 be a functor and A an object in P. Then, for

every object Y in T the correspondence

is a bijection if and only if

with limiting cone k B : KA -&#x3E; KB ; B&#x3E; -&#x3E; B, where  B , B &#x3E; is an object -
in (K A l K).

PROOF. (Only if) A natural transformation w: T(KA, K-) -&#x3E; T-(Y, K-)

determines a cone Y w (B)p K QKA . By the universal property of lim K QKA
there is a unique morphism w: Y - K A such that

Thus co = 5"(w, K-).

(If) Any cone w: Y -&#x3E; K QKA is of the form w  B,B &#x3E; = w (B) for a natural

transformation w : T(KA, K. ) -&#x3E; T (Y, K.) . But every such natural trans-

formation is induced by a unique morphism w: Y - K A , i. e. there is a unique
w such that w  B, B&#x3E; = (3 w ; thus a) is a limiting cone.

«Globalising» Lemma 3.2 we obtain

TH E O RE M 3.3. The functor K : 9 - 5 satisfies condition C if and only if
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for every object A in 9 , KA = lim K QKA with limiting cone as in

L emma 3. 2. 
(KA iK)

Whenever we have a commutative diagram

of functors, H induces, for every object X in D1 , a functor

in an obvious way and

Furthermore if H is fully faithful, then HX is an isomorphism.

be the canonical factorization of K : P -&#x3E; 5" : FD is the full subcategory of ’
5 generated by those objects which are image under K of objects in T ,
K’ is the embedding and K" does the same as K to objects and to mor-

phisms. By the remark above, Kk"A is an isomorphism, hence clearly an ini-
tial functor for any object K"A in 6 and

commutes. We are now ready to prove

T H E 0 R E M 3. 4. K : 5’ - fi satis fies condition C i f and only i f
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P ROO F. As (3.1) commutes and K’k"A is an isomorphism,

with the same limiting cone on both sides. If K satisfies condition C, then

K A = lim K QKA with limiting cone as in Lemma 3.2, hence

i. e. K’ = )?anK K on objects. Given any morphism
the diagram

commutes, where [f] and [K’f] are the functors induced by f and K’f
respectively. This shows that K’ = .RanK" K on morphisms. The component
of th e limiting cone, corre sponding to the obj ect  1, K "A &#x3E; in ( K " A l K ")
is 1: K A - K A , thus the counit of RanK" K is the identity.

Suppose now that

Then

If k  f, B&#x3E; denotes the component of the limiting cone corresponding to the

object f, B&#x3E; in (K"A l K"), then, by the hypothesis, k 1, A &#x3E; = lK4 ’ 
for all objects A in T . By what was said at the beginning of the proof,

where v is the limiting cone of limK kQKA . We have to show that
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For this consider f: K"A -&#x3E; K"B simply as a morphism in @ . As we have

K’ = )?anK.K, K’ f is the unique morphism in 5 for which

commutes for all objects g, C&#x3E; in (K"B l K"), where k’ is the limiting
cone associated with Ran K nK (K"B ) . In particular, for

we have the commutative diagram

Thus

We now give a necessary condition for K to satisfy condition C.

P R O P O SIT IO N 3.5. If K satisfies condition C, then K " is codense.

P ROO F. We show that for any K"A in E,

with limiting cone

As K satisfies condition C, by Lemma 3.2 we have

with limiting cone
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As K’ is an isomorphism,

with the same limiting cone as above. But K’ , being fully faithful, reflects

limits, hence

with limiting cone k  B’ : K"A -&#x3E; K "B , B &#x3E; = B. 

If the functor K admits a right Kan extension along itself, then it

admits a codensity triple ( cf . [13], Exercise 3, p. 246, there called co den-

sity monad ). For functors satisfying condition C we have :

PROPOSITION 3.6. Let K: P -&#x3E;T be a functor which satisfies condition
C and admits a codensity triple with (T ;Y : TK - K) = RanKK. Let

be the canonical factorization of K. Then K’ admits a codensity triple,
and this codensity triple is the same as the one of K .

