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CAHIERS DE TOPOLOGIE Vol. XV -3
ET GEOMETRIE DIFFERENTIELLE

MULTIPLE FUNCTORS
I. LIMITS RELATIVE TO DOUBLE CATEGORIES
by Andrée BASTIANI and Charles EHRESMANN

INTRODUCTION.

Double categories are sets equipped with two laws of categories
satisfying the «axiom of permutability». This axiom was first exhibited in
[E7] for the two laws on the set of natural transformations from a catego-
ry C toitself and in [E8] for the two laws on the set of commutative squa-
res of C. The general definition of a double category (and by induction of
a multiple category) was given in [E2], as a category internal to the ca-
tegory F of categories or, more precisely, as a structured category relative
to the faithful functor from F to the category of sets. 2-categories are tho-
se double categories whose identities for the second law are also identities
for the first law (but they are most often defined as categories enriched in
the cartesian closed category F); they have been considered by many au-
thors [GZ ,G1,G2,G3,Bo,S] as well as the double categories of squa-
res of a 2-category [GZ,Gl,Pal. Benabou's bicategories [B2] are a
«laxification» of 2-categories (and double categories may be laxified in a
similar way, as done in [Ch,M] ).

While a substantial and extensive theory of 2-categories has been
given by Gray [G1,2,3], no such theory exists for double categories. We
are going to generalize here some of the numerous fine results of Gray in
the frame of double categories, using a method outlined in [E2] and whose
main idea is to associate to a category A and to a double category D a ca-
tegory T(D, A) which plays the same role as the category of natural trans-
formations (to which it reduces if D is the double category of commutative

squares of a category).
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II A.BASTIANI - C. EHRESMANN

In chapter 0 are gathered some complements about sketched structu-
res (used in particular later' on to construct internal multiple categories).
In chapter I we study the functor T(-, A) from the category of double func-
tors to f; it associates to D the category formed by the functors from A
to the first category underlying D, and whose law is deduced from the se-
cond law of D; it admits an adjoint - WA . Free objects relative to the ca-
nonical functor from the first category of 1-morphisms of D toward T(D,A)
are called D-wise limits. The main theorem, proved in chapter II, asserts
that, if D is representable (i.e. there exist D-wise limits indexed by 2)
and if the second category of 1-morphisms of D admits small limits, then
all small D-wise limits exist. If D is the double category of up-squares
of a representable 2-category, D is representable and the theorem reduces

to a theorem of Gray, D-wise limits being cartesian quasi-limits of [G1].

This paper is the first part of a work whose other parts will appear
in the following issues of the «Cahiers».

- In the second part, the present results are generalized to n-fold ca-
tegories: the category of all multiple categories is equipped with a monoi-
dal closed structure, whose internal Hom associates to the 7+ m-fold cate-
gory M and to the m-fold category B the n-fold category T(M, B) of gene-
ralized transformations; the tensor product W is only symmetrical «up to an
interchange of the laws». As before, M-wise limits are defined and there is
a similar theorem of existence of M-wise limits when there exist M-wise
limits indexed by 2™” = 2m ...w2 (this theorem is proved using a result
of Appelgate-Tierney [AT] and the fact that each n-fold category is gene-
rated from 2™” by inductive limits).

- In the third part, we will describe different monoidal closed structu-
res on the category of double functors: its cartesian closed structure (whose
existence is proved in [BE]), whose internal Hom maps (D', D) on the
double category of double functors from D to the 4-fold category of squa-
res of squares of D’; two monoidal closed structures non symmetrical which
occur when double natural transformations are laxified (and which generali-
ze the monoidal closed structure on the category of 2-functors considered
by Gray [G1]). These resules will then be applied to the study of structures

defined as realizations or lax realizations of «double sketchesn».

216



MULTIPLE FUNCTORS 1
0. COMPLEMENTS ABOUT SKETCHED STRUCTURES

A. Notations.

1. We denote by U a universe and a set is said small if it is an
element of this universe. The category of maps between small sets is de-
noted by M.

A small category is a category whose set of morphisms is small.

2. Since we will have to consider several categories with the same
set of morphisms, we will often denote a category by a symbol A", where
A is the set of its morphisms and «.» the symbol of its law of composition
(i. e. the composite of (y, x) is written y. x). Then:

a-, B and k" are its maps source, target and law of composition,
A is the set of its objects, A % A’ the set of its composable pairs,

K
A" its dual category.

But often we also denote a category by a unique letter (an italic
or a greek letter or, for «big» categories, a script letter). In thatcase, if C
is a category, its set of morphisms is denoted by C, its symbol of compo-
sition by «.», its set of objects by C,, the dual category by C*, and the
set of morphisms from e to e’ by C(e’,e) orby e'.C.e, and x: e e’
isread x€e'.C. e. If the sets C(e’, e) are small, the Hom functor from

CXC* to M is denoted by C(-,-): cxc*-N.

3. A functor f from A to C is also denoted by (C, ¢,A), where
¢ is the map from A to C defining it (sometimes we put f=¢). If f is
constant on an object e of C, we write f=e".

The category of functors between small categories (i.e. of small

functors) is denoted by F, the composite functor:

A ! C r D

being written f'.f or, more often, f'f.
7
There are two «canonicals functors from F to M:

the faithful functor p§ which associates to f: A~ C themap [ : A ~C;
the functor 1’1'3-' associating to f: A #C the map f,: A, *C, restric-

tion of f to the sets of objects.
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2 A. BASTIANI - C. EHRESMANN

The functor p.? admits an adjoint functor, mapping the small set
M on the discrete category on M (each element of M is an identity) which
will be denoted by MO . It also admits a coadjoint which associates to M

the groupoid of pairs (MXM)°.

The functor p§ has no coadjoint (since it does not preserve co-
equalizers). But it admits an adjoint functor, which associates to M the

category 2x MO, coproduct of M copies of the category 2, where

z

2 is 1 0

4. If A and C are categories, we denote by c4 the category of
natural transformations between functors from A to C. If t=(f",¢ f) is
the natural transformation from the functor f to f' defined by the map ¢ from

A, to C, we write t(u) =t(u) for each object u of A, and
t:f=f:A3C, or t: A=C.
If t': " (" is another natural transformation, then
t'mte:f-f"
denotes their composite in €4 . Identical natural transformations are iden-
tified with functors.

On the set of all small natural transformations we have two laws:

NI s the category coproduct of the categories c4 for all small ca-
tegories A and C;

JU is the category, admitting § as a sub-category, in which the com-

posite of t: f—f": A 3C and t': g—g': C 2D is

t'.t.'g/—'g'/'.'A:;D,where ’ ’
for each object u of A. g f

This composite is sometimes written ¢'t, especially when ¢ or ¢’ is an

identical transformation. We have:
te=(g"t)m(t'f)=(t'f)m(gt).

If h: B—A is a functor, the functor t 2 th from CcA to CBis de-
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MULTIPLE FUNCTORS 3

noted by C? . In the same way, gA : ¢4 -=DA is the functor associating

gt to t: A 3C. Finally, gb: c4 -DB js the composite functor gB ch .
gB cB Ch
g b
DK teth B

5. Let f: A—=C be a functor. A natural transformation t: e —f,
where e” is a constant functor, is called a projective cone indexed by A,
with vertex e and basis f. If y: e’ @ e is a morphism of C, we denote by

ty the cone with basis [ and vertex e’ such that
(ty)(u)=1t(u).y for each object u of A.

If ¢ is a limit-cone and t' a projective cone with basis f, the uni-

que y such that ty = t' is called the factor of t' relative to t.

u
{a
u

L4

In particular, let us take for A the category

1

a 0
and for f the functor mapping @ and &' onto x and x'. If t is a projec-

tive limit-cone with basis [, we also say that

x! t(1)

x t(0)

is a pullback P of (x,x"). If t' is a projective cone with basis [ (i.e.

if x.t'(0)=x".¢"(1)), the factor y of t' relative to ¢ is denoted by
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4 A. BASTIANI - C. EHRESMANN

[£¢0),¢'(1)] and called the factor of (2'(0),¢'(1)) relative to P.

Similar notations are used for inductive cones #: f—e".

B. Sketched structures.

1. We recall [BE] that a (projective) limit-bearing category o is
a category 2 equipped with a set I of distinguished (projective) limit-
cones; the set of the indexing categories of the cones Y€l is called
the set of indexing categories of O .

If 2' is a category, a O -structure in 2' is a functor ¢p: Z—~Z'
such that ¢y is a limit-cone for each Y €I". We denote by 2’7 the ca-
tegory of o -morphisms in Z', which is the full sub-category of stz whose
objects are the O -structures in >’ .

If y:2 -3 is a o-structure in the dual ='* of 2!, then the
dual functor l,ll*: S* 5" s called a O -costructure in ='.

O -structures are called sketched structures (this terminology is
justified by Proposition 8-I [BE] ).

PROPOSITION 1. If 0 is a projective limit-bearing category (2,1") and
2" a category, there exists a functor 6:3'xZ'* -N° associating to an
object (¢, w ) the o -structure ' (-, w )p: Z-NM .

A. We consider the following functors:

the insertion ¢: X' 7 -3’ E,

the Yoneda embedding Y’: ='* —’mz',

the «composition functor» A: b zxmz' —'mz which associates to
the pair (7,7 ) of natural transformations their composite 7' . 7.

The composite functor &' :
SOy S (XY s EXmZ' A mz

maps the pair (¢,w ), where ¢ is a O -structure in >’ and @ an object

of Z' , on the functor
>\,(¢p Y'(CL))) = Z'(',a))¢,' Z»m

. . . . ’ . . . .
which is a o -structure in 311, since Z'(-,w) preserves projective limits.
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MULTIPLE FUNCTORS 5

Hence 6’ takes its values in M7 and it admits as a restriction
93 ox M —s MO,
If T:¢—=¢ is a o-morphism in =’ and §: w ~w' a morphism in 2,
then 6 (7,8)=2"(-,8).7:
¢
m tr

¢ v

z'( “y &)’)

2. Let 0 be a projective limit-bearing category (2,[") and 2!

a category admitting projective limits indexed by the indexing categories

of 0. For each object @ of Z, let v : M7 =M be the functor «value in
@ », which maps T: > ::m onto T(w).

o

o™ ™
PROPOSITION 2. 1° (M)* and (M® )7 are isomorphic.

20 3'9 is equivalent to the full sub-category R of (?Il")z'* whose
objects are the functors \y : Z'* =M% such that v S'* oM is repre-

sentable, for each w €2 .
A. 1° We denote by u the canonical isomorphism
LB E LBy B

and by v, : ME™* <M the functor value in @" €3 . Let ¢: = -m2*
be a functor. We have v, = (P) @' If v: 135 is a limit-cone,

limits in 3112 being computed termwise, ¢ is a limit-cone iff
Uyt @Y = p()(@")y: 13N
is a limit-cone for each @' € 2y . Hence ¢ is a O -structure iff
w () w") isao-structure in M, for each w'e 3y,

i.e. iff () takes its values in Me. So M admits as a restriction an
’ ?
isomorphism ,LL':(?T(E *)0 —*(WU)Z ¥
[
20 Let Y":Z' =M% ™ be the Yoneda embedding. It gives an iso-
morphism Y7 : o Y"(Z')” 3 Y"(Z' 7) = sub-category of (911 )a, the

4 .
insertion Y"(Z')&MZ preserving projective limits. The isomorphism
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6 A. BASTIANI - C. EHRESMANN

’
1’ maps Y"(2'%) onto the full sub-category X' of ()= " whose ob-
’
jects are the functors Y: 5™ oM such that ,LL"I(\/J): s -mE* takes

its values in Y”(Z'), i.e. such that
#0-1(‘/1 Ww) = wa: SR LN
is an object of Y"(Z') for each w €2, . Hence 2’7 is isomorphic with
s,
R'. As Y"(Z') is equivalent to the full sub-category of ME™ whose ob-

jects are the representable functors, R is equivalent to the category R

defined in the Proposition. So 2’7 is equivalent to R.

Vbl
sto Y’é{z'a) mz *)0'
Yz
4 !
R R MeH)E* v

3. Projective closure of a set.

Let 0 be a limit-bearing category (2,1 and Q a sub-set of Z, .
We define by induction a transfinite increasing sequence of full sub-cate-
gories Z§ of 2 as follows:

zo is the full sub-category of Z admitting {1 as its set of objects;

2, = 2, , if £ is an ordinal without a redecessor;
e P

if 25 is defined, then Zf+1 is the full sub-category of = whose ob-
jects are the vertices of the distinguished cones 7 € [ whose bases take

their values in 25 , and the objects of 25 .

DEFINITION. We say that 2 is the [ -closure of 0 if there exists an or-

dinal & such that = = 28; then (Z§)§\<3 is said to r-generate >,
If 2 is the ['-closure of £, it is also the I"'-closure of Q, for

each set [’ of limit-cones including I .

PROPOSITION 3. Let o be a projective limit-bearing category (2,1 )
and Z' a category admitting projective limits indexed by the indexing ca-

tegories of 0. If Z is the I'-closure of a sub-set Q) of =,, then Z'°
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MULTIPLE FUNCTORS 7

’
is equivalent to the full sub-category of (311")2 * whose objects are the
functors b such that v, is representable fo each w € Q, where v, 7s

the functor value in w from M7 to M.

A. Let Q1 be the set of objects of the sub-category 2, of 2 de-
fined above and & the smallest ordinal such that 2 = 28' Then the union
of the transfinite sequence of sets (Qg)ggs is 2, . In view of Propo-
sition 2, it suffices to prove that, if y: 2'* =J7 is a functor such that
v, be representable for each w € (= QO , the set Il of objects @' of
2 such that v+ be representable is equal to 3, . This will be proved
by induction:

Q, is included in II.

If £ has no predecessor and if Qg is included in II for each ordi-

dinal { < £, then the union Q§ of (Q§)€<§ is included in 11 .

Now let us suppose that Qf is included in II for some ordinal £<§
and that w'e€ Q§+1\Q Sow’ is the vertex of a cone 'yer whose basis
p takes its values in Zf Let ¢ be the O -structure in W assocxated
to ' by the isomorphism u’'"! of Proposition 2. The cone ¢y is a li-
mit-cone in m Zr¥ with vertex qb(w Y=v ,\,l/ and the induction hypothes1s
implies that its basis ¢p takes its values in the sub-category of Jll
whose objects are the representable functors. A projective limit of repre-
sentable functors being a representable functor, this sub-category is closed
for projective limits, so that the vertex v, s\ of @7y belongs to it. There-
fore w'€ll. It follows that Q§+1 is included in II.

