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CI1HIE?®S DE TOPOLOGIE Vol. XIII-3
LT GEOMETRIE DIFFERENTIELLE

TWO CONSTRUCTIONS ON LAX FUNCTORS

by Ross STREET

Introduction

Bicategories have been defined by Jean Benabou [(B], and there
are examples of bicategories which are not 2-categories. In the theory of
a bicategory it appears that all the definitions and theorems of the theory
of a 2-category still hold except for the addition of (coherent?) isomor-
phisms in appropriate places. For example, in a bicategory one may speak
of “djoint I-cells; indeed, in Benabou's bicategory Prof of categories,
profunctors and natural transformations, those profunctors which arise from
functors do have adjoints in this sense.

The category Cat of categories is a cartesian closed category
[EK], and a Cat-category is a 2-category. In this work 2-functor, 2-natu-
ral transformation and 2-adjoint will simply mean Cat-functor, Cat-natural
transformation [EK], and Cat-adjoint [Ke]. It has long been realized
by John Gray [G2] that the simple minded application of the theory of
closed categories ( for example, the work of [DK]) does not disclose all
that is of interest in the theory of 2-categories (his «2-comma categories»
give an enriched Kan extension which is more involved that the Cat-Kan
extension). Except for Grothendieck's pseudofunctors [G1], it was not
until the paper [B] of Benabou that other morphisms of 2-categories be-
sides 2-functors were considered. The pseudo-functors (they preserve com-
position and identities only up to isomorphism) do not appear to have a
very different theory to that of 2-functors; again (coherent? ) isomorphisms
must be added.

Morphisms of bicategories [B], here called lax functors, seem
fundamental even when the domain and codomain are 2-categories. The
«formal» categorical purpose for this paper is to provide in detail the
constructions of two universal functors from a lax functor with domain a

category and codomain Cat ( some generalizations are outlined in the ap-
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2 R. STREET

pendix ). These constructions ( also see the appendix) lead to «limits and
colimits» for these types of lax functors into Cat (adjoints to appropriate
diagonal functors).

Let 1 denote the category with one object and one arrow. In [B]
it is remarked that a lax functor from 1 to 7at is a category together with
a triple (monad) on that category. A functor from 1 to Cat is just a cate-
gory. So the two constructions assign two categories to each triple on a
category. The first construction is that of Kleisli [KI], and the second
construction is that of Eilenberg-Moore [EM].

So the second purpose of this paper is to provide a generalization
of the theory of triples. Yet it is more than a generalization: it provides
a framework for the presentation of some new (?) results on triples.

We believe that Theorems 3 and 4 are unknown even in the triples
case (A=1). The 2-categories Lax [1,Cat] and Lax [1,Cat] might
well be called T:i’p and T:Tp, and Gen [1,Cat] is Cat. So we have the
results that the Kleisli construction is a left 2-adjoint of the inclusion of
Cat in T—rTP, and that the Eilenberg-Moore construction is a right 2-adjoint
of the inclusion of Cat in T‘r?p. If X is a category and Y is a category

supporting a triple T, then the following are isomorphisms of categories
Trip((Y, T), (X, 1)= (Y, X1, Trip((X,1),(Y, 7)Z[X, Y],

where Y, denotes the category of Kleisli algebras with respect to T, YT
denotes the category of Eilenberg-Moore algebras with respect to T, and
square brackets denote the functor category. Now T induces a triple (T,

X] on [Y,X], and Tnp((Y T),(X,1)) is readily seen to be the
category of algebras [Y,X] [7,x] with respect to this triple. Also T
induces a triple [ X, 7] on [X,Y] and Trlp((X, 1),(Y,T)) is readi-
ly seen to be the category of algebras [ X, Y] [x,7] with respect to this

tripl e. So we have isomorphisms of categories
vy, xatexd ooy Lxg, oxovDxrd = px vy,

and these commute with the underlying functors. Dubuc [Du] called the
objects of [X,Y] [x,7] functors together with actions, and he proved

that these are in bijective correspondence with functors from X to YT,
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TWO CONSTRUCTIONS ON LAX FUNCTORS 3

The treatment of structure and semantics using cartesian arrows
in such a way as to admit a dual, also seems to be new even in the triples
case. The simple duality between triples and cotriples corresponds to a
reversal of 2-cells in Cat. Here we have a duality corresponding to a re-
versal of I-cells in Cat which takes Kleisli algebras to Eilenberg-Moore
algebras. Note also the amazing adjointness which Linton at the end of
his paper [Li] attributes to Lawvere and which relates Kleisli and Eilen-
berg-Moore algebras and coalgebras.

The construction (due to Grothendieck) of a pseudo-functor V:
B°P - Cat from a fibration P:E~B may be found in [G1]: for B€B,
VB=P I(B) is the fibre category over B, and, for f:B-=B’' in B, V/:
VB'~VB is the inverse image functor. If P is a split fibration, then
inverse images can be chosen so that YV is a genuine functor. If a fibra-
tion P is also an opfibration (terminology of [G1]), then it is called a
bifibration [BR], and, for each f:B-B’", the direct image functor Vf
VB~V B’ provides a left adjoint for Y. For a bifibration P:E~B, two
pseudo-functors V:B°P-+Cat, V:B-Cat are obtained and on objects
they have the same values. If P is split as a fibration, it need not be split
as an opfibration; if V is a genuine functor, there may still be no way of
choosing direct images so that Visa genuine functor. The usual examples
of bifibrations (see [BR]) are split either as fibrations or opfibrations.
This should justify the consideration in §5 of functors V:A - Cat such
that, for each f:A—- A’ in A, Y/ has a left adjoint. In fact we show that
the second basic construction gives such a functor under mild conditions.

The work for this paper started out in an attempt to generalize the
concept of triple and the algebra construction in the hope that many well-
known categories besides equationally defined theories could be shown
to be examples of the construction - categories of sheaves especially. The
first generalization which we worked through to a «tripleability» theorem
amounts to the case where the lax functor W:A - Cat has the property
that

- each set A(A, B) has exactly one arrow < AB >
- for each A€ A, WA =X for some fixed category X .
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4 R. STREET

Note that the functor category [ X, X ] is monofdal with composition as
its tensor product, and such a lax functor W amounts to an [ X, X ] -cate-
gory with its objects the same as the objects of A. For example, if K is
a category with the same objects as A and if X has copowers enough,

then a lax functor W:A -~ Cat is obtained by
WA=X,W<AB>=K(A,B)®-:X-X,

and the other data is provided by compositions and identities in K. Then
for each A€ K, the second construction WA is the functor category [ K,
X].

Benabou suggested consideration of the case where A is a gene-
ral category. The hope was that this extra freedom would give subcatego-
ries of functor categories [K, X ], for example, those full subcategories
of functors which preserve a particular set of assigned limits. At this point
we do not know whether this is the case.

The first generalization of triples for [ X, X ]-categories was com-
pleted at Tulane University in New Orleans, and there also were the two
basic constructions of § 2 found. The remainder of the work was done at

Macquarie University in Sydney.
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TWO CONSTRUCTIONS ON LAX FUNCTORS 5

1. Definitions.

Suppose A is a category. A lax functor W:A ~Cat consists of the
following data:
for each object A of A, a category WA,
for each arrow f:A—~B in A, afunctor W/:WA-WB,
for each composable pair of arrows f:A-B, g:B~C in A, a natural
transformation O,g,f:Wg Wi-W(gf),
for each object A of A, a natural transformation «w,: 1y, ~W1,;

such that the following diagams commute :

(Wb)cugf
Wh. Wg.Wf —>=Whr.W(g/)

ber W0 wp | B(W)/)/”\(Wf)w

W(bg).WfTh—f> W(hgf) /—>Wf—1> Wi w1,
g’ >

For lax functors W, W': A~ Cat, a left lax transformation L :W W'
consists of :
for each A€ A, a functor L, WA-W'A
for each arrow f: A= B in A, anatural transformation

such that the following diagrams commute :

“g,rla
Wig. Wy, L, —’——>—W'(gf).LA

L
w\
LCW(g/)

(W'g)Lf
We L Wf——>L . Wg.Wj €%
g. B- Lg(wf) C g-
wyly
L
Ly * E
LA(WIA)
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6 R. STREET

The data for the left lax transformation L :W-W' is contained in the dia-

gram LA
WA W4
W/ L W/
WB 3 f>’/W'¢B ;
B

the 2-cell points left. The data for a right lax transformation R:W-W'

comes in a diagram R
A
WA > W'A
W Rf/iw'f
wB > W'B
Rp

the 2-cell points right; and the appropriate changes must be made in the
two conditions.