P ROO F. By Theorem 3.4,

and by Theorem 1.2, (ii), there is a unique natural transformation 0 sat-

isf ying 0 K " = Y , and

The unit 77 and multiplication it of the codensity triple of K’ are the nat-

ural transformations for which

commute. Hence, as also
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commute, showing that q and g are also the unit and multiplication of the

codensity triple of K .

Suppose that the functor K satisfies condition C and let the object
Y in y be dominated by an object K A with A in T , i. e. assume that there
are morphisms

For every object X in 5 and every natural transformation

we have a commutative diagram

where f * exists as K satisfies condition C . Hence w = (pf)* . If we have

w = g*1 = g*2 then

Thus, as described in [12] where K is an inclusion, we have :

P R O P O SI T I O N 3.7. I f the functor K : P -&#x3E; T satisfies condition C, then

for every object Y in 5 which is dominated by an object K A, the corres-

pondence which takes f to f * is a bijection



277

In [4] a functor K: P -&#x3E; T is said to be dominant if every object
in T is dominated by an object of the form K A . From Propositions 3.7 and

2.2 we immediately have

COROLLARY 3.8. I f the functor K in ( 2.1 ) is dominant and satis fies con-
dition C then D is an isomorphism and K is codense.

EXAMPLES.

As pointed out before, any full functor, hence any full embedding,
satisfies condition C .

Codense functors also satisfy condition C . In order to construct a

class of codense functors, let S be a family of morphisms in a category ,
C[S-1] the category of fractions and FS:C-&#x3E; C[S-1] ] the canonical func-

tor. We then have

P RO P O SIT IO N 3.9. Any canonical functor F S* C -&#x3E;C[S-1] is codense.

The above Proposition is a direct consequence of the more general
statement :

PROPOSITION 3.10. If

is a commutative diagram, th en

- RanFS G and 
-

Lan FS G, where Lan stands for : absolute
J

left Kan extension.

PROOF. It is well known that Fs induces a bijection

for any pair of functors M, N: C[ S-1] -&#x3E; D). Thus, given any natural trans-

formation Y : M FS -&#x3E; G = G’ FS , there is a unique natural transformation
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hence (G’, 1) = Ran F S G . This Kan extension is clearly preserved by any
functor, and ( i ) is proved. Similarly one proves ( ii ).

The assertion of Proposition 3.10 still holds, of course, if we replace

FS by any functor F which induces a bijection Nat(M, N) , Nat(M F,NF)
and these functors are precisely the ones for which the assertion of Prop-
osition 3.10 holds. 

’

Some other more specific examples of functors satisfying condition

C will follow in Section 6, where we study functors having left adjoints.

4. The implications of condition C.

In this Section we refer again to the situation ( 2.1 ) .

PROPOSITION 4.1. I f K satis fies condition C, then SK is isomorphic to

SL and L is codense.
P ROO F . If K satisfies C, then for every object A in 

is a natural bijection. But

as D is the identity on objects,

Hence T(Y,K-) and SK (Y,L-) are equivalent. Thus

is equivalent to

i. e. SK (X I Y) is equivalent to SL (X,Y), and as SK and S L have the

same objects, they are isomorphic. L is then codense by Proposition 2.2.

For the sequel we shall need the technical

LEMMA 4.2. K satisfies condition C if and only if for any object Y in T,
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the functor DY : (Y l K) -&#x3E; (Y l L ) is an isomorphism.
P ROO F. It suffices to recall that D is the identity on objects and K sat-

isfies condition C means that D is fully faithful on pairs of objects of the

type (Y, KA ).

Lemma 4.2 entails immediately that if K satisfies C, then DY is

initial for any object Y in T . This in turn entails same nice properties
about pointwise Kan extensions, in particular the uniqueness of the factor-

ization described in Theorem 2.1.