By induction this proves that I=2,. \Y,

DEFINITION. Let 2 be a category and {} a sub-set of Z,. We say that
2 is the projective (resp. inductive, resp. connected projective) closure
of O if 2 is the L -closure of {1, where L is the set of all small limit-

cones in 2 which are projective (resp. inductive, resp. projective and

indexed by a connected category).

PROPOSITION 4. Let O be a projective limit-bearing category (Z,1")
and Y: 5% -ME the Yoneda embedding.

1° Y admits as a restriction an injective O -costructure Y in M° and
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8 A. BASTIANI - C. EHRESMANN

each o -structure ¢ in M is equivalent to Mece, -)Y*.

2° M is the inductive closure of Y(Z,).

30 If 3 is the I"-closure of a sub-set Q of 2,, then MY is the induc-
tive closure of Y(Q).

A . 1° For each w €2, , the functor
Y(w)=3(-,w):Z -0,
which preserves projective limits, is a O -structure in M, so that Y(Z)
is included in the fuil sub-category M7 of MZ. The restriction
Y: SF——NM7 of Y
is a O -costructure, since Y sends projective limit-cones belonging to I

on inductive limit-cones in M7, according to a result of [Lm]. Hence Y

. . ma
1S a O-costructure 1in .

20 Let ¢ be a o-structure in M. The Yoneda lemma asserts that ¢

is equivalent to

ME(p,-)v+: S L(mzymm ,

which is equal to 311"(«;:5,-)7* since M7 is a full sub-category of mz.
On the other hand, in mE the object @ is the inductive limit of the func-

tor Y h*:

H* LABNENG > 4 wE

where h: H =2 is the discrete fibration (or chypermorphism functor» [E1])
associated to ¢: 2 —-J. The functor Y h* admits as a restriction a func-
tor k:H*—-J° which takes its values in Y(Z). The sub-category M7
being full, its object ¢ is also the inductive limit of k. Hence M7 is the
inductive closure of Y(Z,). (In fact, the closure operation takes only
one step in this case.)

30 Let = be the ['-closure of . The restriction Y of Y maps in-
jectively a full sub-category of 2 onto a full sub-category of M and sends
each cone of I onto an inductive limit-cone of M. Hence Y maps the ['-
closure 2 of Qinto the inductive closure of Y () in M7, so that the induc-

tive closure M7 of Y(Z, ) is also the inductive closure of Y(Q ). V

22%



MULTIPLE FUNCTORS 9

PROPOSITION 5. If 2 is the projective connected closure of a sub-set
of 2, and if Z' is a category which is the projective connected clo-
sure of a sub-set §1' of 2, then £'XZ is the projective connected clo-

sure of Q1'% Q.

A, Let (Zf )§S8 and (Zé)fssl be the canonical increasing trans-:

finite sequences of full sub-categories of = and X', where
z = 28 and Z zsl )

7 . . . .
we may suppose that & = & . Then we have an increasing transfinite se-

quence (zé X 25 )¢ g s of full sub-categories of 2'x 2 satisfying:
2'x 3 =3ix 5

If (w',w) is an object of b £41 % 2§+1 , there exist projective limit-cones

v in = and ¥’ in Z', with vertices @ and @', whose bases
p:1-2 and p:I'=-2'

take their values in Zﬁ and Z respectively, and whose indexing catego-

ries I and I' are connected. The product functor

o' Xp:I'XI = Z'x X
takes its values in Z xZ and it admits (@',w) as its projective limit;
its indexing category I ><I is connected, I and I' being connected. This

. . ’ . ]
proves that the connected projective closure II of Q'xQ in 2'xZ con-

tains > §+ Z 4+1 @s soon as it contains fo 2, . By induction it follows
that I contains Z5x 3g =3'xZ; whence Il = Z'x .V

4. Tensor product of cone-bearing categories.

Let 0 =(Z,I") and o'= (2, ") be two projective cone-bearing
categories. Conduché [C] and Lair [L] have proved that there exists a
cone-bearing category 0'®0 on Z'xZ satisfying the universal property:

Let H be a category admitting projective limits indexed by the index-
ing categories of 0 and of o'. Then the canonical isomorphism

(g %)% I gExE

1 ’
admits as a restriction an isomorphism from (H ) onto H® ©7.
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10 A. BASTIANI - C. EHRESMANN

They have given the following explicit construction of o'eo:
- The underlying category is 2’ x 2.

If w' €2 andif Y€l is a cone with basis ¢: [ =2 and vertex w),
let 7" be the cone [w’*,v]:1-2'xZ, with basis [w'",¢], vertex
(w',w ), and such that

Y'(i)=(w',y(i)) foreach i€l,.
If I is connected, this cone is a limit-cone, when 7 is a limit-cone.
We define in a similar way the cone [7y',w *], where
’}” el and weZ,.
- The set [''®I" of cones is formed by all the cones [w'*,¥] and
(7', ,w*],for yel', ¥ eI, ' €2 and w € Z, .
If all the indexing categories of o and of O’ are connected, then

. o . . ’
o'®0 isa limit-bearing category, when so are 0 and O .
DEFINITION. 0' @0 is called the tensor product of (0',0).

If (0;);<, is a finite sequence of cone-bearing categories, their
tensor product, denoted by

@0'1 or UOQ...egn.l N

i<n
is defined by induction from the formula:

® o.=( 0 0.)00 for each m<n-I.
i<m+1 ! (i<m €%y

n
If 0, =0 for each <7, then g 0; is also written ®0 .
i n

The underlying category of ? O, is the category )g Zi’ defined
1 n i1 n
by induction from the formula:

X 2. =(X Z)xZ for each m<n-1.
i<m+1 (i<m e
The word «tensor product» is well justified. Indeed, Lair proves in
[L] that the category of morphisms between cone-bearing categories is
equipped with a symmetrical monoidal closed structure, whose tensor pro-

' (] . .
duct maps (0 ,0) onto 0 @0 . From the general properties of symmetri-

cal monoidal closed categories, we get:
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MULTIPLE FUNCTORS 11

PROPOSITION 6. Let (0;),<, be a sequence of projective limit-bearing
categories and let H be a category admitting projective limits indexed by
the indexing categories of O, for each integer i<n. For each permutation

f of {0,....n-1} and each sequence

0 = n0<n1<...<nm<nm+1 =n

of integers, there exists a canonical isomorphism
’ L !

HUOQ"'QU"'I ~ (.“((H"’no) 711)“')cmm ,

' p—
where O"’j = O'/(n]_)@ ...90'/(n

j+r D
PROPOSITION 7. Let n be an integer, 0 = (2,1") a projective limit-bea-
ring category whose indexing categories are connected, o'=(2',I"") = &
and () a sub-set of 2, .

1° If S is the connected projective closure of §1, then 2' is the con-
nected projective closure of Q' =%Q.

2° If 3 is the [ -closure of Q, then 3' is the I"'-closure of Q' and

M is the inductive closure of Y'(Q') where Y'is the Yoneda embedding.

A. By induction, part 1 follows from Proposition 5, part 2 from Propo-
sition 4, since (Z)x 2, ..., ZTgx2), ExZ, ..., ZxZy) is [-generating
2! for n=2, if (Zf)fss is ['-generating 2. V

C. Internal categories.

1. We denote by og = (Z‘c)z,l_'g) the sketch of categories [BE]
which is the following limit-bearing category:
23: is the dual of the full sub-category of the simplicial category A

whose objects are the natural integers 1,2,3 and 4; its main morphisms

are denoted according to the following diagram, where a=1 .a, ,-é =:1.8:
. "
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12 A. BASTIANI - C. EHRESMANN

The only distinguished cones are the two pullbacks:

Since ¢ is a right inverse of a, it is an absolute equalizer of the
pairs (2, a ) and (—B » 2), and we have the pullbacks

in Z?, We write —I;g = {;1.')’2.‘)’3} and ;3! = (sz.ﬁj-')- Then 23: is
the T_‘-j-' -closure of {2}. So Propositions 3,4,7 may be applied to '&-? .

2. Let H be a category with pullbacks. A 0% -structure in X is cal-
led a category internal to (or in) X ; other names: category object in X for
[Gr] , «catégorie structurée généralisée dans H» for [E3].

A Uf}-morphism in X is called a functor internal to (or in) K. we
[of
denote by F(H) the category X F of the functors in }. It is equal to the

category }(U?; indeed, if ¢: zg—' -} is a functor, ¢')’3 is a pullback, Y3
being an absolute pullback, and, ¢(¢ ) being a monomorphism, ¢;1 is a
pullback iff ¢7; is a pullback in X.

If Y is a category in the dual of }, the dual functor ¢*:Z§: - X
of | is called a cocategory in H.

There exists a unique category & in Zg: mapping ¢ and K on them-
selves and interchanging a and 8, v and v' . If ¢ is a category in X,
then 8 is also a category in }; we denote it by ¢, and call it the dual
of ¢. We get the «duality isomorphism» from F(H) onto F(H) by sending
¢ onto ¢« and the functor (¢, 7,¢ )in H onto (&4, T, Px)-

3. The categories § and F (M) are equivalent [E3, BE]. We will

use the following canonical €quivalences:
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MULTIPLE FUNCTORS 13

a) If C is a small category, there exists a unique category in o,
denoted by 7);(C) and called the category in M associated to C, which
transforms the pullbacks 7; and 7, into canonical pullbacks in M and
which maps a, 8, k and ¢ respectively onto the maps source, target, law
of composition of C, and insertion from C, into C.

If f:A—C is a functor, 7);(f) will denote the unique natural trans-

formation (or functor internal to )
M1(f): ny(A) = n(C) such that 7;(f)(2)={.

In this way, we get an equivalence 7);: F-F(M). This equivalence
admits as a restriction an isomorphism from F onto the full sub-category
of .‘f(?ll) whose objects are the categories in n mapping ¥; and Y, on

canonical pullbacks in M and ¢ on an insertion.

b) On the other hand, we have an equivalence 14 7 from ¥ (fm) onto
¥, which maps:
the category ¢ in M on the category §1(¢), called the category
associated to ¢ , whose underlying set is ¢(2) and whose law of compo-
sition if P(k). ¢!, where g is the bijection:
x P (p(v)(x) p(V')(x))
from &( 3) onto the canonical pullback of (¢(a), ¢(3)),

#(1) N \9(3)

b(a)Vp(B)

the functor 7: @ —¢' internal to M on the functor from §1(¢) to
§1(¢') defined by the map 7(2): ¢(2) ~¢'(2).

@'(2 /‘%\

d'(1) ?'(3)
T(1) T(2) 7(3)
(1) 2) B( K 3)
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14 A. BASTIANI - C. EHRESMANN

In particular, if M is a small set, the constant functor M": 25 -

is a category in M whose associated category is the discrete category Mo,

4. The functor toward F associated to a category in K.
PROPOSITION 8. Let H be a category admitting pullbacks..The category

*
F(H) is equivalent to the full sub-category K of 3:}( whose objects are
the functors ¢:H*=F whose composite p?(ﬁ with the forgetful functor
pF - F -M is representable.

A . Since sz is the Fg-closure of {2} and }(0?=}{a?, Proposi-

Lo/
tion 3 asserts that F (H) =X 5 is isomorphic with the full sub-category
sk *
R of ?(m)}( whose objects are the functors 3 : X -‘3:( )R) such that

v is representable, v: (M) =M denoting the functor value in 2 which
sends 7 onto 7(2). If §1 : (M) =F is the equivalence constructed in

3 above, the composite functor

¢1

F (M) g —PF .y

is equal to v, so that vy is representable iff pg{;\) is representable.

The equivalence
{1}(*: F (- F
associating Qlk/J to Y: }(*—'cf(m), it admits as a restriction an equiva-
lence from .R onto the full sub-category X of ?}(*. Hence F(H) and X
are equivalent. V
5. The canonical cocategory in ¥ .

If » is a natural integer, the composite functor

1d NSRRI,

is a category in M, since the pullbacks 7; and ¥, in 23: are also pull-
backs in A*. Its associated category is the category n defining the ca-
nonical order of the ordinal » = {0, ..., n-1}; the morphisms of n are the
pairs (m’, m) of integers such that m<m’'<n.

If f:n—~m is a morphism of 23:, i.e. if { defines an increasing
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map from (7,<) to (m, <), the composite natural transformation

sq C—»A"i@m

is a functor internal to M, to which is associated the functor f:
(7,2) = (f(j), f(i)) from n to m

(defined by the map A(f,2)).
PROPOSITION 9. There exists a cocategory in § admitting as a restric-
tion an isomorphism from Zf}; onto the full sub-category i‘c}t of ¥ whose
objects are 1,2,3 and 4. F is the inductive closure of {2}.

A . From Proposition 4, it follows that the Yoneda embedding Y, from
Z;: to ng admits as a restriction a cocategory Y; in F (M) and that
3(37() =m03: is the inductive closure of { Y1(2) }. As Cl\is an equivalen-

ce, ¥ is the inductive closure of { Cl 71(2) } and the composite ﬁl }71 :

1 gm L g

3k

>F
is a cocategory in F. 1t admits as a restriction an isomorphism from Z*?
onto the full sub-category of F whose objects are the categories

Cl?l(n), where ne {1,2,3,4}.

So, it remains only to prove that the category {; 71(11) is identical with
n. Indeed, this category is the category associated to the category in M.

Y, (n)=2q(-,n): Zg - N,
Since sz is a full sub-category of A* , we have Y;(n) equal to the compo-

site functor:
SgCan—Blni-) oo,
to which is associated, by definition, the category n. v

REMARK. The above constructed cocategory in ¥ is a restriction of the
canonical embedding of the simplicial category A into ¥, which defines
¥ as a category admitting as models the categories n, for all the integers

n. The corresponding «singular functors from F to the category & of sim-
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plicial maps sends a category C onto the corresponding simplicial object;
the homology of this simplicial object is called the homology of C [Grl.
The singular functor admits an adjoint, the realization functor, which asso-
ciates to a simplicial object F the category canonically associated to F;
the groupoid projection of this category is the fundamental groupoid of F
(see [GZ]).

D. Internal discrete fibrations.

1. It is known [E1l] that the three following notions are equiva-
lent, where C is a category:
a) A functor from C to the category M of maps.
b) A discrete fibration (or hypermorphism functor [E1]) over C, which
is a functor p: H 2 C such that

H, = H
bo b
Co e C

is a pullback, where o and a' are the source maps of C and H and p,
the restriction of p to the objects; this means that, if s is an object of
H and x: p(s)—e’ a morphism in C, there exists one and only one mor-
phism y in H admitting s as its source and satisfying p(y) = x.

c) A left action k' of C on a set A, also called a category action
(or an operator category on A, or a species of structures in [E1]): then
k' is a map (x,s) P xs from a sub-set K’ of CXA to A satisfying the
following axioms: there exists a map p, - A ®C, such that K’ is the ca-
nonical pullback of (@, p, ) and that:

es=s if s€eA and e=p (s),

x'"(xs)=(x".x)s if x'. x exists in C and if (x,s) €K’

K’
XS oe— —= — - S
Q e —e——— ¢

232
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(the map po is uniquely determined by these conditions, which imply that
po(xs) is the target of x). The associated discrete fibration is the func-

tor p: CxA —-C, where C*A is the category on K' such that:

(x',s').(x,s)=(x".x,s) iff x'.x existsin C and s'= xs.