For left lax transformations L, M:W-W', a morphism s:L -M of
left lax transformations is a function which assigns to each object A of

A a natural transformation sy:Ly-~M, such that the following square

commutes :
(W'f)s,
(WL, = (W'/)M,
L g
L (W > M, (W
s (W) —TT 5 (W)

A morphism s:R=S of right lax transformations consists of natural trans-

formations sy R, =S, satisfying:

SA(Wf)
R, (W) 5, (W/)
Rf'J VS
(W/)Rp (W/)sg > (W/)Sp

The composite L'L:W-W" of two left lax transformations L:

W-W', L':W ~W" is the left lax transformation given by

(L'L)AZL'ALA, (L’L)f:(L'BLf).(L'fLA).
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TWO CONSTRUCTIONS ON LAX FUNCTORS 7

This composition is associative with identities.

There are two compositions for morphisms of left lax transforma-
tions. If L, M, N:W - W' are left lax transformations, and s:L =M, t:M~N
are morphisms of them, then the composite ts:L =N is the morphism
given by (ts) =1, s, . This composition is associative and has identi-
ties. If L, M:W-W' and L', M :W'-W" are left lax transformations and

s:L-M, s":L'"-M are morphisms of them, then the composite

s's: L'L -=M’M is the morphism given by
(S'S)A:S:‘ISA:(SAMA).(L'ASA):(M;ISA).(S;lLA),'

then s's is a morphism since the following diagram commutes.

(W"f)L'ASA (w"/)S/'IMA
(W)L L, ———— (W)L, M, ———— (W"[)M' M
L'fLA t &L'fMA LM}MA
Lg (W)L y 3 Ly (WM, — > ML (W),
, L, (Wf)s , sHIW'f)M ,

LBLN B A ‘L M, B 4 ‘MB /
(W )————> LgMp (W )———-)-— (W1)

/ L'p sp (W) / Mg (Wf) Mg W/

Moreover, in the diagram

%)
= -

\/

2.—

the equation
(t't).(s's)=(¢t's").(ts)

is satisfied since it holds for natural transformations and the composi-
tions were defined componentwise.
Compositions may similarly be defined with left replaced by right.
Summarizirig then, we have a 2-category Lax [A,Cat] whose
0-cells are lax functors from A to Cat, whose I-cells are left lax trans-

formations, and whose 2-cells are morphisms of left lax transformations;

223



8 R. STREET

and also, by replacing left by right, a 2-category Lax [A,Cat] . For lax
functors W, W':A-Cat, we put

[W,W']=Cox [A,Cat] (W,W) and [W,W']=Lax [A,Cat](W,W.

A functor W:A ~Cat may be regarded as a lax functor which has
all the natural transformations We 1 Wy identities. If W, W' are functors,
then a natural transformation N:W - W' may be regarded as a left and right
lax transformation with all the natural transffimations Nf identities. Let
[W.W'] denote the full subcategory of [W,W'] whose objects are the
natural transformations from W to W'; it is also a full subcategory of
[W,_;/'] . Let Gen [A,Cat] denote the 2-category whose objects are
genpine functors from A to Cat and Ge# [A,Cat] (V,V")=[V,V'], so
that Gen [A,Cat] is a sub-2-category of both Lax [A,Cat] and
Lax [A,Cat ], and both the inclusions are locally full.

A left adjoint of a left lax transformation L :W ~W' is a right lax
transformation R:W'+W such that, for each A€ A, R, is a left adjoint of
L, and the natural transformations Lf and Rf correspond under the natu-

ral isomorphism
(WA, WBI(W/. L, Lg WHOZIWAWBI(R, W/, W/R,)

which comes from the adjunctions R, "lLA, Rp _“'LB; the notation is
R L.
THEOREM 1. (a) A left lax transformation L :W W' has a.left adjoint
if and only if each of the functors L ,:WA-~W'A has a left adjoint.

(b)If L, M:W-W' are left lax transformations and
R L, S M, then [W,WI(L,M)Z[W,W](S,R).

(c) The left adjoint of L:W-W'is unique up to isomor-
phism in (Wwl.

PROOF . (a) Let R, :W'A-WA be a left adjoint of L,.If R:W'-W is
to be a left adjoint of L, then the definition of Rf is forced. The natura-
lity of the isomorphisms takes the conditions on the data Ly, Lf which

make L a left lax transformation into the conditions on RA' R, which

/
give aright lax transformation R. Then R L.

R2%



TWO CONSTRUCTIONS ON LAX FUNCTORS 9

(b) From the adjunctions R, "l Ly, Sy _‘I M, we have natural iso-

morphisms
(WA, WAT(L, M, )T [WAWAI(S,,R,)

under which the diagrams of morphisms of left lax transformations go to
those for morphisms of right.
(c¢) If R~ L and R'™| L, then the identity morphism from L to L gi-

ves an isomorphism between R and R' using part (b).

Given a lax functor Y:A~Cat and, for each object A of A, an
adjunction &,, M, : ], - E, : (VA, X;), then the following data defines
a lax functor W:A - Cat:

v E
wa=X,, sz(xA]L va b ve L> X, );

Ec(Ve) 5y VD),
wg,f:(EC(vg)]BEB(vf)]A > Ec(Vg)V)],
E

c%g,fl 4 L
EgV(gf)] )

un Eqogly

Moreover, the following data defines a left lax transformation E:V -W:
Ey:VA-X,, EfZEB(V/) gy .'EB(V/)]A -'EB(Vf);
and the following data defines a right lax transformation J:W-V:
T4: X,~Vva, ]f: EB(Vf)]A-']BEB(Vf)]A"(Vf)]A~
Then ]"‘i E. (The proof of these assertions is left up to the reader and
is recommended as an exercise in the new definitions.) Under these cir-
cumstances we say that W is the lax functor generated by YV and the ad-
junction ] | E, and we write W=EV].
2. The two basic constructions.

Suppose W:A -Cat is a lax functor. A genuine functor W:A-Cat

is defined as follows. For A €A, WA is the category whose objects are
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10 R. STREET

pairs (u,X), where u:A'~A is an arrow of A and X is an object of
W A’, whose arrows are pairs (b, ¢):(u, X)~(u',X') where h:A"~A" is
an arrow of A such that '=ubh and ¢:X~=(Wh)X’ is an arrow of WA",

and whose composition is given by

(bb',a)h g X" (Wh)p'. )
(u, X) . >  (u", X")

m %@5’)

(u',X')

It should be checked that composition is associative and that the identity
of (u,X) is (1,4, wy,X). For f{tA~B in A,Wf:WA—'WB is the func-
tor given by

(Wi)(u, X)=(fu,X), (Wf)(h,P)=(h,P).

For each A€ A, define £, :WA-WA by
Dytu, X)=(Wu)X, Eg(h,p)=aw, X" (Wu).

Then

EA(IA"wA'X):wu,IX‘(wu)wA'lewu’

and the following diagram completes the proof that EA is a functor.

(Wu)wh prX
(Wu)(Wh)(Wh') X" > (Wu)W(hh')X"
(Wu)(Wh)'. b wu,hh’X"
(Wu)X (Wu")Xx"
(Wu)p @ e X7

(Wu)(Wh ) X' ——> (Wu' )X'—-—V(WM)(Wb )X"
uhX (Wu')p'

Also define ], :WA-WA by
TuX=(1,,X), Tyx=(1,,0,X"x) for x:X~X" in WA.
For each (u,X)eWA, let
C(w, X)=(us Ty )3 ) (10 (W)X )= (u, X)

in WA. These arrows are the components of a natural transformation
~ o
€ :J4E g~ 1. Foreach XeWA, let

226



TWO CONSTRUCTIONS ON LAX FUNCTORS 11

MX=w X X~(W1)X
in WA. These arrows are the components of a natural transformation
My :1~Ey ] . Commutativity of

(IA,cuA(WIA)X.wAX)
(14,X) >(1A,(W1A)X)

\ | (14 1wy x)
(1,,X)

implies 3:4 7:4 'TA '73:4 = 1’]‘;1 . Commutativity of

cuA(Wu)X
(Wu)X :—(WIA)(Wu)X

\ |,
(Wu)X

implies E A A nA’EA: ']V
.7y Ty B, (Wa,wa).