THEOREM 4.3. 1 f in th e situation (2.1) th e functor Dy is initial for any
object Y in F, in particular if K satisfies condition C, then :

(i) For any functor F: P-&#x3E; , A, RanKF exists if and only if RanLF
exists ; i f they exist, then RanK F is canonically isomorphic to (RanLF )D,
and RanD (RanK F) is canonically isomorphic to RanL F.

(ii ) I f F: T , a is a functor and

then there is a unique functor F with F D = F ; furthermore

P ROO F . (i) Let f : X - Y be any morphism in 5-. f induces the commuta-
tive diagram

where L f I and [Df] are induced by f and D f . Composing with F: P -&#x3E; Q
and taking limits we obtain the following commutative diagram in (1, where
8X, 8Y , induced by initial functors, are isomorphisms, and the limits on

the left hand side exist if and only if the ones on the right h and side do.
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ilence RanK F and Ran L F exist simultaneously and

is a canonical isomorphism. The last assertion follows directly from Lemma

1.2, (ii).

exists, so does

by ( i ). By the very nature of 0 , £ 1o 8K = £2, and by Lemma 1.2 ( i i), ( iii ),

Let F be such that FD = F. Then I : FD-&#x3E; F induces a unique natural

transformation Y: F -&#x3E; F with () 0 tfr D = 1 . As 0 is an equivalence and D

is onto objects, tfr is an equivalence, hence

If G is a functor with G D = F, then 1: GD -&#x3E; F induces a unique natural

transformation r : G , F such that r D = 1 , hence r = 1 , again as D is

onto objects, hence F is the unique functor with FD = F . Finally

follows from

by Lemma 1.2 (i), (iii).

in (2.1) satisfies condition C, then
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P ROO F . If K satisfies C, then, by Proposition 4.1, L is codense, i. e.

and by Theorem 4.3 ( i ) ,

exists ; furthermore by ( ii ) of the same Theorem, there is a unique functor

L : SK -&#x3E; SK with L D = L , and L also satisfies

From (4.2), (4.1), we have, by Lemma 1.2, (ii), (lit) that there is a unique
n. t. £: 1 S K D -&#x3E; L with E 1o £K = 1 and

From (4.3) and (4.4) we infer that E : D - I is an equivalence, but this

entails that

From (D; 1: D K -&#x3E; L ) = RanKL and (4.1) we have by Lemma 1.2,

( ii ), ( iii ), that (1 SK; 1: D - D ) = RanDD, i. e.
COROLLARY 4.5. I f K in ( 2.1 ) satis fies condition C, then D is codense.

We conclude this Section by exhibiting the fact that when K satis-

fies condition C then the functor D is terminal in the family of functors

V : 5 - C characterized by
(a) C has the same objects as 5 ,
(b) V is fully faithful on pairs (X, K A ) with A in 5).

This generalizes Theorem 3.1 of [14] .

TH E O R E M 4.6. I f K in ( 2.1 ) satis fi es condition C and V:T-&#x3E; C sati s-

fies ( a ), (b) above, then there is a unique functor W: C-&#x3E; SK such that

WV = D.

PROOF. We interpret SK and D as in A of Section 2. We define W on ob-

jects by W(X) = ( X l K ) which amounts to the identity in our «usual » des-

cription of SK and is the only way to define W on objects so that h = D .
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Let f: X-&#x3E; Y be a morphism in C . f induces a functor

By (b) the functor VX: (X1K ) -&#x3E; (X l VK) is an isomorphism for every ob-

j ect X in 5. Hence [f] gives raise to a functor f: (Y l K) -&#x3E; (X l K) which
commutes with QX and QY , i. e. to a morphism in SK (X, Y) . The corres-
pondence f , f clearly preserves identities and composition, hence is a

functor.

Let g : X - Y be a morphism in J". The diagram

clearly commutes with both top arrows, hence W V g = (Vg) = D g . This
shows that W V = D on morphisms.