2. We denote by m F the horizontal category of commutative squa-
res (or quartets [E1]) of the category F of small functors whose objects
are the small functors, the morphisms from p to p’' being the commutative
squares (p', f.f'.p).

ol / C
p’ p
H' f H
We denote by (@ the full sub-category of mF whose objects are

the discrete fibrations; its morphisms are called morphisms between dis-
crete fibrations.

The category @ is equivalent to the category of covariant maps
between category actions (see [E1]). »

We denote by p{ and p§ the functors from @ to M sending the
morphism (p’,f, ', p) respectively onto the map [ defining f and onto
the map fo: H, 2 Hg restriction of [’ to the objects.

F will be identified with the full sub-category of @ whose objects

are the identical fibrations.

Let C be a small category. @ admits as a «non-full» sub-category
the category @C of morphisms over C, whose elements are the morphisms
(p',f, f'»p) such that [ is the identity of C (such a morphism identifies
with the triangle (p’, f’, p)). There exists an equivalence from ME toward
&C which sends a functor ¢ : C =) onto the discrete fibration b¢ , from

HQS to C, associated to it (the morphisms of H¢ are the pairs
(x,s), where x€C and se¢(a(x)),
and b¢(x,s)‘—'x).

&C is also equivalent to the category of covariant maps over C.
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18 A. BASTIANI- C. EHRESMANN

3. The sketch of discrete fibrations.

We denote by 2 the category
1 £ 0

as well as the limit-bearing category on 2 without any cone. The tensor

product 0F®2 is the category 2§ x 2 equipped with the pullbacks

(V' 1) (v',i) (v,i)

(a,i (v.i) (v.i) (v'i)

for i=1and i =0.

0 p
0 (1,0) (B (2,0) (K:0)N(3,0)
(a,0) (2,2 (3,2)
z (1,z)
1 (B, 1)
(1,1) — Z'W(3.1)
(a, 1)

PROPOSITION 10. There is a canonical equivalence which is surjective
¢ mFO2 = ¥,
A.Let y:2gXx2 - be a 0 ®2-structure in M. Then
Y(=1): 2q = M and Y(-,0): 23: !
are categories in JU; let C and H be the associated categories. The map

Y (2,z) defines a functor {'(Y ) from H to C.
If 7:y = Y is a 0 ®2-morphism, then

'"(Y):H=C and  {'(Y'):H =C’

are functors and the maps 7(2,1) and 7(2,0) define, respectively,

functors f: C =C’ and f': H—H'. Then {'(7) is the commutative square
(L) 1 L))V

DEFINITION. We define the sketch of discrete fibrations as the limit-bea-

23%
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ring category Oy = (Z¢ ) r¢) got by equipping the category qu =Zgx2
with the set rg@ﬂ) of the distinguished cones of 0F®2 and the pullback

V4 (1,0) ) (2,0)
(1,z) (2,z)

1
(1,1) (D (2,1)

Let I—_‘-qb be the set (Fg:Q’Z))U{’}"‘} of 7 cones, among them the
absolute pullbacks [’)’3, 0°] and [')/3, 1°], and o =(2¢. r_ ). Then zas
is the I—' -closure of {(2,1),(1,0) }, since 2q is the rg: closure of {2}
and Y, is a pullback. Moreover nee = m%

PROPOSITION 11. The category R is equivalent to M°® and it is the in-
ductive closure of { 1,2}, where 2 is the void fibration from @ to 2.

A, 1o If Y :szXZ =M is a OF®2-structure in M, icis a O -struc-
ture iff it maps 7, on a pullback in N, i.e. iff the functor {'(Y) is a
discrete fibration, where (' is the equivalence defined in Proposition 10.

’ . . . . n
Hence (' admits as a restriction an equivalence {" fromthe full sub-cate-

Q2
gory M7 of 311"51 onto the full sub-category @ of m¥.
o Since M°® =M% and =, is the I, -closure of {(1,0),(2,1)},
20 S M 5 6
o
by Proposition 4, the category M ¢ is the inductive closure of
{Y(1,0), Y(2,1)}, where Y:Z% -M°¢
is the Yoneda embedding. Using the equivalence (", we deduce that @ is
the inductive closure of { {"Y(1,0), {"Y(2,1)}.
As (1,0) is an initial object of Z¢, it is mapped by Y on a final

object of M°®, and by {"Y on a final object of @. Hence {"Y(1,0) is
isomorphic with the identical fibration 1.
The category associated to Y(2,1)(-,1):2q =M is 2x{1}, for
Y(2,1)(m,1)=24((m,1),(2,1)) =24 (m,2)x{1}
for each me€ {1,2,3,4}. In the same way, the category associated to
Y(2,1)(-,0): Zg - is void. ‘Therefore, ("Y(2,1) is the discrete

fibration from the void category to 2X { 1} (isomorphic to 2). This fibra-
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20 A. BASTIANI - C. EHRESMANN

tion is isomorphic in @ with the fibration 2.

If follows that @ is the inductive closure of {1,2}. V

4. Discrete fibrations in a category K.

We suppose that H is a category admitting pullbacks. A O 4 -struc-
ture in X is called a discrete fibration in H. We denote by Q@ (H) the ca-
tegory of g -morphisms in K, which is equal to K.
propositioN 12. 1° Q(H) is equivalent to the full sub-category R of

* . *

@}{ whose objects are the functors p :H =@ such that pR P and p&p
are representable (where pR and p‘& are the forgetful functors from @ to
M defined in 2).

2° If y and \J' are two discrete fibrations in X such that

'\/:/('o 1) = l/J'("p 1)-' z? _'}(: 4”74 = ¢’74: \p(,Bv 0) = ¢’(ﬁl 0):
then Y and ' are isomorphic in @(H).

A, 10 As G(}()=}(0¢ and qu is the F¢-closure of {(1,0),(2,1)},

Proposition 3 asserts that QK is equivalent to the full sub-category R'

£ 3
of @(m)}( whose objects are the functors o }(*—on(SII) such that g0’
and q° o' are representable, where q° and g are the value functors from
@(M) to M associating to 7T respectively 7(1,0) and 7(2,1). If {"

is the canonical equivalence (Proposition 11), then

y )
q is the composite functor ((1e.8) 4 @ rQ M,

o
4
q° is the composite functor Q) 4 @ il .

It follows that a functor ,0': K* —'@(m) is an object of R iff the functor
L"p" is such that pg{"p’ and p&{,"p' are representable, i.e. iff ("p’

is an object of the category R defined in the Proposition. Hence the equi-

oJ(* H* . oH* . .. .
valence { : @(m) -@' admits as a restriction an equivalence from

R o R. Finally, @(X) is equivalent to R.
2° Let  and ' be discrete fibrations in H satisfying
\/J(':1)=¢'('.1), \l/’)’4=l,b")’4 ’ ¢(,BIO):¢'(£’O)'

Since
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Y(v',0) Y(B,0)

Y(B,0)

Yla,0 Y(v,0) Y(a,0

are two pullbacks, there exists an unique isomorphism g of H such that:

"[j(vi' 0).g= ‘l"(Vi; 0) for V=V and VI:V'_

From the equalities

(Vl-,1)-(3,2):(2,2).(vi,0)
for i =0 and i = 1, we deduce
l,ll'(vi,1)-\/!'(3,2)2\/J'(Z,z),\,ll'(vi,O)=\/J'(2,z).\/1(1/l.,0).g=
=y(2,2).Y(v,,0).g=Y'(v;, 1).Y(3,2).¢

for i equal to 0 and I. This implies (unicity of the factor relative to a
pullback):

Y'(3.2z)=y(3,z). 8.
In the same way, from

(a,0).(k,0)=(a,0).(v,0) and (2,2).(k0)=(k,1).(3,2),

we get
Y'(k,0)=y(k,0). g,

the functors \ and ' taking the same values on (,0), on (2,z) and
on (K, 1). It follows that the categories Y(-,0) and Y'(-,0) in X are

equivalent, whence Y and ' are equivalent, i.e. isomorphic in Q). V
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The preceding proof shows that o4 admits as its «idea»

(B,0)

$ (x,1)

Hence a discrete fibration Y in H is determined up to an isomorphism by
(Y(-,1), Y(1,z), Y(B,0)). This leads to the following definition:

(1,z)

DEFINITION. We say that (¢, b, k’) is a category action in X if:
1° ¢is a category in X,
20 b and k' are morphisms of X,
3¢ there exists a discrete fibration Y in H such that

Y-, 1)=¢, Y(l,z)=h, Y(B,0)=~r".

If ¢ is a category in X, let ¢* be its dual (section C-2). If we
have a category action (¢Px, b, k') in X, we also say that (k', b, ¢) is

a right category action in .

EXEMPLE. Category actions were introduced in [E4] as an axiomatiza-
tion of the notion of a fiber-bundle. Indeed, topological (resp. r-differen-
tiable) fiber-bundles correspond exactly to the category actions in the ca-
tegory J of continuous maps (resp. 97 of r-differentiable maps between
manifolds) such that the operating topological (resp. differentiable) cate-

gory be a locally trivial groupoid |E4,5].

S. Distributors in K.

If B and C are categories, the following notions are equivalent:
a) A distributor from B to C, which is defined [B1] as a functor
from C*XB to M.

b) A pair of category actions on a set (introduced in [E1] under the

name of «ouple de catégories d'opérateurs»), i.e. a pair
((B,A, k'), (C* A, k"))

of category actions such that
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(xs)x' = x(sx") whenever the composites

xs=xk'(x,s) and sx' = k"(x', s) are defined.

This last notion is easily «internalized» in a category X admitting
pullbacks by defining a limit-bearing category Oy whose realizations in
M are pairs of category actions on a set. We will not formally construct
Oy here; its description is given in [V]. Intuitively, it is got by gluing
together along (1,0) the sketch of a discrete fibration and the sketch of
a discrete fibration over the dual of a category (in which (u, y) is replaced

by (/1.Y)), and by adding the pullback

and the factors

t'=[(2,2).4',(4,0). 4] and t=[(,5.0).u',(§.Z)-u]

relative to the pullbacks

(B.1)

of ((a,1),(1,2)) and ((1,2),(B,1)),
the axiom (&,0).¢t =(f3,0).¢".
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The realizations of Oy in X are called [B1] distributors in H:

DEFINITION. Let H be a category admitting pullbacks. A distributor in
H is defined as a sextuple (@', 5", k", k', b, }), where:

1° (¢', b, k") is a category action in X,

20 (k'.bh, ) is aright category action in X,

30 k".I'=k'. 1, where

l = [k'.m’,p.m] and [I' = [p'.m', E'.m]

are the factors relative to the pullbacks respectively P of (4, $(/3)) and
P’ of (¢'(a),h'), where we have the pullbacks:

b b’

#(B) 14

. o . _— .
9 denoting the category M ¥ of morphisms between distributors, it

follows from Propositions 2 and 12 that Hs is equivalent to the full sub-
*

category of fD}( whose objects are the Y H* =9 such that Y(-)(w) is

representable, for w € {(2,1),(2,1),(1,0) }.

REMARKS. 1° To a distributor & : C*X B = is associated a functor A,
from B to mC* and, since mc* and GC* are equivalent, a functor from B
to &C* . More generally, problems in Differential Geometry and in Analysis
led to consider functors from a category B to @. Such a functor associates
to each e € B, a category action (C_, A_, k) ; then B operates on the ca-
tegory sum of the C, and on the set A sum of the A, . This situation is
easily internalized in H and enriched by giving supplementary structures
on the A_. In fact, it was this more general notion (suggested by that of
a sheaf of operators on a sheaf) which was first introduced (in [AB] to de-
fine distributions on infinite dimensionnal vector spaces) under the name
of «catégorie de catégories d'opérateurs» and which is studied in [E1,5]
(and called espéce de structures dominée par des applications covariantes).

2° Distributors are the 1-morphisms of a bicategory (see [B1]), for a
law which can be suggested by that of the category of atlases of a catego-
ry defined in [EG].
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1. THE CATEGORY OF DOUBLE FUNCTORS

A. Double categories.

1. In this section, we recall the initial «naive» definition of double
categories, as it is given in [E2].
DEFINITION. A double category is defined as a pair (2°,2") of catego-
ries with the same set of morphisms, satisfying the following conditions:
1° The maps source and target of = define functors from 2° onto
a sub-category of 2°.
2° The law of composition of > defines a functor toward =° from
the sub-category of 2° x 2° formed by the pairs of morphisms composable
in the category 2°.
(2°,2") is then called a double category on 2, and the categories
2° and 2 are respectively its first category and its second category. A

double category on 2 is said small if 2 is a small set.

In [E2] it is shown that the axioms 1 and 2 are equivalent to the
following ones, where a, 8 and a°, [° denote the maps source and tar-
getin 2 and in 2° respectively:

1° For each d€ 2, we have
a(a’(d))=d(a(d)), a(p(d))=p(a(d)),
B(a®(d))=a(B(d)), B(B(d)=/3(B(d)).
20 If the composite d’o d exists in >°, then
a(d'ed)=a(d')oa(d) and B(d'ed)= B(d")eB(d);
if the composite d.d exists in > , then
a®(d.d)=0a°(d).a°(d) and B°(d.d)=B°(d). B°(d).

30 Permutability axiom: If the composites d'od, d'cd, d.d, d'.d"

are defined, then the composites
(dod).(dod) and (d'.d') o(d.d)

are defined and both are equal.
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B°(d) R
d’ d’'
B(d) d fa(d)
d d
a’(d)

This set of axioms being symmetrical relative to 2° and to 2°,
it follows that (=°,Z") is a double category iff (2',2°) is a double ca-

tegory; these two double categories are said symmetrical.

2. Notations.

A double category (2°,%") is generally denoted by a unique ita-
lic letter, for example D . In that case:

The underlying set 2 is denoted by D.

The first category 2° is also denoted by D1, its symbol of composi-
tion by o; (instead of o), its mappings source, target and law of composi-
tion by a! , B! and «!. ‘

The second category 2 is denoted by D? , its symbol of composition
by o, (instead of .), its mappings source, target and law of composition
by a?, 2 and 2.