. So for each A € A we have an adjunction

For [:A~B in A,
Eg (W7, x=E3(Wpic1,, x)=Eg(7,X)=(W[)X,
and
EgWiT jx=Eg(W)(1y, 0, X" x)=Eg(1,,0,X" x)=
wf,IAX'.(Wf)(wAX'.x)=wf’1AX'.(W/)wAX'.(W/)xZ(Wf)x.
So W/=E,(W/)T,. For f:A~B, g:B~C in A,
EcWe) (Wi, x=E,(We)SWpic1,, x)=
EcWe) (. X)=E(We)(f, 1oy x )= (f. 1y )=, X,

&f
So put ’
Ep(u, Loy, x) =@ X (WOW)X =W([u)X,
and

~~~

Tx= (W T, x=3(Wn(1,x)=3 (1, x)=

2217



12 ®. STREET

=1 Lwpx): (1. (WPX)=(], X)
Then E W W is a left lax transformatlon, ] ‘W-W is a right lax trans-
formation, ]—| E, and W=EW].

This is the first basic construction. Its characterizing properties,
along with those of the second construction, will be discussed in the next
section.

Suppose again W:A-Cat is any lax functor. A genuine functor
W:A- Cat is defined as follows. For A € A, the objects of the category
/V}A are pairs (F, &), where F is a function which assigns to each ar
row u:A~B of A an object Fue WB, and £ is a function which assigns
to each composable pair u:A =B, v:B~C of arrows of A an arrow é:v u
(Wo)Fu-F(vu) in WC such that the following diagrams commute:

(Ww)fv’u wpFu
w.Wv.Fu —» Ww.F(vu) Fyu —>» (WI1)Fu

w
‘ww,vFu fw,uu ‘ N ;
W(wv)Fu > F(wvu) Fu

¢

wo,u

A
An arrow a:(F,&)-(F',£') in WA is a function which assigns to each
arrow #:A-B of A an arrow a,: Fu-F'u of WB such that the following

diagram commutes:

(Wv)au
Wu.Fu » Wu.F'u
i | V¢,
F(vu) » F'(vu)
a
vu
A

The composition i/xz W)(‘\ is Asimply given by (a'a) =a’ o . For [:A~A’
in A, the functor Wf: WA -~ WA’ is defined by
A
(Wf)(F,&)=(F",£'), where F'u'=F(u'f), f; u fv uf
A
and ((Wf)a)u,:au,f for u':A'=B', v':B'=C’ in A.
A A
For each A€ A, define E:WA-WA by
A A
EA(F,§)=F1A and EAa:a]A
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TWO CONSTRUCTIONS ON LAX FUNCTORS 13

A A
and define [, :-WA~WA by
A fa)
J(X=(F,&) and Jyx=a,
where Fu=(Wu)X, &  =w

wy X:X-(W1,)X, XeWA, are the components of a natural transforma-

v’uX and a, =(Wu)x. The family of arrows

. A A A .
tion 7, :1~E, ], . The family of arrows

A
§_'1A:(W(-)F1A,wFZA)-'(F,f), (F,£)eWA,

. A A A
are the components of a natural transformation €,:], E =1, the arrows

A
are in WA since

Wo.Wu. F1, ! > Wu.Fu
a)v,uF IA ‘ t fv,u
W(vu)FIA » F(vu)
§vu,1A

commutes, and the family is natural since, for any arrow a:(F,£)=(F',£&")

A
in WA, the diagram

€u1
(Wu)F1, “A__ o Fu
(Wu)aIA ‘ ‘au
(wu)F'IA B - F'u
§u,]A
commutes. The commutative diagrams
wyFl1, (Wu)wA
FIA———>(W1A)FIA (Wu)X — —>(Wu)(W1A)X
\ ©
\\ lfIA’IA \ t u’]A
F1, (Wu)X
imply
A A AA AA A A
Egea-mEQ=1E, and & - Tgmy=17 -

So for each A € A we have an adjunction

229



14 R. STREET

A
8 h Ty Eyr (Wa,wa.
For f:A~A" in A,
A A A A A 74
EAv(Wf)]AX:EA'(w/)(’w(')xnwX):EAr(W(‘f)X:w_,_fX)
=W(1,./)X=(W[)X,
and
A NN A A A
E oW/ T x=E d WOW(-)x=E, W(-[)x=(W[)x.
For f:A-A', g:A'~A"in A,
A N N N A A A N N
EAn(Wg)€Ay(Wf)]AX:EAn(Wg)SA'(W/) (w(')X,CUX)

A N A N A
ZEA.'(Wg)SA.(W(-f)X, CU_’_ X):EA n(Wg)w_’fX

f
ZEA.,w- fX:a) X.

8 & f

So put

N N\ N N N\

f(F,§)=1:1A.(Wf)EA(F,f):EA.(W/)f_’IA

:EA'f-f,lAsz,IA ((W[)F1,~F{,

and

A A AA A A

JpX=e W] X=8WHW(-)X, 0 _X)

>

(WX, w0 X)=w_ X W )WHX-W(-[)X.

f of

AN A A A
Then E:W-W is a left lax transformation; [:W~W is a right lax trans-
. N\ A AAN
mation; | 1 E, and W=EW].
THEOREM 2. For every lax functor W:A - Cat there exists a genuine
functor V:A-Cat, a left lax transformation E:V-W and a right lax
transformation | :W =V such that | is the left adjoint of E and W=EV |.

3. Universal properties.

The basic constructions are characterized in this section as 2-
adjoints of two simple inclusion 2-functors. All properties (up to isomor-
morphism ) of the two constructions must be deducible from these charac-
terizations. However, we do not choose to enter into this game; we use
the explicit formulae wherever necessary. This is why the constructions

are given in a separate section and are not included in the proofs of the
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TWO CONSTRUCTIONS ON LAX FUNCTORS 15

existence of the adjoints.

THEOREM 3. The inclusion of Gen [A,Cat] in Lax [A,Cat] bhas a
left 2-adjoint. The 2-reflection of the lax functor W:A ~Cat is the right

~
lax transformation | :W-W.

PROOF. Suppose V:A~Cat is a genuine functor.
A functor 2 : [WTV] ~ [W,V] will be defined. For an object R of

[W, V], the natural transformation S (R):W=V is given by:
S(R)(u,X)=(Vu)R X,
Z(R) (b, p)=(Vu)(R,X".Ry,).
Then
S(R)y(1gm g X)=(Vu)(Ry X Ryuw, X)=1y, o xo
and Z(R)A(h'b', wh’h.X".(Wb)qT.gb):
=(Va)(Ryy X" Ryo(wp 1 X" (Wh)$". b))
=(Vu)(Ryp X" Ry 10 X" Ry o(Wh)@' Ry 0)
=(Vu)((Vh)R, X" Ry (Wh')X". R, (Wh)P'.R 1)
=(Vu)((VEIR, X" (Vh)R4wd'. Ry X" R 1)
=(Vu' )(Rp X" Rynd" ). (Vu)(Ry X" R )
=S (R), (b, $").Z(R) (b, ).
So Z(R),:WA=VA is afunctor. Suppose f:A~B, then
S (R)g(W/)(u, X)=5 (R)g(fu, X)=V(fu)R X
=(V/)S(R),(u,X),
and
S(R)g(Wi(h, ¢)=S(R)g(h,¢)=V(fu)(R,X" R .p)
=(V)Z(R) (b, ¢);

so Z(R)B.W/=(Vf)Z(R)A. Thus 2 (R) is natural, as asserted. For
an arrow s:R~—S of [W_,>V:|,the arrow 2 (s):Z(R)-2Z(S) of [W,V]
is given by :

z(S)A(u,X):(Vu)SA.X:(Vu)RA.X—'(Vu)SA,X.
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16 R. STREET

Then
S(S) (b, d).Z(s)y(u,X)=(Vu)($, X" S pip). (Vu)s 4. X
=(Vu)(S, X" up. s 4uX)
=(Vu)(S, X" s (Wh)X"R ()
=(Vu)(Vh)s, X" R, X" R )
=(Vau')s  wX".S(R) (b, })
=3 (s)y(u",X').Z(R) (b, P),
sothat S (s),:3(R),~3(S), isnatural. Also
(5 (s)g . Wi(u, X)=3 (s)p(fu, X)=V(fu)s X
=(V/)Z(s),(u, X),
so S(s)g-Wi=(V{)S(s),, and S (s) is an arrow of [W,V . This

clearly makes 2 a functor.
In order to show that 2 is an isomorphism we construct its in-
~ — ~
verse = 1:[W,V]-[W,V]. For a natural transformation N:W=V,

the object = T(N) of [W,V]is given by:
SN =N (1,,X), STHN) p=N (14, 0,X". D),
SN X=Ng ([, 1pypx)iNg (15, (WIX)=Np(f, X).
Many things must be checked. First
-1 — —
TN Iy =Ny Ly )TN 01 ,x)0
and
STHN) (P )=N (14,0, X" p)=N,(1,, (W1 )¢ w, X" )
ENg(1geop g XN (W)@ X010 X" §)
=N (1,0, X" )(14,0, X))
=(ZTHN) )TN ),
so that = L(N )4 :WA-VYA is afunctor. Then note
(VOZT(N) . STHN) X=Ng (14, 0y X ) N ([, 1y i)

=N (14000 X B)(f2 1y )
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=Ng(f, (W) P)=Ng (. Lpypy)(1g w0 (WHX . (W[)p))
=Np(fs Lyypyx)-Ng(1g. (WX (W[)p)
=N X ZTHN ) (W],

so Z'I(N)f:Z'I(N)B(W/)-(Vf)Z'I(N)A is natural. By applying
N to the equation
Cef Iyggpix ) (1o wcW (g Xw, X)=
=(gfowp g X (Wig) Iy py- W)X 0 (X)
=(gfrwy (X)=(gf 0y X-(We)lngprx- Lo gywpx)
= Lwpx (8- Towgwpx):
by applying N to the equation
(g gy ) (Lgr g WO, )X 0, X)=
=(1gewp g X WL Lnyy gy WL )X 0y X)=10 x),
and by using the fact that N, N, are functors , we obtain
SN - TN g, =(Vg)ZTH(N) (W)
and Z'I(N)IA.Z“I(N)AwA=1>;—1(N)A; so Z7I(N) is an object
of [W,V]. Foran arrow 7:N=P of [W,V], the arrow
()= l(N)-27I(pP)
of [W, V] isgiven by '
S )y X=r (1, X) N, (1,,X)=P(1,,¥).
Each r, is natural, so = (r), isnatural. Moreover,
