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CAHIERS DE TOPOLOGIE Vol. XVII-3 (1976)
ET GEOMETRIE DIFFERENTIELLE

ON CATEGORICAL SHAPE THEORY
by Armin FREI

0. Introduction.

The notion of shape was first introduced by Borsuk [2] in the study
of homotopy properties of compacta. Several others, e.g. [7], [8],[14],
[15], used the same principle in topological contexts. Roughly speaking
the principle consists in the following: Given a homotopy category T of
spaces and a full subcategory ? one forms a category O having the same
objects as J but larger hom-sets; a morphism in S is a system of mor-
phisms in J . However, for pairs of objects (X, 4) in J with 4 in P,
8(X,A) is equivalent to J (X, 4).

Mardesié [14] gave the general definition of shape for the homotopy
category of shapes and the full subcategory of spaces having the homotopy
type of CW-complexes, and showed that this definition agrees with many
of the previous ones. In[11] Le Van introduced the notion of shape for full

embeddings of abstract categories.

In the present paper we introduce the notion of the shape category
for a general functor K : ?>9J. The shape category SK of K has the same

objects as J and
SK(Xr Y) =Nat[3-(Y, K')’ j(X’K')] )

the composition being composition of natural transformations. A canonical

functor D: J SK is defined as being the identity on objects and
Df=3(f,K-) on morphisms.

Two morphisms in J are said to be K-shape equivalent or to have
the same K-shape if they are equivalent in SK' Any two objects which are
equivalent in J have, of course, the same K-shape, but two objects may

have the same K-shape even if there is no morphism in J between them.
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2 A. FREI

By imposing on the functor K the condition that the function
f>J(f,K-):T(X,KA)> SK(X,KA)

is a bijection for all pairs (X,KA4) in 9 with 4 in P, we call it condi-
tion C, we preserve one of the main features of «classical» shape theory
and obtain many results, some of which generalise facts known for full em-
beddings in Topology. It appears that C is most suitable to make shape

theory work nicely.

Throughout the paper we make frequent use of right Kan extensions.
In Section 1 we collect, for further reference, some facts about Kan exten-
sions along functors having an adjoint and along composite functors.

In Section 2 we introduce the notion of the shape category SK of
a functor K: # > J and the canonical functor D: J » SK’ giving three equi-
valent descriptions. We show that every pointwise right Kan extension along
K factors through D, i.e. is shape invariant. We recall from [13] the notion
of codense functor and show that K is codense if and only if D is an iso-
morphism.

In Section 3 we introduce our condition C for K and give two con-
ditions which are equivalent to C and are better suited for several proofs.
We also give some consequences of C which lie outside the actual frame-
work of shape theory.

Section 4 is concerned with consequences of condition C. Thus, if
K satisfies condition C, then L = DK is codense; the pointwise right
Kan extension of a functor exists along K if and only if it exists along L ;
the factorization of a pointwise Kan extension over D is unique and is it--
self a pointwise Kan extension over D and over L ; D is the pointwise
Kan extension of L along K and D is codense. We also show that if K
satisfies C, then ‘SK and D are characterised by a universal propérty, i.e.
D is terminal among the functors V: J » C where C has the same objects
J and V is fully faithful on pairs (X,K4).

Section 5 is devoted to the case where K has a left adjoint F.It
turns out that SK is isomorphic to the Kleisli category of the triple induced

by the adjunction F- K ; in particular D then has a right adjoint H and
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CATEGORICAL SHAPE THEORY 3

the adjunction D+ A induces the same triple as F—| K. Furthermore the
functors F', D, KF and the left adjoint Fp in the Kleisli situation render
invertible the same saturated family of morphisms in J.

In Section 6 we investigate the implications of condition C in the
case where K has a left adjoint F'. We show that for any adjunction F4 K
the induced triple is idempotent if and only if the induced cotriple is idem-
potent. If the functor K: ? > J has a left adjoint F, then K satisfies con-
dition C if and only if the induced triple and cotriple are idempotent, if and
only if the category SK is isomorphic to the category of fractions j[S'I]
with respect to the family S of morphisms in J rendered invertible by F,
or which is the same, by D. Also K satisfies C if and only if every mor-
phism f: KA >KB in J is of the form [ = Kgo(Kr)"! where r is a mor-
phism in ¥ rendered invertible by K .

NOTATION. We write lim for inverse or left limits. If K: # > J is any
functor and X any object in J , we denote (X}K ) the obvious comma cat-
egory and Qy: (X{K)> 9P the projection functor. An object in (X}K)
will be denoted
<f: X>KA, A> or simply <f,A>.
If G is any functor P » C,
(G',¢d:G'K~>G)= RanKG

stands for :

G' is the l'ight Kan extension of G along K with universal transfor-
mation ¢ .
We sometimes ‘write Rany G for the functor G'. RanKG indicates that the

Kan extension is pointwise, i.e. that

G'X = lim ((X{K) .9 _c C)

or equivalently, that the Kan extension is preserved by all representable
functors (see Theorem 3 on page 240 of [13]). Ranyg G indicates that the
Kan extension is absolute, i.e. is preserved by any functor. Where the term

natural transformation appears very often we abbreviate by n.t.
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4 A. FREI

The author is very grateful to Peter Hilton for much valuable infor-
mation, especially for the statement of Theorem 2.1 asserting that the point-
wise right Kan extension along K of any functor is shape invariant. While
writing the present paper, the author learned that Aristide Deleanu and Peter
Hilton are writing a paper on the same subject [G]. The two papers, although
of nonempty intersection, are quite different. Botk introduce the same no-
tion of the shape category of K, and the statement mentioned above is con-
tained in both, though with different arguments ( cf. Theorem 1.5 of {61), as
well as the assertion that the functor D is an isomorphism if and only if
K is codense (Proposition 2.2, cf. Proposition 2.7 of [6] ). In order to have
the theory working nicely, Deleanu and Hilton impose on K the condition
of being rich, which turns out to be stronger than condition C. In the Appen-

dix to the present paper we compare the two conditions.