The set of objects of D! defines a sub-category of D?, which is de-
noted by Dl and called the second category of 1-morphisms of D.

The set of objects of D? defines a sub-category of D!, which is de-
noted by DZ and called the first category of 1-morphisms of D.

The categories Dg and D;,2 have the same set of objects, which is
written Do, and called the set of vertices of D. The elements of D which
are not objects for D! nor D? are called 2 -blocks of D.

Let d be a 2-block of D. As a morphism of D!, it admits a source
x=al(d) and a target x' = ,31(d) and we write d: x ~x'. As a mor-
phism of D2, it admits a source y = a?(d) and a target y' = ,52( d) and

we write d:y 3 y'.

é é
y' d y
e’ = e
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3. Examples.

a) 2-categories are defined as the double categories D such that the
objects of D? are also objects of p! , so that Dy, =Dg CDg; a 2-block
of D is then called a 2-cell. For example, we have the 2-category of na-
tural transformations (between small categories), denoted by (T(ED,T('),

or U, whose second category of 1-morphisms is ¥.

b) If 2° is a category and 50 the discrete category on 2, then the
pair (2°,2%) is a double category, called the discrete double category
on 2°. Similarly, (ZO,Z°) is a 2-category, called the discrete 2-cate-
gory on 2°.

c) If A is a category, (A, A) is a double category iff A is a commu-
tative category, i. e. a category coproduct of commutative monoids.
If D is a double category such that D(I, and D? are discrete cate-

gories, then p! =p2.

d) Let A be a category. We denote by A the double category of com-
mutative squares of A. Its underlying set is the set of commutative squa-
res (or quartets) of A, which are the 4-tuples (y',x’, x,y) such that the
composites y’'.x and x'.y are defined and equal.

Its first category, denoted by H A, is called the vertical category

of squares; its law of composition is:

(3,2, % 9)B(y s x,y)=(3'.y", % %, 5. y) iff x'= %.

x"l
. . 'xl xo
Y y
x' y Y y
y y .
X x
X

Its second category, denoted by oA, is called the borizontal

category of squares; its law of composition is:
(}'I',x.",.in}.’)m(y',x"x,y):()',"’El.xl'x'.x,y) iff }.,:yl.

There is an isomorphism (y',x',x,y) ~(x',y',y,x) from DA
onto HA.
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With similar laws, the set of all (non commutative) squares of A al-

so becomes a double category.

e) Let D be a double category. If C is a sub-set of D which defines
a sub-category C! of D! and a sub-category C? of D?, then (C1,C?
is a double category C, called the double sub-category of D defined by
C (or by Cl, or by C2).
In particular, among all the double sub-categories of D which are
2 -categories, there is a greatest one, namely that defined by the full sub-
category of D? whose objects are the vertices of D.
The full sub-category of D! whose objects are all the vertices of
D also defines a double sub-category of D, whose symmetrical double ca-

tegory is the greatest sub-2-category of the symmetrical of D.
f) Let D be a double category. Then,
(D'*,D2), (D',D?*) and (D'* D2¥)

are double categories, called respectively the first dual, the second dual

and the dual of D.

4. Double functors.

DEFINITION. We say that (D, ¢, C) is a double functor if C and D are
double categories and if ¢ is a map from C to D defining a functor from

C! to D! apd a functor from C2 to D2.

A double functor (D, ¢, C) will often be denoted by an italic letter
/. In that case:
the map ¢ is also denoted by { ,
the functor (D!, ¢, C1) by /I,l
the functor (D2, ¢,v c?) by f2. )
Moreover, we say that ‘

f: C =D is adouble functor,

or that ¢ defines a double functor from C to D.

EXAMPLES. a) The double functors between 2-categories are called 2-

functors.
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b) Let 2° and X' ° be categories. Amap ¢ : = —3' defines a func-
tor f:2° =Z'° iff it defines a double functor from the discrete double ca-
tegory (Z°,20) on =° toward the discrete double category on =’'°. In
tha‘t case, there exists a double functor from the double category of com-
mutative squares 02° to 02’ © defined by the restriction « to the commu-

tative squares» of the product map ¢x ¢x@dx ¢ . This double functor is
denoted by Of.

The double functors between small double categories are the mor-
phisms of the category 3:2 of (small) double functors, whose objects are
the small double categories.

This category is equipped with the following forgetful functors:

pf : ?2 —*3:, which associates to the double functor f the functor f 1,
Pg: .?2 —~F , which associates /2 to f,

P, 3:2 -, which associates to  the underlying map f.

F 7 F
2 ¢2

P? Pffz

m

Moreover, there is an isomorphism ¢2: 3:2 —’32, which is its own
inverse, mapping the double category D on its symmetrical one (denoted

D21y and associating
(D21, ¢,C?!) w (D, ¢.C)eF,.

We have the equality p§¢2 = pg .
B. Double categories as sketched structures.

Double categories may be considered both as categories in J or

as Uf;@crg-structutes in M (called double categories in m).

1. Categories in ¥.

Let 3"(3") be the category of functors in(ternal to) ¥ (this catego-
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ry has been defined in 0-C).

PROPOSITION 1. The category 32 of double functors is equivalent to the
category F(F) and isomorphic to a full sub-category of 5F).

A . We are going to construct two canonical equivalences, which will
be used later on.

1° a) Let D be a small double category. There exists a unique func-
tor m,,(D):2q —JF mapping the two distinguished cones 7; and Y, of
OF on canonical pullbacks in ¥ and associating to the morphisms ¢, a,
B and K of 0 respectively:

the insertion from the sub-category D°2 of D! into D! ,

the functors from D! to DZ defined by the mappings source and tar-
get a? and B2 of D2

the functor defined by the law of composition k2 of D? from the sub-ca-
tegory (D2%D2)1 of DI XD on the set of composable pairs of D? to D I

’@2 .

al
a a

Hence, 7);;(D) is the unique category in F such that 7,,(D)(2) is the
first category D! and that pF N 11(D) is the category 7,( D?) in M as-
sociated to the second category D? (cf. 0-C-3).
b) If f: C =D is a double functor, we have a unique functor
M) M (C)=my (D)
internal to F such that My (1(2)= fL

c) We have so defined a functor UITE
frm(f) from F, w F(F).

Lo o 03:
It satisfies pg:? Mp1 = M, vhere pg* is the functor:

T Hpg T from F(F) o FM).

Since 7, admits as a restriction an isomorphism from ¥ onto a full sub-
category of .‘T(?R) » the functor 7),, admits as a restriction an isomorphism
from ?2 onto the full sub-category 3(93:) of F(F) whose objects are
the categories ¢ in F such that pg ¢ is the category 7;(Z) in M asso-
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ciated to a category 2 (sucha category in'¥ is called a pF-structured ca-

tegory in [E2] ).

2° We define now a functor €11 from F(F) onto ?2.

a) Let ¢: 23: ~F be a category in F. Then ¢(2) is a category =°
and p§ @ is a category in M, the associated category L, (pFd) (defi-
ned in 0-C-3) is denoted by = . The pair (2°,%) is a double category,
whose image by 7);, is a category in ¥ equivalent to ¢ (by its construc-
tion). In particular, noting (2°,%") by ¢ 1(¢), we have

§11(7711(C)) = C for each double category C.

b) If T: ¢ —¢' is a functor in F, then

C0(T) =811 (), 7(2), §1,(P))

is a double functor; in this way we have defined a surjective functor l,”

from F(F) to F . The composite functor

STRITER 1 53 T, 32

is an identity functor, while
M Lo 2 F(F)—=F(F)
is equivalent to an identity. V

ocqgQo
COROLLARY. 3:2 is equivalent to the category M FOoF .

FOF

A . From Proposition 6-0, we know that M

(maﬂ:)cg; this last category is equivalent to 3:03: =% (%), and therefore

is isomorphic with

to F,, according to the Proposition. V

DEFINITION. If D is a double category, 7);,(D) is called the category

in F associated to D. If ¢ is a category in J, then §11(¢) is called
the double category associated to ¢.

2. The sketch of double categories.

®
Since 32 is equivalent to 311“} a?, it is natural to give the

DEFINITION. The tensor product OF@®0gF is called the sketch of double

7
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categories; it is denoted by 0%, and its underlying category by 232 .- A
OF,-structure (resp. -morphism) in a category H is called a double ca-

tegory (resp. a double functor) in K.

The category }(3:2 of double_fuhc_tors in X is denoted by 3:2(}().
It is equal to }(ES:QECJI, since (}(a?)ag;(}(o-?)vg. Proposition 7-0
asserts that 2§ , is the I::}@Ff}: -closure of {(2,2)}.
PROPOSITION 2. There exist a surjective equivalence C,z:gz(m) —'ffz

and an equivalence 7, : 3"2 —'ffz (M) such that {,2 M, be an identity.

A. From Proposition 1 and from 0-C-3, we get the equivalence 7),:
(%)
5, T g5 0 wF)F _~ wIF*TF_g,m).

which is constructed as follows:

If D is a small double category, 7),(D) is the unique double catego-
ry in | mapping the distinguished cones of 0§, on canonical pullbacks
in M, mapping the morphisms (¢, 7) and (7,¢), for n€ {1,2,3,4 }, on

insertions and such that
ny (DY) =my(D)(2,-): S =,
m;(D?) = my(D)(-,2): Zg =M.

2/
2 [ {16
B 2
202{ 5 DZ*D2 1’1(1) )
£t
pLp?

If /: C—D is a double functor, 7,(f) is the unique double functor
T:7M,(C) 2 ny(D) in m
such that 7(2,2) is the map [ defining f.

We construct now a surjective equivalence {,2: ?z(m) *'3"2:

If ¢:2¢, N is a double category in M, then
$;=#(2,-): 5 M and ¢,=p(-,2): Zq -

are categories in T, and the pair of their associated categories

2%8
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L(¢) = (L () Li(¢,))
is a double category on ¢(2,2).
If 7:¢$ »¢' is a double functor in M, the map 7(2,2) defines a
double functor §,(7): L,(p) = L,(3").
We have so defined the functor §2: cfz (DR) -*3:2 .

Since §1 M, ¥ —=F is an identity, the functor L, My
32_772__.g2 (m)._gL.gz

is an identity, and 772(?2) defines a full sub-category of 3"2(3“), iso-
morphic with 3:2 .V

3. General results about O-structures in N may be applied to the

category 3:2 , according to Proposition 2. In particular:

PROPOSITION 3. I° ¥, is a category admitting small projective limits
and small inductive limits.
2° The forgetful functor toward M as well as the two forgetful functors
pi and Pg toward § preserye projective limits and filtered inductive limits.
3° The forgetful functor toward M admits quasi-quotient structures,
i.e. [E1] if D is a small double category on D and r an equivalence on

the set D, there exists a small double category quasi-quotient of D by r.

These results are deduced in [BE1] from general theorems about

internal categories (which would also apply to 3:2(}()).

C. Categories of generalized natural transformations.

If D is a double category and A a category, the functors from A
to the first category of 1-morphisms of D are the objects of a category,
denoted by T(D, A), whose law is deduced from that of the second cate-
gory D? underlying D. Functors from a category B to T(D,A) may be

identified with double functors toward D from the «square product» BmA.

1. The functor T;,;.

PROPOSITION 4. There exists a functor Ty, : 32 X F* ~F mapping the ob-
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ject (D, A) onto the category T(D,A) got by equipping the set of func-
tors from A to D! with the law :

t'o,t is defined iff a?t’ = B2t andis then equal to the functor
a v t'(a)o,t(a) from A to D

A. 1° From Proposition 1-0 there exists a functor
6:F(F)xF*— F(M)

mapping (7, g) € 3"(_3:) x F onto the natural transformation F(-, g). T

¢ g( o A )
(where g:B —A). We denote by T;; the composite functor:

E3
§ e 12 g gy g

FOMy —L G

2° Let D be a small double category and A a small category. Then
T,;(D,A) is the category T(D, A) associated to F(-,A) ¢ : 23: -,
where ¢ is the category in F associated to D:

- Its set of morphisms is F(pc2),4)= F(pl,A)=L.

- Its law F(p(«), A)is defined on the pullback

Fpla)AVF(HBLA) = {(t',t)eLXL | a?t' =% },

and it maps (', t) onto the functor ¢(«). [¢',¢]:

ab t'(a)ozt(a) from A to DI.

3° Let b: D—~E be a double functor and g: B~ A a functor. T;; (b, g)
is the functor from T(D,A) to T(E, B) defined by the map

F-.g)m, ()(2)=F (-, g)(b1)=F (b, g),

which associates b! tg to t€ F(pl,a). V
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DEFINITION. The category T(D, A) defined above is called the category
of D-wise transformations from A to D. A functor t: A -D! s called a
D -wise transformation from f to f', if [ is its source and [’ its target in
T(D,A).

t(a') a'

f'(a) t(a) f(a) a

F (D2, A) is the set of objects of T(D, A). This definition, given
in [E2] (where T(D,A) was constructed directly), has been inspired by

the following example:

EXAMPLES. 1° Let B be a category, OB the double category of its com-
mutative squares. If A is a category, T([OB, A) is identified with the ca-
tegory B4 of natural transformations, by identifying a functor from A to
HB (i.e. a OB-wise transformation) with a natural transformation bet-

ween functors from A to B.
2° For any double category D, the category T(D,2) is isomorphic
with D?.
2. The square product of categories.
~ We are going to construct an adjoint to the «partial» functor
T, (-, 4): F, -~ F, for each small category A.

DEFINITION. Let A and B be categories. We call the square product of
(B,A), denoted by BWA, the double category (B’XA4, BXA?) (where
éo and QO are the discrete categories on the sets of morphisms of A and

B respectively).

BwA is a double category, since it is the product in F, of the

double categories (BY, B) and (A, A%). Its laws are:
(b',a’) o (b,a)=(b,a’'.a) iff b’ = b and a’. a exists in 4,

(b',a')o,(b,a) =(b'.b,a) iff a’ = a and b'. b exists in B.
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(6.8a)) (b F(a))

(B(b')a’') (a(b),a') a'
(b'l a’) (b, a')
(b',3(a)) (b,3(a) B
(B(b').a) (b',a) (b, a) (a(b),a)
(b', a(a)) (bya(a)) A
B oy
b’ b

REMARK. If we identify the block (b, a) (sometimes written b ma) with

its frame
(B(b)ma, bm B3(a), bma(a), a(b)ma),

we get an isomorphism from B ®A onto a double sub-category of ‘the double

category O (BXA).

DEFINITION. We say that (D, ¢, (B, A)) is an alternative double functor,
or that ¢ defines an alternative double functor from (B, A) to D if:

1° A and B are categories on A and B;

2° D is a double category on D and ¢: BXA =D a map;

30 the partial map ¢(b,-): A =D defines a functor from A to D! for
every b in B;

40 the partial map ¢(-, a): B —D defines a functor from B to D? for

every @ in A.