Z"I(P)fX.Z'1(,)B(Wf)X=PB(f, Lypx)-rp(1g  (W1)X)
=rg (£ X).Ng(f, 1oy py)
=(Vf)rg (14 X).Ng(fs 1rypx)
=(V)Z T, x. 27N X,
so 27(7) is an acrow of [W, V] . Clearly =7 is a functor.
Take R in [W,V]. Then
S (R)) X=5(R)(1,,X)=(VI)R4X=R X,
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STZ(R)) =2 (RI, (1,0 X" D)
=(VI )Ry X'.Ry(e X))
=R, ¢,

STHE(R)X=Z(R)G(], 1y x)=
=V(Ig)(RX.Rployey)=ReX;

so Z1(3(R))=R. Now take an arrow s:R~S of [W,V]. Then

STCS(s)) X=2(s) (1, X)=(V1)s X=5,X.

So >Is =g,
Take N in [W,V] . Then

SN ((u, X)=(Va)ETHN) X =(Vu)N 4 o(1 40, X)
=N, (Wa) (140 X)=N,(u, X),
S(ETN) (hop)=(Vau)(ETH(N), X Z7H(N) 4 1)
=(Vu)(N g o(h Ly ) Ngo( 1y o0, (WBIX'. b))
=Ny (Wad(hoaoy X (W) Ly e g o (WHIX' . )

=N (b ),
s0o (S T(N))=N. Take r:N~=P in [W,V]. Then
S r)) (u, X)=(Va)E 7 (r) [ X =(Vadry (1,0, X)
=1y (Wad(1, 0 X)=1,(u, X).

So =5 1=7g,

It remains to prove that > is 2-natural in V. Suppose N:V -V’

is a natural transformation. We must show that

b3

(W, V] > [W,V]
WoNTY VvoNg
(W, V'] —[W, V']
s

commutes. So take R in [W,V] . Then

23%



TWO CONSTRUCTIONS ON LAX FUNCTORS 19

S(NR),(u,X)=(V'u)(NR) 4 X=(V'u)N Ry X
=N4(Vu)R,X=N,yZ(R),(u,X)=(NZ(R)) (u,X),
and
Z(NR) (b, p)=(V'u)((NR), X" (NR) )
=(V'u)N (R, X" Ry1p)=N 2 (R) (b, p)=(NZ(R)) (b, ).

So 2 (NR)=NZ(R) and we have the commutativity on objects. Suppose
s:R-S isan arrowof [W,V] . Then

2(NS)A(u,X)=(V'u)(Ns)A.X=NA(Vu)sA.X
=NAZ(S)A(u,X)'—‘(NZ(S))A(u,X),

so 2(Ns)=NZ(s). So the square commutes. This proves ordinary natu-

rality of 2 . For 2-naturality, we must show that

>3
[W,VI(R,s) ———>[W,V1(S(R),Z(S))
W71 | W,
(W,V'1(NR,PS) —>[W V'I(S(NR),S(PS))
s

commutes for any arrow 7:N—=P of [V,V']. So take s:R~S in [W,V] .
Then

Z(rs)A(u,X)=(V'u)(rs)A,X=(V'u)rA.SA.X=rA(Vu)sAX
=rg2(s)y(u, X)=(rZ(s) ) (u, X) .

It follows that the assignment W-W is the object function of a
unique 2-functor from Lax [A,Cat] to Gen [A,Cat] such that, for
each functor V, 2 is 2-natural in W; and this 2-functor is the required
left 2-adjoint. The 2-reflect10n of W is the image of the 1dent1ty of W
under = 1. [W, W] - [W W1. From the definitions of S ~ and] one
readily see that 2 I Iw)zj.

COROLLARY . Suppose the lax functor W:A-Cat is generated by the
adjunction ] E:(V,W), where V:A~Cat is a genuine functor. Then

there exists a unique natural transformation N : W-V such that N] I
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20 R. STREET

moreover, this N also satisfies EN=E.
PROOF . The existence and uniqueness of N satifying N/ =] is imme-
diate from the theorem. Then
Ny S(u, X)=N, 5 (Wu)(1,, X)=N, S (Wu)T, . x=N,T X
=(NT),X=] X=e,(Vu)] ;. X=,(Vu)N,.T4.X
— ey N (Wu)T, X=e,N, (u,X),
so NAg;lzaANA.Iffollowsthat EANA:'EA. Then
BNy =Eg(V)egNy=Eg(VON, S =EpNp (W),
=EA(W/)'EA=Ef.
So EN=F.

THEOREM 4. The inclusion of Gen [A,Cat] in Lax [A,Cat] has a
right 2-adjoint. The 2-coreflection of the lax functor W:A —Cat is the left
A A

lax transformation E:W-W.
PROOF. Suppose V:A-Cat is a genuine functor.
- A
A functor II: [V,W] -~ [V,W] will be defined. For an object L of
- A\
[V.W], the natural transformation II(L):V ~W is given by:
for A€A and HeVA, H(L)AHZ(F,f),where Fu:LB(Vu)H
and £ =L (Vu)H,
and for h:H~H" in VA, (II(L), h),=Ly(Vu)h.
The two diagrams which commute due to the fact that L is an object of
- R A
[V,W] show that (F, &) is an object of WA, and the naturality of each
A
LU shows that H(L)Ab:H(L)AH—'H(L)A H' is an arrow of WA. For
A
f:A-A’, one readily checks that Wf.H(L)A:H(L)A + Vf, so that
II(L):V-W is a natural transformation. For an arrow s:L -M of [V, W] ,
A
the arrow H(s).~H(L)~H(M) of [V,W] is givenby:
(H(S)AH)u=sB(Vu)H.'LB(Vu)H—'MB(Vu)H.
A
Then H(S)AH:H(L)AH—'H(M)AH is an arrow of WA and H(S)A.'
H(L)A - H(M)A is natural. From the calculation

A
(WfTl(s), )0, =(Tl(s) H), =55V (wf)H
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TWO CONSTRUCTIONS ON LAX FUNCTORS 21

=SB'(Vu')(Vf)H=(H(S)A:(V/")H)un
it follows that [I(s):II(L)-TII(M) is an arrow of [V,W] . If s is the

identity, so is II(s); and the calculation
(Il(ts)yH), =(ts)g(Vu)H=(tpsp)(Vu)H
=tg(Vu)H.sg(Vu)H=(TI(¢), H), .(T(s), H),
=(T(t) H.TI(s) H), =((TI()TI(s))  H),
completes the proof that Il is a functor.
We show that Il is an isomorphism by constructing its inverse
A - A
“I.[V,W]~[V,W]. For an object N of [V, W], the object II1(N)
of [V,W] is given by:
N(N) H=F1,, H'I(N)Ab:(NAb)IA,
H'I(N)fH §“ :Wf{.F1,~F/{,
where Ny H=(F,{ ). Each H—I(N)A is clearly a functor. Also Wf NA
=Ny..V/, so evaluating at H gives N, (V/)H=(F(-{),& _f)
I T(N) 4(Vf)H=F[ and thus

H'I(N)fH (WL (N) H=TIL(N ), (Vf)H.
Evaluating W/ Ny=Ny.. V[ at b, we get
_I(N)A.(Vf)b (NA'(vf)b)z —((wf)(NAb))l S(Ngh)g
and N, b is an arrow ofWA, so

-1 —
N =25

(WHII™(N), H  H7I(N), (Vf)H=F

(W/)H'I(N)Ahlz(W/)(NAh)IA I7(N)4 (V)b =Y(Nyb),

(WOHIIL(N), > T17L(N), (V{)H'=F"f
H'I(N)fH':ff',I

commutes, exposing H'I(N)f:(W/)H—Z(N)A-oH'I(N)A (V/) as a

natural transformation. From the diagrams for the object (F,£) of WA

come the diagrams which prove II”J(N) is an object of [V W] . For an
A
arrow r:N-P of [V,W], the arrow II71(7):TI7I(N)-TI"I(P) of
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22 R. STREET

[V W] is given by I(r) H=(r, H)IA. The naturality of [177(7),
follows from that of 74 . Also
-1 =1 —

(U™ (r)y(V))) 1 (N)f)H—(rA.(Vf)H)lA'-ff,lA
:((Wf)TAH)IA'.ff,IA:(rAH)f.gf,IA:’r}f’]A.(W}{)(TAH)ZA
=TT (P) H (WOTIT (1) H= (TN (P (WOTT (1) )

where P, H=(G,m); so I72(r) is an arrow of [V, W] . Moreover, 1™

is clearly a functor.

Take an object L of [VIW] and let (L) H=(F,&). Then
M-I(I(L)),H=F1,=L,H, H'I(H(L))Ab:(U(L)Ab)IA:LAb

and H'I(H(L))fH €1, =Lyt So I-I(TI(L))=L. Take an arrow
SiL=M of [VW] . Then

H'I(H(s))AH:(H(s)AH)IA:sAH.
So M1MI=1.
A
Take an object N of [V,W] and let NyH=(F,&). Then
I (N)) H=(F, &)
is given by
Fu=TI""(N)p(Vu)H=Fu,
and
3

v,U

_ ! _ _
=1 (N)v(vu)H_gv,lAuwfv,u'
Also
(TN ) b ), =TT (N g (V) b=(N 4 b)),
so I(ITTI(N))=N. Take an arrow r:N =P of [V,W] . Then
DI (r))H), =07 (r) g (Vu)H=(rg (Vu)H ),
u/\ B
=((Wu)rAH)]B:(rAH)u;
so NI 1=7p.

In order to show that Il is natural in ¥V we must prove that the dia-
gram
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- H VAN
(v, w] > [V', W]
[N wl bow, W
(V,W] > [V, W]
il

commutes for all natural transformations N:V =V'. Take L'e [V',W].

Then H(L'N)AH:(F,f) where

Fu:(L'N)B(Vu)H:LI'B(V'u)NAH

and
£, =(L'N) (Yu)H=(LNp)(Nu)H=L\(Vu)N H;
so (F,&)=TI(L") N, H. Also
(TI(L'N )4 b)), =(L'N)g(Vu)b=L"(V'u)N 4 b.
So II(L'N)=TI(L’")N. Now take s':L‘'~M" in [V, W] . Then
(TI(s'N)4H) =(s'N)g(VYu)H=spNpg(Vu)H
=sp (V'u)N,H=(1I(s") N H), ,
so II(s’N)=TI(s")N.
To show that II is 2-natural in YV, we must show that

-— H A
(VuW]l(L, M) ——> [V, W](II(L"),II(M"))

(7wl b W1

-— A
(V,WI(L'N,m'P)——> [V, W](II(L'N),II(M'P))
II

commutes for all arrows 7:N-P of [V, V'] . Take s*:L'=M" in [V'W].
