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COMPLETELY REGULAR RELATIONAL ALGEBRAS

by R. J. PERRY (*) 

CAHI ERS DE TOPOLOGI E

ET GEOMETRIE DIFFERENTIELLE

Vol. XVII-2 (1976 

ABSTRACT

If (K,T) is a completely regular space, the quotient space (K’, T’)

obtained by identifying points whose neighborhood systems coincide is a

Tychonoff space and, as such, is a subspace of a compact Hausdorff space.

We generalize this to subcategories of the relational algebras of an arbitrary

triple on sets.

1. Introduction.

Barr introduced relational algebras in [1] by weakening the struc-

ture map li in the T-algebra (K,k) from a function to a relation. Manes

[5] extended the notion to triples on certain categories besides sets. The

basic weakeness has been a dearth of examples.
We introduce subcategories of the relational algebras of an arbitrary

triple on sets which can be regarded as generalizing completely regular

spaces and Tychonoff spaces. We hope that these intermediate steps betwe-

en 7’-algebras and relational algebras will provide an arena in which more

interesting examples may be found.

We begin with basic definitions. Let T = ( T’, 77, 03BC) be a given tri-

ple on sets.

DEFINITION. ( 1) The objects of the category P( T) , called T-prealgebras
are pairs ( K , X) , where

K is a set and

(*) This paper is based on the author’s Ph. D. thesis submitted to Clark University.

The author wishes to express his thanks to his advisor, J. F. Kennison, for encou-

ragement and direction.



126

A morphism f : ( K, X) -(A, a) is a function f : K - A for which

implies

(2) A T-prealgebra ( K, X) is said to satisfy the reflexive law if

for all

The full subcategory Ref (T) of reflexive T-prealgebras consists of those

prealgebras satisfying the reflexive law.

(3) If k C T(K)xK, let

and

be the projections. VIe define T( X) C T2( K ) X T( K) as follows :

(x, y) E 7Y X) if and only if there exists w E T ( X) with

and

A prealgebra ( K , X) is said to satisfy the transitive law if

implies

The full subcategory R ( T) of relational T-algebras consists of those pre-
algebras satisfying both the reflexive and the transitive laws.

(4) Let f : ( K, X) -&#x3E;( A, a ) in P ( T ) . f is said to be algebraic (Manes

[ 5] ) provided

implies

Moreover we say that

(i) ( K, X) is an algebraic subobject of ( A , a) when f is monic ;

(ii ) (A,) a) is an algebraic quotient object of ( K, À) when f is epi. //

Let B the ultrafilter triple. Barr [1] has shown that

R ( B ) = topological spaces,

while Manes [4] has shown that

EnsB = compact Hausdorff spaces.

We produce subeategories CR ( T ) and CRH ( T ) of R ( T ) with

CR ( B ) = completely regular spaces,

CRH ( B ) = Tychonoff spaces.
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If ( K , T ) is a completely regular space, the quotient space ( K’ , T-’ )
obtained by identifying points whose neighborhood systems coincide is a

Tychonoff space and, as such, is a subspace of a compact Hausdorff space.
We show that an object (K, k) E CR ( T ) possesses an appropriate algebraic
quotient object (K-, k) E CRH (T) with (K- k-) an algebraic subob-

ject of a T-algebra.
We also observe that CR ( T ) introduces some structure into the am-

orphous category P ( T ) by providing a right bicategory structure (I, P ),
from which it follows easily that Ref (T), R( T) and CR( T) are P-reflec-

tive subcategories.

To simplify the exposition, the. uniqueness of both objects and mor-

phisms is only to within equivalence.

2. CR( T) and CRH( T) .

In [5], Manes shows that EnsT is a reflective subcategory of

Ref ( T ) . 5e list those details necessary to our work.

Let (K, k) E Ref (T). Set

and

Define functions f and g: L -&#x3E; T (K) by f (w) = x and g (w) = z , where

then

and

are T-homomorphisms. Let q: (T(K), 03BC(K)) -&#x3E;(Q, 8) be the coequalizer
of these morphisms in EnsT ; then q-q( K): ( K, X) -( Q, 0) is the reflec-

tion map.

DEFINITION. (1) If (K, X) E Ref( T) , set

( 2 ) The full subcategory CR ( T ) o f completely regular relational T-

algebras consists of those ( K , À) E Ref (T) with k - X .

(3) The full subcategory CRH ( T ) o f Tychono f f relational T -algebras
consists of those (K, k) E CR (T) withB a partial function. / /
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LEMMA 1.

PROOF. implies

(2) By (1), X is reflexive. We use the above notation with k in place
of k and stars on all appropriate symbols. If ( ( x , y ) , (z,y)) E L* , then

implies

Hence there exists a unique T-homomorphism t with t q * = q . Thus k - X ,
since (a, b ) E X implies

( 3) It suffices to show that k is transitive. Now

since they are T-homomorphisms equalized by n (k) - Let
then there exist w E T ( X) and z E T ( K ) with

and

Hence

and

LEMMA 2. If f: (K1’ À.1) -+( K2’ À.2) in Ref (T), then

PROOF. Let then

Thus
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it follows that

By definition of q, , there exists

with

If (a,b) E-k1 then

showing

L EMMA 3. Let f : ( K, k) - ( A, a) in Ref( T) with f algebraic.
(1) ( A, a) E CR ( T) implies (K,À)ECR(T);

( 2) If f is epi, ( K, k) E CR(T) implies ( A, a) E CR (T) .