There is of course a dual to shape theory, coshape theory, with dual
properties. However, in the present paper we do not formulate any duals,
except in Section 6 where an equivalence of some conditions with their own

duals appear.

1. On Kan extensions.

Proposition 3 on page 245 of [13] asserts that if a functor F: C > 9
is left adjoint to G: D> C with counit e: FG > 1, then Rang 1q) exists
and is equal to F with universal transformation ¢ . From this we infer im-

mediately :

PROPOSITION 1.1. If the functor F:C~ D is left adjoint to G: D C
with counit €: F G~ 1 of the adjunction, then for any functor H with dom-
ain 9, RangH exists, and is equal to H F with counit He: HFG > H.

As in the sequel we shall have to consider Kan extensions along

composite functors, we state and prove

LEMMA 1.2. Let
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CATEGORICAL SHAPE THEORY 5

be a commutative diagram of functors and F: C > & an arbitrary functor.

(i)If (F; FH; €L F) = Rany F and (F; FHSF) = Rany F, then

(F; FH, N Fp,—LeF) = Rany F.

(ii)If (F; FH,~L-F) = Rany F and (F; FHy2-F)=Ran, F
then there is a unique €: FH > F such that ejoeH;=e¢,; furthermore
(F; FH<-F) = Rany F.

(iii) The statements (i) and (ii) remain valid if Ran is replaced by
Ran or by Ran.

PROOF. (i) Let G: @2—» & be an arbitrary functor and GH, = GHHI_‘/’.F

a natural transformation. As F= RanHI F, there is a unique n.t.
0:GH>F such that €j00H; =¢.

As F = Rany F, there is a unique n.t.

v:G>F suchthat eovH =90.
Then
GIOGHIOVHHI =6106H1 =(/l.
v is the unique n.t. satisfying this last identity. Indeed if
ejoejov'HH, = ¢,
then

€jo(e;ovHH; ) =€ 0(eH; ov'HH; ),

thus, by the universal property of €¢;, ecovH =¢ov'H , and by the universal

property of € , v = v'.
i) As (F, FH;—L~F) = Rany F, the n.c.
FHH, =FH,—2~F
determines a n.t.
¢: FH > F such that €joell; =¢,.

Let now G: .(D2 > & be an arbitrary functor, and ¢: GH » F an.t. As
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6 A. FREI

(7’ ?l L2, F)= Ran” F,
the n.t.

o, =cuu, LTy, L F
determines a unique n.t.

n:G- F  such that eqonHy, =e¢;00 H; .
This entails ¢ joeH;onHH; =€ 0y H; and by the universal property of €, ,
eon H = . One verifies that n is the unique natural transformation with
this property.
(1ii) Suppose that
F= }\’anHIF and F = kanHF

and let G: & > F be any functor. Then

(CF; 6FH,—LGH) = Rany GF
and

(GF; GFH C&-GF )= Ran, GF ;
hence, by (1),

= = GeH ~ G
(CF; GFH, ——1-GFn,—1-GF)= Ran, GF.

The same argument works if we replace Ran by Ran and «G any functor»
by «G any representable functor». By a similar argument one shows that

(ii) still holds if Ran is replaced by Ran or by Ran .

2. Shape.

We generalize the notion of shape theory for inclusion functors of
[11] to general functors. Let K: ? > T be any functor. We define the shape
category SK of K by:
SK has the same objects as J ,
SK(X, Y)=Nat[J(Y,K-), T(X,K-)],
the composition of morphisms in SK is the composition of natural trans-

formations.
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Notice that in general SK does not belong to the same universe
U as T but to a higher universe U of which U is an element. In most

«practical» cases however, SK does belong to the same universe as J .
We define a canonical functor D:J » SK by: ) is the identity
on objects, and for a morphism f: X > ¥ in T,
D(f)=T(f,K-)=f*F(Y,K-)>T(\,K-),
We denote by L the composite functor . = DK . The situation is illustrated

in the diagram

(2.1)

If X,Y are objects in J we say that they are K-shape equivalent
or that they have the same K-shape if they are isomorphic in SK’ 1.e. if
DX<DY. If two objects X, Y in J are equivalent in J, then they are
of course K-shape equivalent, but in order that they be A-shape equivalent,
it is not even necessary that there be a morphism in f between them as the
following trivial example shows. Let J be any discrete category, P =1,

¢

the category consisting of one object and its identity and K: P » T any

functor. Then any two objects of J are K-shape equivalent.

We say that a functor G: J > @ is K-shape invariant if there is
a functor G: SK" @ such that GD =G.

As J and ‘SK have the same objects and ) is the identity on them

we will often (but not consistently) write Y for )Y where V is an object

of .

Before we proceed to prove any theorems we give two alternative
descriptions of the shape category and of the canonical functor. This will
enable us to keep some proofs rather simple and to establish connections

to other concepts.

A. For any object X in J the functor J(X,K-) can be identified



8 A. FREI

with the comma category (XV{K), and a natural transformation
w:J(Y,K-)>F(X,K-)

can be identified with an obvious functor Q:(Y|{K)> (X|K) for which

the diagram

(YiK) (X{K)
22) & A

?

commutes, and the composition of natural transformations corresponds to
composition of functors. Thus SK is isomorphic to the dual of the category
having objects the comma categories (X{K) for all objects X in J and
morphisms the functors Q1 for which (2.2) commutes. If f: X > Y is a mor-

phism in J, then in this interpretation, D(f) simply becomes the functor

(YV{K)- (X}K) induced by f.

B. Let (fp,gna)° be the dual of the category of functors P Ena
and S: J - (9) , Gna)o the functor defined by :
SX=J(X,K-) on objects,
and for f: XY, Sf= Jf, K-).
Thus SK is the full subcategory of (P, &na)o generated by the objects
which are images under S of objects in J . The functor D is the same as
S, considered as a functor with codomain SK
This point of view is closely related to the dual of the theory of
categories with models of Appelgate-Tierney [1]. In a forthcoming paper
we will consider the relationship between categories with models and co-~

shape.