Then

(H(s'r)AH)u:(s'r)B(Vu)H=(sbPB,Ler)(Vu)H
:s'BPB(Vu)H.Ler(Vu)H:sé(Vu)PAH.LI'B(Vu)rAH
=(TU(s*)y Py H).(TI(L ) gry H), =((TL(s" )4 Py TI(LY ) 4 v OH),
=((l(s")r)y 1), :
so (s'7)=II(s")r. So Il is 2-natural in V.
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24 R. STREET'

Finally, note that the image of I{§ under the functor
A AN A
TIW W]~ [W.W]
. A A
is the left lax transformation E:W-W.

COROLLARY. Suppose the lax functor W:A ~Cat is generated by the
adjunction | ‘]E (V, W), wbere V:A-Cat is a genuzne functor Then
there exists a unique natuml transformatzon N:V- W such that En= E;

moreover, this N also satisfies N | :].

A
PROOF. The existence and uniqueness of N such that EN=E follow

from the theorem. Then
A A A
(8ANAH)u:EuNAH:(EN)UH:EuH:EB(vu)SAH
A
NB(Vu)eAHzEB(Wu)NA gy H=(N, eAH)u,
A
so é;lNA:NA &, - It follows that NgJ4=]4- Then
Npl=Ngeg(VI)]=egNg (V)] =EWIN, T,
A A
:eB(Wf)]A:]f ;
A
so NJ=].
4. Structure and semantics, and a dual.

Given a diagram
X

x
A———> B
P

of functors, a right lifting of F along P is a functor HPF.'X—'A and
a natural transformation 7:P. HP F = F such that any natural transforma-

tion 0:G - HP F with codomain lIp F is uniquely determined by the com-
posite 7. P 0:PG~P.II, F~F.

e L

A-—-->-B

A
THEOREM 5. If P:A~B is a functor with a right adjoint P:B~A and

"
€:PP -1 is the counit of the adjunction, then any functor F:X B bhas

%0



TWO CONSTRUCTIONS ON LAX FUNCTORS 25

a right lifting along P given by the functor PF:X—~A and the natural
A
transformation €F.:P(PF)-F.

Suppose A is a category and X is a family of categories X,
indexed by the objects A of A. A lax functor at X is a lax functor W:
A ~Cat such that WA =X, for all Ac A. A morphism ¢ W-W' of lax
functors at X is a function which assigns to each arrow [:A~B of A a

natural transformation ¢f.~Wf~W'/ such that the following diagrams com-

mute :
“g.f
Wg. W/ —— >~ = W(g/) 4
gf
4D | T v
v

W W/ — =W W /wg,f

(W'g)¢f

@y
lygy — Wi,

x V&']jIA

Let |A| denote the subcategory of A with the same objects as
A but with only the identity arrows. Objects, arrows and 2-cells of Gen
[IAI Cat ] are just families of categories, functors and natural trans-
formations indexed by the objects of A. The analysis of «structure and

semantics» for the first basic construction involves partial fibration pro-
. =5
perties of the 2-functor P:Lax [A,Cat] ~Gen [ |A

,Cat] given by
POW)=(WA) | p} PR)I=(Ry )y |a] P(s)=(s4)4.|a]"
Notice that P is faithful on 2-cells and so the fibre 2-categories are just
categories - they have only identity 2-cells. For this reason it suffices
to consider P as only a functor, neglecting its action on 2-cells. The
fibre category P (X) over X will be denoted by Fib,(X); its ob-
jects are lax functors at X and its arrows are morphisms of lax func-

tors at X.

For XeGen [|A] Cat], the comma category (X,P) has ob-
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2 R. STREET

jects pairs (V,]) where Y:A-~Cat is a lax functor and ]:X-*I—"V is
an arrow of Gen [ IA |, Cat], and has arrows R:(V,]J)=(V.]"), right
lax transformations R:VY-V' such that T;(R)- J=]'. An object (V,])
of (X,T;) is said to be tractable when there exists a cartesian arrow
(with respect to the functor ?) over J which has codomain V. This means
that there exists a lax functor /%Y at X and a right lax transformation
T:7«V-V with ?(])2] such that, if R:W-V is a right lax transfor-
mation with T;(R)—_-], then there exists a unique morphism ¢ W-—],V

of lax functors at X such that R=] ¢.

THEOREM 6. Suppose (V,]) is an object of (X,P). Suppose that, for
each f:A~B in A, a diagram

T4

VA

N

NI

< < X

Ip

is given, in which the functor (V])f: X, = Xp and the natural transfor-
mation ]f’]B‘(v])/f_'(vf)']A form a right lifting of Vf.], along
Jp- Then

(a) the data (V])A =X, (V])f can be uniquely enriched to a lax
functor V] :A-Cat such that the data ] ;. ]f form a right lax transfor-
mation J: V] -V,

(b) the right lax transformation ]—V] -V is a cartesian arrow over

J:X —oT;V, so (V,]) is tractable.

PROOF. (a) The definitions of We,fr @4 for VJ come from the con-
ditions that are needed for [ . ]f to form a right lax transformation J:
V] ~V; one uses the universal property of right liftings.

(b) Suppose R:W-V is such that F(R)ZI: that is, RA =]y
for all AcA. For f:A~B in A, Rf.']B. W/-V/f.], uniquely determines
a natural transformation ¢f:W/—-(V])f such that Rf:]f' /g ¢f. Then

the following diagrams commute.
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TWO CONSTRUCTIONS ON LAX FUNCTORS 27

Jc(Ve- &
Jc(VI)g Wt Jc(VI)g - (V])f
]C¢g(wV 1, (W) 1V
Rg(Wf) & (vg)]B¢/ g chg’f
JcWe. WY (Vg)]g -Wf (Vg)Jg(VI)f
\
Jewg. s (VeIR; Vo), l JeVIXeh
\]CW(gf) N(Vf)]A !] /
T &f w ] g
Teter <00V /22 ™(ep) 1,
]gf
1o Al oWy Ja%y J4(VI)1,
]AwA \ CUA]A \ISIA 1 ]IA
J4(V])1y, -~ V(1,)],
]1A

The universal property of liftings allow us to deduce that ¢-W-V] is a
morphism of lax functors at X; moreover, it is the unique one such that

J4=R.

Putting together Theorem 5, Theorem G and the definition of EV ],

we obtain :

COROLLARY. If V:A-Cat is a lax functor and, for each A €A, there
is an adjunction &,, Ty, ]A"l E :(VA,X,), then Y] =EV ] (where
the liftings are those coming from the counits €,, A€A), and (V,])

is tractable.

Let Tm—?tA(X) denote the subcategory of (X, P) consisting of
those objects (V, ] ) such that V:A-Cat is a genuine functor and (V. ])
is tractable, and those arrows N:(V,]J)~=(V']J') such that N:V-V'

is a natural transformation. The «opsemantics» functor

Sem : Fiby (X) — Tract, (X)
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28 R. STREET

is defined by :
for a lax functor W at X, Sem (W)=(W,J);
for a morphism ¢:W W' of lax functors at X, Sem (¢) is the uni-

que natural transformation such that

7 ~

W - — W
¢1 iSém(¢')

w' ]~ W'

commutes.
Since ] has a right adjoint the above Corollary implies that Sem (W)

is tractable.
THEOREM 7. The opsemantics functor

Sem :Fiby (X) — Tract, (X)
bas a right adjoint called the «opstructure» [unctor

Sir : Tract, (X) —= Fib,(X)

and the unit of this adjunction is an isomorphism.

PROOF. Suppose (V.,])e TrEEtA(X), and choose a cartesian arrow
J:J«V~V over J. Then, for each We Fib,(X), the correspondence

¢<— N set up by commutativity of the diagram

I«VY -

@ J
w\( \v
TN

gives a bijection

Fiby (X)W, [« V)= Tract, (X)((W, ]),(V,]))
(using the cartesian property of T and the reflection property of T: see
Theorem 3). The bijection is clearly natural in W. The fact that the unit

is an isomorphism follows from the fact that w:wr and so T.'W-'w is

cartesian ( Theorem G).
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All the preceding work of this section can be dualized in Cat. The
definitions make sense in any 2-category, so, instead of making them in