Let now W’ be a functor with W’V = D . W and W’ are clearly identical

on objects, and, as K and v satisfy ( b), they are identical on morphisms
in e which are of the type X - V K A, i. e. of the type V n for an n in

5(X, K A ) . Let now f: X -&#x3E; Y be a morphism in C and let

be commutative in e. (For any morphism Y -&#x3E; V K A in e we can write such

a diagram by ( b) .) From this we obtain a diagram
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which commutes, with both horizontal arrows, for all m in 5( Y, K A) and
all A in T . By the Lemma below this entails that W(f) = w’ ( f).

LEMMA 4.7. Let K: P, T be any functor and G,G’:(Y l K) -&#x3E; (X l K) two

functors which commute with the projections QX, QY. I f G[ i I - G’( i I for
all functors [i]: (K A l K) -&#x3E; ( Y l K ) induced by morphisms i : Y , K A in

5’, then G = G’. In other words : i f oi, oj’: 5(Y, K - ) -&#x3E; T (X, K-) satas fy
woi*=woi’* for any i : Y-&#x3E;K A , then ú) = oj’.

P ROO F. Let k : Y , K A be an object in ( Y l K ) . Then

and

hence G and G’ are equal on obj ects, and as they commute with Q X , QY , 
they are equal on morphisms.

REMARK. In the proof of Theorem 4.6 we have tacitly assumed that there

are morphisms Vm : Y - h K A , i. e. that C(Y, V K A ) is not empty for all

A . If it is empty, then the category ( Y1 K) = W(Y) is also empty, and

W (f) is the embedding of the empty category ( Y l K ) into ( X l K ) .

5. The adjoint situation.

The purpose of this Section is to collect some information about the

case where the functor K of ( 2.1 ) has a left adjoint. We will actually con-

sider the more general case where Ran K K exists and adapt some results

of [12] to our situation. In order to visualize to which category objects and

morphisms belong, we denote by X, Y, ... the objects in T and by D X ,

D Y, ... the ones in SK . 
As already observed in the proof of Lemma 3.2, given a functor

KQX: (X l K)-&#x3E; F, every cone Y -&#x3E; K QX can be identified with a natural

transformation w : F ( X , K . ) -&#x3E; T ( Y , K . ) , i. e. with a morphism w : DY -&#x3E; DX

in SK , and every such morphism represents a cone; then a limiting cone

Z - K QX is identified with a morphism A : D Z -&#x3E; D X having the universal

property: for every morphism w : D Y -&#x3E; DX , there is a unique morphism

f : Y - Z in 5 such that Xo D(f) = w. We call such a morphism universal.
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Suppose given, for every object X in 5, a universal morphism

The family (À X } determines a functor T : T-&#x3E; 5 ; for a morphism f: X -&#x3E; Y

in 5, T f : TX -&#x3E; 7’Y is defined to be the unique morphism with

With this X becomes a natural transformation D T - D and

Thus the family ( X X } determines a specific (within its equivalence class)

codens ity triple T = ( T, n, 03BC ), wh ere 77 X and 03BC X are defined to be the

unique morphisms satisfying respectively

Let cr T denote the Kleisli category of T and

the canonical functors. We define a functor j: 5T ’ SK by
IX = D X on objects,

I(f: Y -&#x3E; TX) =kXo Df: D Y -&#x3E; D TX -&#x3E; DX on morphisms.

Using (5.1) and ( 5.2 ) one verifies easily that I is a functor and that the

functor j FT = DI is fully faithful by the universal property of the morphisms
in { k X } . As it is the identity on objects, I is an isomorphism. H - UT I-1
is then right adjoint to D with unit q, counit f given by £ D X = k X and

satisfies H D = T . The right adjoint H to D with H D = T and counit

E D X = k X is uniquely determined by { k X } . As I is an isomorphism, the

triple induced by q ,6 : D -l H is T . 1: 5"T -* D is clearly the comparison
functor. 