We now proceed to prove a few facts about shape:

THEOREM 2.1. In the situation (2.1) let F: P > @ be a functor for which
F= RanKF exists. Then there is a functor F: 5 > Q@ with F=FD , i.e.

pointwise Kan extensions along K are shape invariant.

PROOF. We consider the description of SK given in A and define F on
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CATEGORICAL SHAPE THEORY 9

objects by F(X}K)=FX.1f Q: (Y}{K)>(X{K) is the dual of a mor-
phism in ‘SK we define F{) to be the canonical morphism:

FX=ltim FO, £+ lim FQ,Q = lim FQ, =FY;
(X4K) Cx (YiK) Cx (YiK) Cy

with this F becomes a functor F: SK > (@ and clearly FD=F on objects

and on morphisms.
REMARK. We will see in Section 4 that F is unique provided that K sa-

tisfies condition C.

We recall from [12] that a functor F: C> 9 is codense if it satis-

fies one of the equivalent conditions :

(i) For each object X in 9, ()l(i*rr}z?)FQX = X with limiting cone given
by A<f: X> FY,Y>=f.

(ii) (1q); F-L-F) = RangF.

(iii) For all objects X, X' in D, the correspondence sending f: X » X'
to D(f, F-) is a bijection

DeX,X')>Nat[D(X',F-), D(X,F-)].
From (1iii) and the definition of shape category we have immediately:

PROPOSITION 2.2. 4 functor K: > T is codense if and only if the cano-

nical functor D: J - ‘SK is an isomorphism.

EXAMPLES. 1° In[12] Linton defines a category T, the (full) cloneof
operations on a functor U: X > @, and TU is the dual of the shape cat-

egory of U.

2° Let S, R be rings with identity, K: S > R a ring homomorphism pre-
serving the identity, considered as an additive functor. The shape category

SK is then a category with one object I R and morphisms
SK(IR, IR)=Nat[R(IR,KI1S), R(1R,K1S)].
A set map : R > R is a natural transformation if and only if

K(s)on(r)=n(K(s)or).
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10 A. FREI

Thus SK(IR, IR) consists of those maps R»> R which respect the
operation of S on R via K. Under composition and addition in R, then
SK(IR, IR) is a ring. The functor D: R - SK is the ring homomorphisin
taking r in R to -.r1 in ‘SK'

30 Let J be a category, S a family of morphisms in I, T[S™!] the
category of fractions and Fg : J > I S°1] the canonical functor. Assume

that every object Y in J is S-completable, i.e. that the functor
TS (-, Y): T Ena

is representable for all Ye€|J|, which is the same as to assume that Fg
has right adjoint Gg . If n denotes the unit of this adjunction, then the S-
complete objects are those objects X in J for which n X: X - GsFg X is
an isomorphism. Let K: 3.5—» J be the embedding of the full subcategory
generated by the S-complete objects. As pointed out in[9], there is an iso-

morphism / rendering commutative the diagram

Jis-N
%
J [
\
SK
thus the shape category SK may be identified with the category of frac-
tions J[$°1].

3. Condition C.

In order to have shape theory working nicely we have to impose some
condition on the functor K. Condition C below appears to be quite suitable.
DEFINITION 3.1. We say that a functor K: ? » J satisfies condition C if,
for any object A of ? and any object Y of J, the correspondence which

takes f: Y > KA to J(f,K-) is a bijection
:J(Y,KA)>NatlT(KA,K-), T(Y,K-)].
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In terms of (2.1) K satisfies condition C if and only if the functor
D is fully faithful on pairs (Y, KA4) of objects.

From Proposition 2.2 it follows immediately that K satisfies con-
dition C whenever it is codense. It is also quite easy to see that if K is
full then it satisfies condition C.

We defer studying the implications of condition C on shape theory
to the next section. We first exhibit some conditions which are equivalent
to C and some consequences which lie outside the strict framework of shape
theory. In Section 6 we shall see the implications of C in the theory of

triples.

LEMMA 3.2. Let K: ® 59 be a functor and A an object in . Then, for

every object Y in J the correspondence

J(Y,KA) — NatlT(KA4,K-), T(Y,K-)]
f ——3J(f,K-)

is a bijection if and only if
KA =lim( (Ka}K) KA. 9 K .9

with limiting cone )‘<,6:KA > KB : B> =B, where <B,B> is an object
in (KA|K).

PROOF. (Only if) A natural transformation w: J(KA,K-)-T(Y K-)

determines a cone ¥ 2(B) K Qx4 - By the universal property of lim K Qg 4

there is a unique morphism w: Y » KA such that
w(B)=PBw forall B:KA~>KB=KQg,<B,B>.
Thus 0 =J (w,K-).

(If) Any cone w: Y » KQy, is of the form ®cp B> = w(fB) for a natural
transformation w: J(KA,K-)>J(Y,K-). But every such natural trans-
formation is induced by a unique morphism w: ¥ > K4, i.e. there is aunique
w such that w ¢ 5 p, = Bw ; thus w is a limiting cone.

«Globalising» Lemma 3.2 we obtain

THEOREM 3.3. The functor K: ® > J satisfies condition C if and only if
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12 A. FREI

for every object A in P, KA= lim KQg, with limiting cone as in
(KAYK)
Lemma 3.2.
Whenever we have a commutative diagram

e 1

of functors, H induces, for every object X in '(Dl , a functor
Hy:(XVH,)> (HX\H,)
in an obvious way and
QuxHy = Qx: (X4H;)-C.
Furthermore if H is fully faithful, then ﬁxis an isomorphism.