Cat, we make them now in Cat°”? and express them in terms of the data
of Cat.

The dual of right lifting is right extension (usually called right
Kan extension). The data for a right extension of F:B-X along P:

B ~ A is contained in a diagram

THEOREM 5°P. If P:B~A is a functor with a left adjoint lg:A—'B and
e:IgP—~1 is the counit of the adjunction, then any functor F:B =X bhas
a right extension along P given by the functor'\FIg:A-'X and the natu-
ral transformation F €:(F }I’ )P - F.

The functor

F:L‘Zx [A,Cat] —> Gen HA ,Caf:l
is given by
-— -
POW)=(WA) g |a|» POLI=(L)gc|al
However, nothing essentially new arises for the fibre category <F—’:’](X);
it is just Fib, ( X)°P.

An object (V,E) of (F, X) is said to be tractable when there
exists a cocartesian arrow ( with respect to the functor P) over EPV-X
which has domain V.

THEOREM 6 °P. Suppose (V, E) is an object of (7;, X). Suppose that,
for each f:A~B in A, a diagram
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is given, in which the functor (EV)/:XA ~Xp and the natural transfor-
mation Ef.'(EV)f. E y~Eg.V{ form a right extension of Ep.V [ along
E, . Then:

(a) the data (EV), =X,, (EV)f can be uniquely enriched to a
lax functor EV :A-Cat such that the data E ,, Ef form a left lax trans-
formation E:V -EV;

(b) the left lax transformation E:V~EVY is cocartesian over

E:?‘/ - X, so (Y, E) is tractable.

COROLLARY. If Y:A~Cat is a lax functor, and, for each AcA, there
is an adjunction

&g, Myt JgTTEL (VA Xy),
then EV=EV ] (where the extensions are those coming from the counits

&y AeA), and (V, E) is tractable.

Let T;cz_ctA(X) denote the subcategory of (P, X) consisting of
those objects (V,E) which are tractable and are such that V:A-Cat
is a genuine functor, and those arrows N:(V,E)~(V' E') such that

N:V-V' is anatural transformation. The «semantics» functor
Sem : Fiby (X)°P —»= Tract, (X)
is defined by *
- A A
for a lax functor W at X, Sem (W)=(W,J);

for a morphism ¢:W'=W of lax functors at X, Sem () is the unique

natural transformation such that

A
E

4—i>

W
Sem () l¢l
W

1

=

A

E

commutes (where Pl W-W' is W' =W regarded as a left lax transfor-

mation which is the identity on objects).

THEOREM 7 °P. The semantics functor
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TWO CONSTRUCTIONS ON LAX FUNCTORS 31
Sem : Fib, (X)°P  — Tract, (X)
has a left adjoint called the « structure» functor

and the counit of this adjunction is an isomorphism.

5. Distinguishing the second basic construction

The aim of this section is to examine properties of the second
basic construction and to find necessary and sufficient conditions under

which a given generator should be isomorphic to it.

THEOREM 8. Suppose the lax functor W:A - Cat satisfies the following
condition :
for each A€ A, the category WA has a coproduct for each family of
objects indexed by any subset of any hom set of A, and, for each u:
A-B in A, the functor Wu:WA-WB preserves these coproducts.
Then, for each [: A"~ A in A the functor W/ wA'—~WA bas a left adjoint.
PROOF. Take (F,f)eWA. For u':A’'-=B’, define Fu'= LL Fu;

;
u'=uf

that is, Fu' is the coproduct of the family of objects Fu indexed by the
subset of A(A,B’) consisting of those arrows u:A~ B’ such that u'=
uf. Let k- Fu-Fu' be the injection corresponding to the u-component
Fu of the coproduct. By this condition of the theorem, for each v':B’'~C",
the arrows (Wo')k :(Wo')Fu ~(Wu')Fu' have the properties of in-
jections into a coproduct. So an arrow ggv .,ur“(Wv')IEu’ ~F(v'u') is de-

fined uniquely by commutativity of the diagram

(Wv’)Ku _
(Wo' )Fu > (Wo')Fu'
§v',u¢ ‘fv bu!
F(v'u) > F(v'u')
K r
vu

where u' =uf, then the following diagrams commute

27
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Wu' Wo' Fu'
Ww'.wV'.Ku @, :’UJEH'
Wuw' Wo' Fu W(w'w')Fu'
W' Wo' x “ur, Fu
“u Wor & N0 W)«
W' Wo' Fy'
W(w'v')Fu
lgw'v',u' gw "U’,U,’
F(w'v'u)
K ’ 1] 1
w'y'y
Fl(wv'u")
gw',v'u'
_ wp Fu' _
Fu' (WIB,)Fu'
/
(Wi,,)x
Fu a)B,Fu B Y _
(WIBI)Fu élB,,u'
léjB,,u
Fu Fu'

K
u

The arrows Ww' . Wo'. « = are injections into a coproduct by the condi-

A _
tion of the theorem. So (F,&)eWA'. From the definition of £ it then

follows that the arrows K, are the components of an arrow

Ki(F, &)= (W[)(F, &)
of WA.

Al
Suppose (F', &')eWA' and a:(F,&)~(Wf)(F', &) is an ar
A —
row of WA. For u':A’~ B’ define 5 ,:Fu'~F'u' by

2%8
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‘F’ur F'y'

-— - A
These are the components of an arrow SB:(F,&)=(F,&") in WA’ sin-

ce, for u'=uf, the following commutes.

(Wo')Fu’
(Wu’)V \wv')’@u'
w r F w ’ 1t
( v)\u (Wv’)ocu ( v)fFu
m a , j vhe
(Wv’)/(u F(v'u) vu F’(’U'u')
K

. —_ ’U'U, 51 '
(Wv')Fu' §v',u o

———— F(v'u")

From the definition of [ it follows that 5 is unique with the property that

a

(F.&) (WiiF, &)
(W/)(F, &)

A
commutes. If follows that W/ has a left adjoint and k is the unit of the

adjunction.

Suppose V:A -~Cat is a functor and A is an object of A. An A-
centred centipede in V is a quadruple (M, N, m,n) which assigns to

each pair of arrows u:A =B, v:B~C of A adiagram

m
v, u M v, (Vv)N
/ v,u u
N

vu

R%9
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in VC. A reflection of the centipede (M, N, m.n) is a pair (H, h), where
H is an oject of VA and b is a family of arrows b :N —(Vu)H in-

dexed by the arrows #:A~B in A out of A, such that the diagram

v,u
Mv,u (Vv)Nu
nv,u (VU)bu
Nvu . V(vu)H

vu

commutes. If (H,h) has the property that, for any reflection (H', bh') of

(M,N,m,n), there exists a unique arrow h:H-H' of VA such that

b

u

N ~(Yu)H

X (Vu)k
~(Yu)H

commutes, then (H,h) is called a universal reflection of the centipede.

The category A [A] will be defined. The objects are either of
the form [« ] where u:A~B is an arrow of A, or of the form [v, u]
where u:A~B, v:B~C are arrows of A. For each pair of arrows u:
A-B, v:B~C of A there is exactly one arrow [v,z]~[u] and e
xactly one arrow [v,z]~[vu] in A [A] (in the case vu=u, there
are exactly two arrows [v,u] - [«]), and the only other arrows of

A [A] are the identities.

THEOREM 9. Suppose Y:A-Cat is a functor and A€ A, and suppose :
- for each arrow u:A-B in A, the functor Yu:VA-VB bas aleft
adjoint,
- every functor from A [ A] into VA has a colimit.

Then every A-centred centipede in V has a universal reflection.

v
PROOF. For each u:A~B in A, let Yu:VB-=VA be the left adjoint

v v
of Vu with A\ :(Vu)(Vu)=1, « :1-(Vu)(Vu) as counit and unit.
Suppose (M, N,m,n) is a centipede in YV centred at A. Excluding the

dotted arrows from the following diagram, we note that a functor from
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A[A] to YA is determined.

V(vu)mvu V(vu)(Vv)K N
V(vu)M V(vu)(Vv)N - 4 V(vu)V(vu)(Vu)N
V(uu)ny,u Xvu(Vu)Nu
Vivu)N, . B - (Va)N,
vu ‘[ - u

Let (H,h) be an upper bound of this functor as illustrated by the dotted