On the other hand, if H is a given right adjoint to D with counit 

c , then for every X in 5 ,

is a family of universal morphisms, and with this family HD satisfies (5.1 ).

Thus we have a one to one correspondence :
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I families I X X } of universal morphisms} %x+ { adjunctions D -l H}.

Summarizing we have:

TH EO R E M 5.1. The functor D of (2.1) has a right adjoint i f and only i f
RanK . K exists and in this case SK is isomorphic to the Kleisli category
of the codensity triple of K . More precisely, there is a one to one corres-

pondence between families o f universal morphismes I À X} and adjunctions
D -l H given by

{k X l - H: 8K - 5 such that D --1 H with counit £ D X = k X.
The triple induced by D-l H is the codensity triple T o f K determined

by the corresponding I À X} via (5.1) and (5.2). The comparison functor

TT -&#x3E; SK (T-T the Kleisli category of T ) is an isomorphism.

Suppose that K has a left adjoint F with unit q and counit c .This

adj unction determine s a family {k X } of morphism s X X : D K F X -&#x3E; D X gi-

ven, f or f in F(X,KA), by

One verifies that every k X is universal and that the codensity triple of

K determined by {kX} via (5.1) and ( 5 .2 ) is identical to the one induced

by the adjunction q ,£ : F d K.

Let T = ( T , n , 03BC) be the triple induced by n , 6 : F--f K, TT its
Kleisli category and

the canonical functors. We then have :

CO ROL L A R Y 5.2. I f K has a left adjoint F with unit ri and counit f, then

D has a unique right adjoint H with HD = FK, unit q and counit c’ given
by £’D X ( f) = K£ A o K F f for f in T(X, K A ). The triples induced by

F-l K and D-l H are identical and the comparison functor I: TT 4 SK is

an isomorphism.

RE M A R K. If RanKK exists, in particular if K has a left adjoint, SK be-
longs to the same universe as 5’ - Indeed SK i s isomorphic to 5 T which
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belongs to the same universe as 5 .

COROLLARY 5.3. I f K has a le ft adjoint F, then the functors F, KF ,

FT and D render invertible the same family S of morphisms o f T.

P RO O F . The comparison functors

I : TT-&#x3E;S and C : 5,T
are fully faithful, hence F = C FT and D = 1FT render invertible the same
morphisms as FT. The canonical functor UT : TT -&#x3E; F satisfies UT - U T C’
where U T is the forgetful functor from the Eilenberg - Moore category 5’ T of
T to 5 and C’: TT -&#x3E; ST the comparison functor. C’ is fully faithful and

UT reflects isomorphisms, thus UT reflects isomorphisms. Hence we get :

K F = UT FT and FT render invertible the same morphisms. 

6. Condition C in the adjoint situation.

In this Section we study the implications of condition C in the case

where K of (2.1) has a left adjoint F . As in the last section, we denote

by n , f the unit and counit respectively of the adjunction Fa K and by
T = ( T , 77, It) the triple induced on 5 . We denote

the cotriple induced on 9 . We recall that the triple T is said to be idem-

potent if fl is an equivalence ; similarly we say that the cotriple is idem-

potent if 8 is an equivalence.

TH EOR EM G. 1. Suppose that the functor K of (2.1) has a left adjoint F .
Then K satisfies condition C if and only if the cotriple C is idempotent.

P ROO F. By definition K satisfie s condition C if and only if D is fully
faithful on pairs (X, K A) of objects in 5 , hence, by Corollary 5.2 if and

only if FT is fully faithful on the same pairs of objects. By the definition
of the morphisms in TT and of FT the diagram of natural transformations
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is commutative. (FT) is a natural bij ection if and only if qK is an equi-
valence. But if Y7 K is an equivalence, so is 8 = F 77 K . If, on the other

hand, F 77 K is an equivalence, we have from K £ o n K = 1 K that

As F is fully faithful on the image of K , q K o K£ = 1K , thus qK is an

equivalence.