Let

K . § K .3

be the canonical factorization of K: ® > J : & is the full subcategory of
J generated by those objects which are image under K of objects in ?,
K' is the embedding and K" does the same as K to objects and to mor-
phisms. By the remark above, [-%['( 4 is an isomorphism, hence clearly an ini-
tial functor for any object K"4 in & and

>
’

(K"A‘K") KK"A (KA‘K)

(3.1) Qkna Ok 4

commutes. We are now ready to prove
THEOREM 3.4. K: ? » T satisfies condition Cif and only if

(K'; 1: K'K" > K) = RanK..K.
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CATEGORICAL SHAPE THEORY 13

>
PROOF. As (3.1) commutes and KknA is an isomorphism,

with the same limiting cone on both sides. If K satisfies condition C, then

KA =1limK Qg , with limiting cone as in Lemma 3.2, hence
K'(K"A)=KA = limKQgwy = RangaK(K"4),

it.e. K'= RanKnK on objects. Given any morphism f: K"A > K"B in &,

the diagram

(K" A}K") Kk (KA}VK)
QK"A %

[ P [x'f]
% M
(K"B}K") - (KB{K)
Kignp

commutes, where [f] and [ K'f] are the functors induced by f and K'f
respectively. This shows that K’ = RanK « K on morphisms. The component
of the limiting cone, corresponding to the object <1,K"A> in (K"A|K")
is 1: KA » KA, thus the counit of RanK # K is the identity.
Suppose now that

Rang K = (K'; 1: K'K">K ).
Then

K'K"A =KA=1limKQgn, -
If A<f,B> denotes the component of the limiting cone corresponding to the
object <f, B> in (K"A}K"), then, by the hypothesis, Aer,a> = Igy s

for all objects A in ?. By what was said at the beginning of the proof,
Acr B> TV<K!
) f, B>
where v is the limiting cone of limK Qg 4 . We have to show that

V<K'f,B> =K'f.
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14 A. FREI

For this consider f: K"A > K”"B simply as a morphism in &. As we have
K’'= RanKnK , K'f is the unique morphism in J for which

KC.
KA = RanKnK(K A) RanK.K(K B)=KB

commutes for all objects <g, C> in (K"B“("), where A' is the limiting

cone associated with RanK..K(K"B). In particular, for
C=B and g:ZKnB,
we have the commutative diagram

KB

’ —
A(f,B> A'<1,B>_.‘IKB

K4 KB
K'f

Thus U<K'f,B> =A<f,B> =K'f.

We now give a necessary condition for K to satisfy condition C.
PROPOSITION 3.5. If K satisfies condition C, then K" is codense.

PROOF. We show that for any K"4 in &,

K"A = lim( (K"A}K") Ok ¢ K- &)
with limiting cone
Acpr:K*A-K"B, B> =B"

As K satisfies condition C, by Lemma 3.2 we have

K'K"A = lim( (KA}K) %k4.9_k &)

with limiting cone

A(,B:KA-»KB,B‘> =Ack'gr:K'’K"A->K'K"B,B> = K'B’-

7%



CATEGORICAL SHAPE THEORY 15

>
As K' is an isomorphism,

K'K"A = lim( (K"A}K") k4.9 K" g K'.7)

with the same limiting cone as above. But K', being fully faithful, reflects

limits, hence
K"A = lim( (K"4}K) 2K"4 9 K" g
with limiting cone )‘<,3'-'K"A->K"B, B> = B’.

If the functor K admits a right Kan extension along itself, then it
admits a codensity triple (cf. [13], Exercise 3, p.246, there called coden-

sity monad). For functors satisfying condition C we have:

PROPOSITION 3.6. Let K: $ > T be a functor which satisfies condition
C and admits a codensity triple with (T; y: TK > K) = Rang K. Let

9 K" .g_K' g

be the canonical factorization of K. Then K' admits a codensity triple,

and this codensity triple is the same as the one of K.
PROOF. By Theorem 3.4,
(K'; 1: K'K" > K ) = Rang nK
and by Theorem 1.2, (ii), there is a unique natural transformation ¢ sat-
isfying $ K" = ¢, and
(T,' ¢.' TK") K’) s RaTLK'K'.
The unit » and multiplication pu of the codensity triple of K’ are the nat-

ural transformations for which

TK' ¢ K TK' ¢ K’
Y

pK’ TK’

1
%

K' T?K'

nkK’

commute. Hence, as $ K" =4 and K'K”" = K, also
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16 A. FREI

TK __ ¥ K TK ¢ K
o
nk 1 pK TK
o
K T2K

commute, showing that  and p are also the unit and multiplication of the

codensity triple of K .

Suppose that the functor K satisfies condition C and let the object
Y in J be dominated by an object KA with 4 in P, i.e. assume that there

are morphisms

Y94 ,.KA B .Y inJ with pg=1.
For every object X in J and every natural transformation
w:J(Y,K-) > T(X,K-)
we have a commutative diagram

JrY,K-)

\W\

1

P* . CJ(Y,K°) = S.(X’K°)
7* 7

J(KA,K-)

where * exists as K satisfies condition C. Hence w =(pf )*. If we have
w=gh= gi’,‘ then

g3(q) =g35(q), i.e. qg; =qgy, hence g; = g,.
Thus, as described in[12] where K is an inclusion, we have:

PROPOSITION 3.7. If the functor K:® > J satisfies condition C, then
for every object Y in J which is dominated by an object K A, the corres-

pondence which takes f to f* is a bijection

J(X,Y)—Na[T(Y,K-), T(X,K-)].
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CATEGORICAL SHAPE THEORY .17

In [4] a functor K: ? > T is said to be dominant if every object
in J is dominated by an object of the form KA . From Propositions 3.7 and

2.2 we immediately have

COROLLARY 3.8. If the functor K in (2.1) is dominant and satisfies con-

dition C then D is an isomorphism and K is codense.

EXAMPLES.

As pointed out before, any full functor, hence any full embedding,
satisfies condition C.

Codense functors also satisfy condition C. In order to construct a
class of codense functors, let S be a family of morphisms in a category C,
C[S"1] the category of fractions and Fg:C5Cf S°!1 the canonical func-

tor. We then have

PROPOSITION 3.9. Any canonical functor Fg: C > C[SI] is codense.