arrows. This is equivalent to (H,h) a reflection of the centipede, where

b, b are related by

b,
(Yu)H
\ /Vu)b
(Vu)(Vu)Nu
The diagram
hu
Nu (Vu)H
bu, I(Vu)k
(Yu)H'

commutes if and only if the diagram

b
u
H
bl
u
H'

commutes. So (H,h) is a colimit of the functor if and only if (H, h) is a

(Vu)Nu

universal reflection of the centipede.

REMARK. Professor Mac Lane has made the following observations on
centipedes. The category A [A] is exactly the Kan subdivision catego-

ry (see Mac Lane's forthcoming book) of the category A/A of objects
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under A. For any functor V. A -~ Cat, define the join (V) of V to be the
category V*, where * is the terminal object of A (added if A does not
already have one).

Given a functor V.A-Cat, define a functor VHA [A] °?~Cat

as indicated by the diagram

[u]e+——— [v. 2] ——— [vu]

-

v - ¥ +=—————— VYC
Yu 1

Then we have the category J(V* and the projection P:J(V*H~A[A].
An A-centred centipede in V is precisely a functor Q:A[A] -J(VH
with P Q= 1, that is a section of P.

We further observe that, if deA(V) denote the full subcategory
of the category of functors from A [A] to J(V" consisting of the sec-
tions of P, then there is an inclusion functor VA~ Cpd, (V) given by
HeH, where Hlul=(lu).(Yu)H), Hlv,u)=(lv.u],Y(vu)H).
The reflection of a centipede Q is its reflection in VA with respe:: to

this inclusion.

Suppose X is an object of Gen [|A|, Cat], and suppose (V, E)
is an object of (P,E) whete V:A-Cat is a functor. The family E of
functors Eg .'VB—~XB, B e A, is said to split the centipede (M, N, m,n)
in Y centred at A when there exist, for arrows u: A~ B, v:B-C in A,

objects X of Xp,

arrows pv,u"EC(VU)Nu_'Xvu of XC'
arrows s X ~EpN of Xz,
arrows tv,u:EC(Vv)Nu-vECM of X

v, u c’
such that the following diagrams commute:
ED(Vw)mv'u v
ED(Vw)MU’u ED (wv)Nu
ED(vw)nv,u pwu,u
pw.vu
Ep(Yw)N, Xwvu
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s t
u ,u
Xu EBNu EC(VU)Nu ECMv,u
\pl,uv \Cmv’u L
Xu EC(VU)Nu
t
v, u . M
EC(VU)Nu E v, U
pv,u l ECnv,u
Xvu s g ECNvu
vu

The family E of functors is said to create universal reflections of A-cen-
tred centipedes which it splits when it has the following property: given
an A-centred centipede (M, N, m,n) in Y which the family of functors
splits via X , P, . Sy, t,, asin the definition, then there exists a uni-
que reflection (H,h) of the centipede such that X =E (Vu)H and
b

N
THEOREM 10. For any lax functor W:A -Cat the family E of functors

Y u:(Vv)bu; moreover, this reflection is universal.
A A
E,WA-WA, Ae€A creates universal reflections of all centipedes in
W which it splits.
A
PROOF. Let (M, N, m,n) be a centipede at A in W which is split by

the family of functors in the theorem. Put
M =(GUH vty eWC, N =(F* &%) e WB.

We have X , p . s .t _ as in the definitions. Define Hu=X  and

v,u
define 7 . (Wuv)Hu-H(vu) to be the composite

(wv)su A f:,l
(WU)HuZ(WU)Xu—‘—> (WU)EB(Fu, fu):(wU)Fu(]B) —F%(v)

v, U

:EC(WUJ(F”, £u) H(vu).

A
The following diagrams show that (H, 7)eWA.
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(W1)F“(1g)

(WI)/ \1
(W1)HBu

Hu Hu
(Ww)(Wv)su (Ww)§z i
(Ww)(Wo ) Hu (W) (Wo ) F*(1,) : (Ww)|Fu(v)
o Hi | e pr / Wwlp
w,v w,v B (Ww)Gv’u(ZC) !
u
W(wv)Hu (Ww)F (z(;)ww)mv'u(lc) (Ww)H(vu)
W(wv)su (Ww)svu
v,u
W(wo)F¥(1g) g ! y?"l (Ww) FY( 1)
S R ORI
w, m w. n w
: : }
F(wo) T P
Pm\ A,vu
H(wvu)

For u:A~B, v:B~C define b (v):F*(v)~H(vu) tobe just p . The

right side of the last diagram shows that bu(v) are the components of an
A A

arrow bu.'(Fu, E%)~(Wu)(H,T) in WB. Then ((H,T7),bh) is a reflec-

tion of the centipede (M, N, m, n), and

X, =Hu=Ey(Wu)(H, 1), p, =(Wu)b .

We must show that ((H,7),h) is unique with these properties. Suppose

((H,T'),b) is areflection of the centipede. Then
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(wv)pl,u
(Wo)F%(1) (Wv)Hu
5.1 T;/,u
F¥(v) H(vu)
p'l/yu

commutes. So

Toou= Tou (W) (Wo)s, =0, 60 1 (Wo)s, =7 .
It remains to prove that ((H, 7)., h) is a universal reflection. Sup-
pose ((H', 7' ),b’) is another reflection of the same centipede. Define
k(u) by the commutative diagram
k(u)
Hu H'u

;\\\\\\ ////7223(15)

* F(1g)

A
These airows are the components of an arrow k:(H, 7)~(H',7') in WA as

the following diagram shows :

" Wo)bh' (1
(Wit )5y (Wv)Fu(IB)( Wb oW H
(WU)Su §Z>\ \7’;
(Wo)b! (1)=h! (v)
(Wo)Fe(1,) F¥(y) “H'(vu)
§311 mv,u(IC) (b;/u)(IC) ]
b t u n, (1-)
F¥(v) - GV( 1) nr e Fvi(rg)
2 s
v, U H(vu) vu

The following diagram commutes :
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s
v, U —>H(vu) __i‘_________Fvu(]C)

o e (b, )(1c)

G”'T(IC) H(vu)
mv,u(IC) /
L \?I ’ — ’
FY ) ( v)bu(lc) h'(v)
So the diagram
bu
(F% &) “(Wu)(H, T)
b l (Wu)k

(Wu)(H', )

commutes. Moreover, £ is unique with this property. For if &’ also makes
this triangle commute, then

k' (u)=k'(u).py s, =k'(u) b (1).s =h (1) s =k(u).
THEOREM 11. Suppose (V,E,]) is a generator of the lax functor W :
A- Cat with Y:A~Cat a genuine functor, and suppose N:V-W is the
unique natural transformation such that EN=E. If the family E of functors

E, VA-WA, AcA, creates universal reflections of A-centred centipedes
A
in V¥ which it splits, then the functor N,:VA-WA is an isomorphism.

N
PROOF. For each A€ A we define a functor KJA.'WA~VA. Take (F, &)
A
in WA. This gives rise to the following centipede in Y centred at A:
SC(VU)]BFu
]CEC(VU)]BFu (VU)]BFu
I &

Vs U

]CF(vu,‘

The family E of functors splits this centipede; the splitting is given by

the data:

(_fv’u 773F“
Fu, E.(Vv)]gFu——=F(vu), Fu ——E ] Fu,
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E-me(VYv)]gFu
E-(Vv)]gFu Ec]JcEc(Vv)]gFu.

Let (H, h) be the unique reflection of this centipede with the property Fu =
v
EB(Vu)H and §v’u=EC(Vv)bu. Define NA(F,§):H-
Let (H'.bh') be the corresponding reflection for (F', &') and sup-
A
pose a.(F,&)~(F' &) is an arrow of WA. The following diagram com-

mutes :

]C§ ec(Yv)]gFu
]CF(vu) v, U ]CEC(VU)]BFu (Vv)]BFu
]Cavu l ]C(wv)aul (VU)]Bau
F' E (V F’ \4 F’
Tl tve) Jc€r R S T T AL R

It follows that there exists a unique k:H ~H' such that

b

J4Fu £ (Vu)H
Iga, l(Vu)k
]BF’u Y (Vu)H’
u

v v
commutes. Define N, a=k. Then NA,'WA—°VA is a functor.
v
Next we show that N, N, =1. Take KeVA. Then NAK:(F,f)

where
FuZEB(Vu)K and §y,u:EC(VU) €B(Vu)K.

The following diagram commutes :

e (Vo) ]y Eg(Vu)K

l]CEC(Vv)eB(Vu)K (Vu)eg(Vu)K

E_V K - VY
]C C (vu) SCV(vu)K (vu)

So (K, 8BV(-)K) is a reflection of the centipede used in the construction

of NA NA K, moreover,
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Eg(Vu)K=Fu and E-(Vv)eg(Vu)K=&
v
while (N, (F,&), h) was the unique reflection with this property. So
v
NANAK:K and b= SBV(-)K.

v
Let /:K~K' be an arrow of YA. Then (NAZ)u:EB(vu)Z’ so NANAZZ

k is the unique arrow such that

SB(Vu)K
JgEg(Vu)K (Vu)K