The theory of shape of a functor K which has a left adjoint and

condition C turns out to be very closely related to idempotent triples and

cotriples. We therefore prove a few statements about the latter. We consider

our adjunction F -1 K with its induced triple T and cotriple C and restate

Proposition 2.1 of [4] together with its dual.

P RO P OS IT ION 6.2. For the triple T the following are equivalent :
(i ) T is idempotent,
(ii) f F is an equivalence,
(iii) F?7 is an equivalence,
(iv) Fn o £ F = 1,

and for the cotriple C the following are equivalent:
(i)o C is idempotent,
(ii )o 17 K is an equivalence,
(iii; K£ is an equivalence,
(iv)o r¡Ko Kf = 1.

The eight conditions just enumerated are all equivalent; i. e., we

have : 

PROPOSITION 6. 3. The triple T induced by an adjunction F-l K is idem-

potent if and only if the cotriple induced by the same adjunction is idem-

potent.

P RO O F. Suppose that T is idempotent. Then, by Proposition 6.1, (ii), f F

is an equivalence, thus E FK =,E C is an equivalence. As C is a cotriple,
£ C o8 = 1 C , thus 8 is an equivalence. Dually, C idempotent entails T

idempotent.
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Let now R and S be the families of morphisms rendered invertible

by K and F respectively, let T( S- 1] be the category of fractions with

respect to S and FS : T -&#x3E;T [S -1] the canonical functor. By Proposition
1.1 of [3], S and R are saturated.

THEOREM 6.4. For the adjunction F-1 K the following are equivalent :
(i ) K satisfies condition c.

(ii ) The triple T is idempotent.
(iii ) For every morphism f: K A , K B there is a pair of morphisms

in T with r in R and f = K go(K r)-1.
(iv) There is an isomorphism (unique)

( v ) There is an isomorphism (unique)

P RO O F . (i) =&#x3E; (ii) by Theorem 6.1 and Proposition 6.3.

(ii) =&#x3E; ( iii ). Let f : K A -&#x3E; K B be a morphism, and consider the mor-

phisms

Then c A is in R by Proposition 6.2, ( iii )° and

commutes. Hence

has, in general, a left inverse K , talking
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60 A (1 K A ) . Let now f : K A -&#x3E; K B be a morphism with f = K ga( K r )-1 and
r in R and let cv be a natural transformation as above. Then

commutes. Thus, taking 1 K A from the lower left to the upper right corner

along the perimeter, we have oi B ( f ) = fo w A (1KA) , hence

Thus 8 is a bijection, i. e. K satisfies condition C .

(ii) =&#x3E; (iv). By Corollary 5.3, the family of morphisms rendered in-

vertible by T and by F T is S , and, by Theorem 2.4 of [4], FS has a right
adjoint Ks such that the adjoint pair generates T . Thus in

I ’ exists (uniquely) with I’F s = FT by the universal property of FS and

I exists ( uni quely ) with

by the universal property of the Kleisli situation. Thus 1’1’ FS = FS , hence
1’1’ = 1 ; moreover

hence I

( iv) =&#x3E; (ii). If the isomorphism I’ exists, KS = UT I’ is right adjoint
to FS and the adjoint pair induce s T , and, again by Theorem 2.4 of [4],
T is idempotent. 
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(iv) =&#x3E; (v) is clear in the light of Corollary 5.2.

Each one of the conditions of Theorem 6.4 has, of course, a dual

and, by Proposition 6.3, these duals are equivalent to the original condi-

tions of Theorem 6.4.