The above Proposition is a direct consequence of the more general

statement :

PROPOSITION 3.10. If

G ¢ )
FS Gl

ers-1]

is a commutative diagram, then

(i) (G';1:G'Fg»>G )= RanFSG and

(ii) (G'; 1: G G'Fg )= LanFSG, where Lan stands for: absolute
left Kan extension.
PROOF. It is well known that Fg induces a bijection

Nat(M,N) > Nat(MFg, NFg)

for any pair of functors M, N: C[ 57115 D. Thus, given any natural trans-

formation ¢: MFg» G =G'Fg, there is a unique natural transformation
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18 A. FREI

Y':M > G with loy'Fg=1¢,
hence (G',1) = RanFSG . This Kan extension is clearly preserved by any
functor, and (i) is proved. Similarly one proves (ii).
The assertion of Proposition 3.10 still holds, of course, if we replace
Fg by any functor F which induces a bijection Nat(M,N)~» Nat(M F,NF)

and these functors are precisely the ones for which the assertion of Prop-

osition 3.10 holds.

Some other more specific examples of functors satisfying condition

C will follow in Section G, where we study functors having left adjoints.
4. The implications of condition C.

In this Section we refer again to the situation (2.1).

PROPOSITION 4.1. If K satisfies condition C, then SK is isomorphic to
‘SL and L is codense.

PROOF. If K satisfies C, then for every object 4 in ¥,

J(Y,K4) —& S (Y,K4)

is a natural bijection. But

SK(Y, KA)= SK(Y, DKA), as D is the identity on objects,

= SK(Y, LA).
Hence J(Y,K-) and SK(Y’ L-) are equivalent. Thus
Nat[J(Y,K-), T(X,K-)]
is equivalent to
Nat[Sy(Y,L-), Sx(X,L-)1,

ie. 5K(X, Y) is equivalent to SL(X, Y), and as SK and SL have the
same objects, they are isomorphic. L is then codense by Proposition 2.2.

For the sequel we shall need the technical

LEMMA 4.2. K satisfies condition C if and only if for any object Y in T,
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the functor bY (YVK)> (YL ) is an isomorphism.

PROOF. It suffices to recall that D is the identity on objects and K sat-
isfies condition C means that D is fully faithful on pairs of objects of the
type (Y,KA4).

>

Lemma 4.2 entails immediately that if K satisfies C, then Dy is
initial for any object Y in J . This in turn entails same nice properties
about pointwise Kan extensions, in particular the uniqueness of the factor-

ization described in Theorem 2.1.

THEOREM 4.3. If in the situation (2.1) the functor by is initial for any
object Y in I, in particular if K satisfies condition C, then:

(i) For any functor F: % - @, RanKF exists if and only if RanLF
exists; if they exist, then RanK F is canonically isomorphic to (RanLF)D,
and RanD(RanK F ) is canonically isomorphic to RanL F.

(ii)If F: $ > @ is a functor and
(;7'; eI:ﬁK»F)= RanKF,
then there is a unique functor F with FD = F ; furthermore
(F; 1:FD>F)=Ran,F and (F;e;:FL>F)=Ran, F.
PROOF. (i) Let f: X > Y be any morphism in J. f induces the commuta-

tive diagram

(YIK) Y (DY|L)

(1 P [Df]
% QDX

(X}K) _ (DX{L)

where [f] and [Df] are induced by f and Df. Composing with F: % > @
and taking limits we obtain the following commutative diagram in (, where
Ox,0y, induced by initial functors, are isomorphisms, and the limits on

the left hand side exist if and only if the ones on the right hand side do.
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(RangF )(Y)=lim FQy limFQpy= (RanLF)(DY)

=lim F Qy[ f] =limF Qpy[ Df]
(Ranyg F)(f) (Rany F)(Df)
(Rang F)(X)=limF Qy 7 limFQpy=(Ran;, F)(DX)

Hence RanKF and RanL F exist simultaneously and
Rany F ~—2—— (Ran, F)D

is a canonical isomorphism. The last assertion follows directly from Lemma

1.2, (ii).

(ii) As RanKF = (-F; €: FK » F ) exists, so does
RanLF=(77';e2:77L—»F)

by (i). By the very nature of 0, €;00K = €5, and by Lemma 1.2 (ii), (iii),

(77; 0:7’10» ;7') = RanD;"'
Let F be such that FD = F. Then I: FD» F induces a unique natural

transformation ¢ : F>F with 0o D =1.As 0 is an equivalence and D

is onto objects, ¢ is an equivalence, hence
(-F; 1:-FD—>~F)=RanDi".
If G is a functor with GD = }", then 1: GD > F induces a unique natural

transformation r: G > F such that r D = 1, hence r =1, again as D is

onto objects, hence F is the unique functor with F D = F. Finally
(F;el:FL»F)=RanLF
follows from
(F;e;: FK>F)=RangF and (F; 1: FD>F)=RanpF
by Lemma 1.2 (i), (iii).
COROLLARY 4.4. If K in (2.1) satisfies condition C, then

(D; 1: DKL )=RangL.
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PROOF. If K satisfies C, then, by Proposition 4.1, L is codense, i.e.

(4.1) (18¢;1:L>L)=Ran, L,
and by Theorem 4.3 (1),
(4.2) (L;e;:LK>L)=RangL

exists; furthermore by (ii) of the same Theorem, there is a unique functor
L: SK - ‘SK with LD = L, and L also satisfies

(4.3) (L; 1:LD>L )= RanplL.

From (4.2), (4.1), we have, by Lemma 1.2, (ii), (iii) that thereis a unique
n.t. e: ISK D 5 L with €;0eK =1 and

(4.4) (18g;e: D> L )=RanpL.

From (4.3) and (4.4) we infer that ¢: DsL is an equivalence, but this

entails that

(D;ejo e K=1:DK»L)=RangL.

From (D; 1: DK—» L ) = Rang L and (4.1) we have by Lemma 1.2,
(ii), (iii), that (18g;1: D> D) =RanpD, i.e.

COROLLARY 4.5. If K in (2.1) satisfies condition C, then D is codense.

We conclude this Section by exhibiting the fact that when K satis-
fies condition C then the functor D is terminal in the family of functors
V:J > C characterized by

(a) C has the same objects as J ,
(b) V is fully faithful on pairs (X, KA) with 4 in & .
This generalizes Theorem 3.1 of [ 14] .

THEOREM 4.6. [f K in (2.1) satisfies condition Cand V:J > C satis-
fies (a), (b) above, then there is a unique functor W: Cs SK such that
WV =D.