JgEg(VYu)l (Vu)k
E,(Vu)K' Yu)K’
JgEg(Yu) e (Va)K- (Vu)

v
commutes. But by naturality of €5, / does this. So N, N ,/=1.
\ ~
Finally we show that N, N, =1. Take (F, )eWA and let (H, h)
v
be the reflection of the centipede used in the construction of N, (F, £).
Then NAH:(F,f_) where
Fu=Eg(Vu)H=Fu and &, =E (Vv)eg(VYu)H.

Now

fv,u'(wv)fl,uzg

v,u’

=E (Vo)eg(Vu)H. (Wo)&, =& (Wo)&, |

wU,IFuzéu,u'EC(VU)EB]BEB(VZ[)H

and (Wo)wy Fu is a right inverse for (Wo)&, 5 s0 £, =& . So
NAI\\;A(F,f):(Fyf)-
Take a:(F,£)~(F', &) and put k:XJAa. Then
(Nyk), &, = (Eg(Vu)k)(Egh )=Ep((Vu)k.b,)
=Eg(h, - Jga,)=¢ - (Wigla,=a,. & .
and wg Fu is aright inverse for £&; . So Njk=a.

The usual variety of weaker assumptions than those of the last theo-
rem lead to the usual variety of weaker conclusions as in the «triples» case.
Among these is the following theorem, whose proof, after Theorem 11, we
leave to the reader. See Theorem 9 for a simple test for the validity of the

hypothesis of the next theorem.
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THEOREM 12. In the circumstances described in the fir<t sentence of The-
orem 11, if universal reflections centred at Ac A exist in V, then the

functor N, :VA WA has a left adjoint.

6. Appendix: Enrichment of results. Limits of lax functors into Cat.

Generalizations of the two basic constructions can be pursued in
several directions. We do not wish to examine any of these in detail here,
only some brief outlines.

1o Suppose C is a complete and cocompleté symmetric monoidal closed
category. Let C-Cat denote the 2-category of C-categories, C-functors and
C-natural transformations. Suppose A is a small category. A lax functor
W:A-C-Cat is a morphism of bicategories in the sense of Benabou, so
that each WA is a C-category, each W/ is a C-functor and W, p @4 are

C-natural transformations.

For AeA, WA becomes a C-category as follows. The objects

(u,X) are as before. For (u, X ), (u',X’)EWA,
the object WA((u, X),(u’,X")) of C is given by the coproduct

Ll WA (X, (Wh)X").

u'=ub
Composition is given by the composite
Ll warex, (Wa)xm)e || WA (X, (Wh)X")
u" =u'h’ u'=ub

—_ -J—L (WA"(X',(W})')X")®WA'(X,(W}_))X'))

unzu'b'
u'=ub
Wh)®I
Llcwsimi) LL (WA C(WB)X  (Wh)(Wh')X")@WA' (X, (Wh)X"))
u":ulb'
u'=uhb

( in WA’
LLccomp in WA") oLl WATX (Wh)(Wh)X")

u":ulb,
u'=ub
(WA (1, w, ,,X"))
L BobT T 1L WANX, (W(hh)X")
w"=u'h’
a'=ub
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injection 1L WACX, (WR)X").
u"=uk
The identity of (u, X) is enriched to the composite
id of WA WA(Lw,X) inj
WA(XX) WA(X, (W1,)X)—=| | WA(X,(Wh)X)

u=ub

I

Now C itself may be regarded as a functor C:A - Cat given by
CA=C, Cy= 1. So the notion of cocentipede makes sense in C:A-Cat.
Since all the functors €/=1. have right adjoints, A is small, and C is
complete, all the cocentipedes in C:A - Cat have universal coreflections
(dual of Theorem 9). For A€A, Wa becomes a C-category as follows.
The objects (F, &) are as before. For (F, &), (F', 5’)€WA, the object

WA((F, £),(F',£")) of C is the universal coreflection of the cocenti-

pede
WA((F, &), (F, & ))-mmmm- ~WA(Fu, F'u)
| v,
WA(Wv)Fu,(Wo)F'u)
: lWA(Lfy',u)
WA(F(vu), F'(va)) —————— WA(Wv)Fu, F'(vu)

WACE, 1)

(excluding the dotted arrows) in C. Compositions and identities are readily
supplied.

In fact, W, w become genuine functors from A to C-Cat, and the
general theory of this work (excluding §5) goes through with minor chan-

ges.

2°  Another direction of generalization is to consider lax functors W:
A - Cat where A is a 2-category. Then W and W may be defined suitably
on 2-cells giving the procedures for creating 2-functors into Cat from lax
functors into Cat, each procedure with its appropriate universal property
( Theorems 3 and 4).

260



TWO CONSTRUCTIONS ON LAX FUNCTORS 45

Even if A is a bicategory, no new problems seem to arise other than

book-keeping.

32 The generalization we wish to mention now seems to have more con-
tent. Here we would like to change the codomain of our lax functors to other
2-categories besides Cat .

For any 2-category A, and any object A of A, the 2-category A/A
has objects pairs (B,u) where u:A-B is an arrow of A, has arrows
(f, 7):(B,u)~(B" u'), pairs consisting of an arrow [:B—-B’ in A and a
2-cell 7:fu-u', and has 2-cells o:(f, 7)=(["7") just 2-cells o:f~f"

of A such that 7".cu="T.

B
u : u
U ?
A — |/ A
D '7;/ 7' ’
u u
\ N
BI

An alternative definition of A/A can be made as follows. Let
H,=A(A,-)°:°PA - Cat,
a hom 2-functor for the 2-category °?A obtained from A by reversing 2-
cells. If A does not have a terminal object *, one is easily added
(A(B, »)=1 for all Be A).
Then (A/A)°?=H . Let Pr:A/A-A denote the projection 2-functor gi-
ven by
(B,u)-B, (f,7)~f, o~0O.
Suppose W:A-C is a lax functor between 2-categories A and C
and suppose A€ A, CeC. Then a 2-category ﬁ(C, A) can be defined,

for which we give the objects and arrows. The objects are lax functors

F.A/A -~ C/C such that the square
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A/A F c/C
Pr Pr
A c

W

commutes. The arrows a:F ~F' are left lax transformations which project
to the identity of W; right lax transformations with this projection property
amount to the same thing.

If C=Cat and C=1, then the 2-category C/C might well be cal-
led Obj; it is the 2-category of «all objects of all categories». If A is a
category, then A/A is the category of objects under 4.

When we presented the second basic construction (for a lax func-
tor W:A-~Cat with A a category) to John Gray, he suggested the equali-
lity ﬁA :W( 1, A); this is indeed the case.

40 Finally, as promised in the introduction, we show how «limits and
colimits» for lax functors into Cat may be obtained from the constructions.

There are two «diagonal» 2-functors
R:Cat —~Lax [A Cat], B:Cat — Lax [ A, Cat]
which take each category to the lax functor whose value all over A is that
category.
THEOREM 13. The 2-functor A has a left adjoint
Li_rlz:L_;x [A,Cat] —=Cat
while the 2-functorZ bas a right adjoint
lim: Lax [ A, Cat ] — Cat.

PROOF. The diagonal functor A:Cat —=Gen [ A, Cat], induced by the
functor A ~1, has both a left and a right 2-adjoint ( 2-Kan extension of the

[DK] type ) . Composing with the inclusions
Gen [A,Cat] —=Lax [A,Cat],  Gen [A,Cat] —Lux [A,Cat],

we obtain the 2-functors A,/ A. The result follows from Theorems 3 and 4.

The following construction of li'rﬁw for a lax functor W:A ~Cat

may be of interest to formal category theorists.

262



TWO CONSTRUCTIONS ON LAX FUNCTORS 47

From the codomain functor 51:A2-°A and the projection Pr:

Obj - Cat, form the pullback

Cnstrn A Lax [ A, Cat]
v 1 L<a—x[31,1]
Lax [ A2, Obj ] —=—r Lax [ A2 Cat].

Lax [ 1,Pr]

Then l_irﬁw is the fibre category UTL(W) over W with respect to U.
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