PROPOSITION 5. Let A and B be categories on A and B. The double
category B WA is characterized by each of the following conditions:

1° If D is a double category, a map ¢:BXA =D defines an alterna-
tive double functor from (B, A) to D iff ¢ defines a double functor from
BmA to D.

2° BmA is a free object associated to B relative to the partial func-
tor Ty, (-, A): ¥,-7.

A. 1° Let D be a double category and ¢:BXA =D a map.

a) The category B’ XA being the coproduct category bgB{ b}XA,the
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map ¢ defines a functor from B? XA to D! iff the map
¢(b,-):ar ¢(b,a) from A to D

defines a functor from A to DI , for each b in B. In the same way, since

BXxA®= Il Bx{a}, the map ¢ defines a functor from BX A’ to D?iff

acA

¢(-,a) defines a functor from B to D? for each @ in A. Hence BmA

satisfies the first property.

b) Suppose that ¢(b,-) defines a functor ['(b): A D! for each b

in B. The map
ff:bvf(b) from B to F(D,A)

defines a functor from B to T( D, A) iff:

- For each object e of B, f'(e) is an object of T(D, A), which
means that f'(e)(a) = ¢(e, a) is an object of D?, for any @ in A.

- For each composite b'. b in B, we have f'(b'.b) = ['(b")o,["(b),
ie. @(b'.b,a)=p(b,a)o,p(b,a) for each a in A.
These conditions are equivalent to say that ¢ (-, a) defines a functor from
B to D? for each @ in A. In view of Part a, they are verified iff ¢ defines

a double functor from BmA to D.

2° By the preceding method, we associate to the identity of BmA a

functor v: B 2T(BwA, A) such that v(b) be the functor

av(b,a) from A to (BmA)!, for each beB.

BmA

D/

T(BmA,A) v

T(D,A) f

If f/:B—T(D,A) is a functor, it follows from Part 1-b that the map ¢:

(b,a) = f'(b)(a) from BXA to D

defines a double functor /- BMA ~D. Then the functor T; ([, A).v

from B to T(D,A), maps b onto the functor
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Ty (AN w(b))=lu(b): A -pl.

which associates f(b,a) =f'(b)(a) to a€ A, and hence is equal to f'( b).
So v defines BWA as a free object associated to B relative to the func-
tor T;,(-,4A). \%

COROLLARY 1. Let A, B and C be categories. There are bijections
F,(0Cc,BwA)—~F(c4,B)~F(C,BxA).

A. This results from Proposition 5, since ct is isomorphic with the
category T([OC, A). The canonical composite bijection maps f: BmA—-0OC

onto the functor g:
(b,a) »f{(b,B(a)).{(a(b),a) from BXA to C. V

COROLLARY 2. Let A and B be categories. If D is a double category,

there are canonical bijections:
F(T(p3?1,B),A)%F,(D?!, AuB)=F,(D,BwA)SF(T(D,A),B).
A. Since (BwAP1=(BxAY% BYXA), there exists an isomorphism

h: (b,a)P(a,b) from (BwA)P! onto AmB,

and
F,(021,5):F,(p21, AuB) X F,(D?1,(BuA)!)

is a bijection !. Now, by sending a double functor from (B mA )21 o D21
onto the functor from B WA to D defined by the same map we get a bijection
1':%,(0?1,(BwAP ) X F,(D,BuA).

From Proposition 5, there are canonical bijections
":¥(r(p?1,B),A) =~ F,(p?!,AuB),
I":%¥,(D,BmA) = F(T(D,A), B).

Composing all these bijections, we get the bijection

g, a= 01" F(T(D?1,B), 4) xF(T(D,A),B),

which sends the functor f': A =T(D?!,B) onto the functor /", from B

to T(D, A), such that f"(b) be the functor
a""»/i'(a)(b) from A to DI. V

COROLLARY 3. T“(D,').‘ff*‘*ff is coadjoint to the dual of T“(DZI,-)
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for each double category D.
A. The canonical bijections Yg 4 defined above determine an equi-
valence y: F(T;;(D?L=),-) = F*=,T;;(D,-)): F*xF* =M. V

3. The functor m: FxXF - ?2.

PROPOSITION 6. There exists a functor m from Fx¥ to 3:2 such that the
partial functor -wA be an adjoint of T; ;(-,A) for each small category
A. If ffc denotes the full sub-category of ¥ whose objects are the small

connected categories, then B maps ffcx ffc onto a full sub-category of 3:2-

A. 10 If g:A—A’ and h: B »B’ are functors, the product map hxg

defines a double functor hmg: BmA ~B'mA’. We so define the functor
m: (b,g)humg from FxF to 3:2 .

2° The «canonical» adjoint of T; ; (-, A): ,»F maps h: B =B’ onto

the double functor »’': BmA —»B'mA associated to the functor v'h, where

v:B—-T(BmA,A) and v':B'~T(B'mA ,A),
are the functors defining B®A and B'WA as free objects. As v'h maps
b€ B onto the functor

ab(bh(b),a) from A to BOXA,

the functor ' maps (b, a) onto (h(b),a), and h' = hmA. Hence the par-

tial functor -mA: F =%, is the canonical adjoint of T (-, A).

B'mA T(B'mA,A) v’ B’
hmA T(hmA,A) ]
BmA T(BmA,A) v B

3° Let A, B, A" and B' be small connected categories and suppose
that f: BmA ~B’'®mA’ is a double functor. Since A and A’ are connected,
the components

- of BOXA are the sets {b }XA, where beB,

- of B'OX A’ are the sets {b'}XA’, where b'€ B’.

The functor f1:B%XA ~B'OX A’ mapping a component into a component,
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for each b € B, there exists a unique by € B’ such that
f({e¥xA)c {b}}xA".
In the same way [ defining a functor fP:BxA% -B"'XA"0 for each ac A
there exists a unique @ € A’ such that
f(Bx{a}) c B'x{a,}.
Hence
f(b,a)=(by,a,) foreach (b,a)eBXA,
which implies { = b X g , where the map
b : B =B’ associates by to beB,
g: A ~A’ associates a) to a€A.

These maps define functors h:B 2B’ and g: A *A’,and f=hmg. V

D. Some applications.

1. The canonical double cocategory in 3:2.
PROPOSITION 7. 1° There exists a double cocategory t, in 3:2 which de-
fines an isomorphism from 25;2 onto the full sub-category —if;z of ffz who-
se objects are the double categories m®n, for m and n in {1,2,3,4}.
2° 3"2 is the inductive closure of {2m2}.
A. 1° From Proposition 4-0, the restriction 72 : 2?}'2 —'32(3“) of the
Yoneda embedding is a double cocategory in ?2 (M), The composite

ta¢ ?ffz

where Cz is the canonical equivalence (Proposition 2), is a double cocat-

Y2

egory in:'J,, and ?2 defines an isomorphism from zg-'z onto a full sub-
category of ffz(m) which is mapped by the surjective equivalence §2 on-

to a full sub-category of ffz . The equivalence {, being faithful, so is ¢,.
2° We are going to prove that
mun=(,(m,n), for m and 7 in {1,2,3,4}.
Indeed, 2q, =ZgXZq, so that ?2(’”' n): g, =M maps the pair

(/Ju V)ezgz onto
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2g,((p,v), (m,n)) =2q(u,m)X2g(v,n) =
=Y (m)(pu)XY;(n)(v),

Z
where Y, : Z"j: - ¥ is the Yoneda embedding. From the construction of

{, it follows that ¢,(m,n) is the double category
(LY, (m)(2)X Y, (n)(=)), Ly(Y; (m)(-)X Y, (n)(2))),

where §1 : 3:(“]'() -9 is the canonical equivalence (Proposition 9-0). The
set Y;(m)(2) is the set m underlying m and QI(YI(n)) is the catego-
ry n (see 0-C), so that

L, (Y, (m)(2)X Y (n)(-))=m"Xn.
In the same way
L, (Y, (m)(-)XY, (n)(2))=mXnO.

Hence

ty(m,n) =(m®xn, mxn%) =mun.

3° The preceding results imply that ¢, maps 232 onto the full sub-

category of sz whose objects are the double categories mun. As
muan=m'®n’ iff m=m"and n=n",
the faithful functor (¢, is injective on the objects, whence injective.
40 zf} being the Fg-closure of {2} (see 0-C), Proposition 7-0
asserts that 5‘*2(311):?“ UE@U?:?RUS:@ °F

set {?2(2, 2)}. The image 3:2 of ?2 (M) by the equivalence {, is then

the inductive closure of the set whose unique element is

is the inductive closure of the

(,(Y,(2,2))= y(2,2)=2m2. V
2. Generalized limits.

By analogy with the usual definition of a limit for a functor we de-
fine limits relative to D for functors toward the first category of l-mor-

phisms of the double category D.

Let D be a double category and A a category. The category T (D, A)

of D-wise transformations (see C-1) admits for objects the functors from
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A to the first category D% of 1-morphisms of D.

The alternative double functor
(x,a) » x from (Dg ,A) to D

determines a functor dDA : Dg -=T(D,A) (Proposition 5-C). This functor
maps

- the vertex e of D onto the constant functor e”: A —'Dg ,

- the morphism x: e 3e’' of Dg onto the constant functor x™: A —*DI,
which is a D -wise transformation form e” to e’”.

As for natural transformations, we will use a more «geometrical» lan-

guage: Let f: A~ D2 be a functor.

- If t: {—e” is a D-wise transformation toward a constant functor,
we say that ¢ is an inductive D -wise cone, indexed by A, with vertex e
and basis f.

- A D-wise transformation t': e’'"—f is called a projective D -wise

cone with vertex e' and basis f.

7]

- Let x: e 3¢’ be a morphism of Dl . If t: {—e" is an inductive D-
wise cone, we denote by xt the inductive D-wise cone
x"o,t: f—e'" such that xt(a)=xo,t(a) foreach a€ A.
Dually, if ¢t':e'"—f is a projective D-wise cone, then t'x:e” [ is the
projective D -wise cone t'©,x" such that
(t'x)(a)=t'(a)o,x for each a€A.

DEFINITION. Let f: A - DZ be a functor. If ¢: [—e” (resp. t: e"—f) is
a D -wise cone defining e as a free (resp. a cofree) object generated by f
relative to the functor dj,,, then e is called an inductive (resp. a projec-
tive) D -wise limit of [ and t is called an inductive (resp. a projective) D -

wise limit-cone.

REMARKS. Limits relative to a double category were introduced by Ehres-

mann in [E2] and some general properties of these limits are given in [Lel.
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Quasi-limits of Gray [G1], analimits and catalimits of Bourn [Bo] areex-

amples of such limits which will be studied later on.

Let /- A ~DZ be a functor. The inductive D-wise cone ¢ with ver-
tex e and basis [ is a D-wise limit-cone iff, for each inductive D-wise co-
ne t with basis f, there exists a unique morphism x in Di , called the fac-
tor of t relative to t, such that ¢ = xt.

The projective D -wise cone t' with basis [ is a D-wise limit-cone
iff, for each projective D -wise cone t' with basis f, there exists a unique
morphism x’in D<1, , called the factor of {' relative to t', such that £ =1t'x".

f(u')

- ’ L2
t'(u') u

The terminology is justified by the following examples.

EXAMPLES. 1° If B is a category and (0B the double category of its com-
mutative squares, a functor f: A B admits a projective (resp. an induc-
tive) OB-wise limit e iff e is a (usual) projective (resp. inductive) limit
of f. Indeed, if we identify T(OB,A) with B4 and B with the second
category of 1-morphisms of (0B, the functor dyp, is identified with the
«diagonal» functor from B to BA.

20 1f I° is the discrete category on I, a projective D-wise cone ¢ in-
dexed by 19 and with vertex e is identified with the family (t(i));¢q of
1-morphisms t(i): e 3e; of D; hence ¢ is a D-wise limit-cone iff eis a
product of (e;); . in DL, the t(i)'s being the projections.

30 If D* is the double category (D!, D?*) which is the second dual
of D, then T(D* A) is the dual of T(D,A), so that a D-wise cone ¢ is

an inductive D-wise limit-cone iff ¢ is a projective D*-wise limit-cone.

DEFINITION. We say that Df admits inductive (tesp. projective) D -wise
A-limits if d, admits an adjoint (resp. a coadjoint), which is then called
a D -wise A-limit functor. If DZ admits inductive (resp. projective) D-wise
limits for each small (or finite,...) category A, we say that Df admits in-

ductive (resp. projective) D -wise small (or finite,...) limits.
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2. REPRESENTABLE DOUBLE CATEGORIES

We are going to study the double categories D whose first catego-
ry of 1-morphisms Doz admits D -wise 2-limits. For them, the existence of
D -wise limits reduces to the existence of «enough» usual limits in Dg . Fun-
damental examples of such double categories are the double categories of

squares of a representable (in the sense of Gray) 2 -category.

In all this chapter, we denote by D a double category, by « ©» and.

«.» respectively its first and its second law.

A. Representation of a 1-morphism.

DEFINITION. The double category D is said representable (resp. corepre-

sentable) if Df admits projective (resp. inductive) D -wise 2-limits.

D is corepresentable iff its second dual is representable.
Let v: T(D,2) ~D? be the canonical isomorphism mapping ¢ on-
to t(z), where z always denotes the morphism from 0 to I in 2. The com-

posite functor

pl T(D,2)—Y—+p?

is the insertion into D? of its sub-category D! . Hence D is representable
(resp. corepresentable) iff the insertion DI “—=D? admits a coadjoint (resp.
an adjoint). In particular, for 2-categories, these definitions are equivalent

to that given by Gray [G2].

Let D be a representable double category. If y: e e’ is a mor-
phism of DZ and if 7 s 3y is a 2-block of D defining s as a cofree ob-
ject generated by y relative to the insertion Dﬂ <~D?, we call 7 a repre-
sentation of y in D. If d:s' =y is a 2-block, there exists a unique 1-
morphism x: s'3s such that 7. x = d; this x is denoted by /d/ and cal-

led the factor of d relative to r.
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If r,: s, 3e is a representation of a vertex e in D, it is also the
representation of e in the greatest sub-2-category C of D; it follows that
C is also representable. From Gray's results [G2], we know that, if DOI
(which is the category of 1-morphisms of C) admits pullbacks, there exists

a category ¢, in D} mapping the morphisms @, B, ¢, v, v', k of ZF res-

pectively on: -
S /
ae:al(re)’ be:ﬂl(re)' emc*s

e e

1
. a(r,) v
the factor /e/ relative to Ty [ e

the canonical projections v, and v) of the pullback in pl:

,Bl(fe)

al(re)

the factor k, = /(r_.v_)o(1,.v;)/ relativeto 7,.