PROOF. We interpret SK and D as in A of Section 2. We define W on ob-
jects by W(X) =(X{K) which amounts to the identity in our «usual» des-

cription of SK and is the only way to define W on objects so that WV = D,
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Let f: X > Y be a morphism in C. f induces a functor

(YIVK) Ul (xivk)
By (b) the functor -I)/X-' (X}K)-(X{VK) is an isomorphism for every ob-
ject X in T . Hence [ f] gives raise to a functor f: (Y{K)»(X{K) which
commutes with QX and QY , i.e. to a morphism in SK(X, Y ). The corres-
pondence f—>;‘ clearly preserves identities and composition, hence is a
functor.

Let g: X » Y be a morphism in J . The diagram
[g]

(YIK) (XIK)
Ve
-I)/Y —I)/X
k) —2E kv

clearly commutes with both top arrows, hence WV g = (T/_g—) = Dg. This
shows that WV = D on morphisms.

Let now W' be a functor with W'V =D. W and W' are clearly identical
on objects, and, as K and V satisfy (b), they are identical on morphisms
in C which are of the type X » VKA, i.e. of the type Vn for an n in
J(X,KA). Letnow f: X > Y be a morphism in C and let

X ! Y

Vn l Vm

VKA

be commutative in €. (For any morphism ¥ > VK A4 in C we can write such

a diagram by (b).) From this we obtain a diagram

Wf

WX=W'X Vy=w'y
w'f
\Dr\~ ﬂ
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which commutes, with both horizontal arrows, for all m in J(Y,KA) and
all 4 in ? . By the Lemma below this entails that W(f) = W'(f).

LEMMA 4.7. Let K: P > T be any functor and G, G': (YJK)-»()HK) two
functors which commute with the projections Qy, Qy. If Gli] = G'li] for
all functors [il: (KAVK)~ (Y}|K) induced by morphisms i:Y > KA in
T, then G =G". In other words: if w,0': J(Y,K-)>J(X,K-) satisfy
wol*=woi'*forany i: Y-KA, then v = w’.
PROOF. Let k: Y > KA be an object in (Y{K ). Then

Gk =G[Ek1(1KA) and G’k =G'[k](IKA),

“hence G and G' are equal on objects, and as they commute with Qy, Qy ,

they are equal on morphisms.

REMARK. In the proof of Theorem 4.6 we have tacitly assumed that there
are morphisms Vm: Y > VKA, i.e. that C(Y,VKA) is not empty for all
A. If it is empty, then the category (Y{K)=W(Y) is also empty, and
W(f) is the embedding of the empty category (Y{K) into (X{K).

5. The adjoint situation.

The purpose of this Section is to collect some information about the
case where the functor K of (2.1) has a left adjoint. We will actually con-
sider the more general case where RanKK exists and adapt some results
of [12] to our situation. In order to visualize to which category objects and
morphisms belong, we denote by X, Y, ... the objects in J and by DX,
DY, ... the ones in SK'

As already observed in the proof of Lemma 3.2, given a functor
KQX: (XIK)> 9, every cone ¥ » K(Qy can be identified with a natural
transformation @ : J (X,K-)»> J(Y,K-), i.e. with a morphism w : DY » DX
in SK’ and every such morphism represents a cone; then a limiting cone
Z > KQy is identified with a morphism A: DZ > DX having the universal
property: for every morphism w: DY > DX, there is a unique morphism

f:Y>Z in J such that Ao D(f) = w . We call such a morphism universal.
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Suppose given, for every object X in J, a universal morphism

AX:DTX-DX.

The family {A X} determines a functor T:J > J ; for a morphism f: X > Y
inJ, Tf: TX > TY is defined to be the unique morphism with

(5.1) MYoD(Tf)=DforX.
With this A becomes a natural transformation DT > D and
(T; AK-(1K-): TK > K ) = RangK.
Thus the family { A X} determines a specific (within its equivalence class)

codensity triple T=(T,n,pu), where X and p X are defined to be the

unique morphisms satisfying respectively
(5.2) AXoD(nX)=1DX and AXoD(pX)=AXoATX.
Let J; denote the Kleisli category of T and
FresTp Up:Tps9
the canonical functors. We define a functor /: 3.T > SK by

IX =DX on objects,
I(f: Y>TX)=AXoDf: DY>DTX-»> DX on morphisms.

Using (5.1) and (5.2) one verifies easily that [ is a functor and that the
functor [ F = DI is fully faithful by the universal property of the morphisms
in {AX}. As it is the identity on objects, I is an isomorphism. H = Uy -1
is then right adjoint to D with unit 7, counit ¢ given by eDX = A X and
satisfies HD =T . The right adjoint H to D with HD =T and counit
eDX =AX is uniquely determined by {A X}. As [ is an isomorphism, the
tiple induced by n,e: D~ H is T. [:J ;> D is clearly the comparison

functor.

On the other hand, if H is a given right adjoint to D with counit.

€, then for every X in J,
{iAX=¢DX:DHDX> DX}

is a family of universal morphisms, and with this family HD satisfies (5.1).

Thus we have a one to one correspondence :
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{ families { A X} of universal morphisms} <= { adjunctions D - H}.

Summarizing we have:

THEOREM 5.1. The functor D of (2.1) has a right adjoint if and only if
RanKK exists and in this case ‘SK is isomorphic to the Kleisli category
of the codensity triple of K. More precisely, there is a one to one corres-
pondence between families of universal morphisms {AX} and adjunctions
D H given by
INX} == H: 8k » T such that D-| H with counit eDX =\ X.

The triple induced by D H is the codensity triple T of K determined
by the corresponding {A X} via (5.1) and (5.2). The comparison functor
Ir- SK (STT the Kleisli category of T) is an isomorphism.

Suppose that K has a left adjoint F with unit n and counit ¢ .This
adjunction determines a family {A X} of morphisms AX: DKFX > DX gi-
ven, for f in J(X,KA), by

AX(f)=KeAoKFf in T(KFX,KA).