P RO 0 F. (1) is immediate from Lemma 2 .

(2) There exists g : A - K with f g = 1 (A) . g is algebraic and (1) ap-

plies. / /

DEFINITION. (1) Let (K, k) E Ref (T). Set

if

k is said to be complete if rv is an equivalence relation on K.

( 2 ) Let ( K, À) E Ref( T ) with k complete. Let K, be the set of equi-
valence classes and p : K -&#x3E; K- the natural map. Set

k - = (a, b)| a= T(p) (x) and b=p(y) for some (x,y) E k}. //

Since let be

the reflection map into EnsT .

THEOREM. (K,À)ECR(TJ if and only if:

( 1 ) ( K,, k-) is an algebraic quotient object of ( K, X) ;

( 2) (K- k-) E CRH (T) ;

( 3) ( K,, X,) is an algebraic subobject of a T-algebra.

PROOF. Lett , then
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from which it follows easily that k is complete.
h : K, - Q with h p ( a) = qn( K )( a) i s well-defined. Suppose

and with

then y ’V y’ implies qn (K)(y) = qn(K)(y’). To show p is algebraic we

need ( x , y ) c À . But

Thus ( x, y) c X =À and ( 1) holds via p .

By Lemma 3 ( 2 ), (K-, k,) E CR (T). If

then

Whence (x, y) E k- =k - and q’ n (K-) is algebraic.
If (T(p)(x), p(y)) and (T(p)(x), p (z)) E k-, then (x, y) and

( x , z ) e k , since P i s algebraic. Thus

and X, is a partial function. Whence (K-, k-) c CRH (T).

Suppose q’ n(K-)(a) = q’n(K-)(b); then

Since X, is a partial function and (K-, k,) E Ref (T), it follows that

a = b and q’ n (K-) is monic. Thus ( K,, X_) is an algebraic subobject
of the T-algebra ( Q’ , 0’) via q’ T) ( K-). / / 

.

3. Examples:

Kamnitzer [2] lists the following examples of relational algebras:

R ( I ) = reflexive and transitive relations [1],
where I is the identity triple ;

R ( B) = topological spaces [1] ,
where B is the ultrafilter triple ;
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R (P) = generalized sup-semilattices [6] ,
where P is the power set triple ;

R(T1) = generalized semigroups [6] ,
where T 

l 
is the semigroup triple ; 

R(T 2 ) = generalized R-modules,
where T2 is the left R-module triple.

In addition Barr [ 1 lists

R ( I’ ) = {(( K, k), Ko l k is reflexive and transitive, K o is a ray} ,
where l’ = (T,n , jL) with T (K) = K+1 (coproduct) ;

R(B’) = {(K, Ko ) lK is a topological space, K o a closed subspace ,
where B’ = ( T, q , fLY with T( K ) = the set of all ultrafilters on K + 1 .

Finally we let

T 3 = the abelian idempotent semigroup triple,
T 4 = the group triple.

It is known that Ens’ = Ens , Ens B = compact Hausdorff spaces [4],

Ensp = complete lattices, Ens Tl = semigroups, Ens T2= left R-modules,
Ensl’ = pointed sets, Ens B’= pointed compact Hausdorff spaces, Ens T 3 =
semilattices = abelian idempotent semigroups, Ens T4 = groups.

Applying our theorem we see that:

CRH (I = Ens,

CR(1) = equivalence relations,

CRH( B)= Tychonoff spaces,

CR (B) = completely regular spaces,
CRH ( P ) = partially ordered sets,

CR (P) = reflexive and transitive relations,

CRH ( T1) = partial semigroups,
CR(T1) = {( K, À1, À2) l À1 is an equivalence relation on K , and

À 2 C (KXK) X K with

implies ((x’, y’), z’) E k2, whenever
and

and ((x, y), t) E k2 imply that
the associative law holds when applicablel.
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CRH (T2) = partial left R -modules,
CR (T2) = an extension of the two operations to equivalence classes

as in CR (T1), 
CRH (1’) = pointed sets,

CR (I’) = {((K,k),Ko)lk is an equivalence relation, Ko is a ray},
CRH (B’) {(K, Ko ) l K is a Tychonoff space, Ko a closed subspace},
CR (B’) ={(K, Ko)l K is a completely regular space,

K o is a closed subspace ,
CRH ( T 3) = partially ordered sets,
CR (T3) = reflexive and transitive relations,
CRH (T4) = partial semigroups with cancellation laws,

CR (T4) = those objects of CR (T1) with the following property:
Given (( a, b), c ) E À 2 and ((x, y), z E X2 with ( c, z) E À1
then : (1) (a,x ) E k1 implie s ( b , y) c À 1, 

(2) (b, y) E k1 implies a, x), E k1

4. Structure in P ( T ) .

DEFINITION. (1) Let (K, k,) E P (T) . Set

with

then

Application of Proposition 1.3 of Kennison [3] yields :

P ROP OSITION 1. (I, P) is a right bicategory structure on P (T) .

The definition of I together with the transitive law yields :

P ROPOSITION 2. If g: ( K, o) -(A, a) E I , then:

(1) ( A , a) reflexive implies ( K , p) reflexive;
( 2 ) ( A , a) transitive implies ( K , p) transitive ;

(3) (A,a.) E CR (T) implies (K, p) E C R ( T ) .

By Theorem 1.2 of [3] it follows that Re f ( T ) , R (T) and CR ( T )

are all P-reflective subcategories of P (T).
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