Indeed, let D( e, -) be the functor from the dual of Df, to F which maps:
the vertex s of D on the sub-category of D! defined by D?(e,s),
the morphism x:s 3s' of D¢ on the functor ¢  c.x from D(e,s’)

to D(e,s).

The functor p§FD(e,-) is equal to D?(e,-) which, as r, is a represen-

tation of e in D, is equivalent to Dg (s, -), whence representable. Then

Proposition 8-0 associates to D( e, -) a category in Dg , which is ¢e’

PROPOSITION 1. Let D be a representable double category such that hE
admits pullbacks. If y: e —e' is a morphism of D? and if ¢e and ¢, are
the categories in D(I, associated above to e and e', there exists a distri-
butor in Di:

Sy =(¢€“ by:k 1k 'ay’¢e)’

wh : =b,: 3 1 .
ere r:a, by s, 3y is arepresentation of y

A. 1° We get a right category action (&', a,,¢,) in D! by considering

the factor relative to r:

K=/ (1.6 )o(r,.p)/
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and the pullbacks in Dl

a) This action k' is unitary. Indeed, if i’ is the factor [Sy.. /e/. ay]

4

relative to the pullback P, then k'.1 =s, follows from the equalities

rk. Ly, /e/ a] =((r.8)0(r,.0)). s, /e/.a,] =

=ro(re./e/.ay) :ran =7

and from the unicity of the factor relative to r.

b) To show the associativity of the action, we consider the factors

c= [b'. o', ke.u] and c' = [&’. u', v! Lu ]

relative to the pullback P, and we have to prove that k’. ¢ = k'. c’'. This

is deduced from the equalities:

cu]

e

rok'.c=((r.b")o(r,.p)). [br. u’, k
=(r.b'.u')°(re.ke.u)

=(r.b'.u')°((re.ve)o(re-ve'))-u

=(r.b'.u')°(re.ve.u)°(re.ve'.u)),
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roklct=((r.b)e(r, . p)). [k vl ]
=(r.k".u")o(r,.v, .u)
=(((r.b")o(r,.p))u')e(r, . v} u)
=(rbut)o(r, u, u)o(r, vl u) =1 k' c,
since p.u' = v, . u.
2° A similar proof shows that (¢ ., b . k") is a category action in
Dg , where k" is the factor
k"= /(7. p')o(r.a")/

relative to r and where we have the pullback P’ in Dpl:

3° For (¢, by. k", k', a,, ¢, ) to be a distributor, it remains to prove

the «compatibility» of the two actions, i.e. k". 1" = k'.1, where

S . %S *S
e' "y e

is a pullback and where
I'=[p"m'. k'.m] and 1= [k".m", p.m]
are the factors relative to the pullbacks P'and P . Indeed, we get the equa-
lities:
r. k"I Z((re,.p')o (r.a")). [p'.m', k'.m)

= (70" m')o(r k. m)

:(re,.p'.m')O(((r. b')O(re.p)).m)

=(r,.p".m')o(r.b".m)o(r,.p.m),
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rok'.l =((r.b')o(re.p)).[k”.m',p.m]
=(r k" m')o(r .p.m)
:(((re,.P')°(r.a"))-m')°(re.p.m)
= (1,00 m")o(r.am m)o(r  p.m)=r. k. I",
since b'.m:a".m'.' \Y
REMARK. 8, may be defined as the distributor in Dg associated (p.24)
to the canonical functor \ from the dual of D! to the category M3 which

. . ’
maps the vertex s on the distributor ( D(e’,s), ,By's. K;l. Kgr @y 5o D(es)),

. . 1
where K'S and Kt; are restrictions of the law of D° and where ay's and

,By s are the maps from D?(y,s) to Dg(e. s) and Df, (e’ ,s) restrictions
of al and B!. Indeed, Y(-)(1,0) is represented by Sy Y(-)(21) and
Y(-)(21) by s, and s, respectively.

B. Existence of limits relative to a representable double category.

PROPOSITION 2. If D is a representable double category and if D! admits

pullbacks, then Do2 admits projective D -wise 3 -limits.

A. We denote by z, 2z’ and z" the morphisms of the category 3:

Functors from 3 to a category A are in bijection with pairs of composable

morphisms of A. Let f: 3~ D% be a functor.

1o Let r:a—b and r': @' b’ be representations of f(z) and f(z')

in D. By hypothesis there exists a pullback

P of (a',b) in DJ. We put
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t(z)=r.v:s3f(z) and t(z')=r".v':s=3f(2').
Since

al (t(z')) = al(r'.v') = al(r').u' =ag'. v = b.v=ﬁ1(r.v) =,31(t(z)),,‘

f(z")

f(z)

there exists a composite t(z") =¢t(z')ot(z) in D!. We have so defined

a D -wise cone t with vertex s and basis f.

2° t is a limit-cone. Indeed, let ¢’ be a projective D-wise cone with
basis f and vertex s'. The 2-block t'(z): s’ 3f(z) admits a factor x re-

lative to r and t'(z'): s’ 3f(z') admits a factor x' relative to r'. Since
a.x=al(r) . x=al(r.x)=d (¢'(2')) = BL(t'(2z)) = b.x,
there exists a factor b = [ x’, x] relative to P. From the equalities
t(z).h=r.v.h=r.x=1t'(z),
t(z'). b = T'. U'- b = 7"- x' = t'(z') ’
t(z").h=(t(z')ot(z)). b=(t(z").h)o(t(z).h)=
=t'(z")ot'(z)=1t'(2"),
we deduce that b is the unique morphism of D! satisfying th =t'. V

COROLLARY. If D is a corepresentable double category and if Dl admits

2 . . . . . .
pushouts, then Dy admits D -wise inductive 3-limits.

A. This results from Proposition 2 applied to the second dual of D,

which is representable. V

PROPOSITION 3. Let D be a representable double category and A a small
(resp. a finite) category. If DJ admits small (resp. finite) projective limits,

then Dg admits projective D -wise A -limits.
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A. 1° Some notations.

a) The category H: Let Y 4: Zg - be the category in M associa-
ted to A and | its restriction to the sub-category = of 2§ generated
by {a B,k v, V'}. We denote by H the source of the discrete fibration
n:H =2 associated to . Then H is generated by the morphisms:

(v.x,x), (V.,x",x), (K.x',x) from (3,x',x) to: (2,x'),
(2,x ) and (2, x".x) respectively, where (x', x) is any pair of composa-
ble morphisms of A, ‘

(a,x) and (B,x) from (2,x) to (1,u) and (1,4'), where x
is any morphism in A, from u to ',

(v,u):(1,u)—~(2,u), for any object u of A.

(B,x")

2,x") ,
(a,x') (V » X ,x)

(1,u') (3,x"%)

(V'lx'lx)

(B, x)
("-,x)

(2,x)

(1,u) (2,u)

(vu)

Since 23: is a finite category, H is small or finite when so is 4.

. . 2 . .
b) For each morphism y in D, , we choose a representation of y in D:

b

a
Y

and for each pair (y',y) of composable morphisms of D! , we choose a

pullback I;,.'y of (a,,b ) in p! .

S,
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(This pullback exists, pullbacks being finite projective limits.) Since

1 ' _ rl ’ — ] _
,B(ry.vy.'y)—ﬁ(ry).uy.'y—-b.v. =a,.v

y %y ~ % y'y:al('y"v’ ).

Yoy

there exists a composite

' ] o . ’y g . s y'o
(rye-vuy)oln oy )is,, 2y oy

in p! , and it admits a factor relative to Tytoy o which will be denoted by

20 Let f: A —'Df be a functor. We are going to construct a projective
D -wise cone t with basis f.
a) There exists a functor p: H —'D{, defined as follows: it maps
(a,x) and (B, x) on Aty and on b/(x), for each x in A,
(t, u) on the factor /f(u)/ relative to i) for each u€ A, ,

4
(V:x'!x)onvl aﬂd(VrX':x)on'U'l

K,x',
( x) on kye ¥y yLy?

for each pair (%', x) of composable morphisms of A, where y = f(x) and
Y =f(x").
Since H is small (resp. finite), there exists a projective limit-cone [ with

basis p and vertex s (in the usual meaning).

b) For each morphism x: z =%’ in A, we define t(x) = Ti(x)" 1(2,x).
The map associating (x) to x in A defines a functor ¢t: A DI . Indeed,

if u is an object of A, we get
t(u):r/(u).z(z,u):r/(u).//(u)/.l(z,u)=1(1,u)eug,
since, [ being a cone with basis p, we have
I2,u)=p(vu). I(1,u)=/f(u)/. 1(1,u).

On the other hand, if x: u %’ and x': «' 2“u" are morphisms of A and if
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1(2,u)

()7

y=f(x) and y' = f(x'), the equalities
ad (t(x")) =a1(ry.). I(2,x") = @y I(2,x")=p(a,x'). 1(2,x")=I(1u")

and

Bl(t(x) =b,. 1(2,x)=p(B.x).1(2,x) =1(1,u") =al (t(x'))
imply that the composite #(x’')ot(x) is defined in D! . From

I(2,x")=p(v ,x",x).I(3,x",x)=v .’y.l(3,x'.x),

y
I(2,x) =p(v"'.x",x).1(3,x",x) = v);. y-l(3.x',x),

I(2,x". x)=p(K,x",x).1(3,x",x) = ky.‘y- I(3,x", x)

and from the definition of ky. yasa factor relative to Tty s WE deduce

t(x')ot(x):(ry..l(Z,x'))o(ry.l(Z,x))=

:((Tyo- y)°(ry.v;,.'y)).l(3,x',x)=ry I(3,x",x)=

'°y'ky'.y
.oy.l(Z,x'.x) =t(x".x).

Uyl'
Hence t: A D! is a D-wise cone. As
t(x) =10 1(2,x): s 3 f(x),
this D-wise cone admits [ as its basis.
f(u
f(x)

3° We are going to prove that ¢ is a D-wise limit-cone. For this, we
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suppose that ¢’ is a projective D -wise cone with vertex s’ and basis f.
a) We first construct a (usual) cone [’ with vertex s’ and basis p as
follows:

for each object u of A, we define I'(1, u) as the 1-morphism
I'(1,u) =t'(u):s"af(u);
I'(2,x), for each morphism x of A, is the factor of the 2-block

t'(x):s"3f(x) relative to T/ (x)*

flu")

f(u)

If x:u—u" and x": u' 24" are composable morphisms of A and if
y =f(x) and y' = f(x"), we have
a,. I'(2,x")=d (r,.1'"(2,x)) = al(¢'(x')) =
=B (e(x)) = b, I'(2, %),
so that there exists a factor I'(3,x',x) = [1"(2,x"), 1(2,x)] relative

to the pullback Py.'y .
b) We prove now that in this way we get a cone I’ with vertex s’ and
basis p . Indeed:

If x: u ~u' in A, then
plavx). I'(2,x) = ay, ). 1'(2,x) =al (£'(0)=t"(u) = I'(1,u),
P(Bx). I'(2,x) = by 1'(2,x) = B¢ (x) =" (w') = 1"(1, ') .
If u is an object of A, we get
pleu) I'(Lu)=/f(u)/ ' (u)=/f(u). t'(u)/ =/t (u)/ = I"(2,u)

the factors being relative to T )"
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Let x: u—u' and x': u’' “u" be composable morphisms of A and
write y = f(x) and ¥’ = f(x'). By definition of I'( 3, x', x), we have
p(vV,x",x).I'(3,x",x)= y}"',y' I'(3,x",x)=1(2,x),
p(v.,x",x).1'(3,x",x) = Uy I'(3,x",x)=1(2,x").
Finally, p(k,x",x).1'(3,x',x) and I'(2,x'.x) are equal, since both
are factors relative to Tytoy of
vy DOK R %) (306 %) = 1y ke 13,50 %) =
=((ry-vy Jo(r, vpe ) 1(3, 5", %) =
= (1 1(2,57)) 0 (ry I'(2,5)) = £'(x") 0 t'( x) =

=t (x".x)=r,,. . 01'"(2, x".x).

y oy
I'"(2,x".x)
,x', x)

c) The projective usual cone /' with basis admits a factor d: s’ 3s
proj

relative to the limit-cone [, so that I’ =/d. For x in A, we have

t(x).d=r/

(x).l(Z,x).d=r I'(2,x)=t"(x).

f(x)*
I'(2,x)

1(2, x)

Hence d is the unique morphism of Dg satisfying the equality ¢’ =td .

This ends the proof. V
More precisely, we have proved:

COROLLARY 1. If D is a representable double category, A a category,
and if Dg admits pullbacks and projective H -limits (where H is the cate-
gory defined in the preceding proof), then D(Z, admits projective D -wise A-

limits.

COROLLARY 2. If D is a representable double category and if DOI admits

270



MULTIPLE FUNCTORS 55

small connected projective limits (resp. pullbacks and equalizers), then

D°2 admits small (resp. finite) connected projective D -wise limits.

A. If A is connected, zf)t being connected it is easily seen that H
is also connected. Now a category admitting pullbacks and equalizers has

connected finite projective limits. So Corollary 1 implies Corollary 2. \Y
By duality, it follows from Proposition 3:

PROPOSITION 4. If D is a corepresentable double category and if pl aa-
mits small (resp. finite) inductive limits, then D‘z admits small (resp. finite)

inductive D -wise limits.

COROLLARY. If D is a corepresentable double category and if D! admits

pushouts and cokernels, Df admits finite connected inductive D -wise limits.

REMARK. 1° In the proof of Proposition 3, instead of H we could have used
the source H of the discrete fibration associated to the category in M as-
sociated to A. Indeed, the functor p constructed in this proof extends in
a functor f: a *D(I, . As H is a cofinal sub-category of a , the functor p
has the same limit as f , and this limit is the D -wise limit of .

2° The preceding remark leads to a more abstract proof of Proposition
3 (which will be explicited later on for multiple categories). This proof pro-
ceeds as follows: Let £} be the set of categories A such that Doz admits
D -wise A -limits. As J is the inductive closure of {2} and as 2 belongs
to {} (by definition of a representable double category), we will have 0 = ¥
if B belongs to {) when B is the vertex of an inductive limit-cone c: [ = F

whose basis w satisfies:
w(i)ell for each object i of I.

Indeed, the functor T, ,(D,-): F* =F, coadjoint to T; ;(D?1,+)", trans-
forms c into a projective limit-cone ¢ with basis w=T; (D, w-):I* -F and
vertex T(D,B). The canonical functor dpg is the factor relative to c of
the projective cone ¢’ with basis w defined by:

¢'(i) =dp ;) for each object i of I.