One verifies that every A X is universal and that the codensity triple of
K determined by {A X} via (5.1) and (5.2) is identical to the one induced
by the adjunction 7,e: F - K.

Let T=(T,n,u) be the triple induced by n,e: F< K, 3.7, its
Kleisli category and
FT:ST-)STT, UT:gT")g'
the canonical functors. We then have:

COROLLARY 5.2. If K has a left adjoint F with unit n and counit ¢, then
D has a unique right adjoint H with HD = FK, unit n and counit ¢' given
by ¢'DX(f)=Ke¢AoKFf for f in J(X,KA). The triples induced by
F-4 K and D H are identical and the comparison functor I: J . > SK is

an isomorphism.

REMARK. If RanKK exists, in particular if K has a left adjoint, SK be-

longs to the same universe as J . Indeed ‘SK is isomorphic to S'T which
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belongs to the same universe as J .

COROLLARY 5.3. If K has a left adjoint F, then the functors F, KF,
Fp and D render invertible the same family S of morphisms of J.

PROOF. The comparison functors
1:3'7.-)5 and C.'j'T»?

are fully faithful, hence F = CFp and D =1 Fp render invertible the same
morphisms as Fp . The canonical functor Uy : 3T > J satisfies Ur = vler
where U T is the forgetful functor from the Eilenberg-Moore category J T of
Tt and C': gT >JT the comparison functor. C' is fully faithful and
UT reflects isomorphisms, thus U reflects isomorphisms. Hence we get:

KF =Up Fp and Fp render invertible the same morphisms.

6. Condition C in the adjoint situation.

In this Section we study the implications of condition C in the case
where K of (2.1) has a left adjoint F . As in the last section, we denote
by n,e¢ the unit and counit respectively of the adjunction F-| K and by

T=(T,n,p) the triple induced on J . We denote
C=(C,e,8)=(FK,e, FyK)

the cotriple induced on ? . We recall that the triple T is said to be idem-
potent if p is an equivalence; similarly we say that the cotriple is idem-

potent if & is an equivalence.

THEOREM 6.1. Suppose that the functor K of (2.1) has a left adjoint F .
Then K satisfies condition C if and only if the cotriple C is idempotent.

PROOF. By definition K satisfies condition C if and only if D is fully
faithful on pairs (X, KA) of objects in J , hence, by Corollary 5.2 if and
only if FT is fully faithful on the same pairs of objects. By the definition

of the morphisms in STT and of Fy the diagram of natural transformations

J(Y,KA4) (Fg) I (Y, KA)

3M\KM\=3(Y,TKA)
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is commutative. (Fp) is a natural bijection if and only if nK is an equi-
valence. But if nK is an equivalence, so is 6 = FyK . If, on the other

hand, FnpK is an equivalence, we have from KeonK = 1K that
F(pKoKe)=1FK.

As F is fully faithful on the image of K, nKoKe = IK, thus n K is an

equivalence.

The theory of shape of a functor K which has a left adjoint 'and
condition C turns out to be very closely related to idempotent triples and
cotriples. We therefore prove a few statements about the latter. We consider
our adjunction F - K with its induced triple T and cotriple C and restate

Proposition 2.1 of [4] together with its dual.

PROPOSITION 6.2. For the triple T the following are equivalent :
(i) T is idempotent,
(ii) €F is an equivalence,
(iit) Fn is an equivalence,
(iv) FnoeF =1,
and for the cotriple C the following are equivalent:
(i) C isidempotent,
(ii) nK is an equivalence,
(iit p Ke is an equivalence,

(ivp nKoKe = 1.

The eight conditions just enumerated are all equivalent; i.e., we

have:

PROPOSITION 6.3. The triple T induced by an adjunction F—| K is idem-
potent if and only if the cotriple induced by the same adjunction is idem-

potent.

PROOF. Suppose that T is idempotent. Then, by Proposition 6.1, (ii), € F
is an equivalence, thus ¢ FK =¢C is an equivalence. As C is a cotriple,
€Cod = 1C, thus 8 is an equivalence. Dually, C idempotent entails T

idempotent.
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Let now R and S be the families of morphisms rendered invertible
by K and F respectively, let J [ S1]1 be the category of fractions with
respect to S and Fg:J -» J[S°1] the canonical functor. By Proposition
1.1 of [3], S and R are saturated.

THEOREM 6.4. For the adjunction F - K the following are equivalent:
(i) K satisfies condition C.
(ii) The triple T is idempotent.
(iii ) For every morphism f: KA » KB there is a pair of morphisms

A r A’ g B
in ® with rin R and f=Kgo(Kr) L.
(iv) There is an isomorphism (unique )

1': 51811 > T, with I'Fg=Fp.

(v) Thereis an isomorphism (unique )
I": T8 15 8 with I"Fg=D.
PROOF. (i) <= (ii) by Theorem 6.1 and Proposition 6.3.
(ii) = (iii). Let f: KA > KB be a morphism, and consider the mor-

phisms

A— €4 FKA Ff ., FKB —€8B . B

Then € A is in R by Proposition 6.2, (iii)° and

KA f KB

KeA KeB

KFKA = KFKB
KFf

commutes. Hence f=(KeBoKFf)o(Ked) .
(iii) = (i). The map
8:J(Y,KA)>Nat[T(KA,K-), T(Y,K-)]
has, in general, a left inverse «, taking w:J(KA,K-)»>J(Y,K-) to
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wA(IKA). Let now f: KA > KB be a morphism with f =K go(Kr)™! and

r in R and let w be a natural transformation as above. Then

J(KA,KB) —2EB ___F(Y KB)

J(KA,Kg) J(Y,Kg)
J(KA,KA') —2A" _F(Y,KA')
J(KA,Kr) J(Y,Kr)

J(KA,KA)—24 . J(Y KA)

commutes. Thus, taking 1K A from the lower left to the upper right corner

along the perimeter, we have w B(f) = fow A(1KA), hence
o =(wd(1KA))*=56x(w)
Thus & is a bijection, i.e. K satisfies condition C.