I’ and I’-1 can be given explicitly: on objects, both are clearly
the identity. By Theorem 2.8, ( ii ), (vii) of [3], S has a calculus of left

fractions, hence every morphism X -&#x3E; Y in T(S-1] is an equivalence class

f /s of pairs

of morphisms in 5 with s in S, two pairs ( f, s ) , (f’, s’) being in the

same class if there is a commutative diagram

in 5 with s , s’ , t , t’ and r in. S . We define

I’ is well defined, for, if ( f, s ) and ( f ’, s’) are in the same class, the

diagram

commutes and Tr is an isomorphism. For

define
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By Proposition 6.2, TJ Y is in S . A straightforward verification shows that

I’ and I’-1 just defined are inverse to each other. Both plainly respect

identities and I’-1 respects composition. Indeed for

in , while

which, by the commutativity of the diagram

is equal to 1’‘1 (g)oI’-1 ( f ) . As I,-l respects composition, so does I’

and they are both functors. It remains to show that I’FS = FT on morphisms :
for h : X -&#x3E; Y in 5,

Clearly Ks = UT I’ , thus we obtain an explicit description of KS as :

KS (X) = T X on objects, 

EXAMPLES.

Vie first bring two examples of functors satisfying condition C , as

announced in Section 3.

10 Let X be a topological space, X the category of open sets in X

and inclusions. Let sap denote the category of topological spaces and

continuous maps. Let

be the section functor. s takes an obj ect p : E -&#x3E; X of (Top l X) to the

functor s p defined by
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s P (u) ={O:u-&#x3E; E I p 0 = inclusion of u in X} on objects,

S P (j)(O)=Ooj on morphisms of X 0 .

In [1] it is shown that s has a left adjoint r, the etale space functor of

Godement, and that the cotriple induced by the adjunction is idempotent.

Hence, by Proposition 6.3, the triple induced is idempotent, and by Theorem

6.4, s satisfies condition C .

20 Let be the category of compact Hausdorff spaces and continuous

maps, I : (? 5’,ap the inclusion. Let s : 5ap - (CO, Sets) be the canonical

functor sending X in C to Top (I-, X). In [1] it is shown that s has a

left adjoint and that the induced cotriple is idempotent. Thus, s satisfies

condition C .

30 We recall Example 3 of Section 2. By Theorem 1.1 of [9], K has a
left adjoint F and the adjunctions Fa K and F s -1 GS generate the same

idempotent triple T . In [9] Corollary 2.3 it was shown that the shape cat-

egory SK the category of fractions -T [S - 1 ], the Kleisli category TT of T

are all canonically isomorphic. Furthermore, by Theorem 3.4, 1.c, two ob-

jects in 5 have isomorphic S-completions if and only if they have the same

K-shape.
Two instances of this situation are :

a) See [10]. T =M . the category of nilpotent groups, S the family of P-

isomorphisms, where P is a family of primes. )IS is then the full subcat-

egory of M consisting of P-local nilpotent groups.
b) See [10]. T =MH, the homotopy category of nilpotent CW-complexes,
S the family of those morphisms 0 in MH for which 17 n (O) is a P-isomor-

phism for all n &#x3E; l. (MH)S then consists of the P-local CW-complexes.

7. Appendix. Comparison between rich- functors and functors satisfying con-
dition C .

In [6] Deleanu and Hilton introduced the notion of rich functors:

A functor V: C -&#x3E; 9 is rich if for any morphism g : V C - V C ’ in D, C , C’
in (2 , there is a diagram
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in e such that Vf2i is invertible for 1  i  k and

Theorem 2.10 of [6] says that a rich functor satisfies condition C 
A functor which satisfies condition C is not necessarily rich as the follow-

ing example shows. (See Example 2.9, (ii) of [6].) Let q be the category
of groups and T the subcategory consisting of Z and Z *Z (free group on

two generators, with morphisms the injections g1 , g2: Z-&#x3E; Z * Z, the co-

multiplication 03BC : Z -&#x3E; Z * Z and the identities. Let K : -T -&#x3E; q be the inclu-
sion. Then K is codense, hence satisfies C. K is not rich as for the tri-

vial homomorphism Z -&#x3E; Z in 9 there is no corresponding diagram in T .

If the functor K has a left adjoint, then K satisfies condition C

if and only if it is rich, as Theorem 6.4, (i), (iii), shows.
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