Since c'(i) admits a coadjoint for each i, a theorem of Appelgate-Tierney

[ AT] asserts that the factor of ¢’ also has a coadjoint; hence Be ().
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C. The double category of squares of a 2-category.

In this section we give a fundamental example of a representable

double category.

Ve denote by C a 2-category, by «°» and by «.» the symbols of the

laws of the categories ¢! and C2.

1. The double category of up-squares of C is [GZ] the following
double category, which is denoted by Q( C):

- Its 2-blocks, called up-squares of C, are the 5-tuples

x'
= '; 'l » X ’ h '; 'r ; i I
q(yxcxy)were(};xxy)wa '% ,
(non-commutative) square of C; and c:y'.x =x’. y y
a2-cell of C. x

- The first law, said vertical composition and denoted by H , is
(;";'l g: ;: ;) B()", x',c,x, y) = (}.'—'-)": ;'(C—'—- y)°(;'~ C): X, ;- )’)
, iff x=x'.

- /_ - x'.y

e 17 -

x' m Y

Yy y' W

’
x y'.x

- The second law, the horizontal composition, denoted by O, is:

-

(3%, 2,8, % 9)m(y .« c,x,y) =(§, &5 (. c)o(E.x), %. %, y)
e i iff 5=y

S /e

ar (o

% x

The first and the second categories underlying Q(C) will be deno-
ted by Q(C)B and Q(C)™. Both admit as objects the 1-morphisms of
C . The identity of Q( C)B (resp. of Q( C)™) corresponding to the 1-mor-

phism z will be denoted by zE (resp. by z™), or sometimes even by z.

Hence we write

q: xB —»x'B , q:yP3y'™ . or more simply g: x —x', g:y 3y".
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We may identify C with the greatest sub-2-category of Q(C) by

identifying X
e’ e
c:x—x":e3de’ with (e',x",c,x,¢e). =

The double category DC‘I, of commutative squares of C£ is identi-
fied with the double sub-category of Q(C) formed by the up-squares of the
form (y',x',y'.x,x",y) (i.e. the up-squares ¢ such that ¢ be a 1-mor-
phism of C). In particular, this double sub-category is equal to Q(C) iff
C£ = ¢l , i.e. iff C is the discrete 2-category on c?.

2. The double category of down-squares of C.

This double category, denoted by Q‘(C) , 1s defined as the double
category of up-squares of the first dual ( C!% C?) of C . Hence its 2-blocks,
called down-squares of C, are the 5-tuples (y',x',c’, x,y), where

(y',x",%x,y) is a (non-commutative) square of Cf, ,

c':x".y 2y".x is a 2-cell of C.

g
/I x
c

= y'.x
The two laws, expressed with the laws of C only, are:
(v, %" % y)B(y 2 et x,y) = (¥ %00y e)ol(c .y ) x, y.y)
iff x' = x,
(9, 2,8, %x,y)m(y ., x",c,x,y) =(5, 2. x"(E"x)o(%".c"), %.x, y)

iff =1y,

- A/E' - ol x'
Yy Yy
¢/5' ,/c'

x x

The double category OCL is also identified with a double sub-ca-
tegory of Q‘(C).

The bijection:
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(y' %', c,x,y) 2 (x",y",c,y,x)

from the set of up-squares of C onto the set of down-squares of C defines
a canonical isomorphism from Q( C), to the double category symmetrical of

the double category Q| C).

3. Let f: C 2K be a 2-functor. We have double functors
Q(f): Q(C)—Q(K) and Qi(f): QU C) =Q(K)
associating (f(y'), f(x'), f(c), f(x), f(y)) to (y',x",c,x,y).

In this way are defined two functors Q(-) and Q‘(') from the ca-

tegory of small 2-functors into the category 3"2 of small double functors.

4. Limits in Q( C)™.
PROPOSITION 5. If C,I, admits projective A-limits preserved by the inser-
tion i: CL<— C?, then EIJC{, admits projective A-limits which are preser-
ved by the insertions j and j' into Q(C)™D and Q‘(C)Eu.

A. We denote by a and ,_é the functors from the category K = 0O Cf,
to Cl defined by the maps source and target of the vertical category BCJ
(whose objects are identified with 1-morphisms of C). Let F be a functor
from A to K. We write:

f=aF and f=BF.
Since K is isomorphic with the category (Co)2, there exists a projective
limit-cone T with basis F and the cones

t=aT and ta“—‘BT
are limit-cones with bases / and /.

1° jT is a limit-cone. Indeed, let T': A —0(C)™ be a projective
cone with basis jF. As ¢' = aT’ is a projective cone with basis f, there
exists a factor x of t' relative to . There also exists a factor £ of ' re-
lative to £, where £' = ,—éT'. We have T'(u)=(y,, £(u), c, t'(u),y'), for

"each u€ A, , where cyl Yy t'(u) —£'(u).y is a 2-cell. The equality
F(a)mT'(u) =T'(u') implies f(a). €y = ¢y

for each morphism a@: u —u' in A. Hence, there exists a projective cone
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y
f'(u)
oW
»~ ) u -
f(a yu{ (%) jC x
£(u')
Yu' f(a) Lay Y

t (uY
t": A 2C? with basis z'f such that

t"(u) = c, for each object u of A.

Since £ is a limit-cone, the hypothesis asserts that if is a projective li-
mit-cone and there exists a factor ¢ of " relative to i. From

t(u). al(c)=al(il(u).c)=al(c )=y, . t'(u)=

=y, - tlu).x= t(u).y. x,
we deduce, £ being a limit-cone, al(e) = y. x . Similarly, ,BI(C) =x.y".
It follows that (y, £, c,x,y") is an up-square ¢ and, by its construction,
it is the unique up-square satisfying
T(u)oog=T'(u) for each object u of A.

2° The category Q‘( C)™ being identical with Q( C*)™ | where C*
is the first dual of C, the preceding proof applied to this dual shows that

i'T is also a limit-cone. V

COROLLARY 1. If C{, admits projective A-limits preserved by the inser-
tion into C2, then H C‘I, admits projective A -limits which are preserved by

the insertions into Q(C)B and Q‘(C}B .

A . This corollary is deduced from the proposition, via the canonical
isomorphism from Q( C)™ onto Q (C)U (resp. from Q‘(C)El:I onto Q(C)B)
which maps D Cf, onto H CIo . \Y%
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COROLLARY 2. If Cl admits inductive A-limits preserved by the insertion
into C2, then tmC{ admits inductive A -limits preserved by the insertions
into Q(C)™ and Q¢(C)ED.

A . This results from Proposition 5 applied to the second dual of C. \Y
COROLLARY 2. If cl admits 1-products (resp. 1-sums) preserved by the
insertion into C2 then Q(C)™, 0 )™, 0(C)B and 9y C) B admir

I-products (resp. I -sums).

A. This comes from Proposition 5 and its corollaries, applied to the

discrete category ©ont. V

REMARK. O( C)™ does not always admit pullbacks, for up-squares which

are not commutative squares.

5. Representability of Q(C).

PROPOSITION 6. If C is a representable 2 -category and if cl admits pull-

backs, then Q(C) is a representable double category.

A . We consider an object of Q( C)™, identified with a 1-morphism y
of C, where y: e 3e’'. In the 2-category C, there exists a representation

r*:a" —b’ of e'; there exists also in Cg a pullback P

of (a’,y). Then ¢=(y, b'.p", r".p', p,s) is an up-square of C. We
are going to prove that g is a representation of ¥y in Q(C). Indeed, let
9" =(y,x',c,x,s'") be an up-square of C, where s’ is a vertex of C.
Since c: s' 3e’ is a 2-cell of C, it admits a factor /c/ relative to the

representation 7' of e’ in C; we have

<l
N O ;
e p 'S
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a'./c/=al(r)./e/ =al(s'./c/)=al(c) =y x,

so that there exists a factor b of (/c/,x) relative to P . As

b .ph=b'"sc/ =Bl sc/) = Blc) = x",

r'.p'.h=r7r"./¢/=c and p.bh=x,

we get

qm;,B =(y, b p" b, r".p' h,p.h,s')=q".
The unicity of the factors asserts the unicity of the 1-morphism b satis-
fying qEDbHZ . V

COROLLARY. If C is a representable 2-category and if Cd admits pull-

backs, then Q;(C) is a representable double category.

A. Since C is representable, so is its first dual. This dual admitting
also Col as its category of 1-morphisms, the double category of its up-squa-
res, which is QL(C) by definition, is representable. More precisely, a re-
presentation of y: e =3 e’ is constructed as follows: Let 7': @' ~b’' be a
representation of e’ in C; then ' is also a representation of e’ in the first
dual of C, but its source in cl* is b'. Let

b'

[Z1Y

y [

e
be a pullback in CI. The down-square (y, @'. 1", 7. 1',1,5) of C is a

representation of y in Q)( C).

l'

$ \Y

PROPOSITION 7. If C is a corepresentable 2-category and if cl  admits

pushouts, then Q(C) and Q‘(C) are corepresentable double categories.

A. A proof similar to that of Proposition 6 and of its Corollary shows

that the 1-morphism y: e 3¢’ of C admits:

- as a corepresentation in Q(C) the up-square (s,v,d.7,0.4a,y),
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s e’
s' 1}!
U P y
b
tr e

a

- as a corepresentation in QJ( C) the down-square (s',v',0'.7,9". b,y)

where r:a —b is a corepresentation of e in C and

are pushouts in cé .

G. Limits relative to the double category Q(C).

PROPOSITION 8. If C is a representable 2 -category such that Cé admits
connected (resp. small, resp. finite} projective limits, . then C,l admits con-
nected (resp. small, resp. finite) projective Q( C)-wise and Q‘(C)-wise
limits.

A. This follows from Proposition 3, since Q(C) and Q‘(C) are both

representable double categories (Proposition 7) whose second categories of

1-morphisms are isomorphic to cl. v

COROLLARY. If C is a corepresentable 2-category such that cl admits
connected (resp. small, resp. finite) inductive limits, then Cg admits con-
nected (resp. small, resp. finite) inductive Q(C)-wise and QJ( C )lwise
limits. V

We are going to look more closely to Q( C)-wise limits and to com-
pare them with generalized limits introduced by Gray.

Let A be a category. The category T(Q(C), A) of Q(C) -wise
transformations indexed by A admits as objects the functors from A to Cg ,
since Cl js canonically isomorphic with the first category of 1-morph-

isms of the double category Q(C). So a Q(C)-wise transformation ¢: f = f*
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is equivalent to the following data:
1° Functors f and [’ from A to cl.
2° Foreach object # of A a 1-morphism c,: f(u) =f'(u) of C.
3° For each x:u —~u' in A, a 2-cell ¢, ['(x).c, ~c, . f(x) such

in A, then c o =(cpo. f(x))o(f'(x").c.).

4 ”

that, if x': «' ~u

Indeed, these conditions mean that there exists a functor ¢ from A
to Q(C)B such that

t(x)=(f(x),¢ce,c .c,,f(x)) foreach x:u—u’in A.

“u” u” Cu”
f'(x") /C:‘ f(x') x' ['(x') /cx' f(x")
Cuv u' 4Cu'
f'(x) %x 10 s pry '/Cx f(x)
Cu u fu
Q(C) A Qe

We have a similar description for Q‘(C)-wise transformations, ex-
cept that ¢, goes «down» instead of «wp».

In other words, if f and f' are the 2-functors from the discrete 2-
category on A toward C defined by / and [’, the Q‘( C) -transformations
from [ to [’ correspond to the quasi-natural transformations from [ to f’
defined by Gray [G1], called anadeses by Bourn [Bol, while the Q( C)-wi-
se transformations from [ to f° correspond to the quasij-natural transfor-
mations from f to f' of Gray or to the catadeses of Bourn. (The way the
diagrams are drawn explains why we call «p» what these authors consider

as being «down» .)

Let f: A ~Cl be a functor considered as an object of T(Q(C), A).

An inductive Q( C)-wise cone ¢ with basis f and vertex e corresponds to
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a family (¢, ), .4 of 2-cells of C such that:
c,: f(u)=e is a 1-morphism of C, for each object u of A,
c,i ¢, ey f(x) isa2-cell, for x: u 2w’ in A,
Cor o =(cye f(x))oc, ,if x':u' ~u” in A

(the corresponding cone ¢ associates to x: u# —*u’ the up-square:

t(x)=(e,c e c,,cy f(x))).

This family corresponds to an inductive Q(C)-wise limit-cone if,
. ' P .. .
for each family (c; ) .4 satisfying the same conditions, there exists one

and only one 1-morphism y of C such that y.c, = c, for each x in A.

With this formulation, we see that the inductive (resp. projective)
Q( C)-wise limits «are» the cartesian quasi-colimits (resp. quasi-limits) of
Gray [G1] and also the inductive (resp. projective) catalimits of Bourn
[Bo], for 2-functors from a discrete 2-category. Hence Proposition 8 has
been anfiounced by Gray [G2] and proved by Bourn [Bo] (in a more gene-

ral case which will be considered later on).

D. Examples and Applications to sketched structures.
1. Limits relative to the double category of quintets.

The 2-category JU of small natural transformations admits the cat-
egory F of functors as its category of 1-morphisms. It is representable
and corepresentable, a small category A admitting:

as a representation the natural transformation 74 - HA 34 associa-
ted to the identity functor of Ha ,
as a corepresentation the natural transformation rj: A 34 X2 , from

v=[-,07] to [-,17] such that ra(u) =(u,z) for each u€ 4, .

An up-square of JUis called a quintet and we denote by 2 the dou-
ble category 2(J1) of quintets (following [E2], where this double categ-
ory was introduced, as well as its sub-2-category T(). Let S’Z* be the double

category of down-squares of J.

As F admits small projective and inductive limits, preserved by

the insertion into JU' (which admits an adjoint and a coadjoint), Pro-
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position 5 asserts that o0 F adr.its small projective and inductive limits

preserved by the insertions into 2™ and into QFJ .

RFMARK. The category JU' is cartes’an closed; it may be shown that 9
is «partially» cartesian closed. More precisely:_

Let f: A—B be a small functor and K a small category; if there ex-
ist left Kan extensions along [ for functors from A to K, each small func-
tor g: H 2K admits a cofree object G relative to the partial product func-
tor -xf: QM -9

Indeed, G is the composite functor:

HA &g kKA _ L _kB

2

where L is the left Kan extension functor (adjoint to K'). There is a si-
milar result replacing 9 by 5,’2‘ and left Kan extensions by right Kan exten-

sions.
From Propositions 6 and 8, it follows:

PROPOSITION 9. The double category 2 is representable and corepre-

sentable and F admits small projective and inductive 2-wise limits.