(ii) = (iv). By Corollary 5.3, the family of morphisms rendered in-
vertible by T and by Fj is S, and, by Theorem 2.4 of [4], Fg has a right

adjoint K¢ such that the adjoint pair generates T. Thus in

grs-13

{' exists (uniquely) with I'F, = FT by the universal property of Fy and
I’ exists (uniquely) with

3 — .' —

I'FT =Fg and Kgl'= UT
by the universal property of the Kleisli situation. Thus I'l'Fg = Fg , hence
I'l' =1 ; moreover

UTI';' = Ksi' =Up, and I’}’FT =Fp,
hence ' =1 , i.e. Ir=r-1.
(iv) = (ii). If the isomorphism [’ exists, Kg= UyI' is right adjoint

to Fg and the adjoint pair induces T, and, again by Theorem 2.4 of (41,

T is idempotent. _
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(iv) = (v) is clear in the light of Corollary 5.2.

Each one of the conditions of Theorem 6.4 has, of course, a dual
and, by Proposition 6.3, these duals are equivalent to the original condi-

tions of Theorem 6.4.

I'" and I'"! can be given explicitly: on objects, both are clearly
the identity. By Theorem 2.8, (ii), (vii) of [3], S has a calculus of left

fractions, hence every morphism X » ¥ in F1S°1] is an equivalence class

f/s of pairs

X_f L, z. s v

of morphisms in J with s in S, two pairs (fss), (f',s') being in the

same class if there is a commutative diagram

/
N

?

inJ with s,s",t,t" and r in S. We define

I'(f/s) =( X—L L.z _1Z . TZ sy 7y

I' is well defined, for, if (f,s) and (f’,s’') are in the same class, the

diagram
zZ

TR

X 11X . TXx Ty — It TV

NN

zr_nZ'  _TZ'

commutes and T'r is an isomorphism. For g: X»> TY in :TT(X, Y) we

define

"lg=(g/n¥)=(X—&.TY- " _y)
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By Proposition 6.2, Y is in S. A straightforward verification shows that
I' and '] just defined are inverse to each other. Both plainly respect

identities and I'"! respects composition. Indeed for
f:X>TY and g:Y>TZ

inJ;, gf=uZoTgof while
I'"(gf)=(pZoTgof)/nZ,

which, by the commutativity of the diagram

XxX__f 1Y Tg 127 __#Z2 17 0Z 7

nY nTZ

Y

z Tz

is equal to ["I(g)ol"l(f). As I'""! respects composition, so does I’
and they are both functors. It remains to show that /'Fg = F on morphisms :
for h: X>Y inJ,
I'Fgh=1(h/1)=q9Yoh=Fp (k).
Clearly Kg = UpI’, thus we obtain an explicit description of Kg as:
Kg(X)=TX on objects,
and for (f/s) in T[S 11(X,Y),

Ks(f/s)=Up((Ts) onZof )=pYo(T?s) 1oTnZoTf=(Ts)  oTf.

EXAMPLES.
We first bring two examples of functors satisfying condition C, as
announced in Section 3.
1c Let X be a topological space, X the category of open sets in X
and inclusions. Let Jap denote the category of topological spaces and
continuous maps. Let
s:(ToptX)—(X°, Seta)

be the section functor. s takes an object p: E> X of (joplX) to the

functor sp defined by
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sp(u)={¢:u->E| po = inclusion of u in X} on objects,
sp(j)($)=e¢oj on morphisms of X °.
In [1]~ it is shown that s has a left adjoint r, the etale space functor of
Godement, and that the Cotriple induced by the adjunction is idempotent.
Hence, by Proposition 6.3, the triple induced is idempotent, and by Theorem

6.4, s satisfies condition C.

20 Let C be the category of compact Hausdorff spaces and continuous
maps, [: C> Jap the inclusion. Let s: Jap » (C°, Seta) be the canonical
functor sending X in € to Jap(l-,X). In[1] it is shown that s has a
left adjoint and that the induced cotriple is idempotent. Thus, s satisfies

condition C.

3° We recall Example 3 of Section 2. By Theorem 1.1 of [9], K has a
left adjoint F and the adjunctions F- K and Fg~ G5 generate the same
idempotent triple T . In [9] Corollary 2.3 it was shown that the shape cat-
egory SK , the category of fractions J [S~!],the Kleisli category S.T of T
are all canonically isomorphic. Furthermore, by Theorem 3.4, l.c, two ob-
jects in J have isomorphic S-completions if and only if they have the same
K-shape.

Two instances of this situation are:
a) See [10]. J =JU, the category of nilpotent groups, S the family of P-
isomorphisms, where P is a family of primes. 'T(S is then the full subcat-
egory of JU consisting of P-local nilpotent groups.
b) See [10]. T =NH, the homotopy category of nilpotent CW-complexes,
S the family of those morphisms ¢ in JUH for which 7 _(¢) is a P-isomor-
phism for all n 3 I. (T(}()S then consists of the P-local CW-complexes.

7. Appendix. Comparison between rich functors and functors satisfying con-
dition C.

In [6] Deleanu and Hilton introduced the notion of rich functors:
A functor V: C> D is rich if for any morphism g: VC»VC' in D, C, C’

in C, there is a diagram

292



CATEGORICAL SHAPE THEORY 33

f2k C'

fi f2 fok-1
c 4, Agy

in € such that Vfy; is invertible for 1 < i<k and
E= (Vi) Vlgq i (VER)IVS,.

Theorem 2.10 of [6] says that a rich functor satisfies condition C .
A functor which satisfies condition C is not necessarily rich as the follow-
ing example shows. (See Example 2.9, (ii) of [6].) Let 9 be the category
of groups and P the subcategory consisting of Z and Z*Z (free group on
two generators, with morphisms the injections g;,g4:Z » Z*Z, the co-
multiplication y:Z » Z*Z and the identities. Let K: # > § be the inclu-
sion. Then K is codense, hence satisfies C. K is not rich as for the tri-

vial homomorphism Z > Z in § there is no corresponding diagram in ¥ .

If the functor K has a left adjoint, then K satisfies condition C

if and only if it is rich, as Theorem 6.4, (i), (1iii), shows.
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