In fact, Gray has given in [G1l] an explicit construction of 9 -wise

limits: Let F: A =% be a functor, where A is a small category.

1° F admits as an inductive 2-wise limit the source K(F) (denoted
by [(1,F] in Gray) of the fibration kg : K( F) 2 A associated to F. (The
category K(F) is called in [E1] the «catégorie produit croisé associée
a4 1'espéce de morphismes» F.) The category F(u), for each object u of
A, is identified to a sub-category of K( F). From a general result of Gray
(the Yoneda-like lemma [G1] ), it follows that, if F': A -9 is a functor,
the 2-wise transformations from F to F' are in a one-to-one correspon-
dence (a restriction of the adjoint K of dE’ZA :F —'T(Q ,A) ) with the
functors h: K(F) »K(F') such that kg.h =k .

2° F admits as a projective Q-wise limit the sub-category L( F) of
K( F)A formed by the natural transformations t:A 3 K( F) such that kF t
is an identity. L(F) is isomorphic with the category of crossed transfor-

mations, whose objects are the crossed homomorphisms (defined in [E1]);
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the set of components of its greatest sub-groupoid is called in [E1] the
first non-abelian cobomology class of F, by analogy with the case where
A is a group and F a A-module. This remark might be helpful to define
the higher order non-abelian cohomology classes of F (see also the Appen-
dix of Bourn [Bo] ).

2. Limits relative to a sub-2-category.

The following criterium is often useful in applications, for example

we will use it in the next section.

PROPOSITION 10. Let C be a 2-category and H a full sub-2-category
(i.e. H' and H? are full sub-categories of C! and C?). If the insertion
j: Hl C—*Cf, admits an adjoint (resp. a coadjoint) and if cl admits Q(c)-
wise inductive (resp. projective) A -limits, then Hf, admits Q(H)-wise in-

ductive (resp. projective) A -limits.

A. Since H is a full sub-2-category of C, the double category Q(H)
of the up-squares of H is a full double sub-category of Q(C), and the ca-
tegory T(Q(H),A) is identified with a full sub-category of T(Q(C), A).

The hypotheses imply that the composite functor:

Hl . cl ~o(c)m _%CA _Tig(c), A)

admits an adjoint (resp. a coadjoint). This functor taking its values into the
full sub-category T(Q(H), A), we deduce that its restriction from Hg to
T(Q(H),A) also admits an adjoint (resp. a coadjoint). Hence Hol admits

inductive (resp. projective) O( H)-wise A-limits. V

3. Limits relative to 2 -categories of bimorphisms between sketches.

In [BE] we have defined the category Fm" of morphisms between
small mixed cone-bearing categories, and its full sub-categories:
Fm', whose objects are the presketches o (i.e. two distinguished co-
nes of 0 have different bases),
Pm', whose objects are the limit-bearing categories,
Pm =Fm' N Pm', whose objects are the prototypes,

S:m"gg (resp. 3‘43), whose objects are the (g,ﬂ)-cone-bearing catego-
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ries (resp. the (9,5)-types), where § and § are small sets of small cat-

egories.

These different categories X admit small projective and inductive

limits, and the following insertion functors admit adjoints:

?m'
o \ffm" ¢4 g9
\ .. e

X is the category of 1-morphisms of a 2-category X, whose dou-

ble category of up-squares will be denoted by 2X.

Proposition 18-2 [BE] asserts that 1X is a representable (except
for X = Fm') and corepresentable 2-category, so that we deduce from Pro-

position 8:

PROPOSITION 11. X admits small projective (resp. inductive) 9X -wise

limits, for X=%Fm", Pen' s Peny, Fem" gg, ng (resp. f}'gﬂ and Fm").

A. Using the preceding results, we may give an explicit construction
of some of these limits. Let S: A =X be a functor, where A is a small ca-
tegory. We denote by F the functor from A to J got by composing § with
the forgetful functor from X to F. If X is a proper sub-category of Fm",

we consider the composite functor S:
A S X ¢ Fmn .
191 X = Fm" or Fm"9, then S admits:

as an inductive 2X-wise limit the cone-bearing category K(S) got
by equipping K( F) (the inductive 9-wise limit of F) with all the cones
i,7V,, where i, : F(u) 2K(F) is the insertion and where Y, is a distin-
guished cone of S(u), for each object u of A;

as a projective X -wise limit the cone-bearing category L(S) got by
equipping L ( F) (the -wise projective limit of F) with the cones T such
that v, T be a distinguished cone of S(u) for each object u of A, where
v, L(F)~F(u) is the valuation functor, which maps the natural trans-

formation t: A 3K(F) onto t(u).
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20 If X =Fm', then K(S) is a presketch, which is the 9A-wise in-
ductive limit of S. If X =Pm or Pm' (resp. = 3:95 ), it follows from part
1 and Proposition 10 that § admits as an inductive 9 X-wise limit the li-
mit-bearing category (resp. the (9,5)-type) freely associated to K(§)-

3¢ The insertion functors i,, for u € A, , preserve connected limits;
if A defines a preorder on the set of its objects, they preserve all limits.
Using these facts we deduce:

a) Let us suppose that X =Pm (resp. Pm) and that the indexing ca-
tegories of S(u) are connected for each object u of A, or that A defines
_ a preorder. Then K($)isa limit-bearing category (resp. a prototype), so
that it is the inductive 2X-wise limit of S. Moreover the insertion from the
category L (F) into K(F)4 reflecting limits, L($) is also a limit-bea-
ring category (resp. a prototype), projective QX -wise limit of S.

b) Finally, if X = 3’43 and if § and J are sets of connected catego-
ries, or if A defines a preorder, L($) is a (§,)-type, which is the 2X-

wise projective limit of S. V

4. Lax morphisms between sketched structures.

In this section 0 will be a projective limit-bearing category (Z,[")

and § is the set of its indexing categories.

DEFINITION. If D is a double category and if ¢ and ¢' are o -structures
in the first category DZ of 1-morphisms of D, a D -wise O -morphism from

¢ ic @' is defined as a O -structure T in D! such that
¢=a?7T and ¢'=pB%T.
EXAMPLE. If B is a category and (1B the double category of its commu-

tative squares, the (JB-wise O -morphisms are identified with o-morphisms

in B (by identifying a functor to BB with a natural transformation to B ).
PROPOSITION 12. If D is a double category and if the functors

a?: p! =p2, p2:p! -p2 and «2:(D?D?)! -D!
preserve projective limits indexed by elements of 4, then the D-wise o-

morphisms define a sub-category of T(D,Z).

A. Let T be a D-wise 0 -morphism from ¢ to ¢’ and 7' a D-wise
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O -morphism from ¢’ to ¢" . They have a composite 7'= k2 [7',7]in
T(D,Z), which is a D-wise transformation from ¢ to ¢”. Let y el a
cone with basis f: I —Z; the cone 7"y = «2 [r',7] Y is the image by

«2 of the cone ', with basis [7'f, 7f]:1~(D?D?)! 'such that

v'(i)=(1"y(i), Ty(i)) for each i€l,.

Since 77 and 7! Y are limit-cones in p! , the cone 'y is a limit-cone in

the category (DZ* D? )1 , which is the pullback of (a2 , ,32) ;its image by

. . " . .« o 1 " . .
K2, which is 7 7y, is a limit-cone in D° . Hence 7 1is a O -structure in

p! , i.e. a D-wise O -morphism from ¢ to ¢".

'r'(u) 'r(u)

/\ ‘T”)’(l) '7"}’ z) y(i')
V(i) x
' f(y) Tf(y)
f(y)

v

We consider now the case where D is the double category of up-

squares of a 2-category C.

DEFINITION. Let C be a 2-category, ¢ and ¢' two O -structures in Col.
A C-lax o -morphism from ¢ to ¢' is defined as a Q( C)-wise o-morphism
T from ¢ to @' such that 7/(y) be a commutative square for any morphism

yof I,if f: 1 =% is the basis of a cone Yy el .

PROPOSITION 13. If C is 2-category and if Cg admits projective limits
indexed by elements of § and preserved by the insertion into C?, then the
C-lax o -morphisms define a sub-category of T(Q(C), >).

A. Let Tand 7' be C-lax o -morphisms from ¢ to ¢' and from 915'
to ¢", and 7" their composite in T(Q(C),2). If f: I =2 is the basis
of a cone Y€, since 7/(y) and T'f(y) are commutative squares, so is

T f(y)=T"[(y)mT[(y) for each y in I.
COI admitting projective I-limits preserved by the insertion into C2, the
functor from I to HCI restriction of 7/ admits a projective limit which

is also a projective limit of 7/ (Prop. 5); hence the limit-cone 77y takes
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its values in BC°1 , as well as 7'7y. The composite
T'y(i)=7""y(i)mTy(i), for each i€l,,

is a commutative square, so that 7"y takes its values in BCg and, con-
sidered as a cone in HCI, it is a limit-cone (limits in HC, = (CI)? be-
ing computed pointwise). Hence (Proposition 5) 7"y is a limit-cone in the
category Q(C)E. This proves that 7" is a Q( C)-wise O -morphism, i. e.

a C-lax 0 -morphism from ¢ to ¢". V

5. Lax double functors.

We apply here the preceding results to the sketch o = (2¢,I"q)

of categories.

DEFINITION. Let A and B be double categories, ¢A and qSB the cor-
responding categories in F. A J-lax 0% -morphism from ¢, to g is
called a lax double functor from A to B.

The lax double functors from A to B are exactly the 9-wise trans-
formations (where 2 is always the double category of quintets) 7 such
that 7(u) be a commutative square for mwe {a,B,v,v',v,v'}. In-

deed, these conditions imply that

and

are pullbacks in 2K (and therefore in S’ZB ), since pullbacks in HY = 2
are computed pointwise and ¢, and ¢g are OF-structures.
It follows from Proposition 13 anat the lax double functors between

small double categories define a sub-category of T'( 2, z3)-

Let A and B be double categories, ¢, and ¢p the associated
categories in ¥, we denote by «o» the laws of Al and B! , by «-» those
of A and B?, by @,b,i,k and a’, b',i’, k' respectively the images of
a,B,t, k by ¢4 and ¢p.

PROPOSITION 14. The lax double functors from A to B are in one-to-
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one correspondence with the 4-tuples (go.,g,t,t"), where

1° g: Al = B! and go: A2 -"BOZ are functors such that

a'g=goa and b'g=gob.
This implies the existence of a functor g':
(x',x)(g(x'), g(x)) from (A% A?)! 1o (B2xB?)T,

2° t:i'go —gi and t': k'g' =gk are natural transformations.

3° The following coberence axioms are satisfied:

(u) t'(x,e).(g(x)ot(e))=gl(x)=t'(e",x).(t(e')og(x))

for each x: e —e' in Ai.
(a) t'(x",x"ox).(g(x")ot'(x',x))=t"(x"ox",x).(t'(x",x")og(x))
for each path (x",x',x) in Af .

A. Let T be a lax double functor from A to B. We take for g and for
go the functors 7(2) and 7(1), for t and t' the natural transformations
arising in the quintets 7(¢) and 7 (x). Condition 1 is satisfied, 7(a ) and
7 (B ) being commutative squares. The two coherence axioms are respecti-
vely deduced by pointwise computation from the axioms

Tk )mT(j)=7(2) =7(k )m’r(iﬁ),

Tk )m7 (k" )=7(k )7 (k")

(B2« B? ! = (A%xA2)1
k'’ k
t'
t
by ;e y ol b \a
Bi £o A02

20 If (go.g,t,t") is given, we construct as follows a lax double func-

tor 7:

7(a ) and 7(B) «are» the commutative squares
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(a',go,g,a) and (b',go,g,b),
and g’ is their canonical pullback in HF (and also in 98),
T(e)=(i",g.t,80,i) and TI(k)=(k', g, t, 8" k).

As 23: is «generated» by a,f, ¢, k, the other quintets 7(\), for A in

23-', are then deduced as composites or factors relative to the pullbacks:

T(8) ') T) 7(v)

rla ) 7(v) 7(')

(in BF). The axioms («) and (a) imply that we have so defined a functor
T:Zq = 98 .V

REMARKS. 1° Let A and B be 2-categories. The 4-tuples considered in
Proposition 14 are then the morphisms of bicategories from the bicategory
A to B defined by Bénabou [B2] (called pseudo-functors in [G1]); as
a natural transformation toward the discrete category A2° is an identity, any

Q-wise O -morphism from ¢4 to @ g is a double funzvor.

2° By a process of «laxification» similar to that leading from 2-cate-
gories to bicategories and from 2-functors to mo:phisms of bicategories,
Moreau [M] defines lax double functors between dicategories, i. e. cate-
gories equipped with a second law which is unitary and associative «p to
isomorphisms»,which reduce for double categories to those considered here;

he generalizes Proposition 14 to the case where A and B are dicategories.

30 The Usz-morphisms are identical to the Ef}'-morphisms (see Part

C-0), where 53: is the sketch (23:, I:ff) in which the pullbacks are

But J{-lax Ef}'-morphisms are only those lax double functors 7 correspon-
ding to 4-tuples (go,g,t,t') such that ¢ is an identity (since the factors

7(jo) and 7(jg) must be commutative squares); they are said unitary.
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Let A and B be double categories. We denote by
kA: K(A) "‘23: and kB: K(B)—'Zg:
the fibrations corresponding to qu and ¢B . With the notations of [E1] ,
a morphism of K(A) is a triple m =(z, i, s), where u:w ~®' is a mor-
phism of Zg , where s is an object of ¢4 (@) and
z:s" s in ¢y’ ), if s"=¢(u)s).

Identifying ¢4 (@) to a sub-category of K(A) and the «cartesian» morph-
ism (s', u,s) to(pu,s), weget m=z.(u,s) in K(A).
PROPOSITION 15. There is a bijection from the set of lax double functors
from A to B onto the set of functors bh: K(A) =K(B) such that:

(1) kgh=ky and b(p,s)=(u, hb(s)),
for each cartesian morphism (., s), where pe {a, B8, v, V. )

A. This bijection is a restriction of the bijection K' (considered after
Proposition 9) from the set of Q-wise transformations from ¢4 to ¢ onto
the set of functors from K(A) to K(B) commuting with the fibrations to

>q. Indeed K'maps T onto the functor h whose restriction to ¢, (@) is

7(w ) for each object @ of 2g and such that
b(,u.8)=(t#(s),,u,b(S)),

if t“ is the natural transformation arising in the quintet 7(w ). Hence, A
satisfies the condition (/) iff t, is an identity (i.e. iff 7(u ) is a commu-

tative square) for ue {a,B,v,v' ,v,v'}. V

This proposition reduces the study of lax double functors to that

of ordinary functors.
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