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GERMS OF QUASI-CONTINUOUS FUNCTIONS

by YUH-CHING CHEN

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

Vol. XIII, 1

introduction.

The notion of quasi-topological spaces was first introduced by

Kowalsky [12] under the German name « Limesraume &#x3E;&#x3E; . Since then it has

been applied to various branches of mathematics such as differential Geo-

metry [1], [8], functional analysis [1], [2], [4], [6], [7], theory
of differentiations [1], [3], [10], [14], [15], and algebraic topology
[16] . It was Bastiani [1] who first applied this notion to differentiable

manifolds and introduced the French term -quasi-topologie- which is not

related to the quasi-topology defined by Spanier [18]. Since this work is

inspired by some works of Ehresmann’s school [8], [14], [15], [16],
the term quasi-topology here is a translation of the French « quasi-topolo-

give » .
In this paper, we try to generalize the notions of germs of func-

tions and sheaves in topological sense to that of 77-germs of functions

and 77-sheaves in quasi-topological sense and to study the relations be-

tween these notions. We begin with a brief review of some basic defini-

tions and properties on quasi-topologies and the introduction of the notion
of germs and 77-germs of functions using inductive limits. Then we gene-
ralize the notions of pre-sheaves and sheaves over a topological space to

that of tt-presheaves and 77-sheaves over a quasi-topological space and

show that every 7T-sheaf E is reflected by the sheaf of germs of quasi-
continuous local sections of E . In fact the category of 77-sheaves over a

quasi-topological space ( X ,tt) contains a reflective full subcategory

isomorphic to the category of abelian sheaves over the underlying topolo-

gical space (X, Ttt) of (X, 71). Finally, we show that the canonical in-

jective structure of this reflective subcategory determines an effacement

structure [13] on the category of 77-sheaves. The homological Algebra
of this effacement structure appears more complicated than the relative
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homological Algebra of Eilenberg-Moore [9] and Maranda [17]. We shall

defer this pending further investigations.
The first draft of this paper was completed while I attended the

seminar of Professor Ehresmann. I would like to thank Professor Ehres-

mann and Madame Bastiani for their encouragement and their important

suggestions. I would like also to thank Dr. Machado for many interesting
discussions and for his reading of my first draft and making comments.

Some results of this paper are published in [5] .

1. Germs and 77-germs of functions.

77 will always stand for a quasi-topology on a set X. It is a func-

tion that associates to each x E X a family tt(x) of filters of subsets of

X satisfying the conditions :

(1) F1, F2 E tt( x ) implies Fl nF2 E tt(x ),
(2) F1 E tt (x) and F2 D F1 implies F2 E tt ( x ),
(3) the filter xE of all subsets of X containing x is in 77(x).

If F E tt (x), we say that F converges to x in 71. The pair (X , 7T) is

called a quasi-topological space.
Let ( X, tt ) and ( E, T) be quasi-topological spaces. A function

f: ( X ,tt)-&#x3E; ( E , t), often written f : X-&#x3E;E , is (71, ’T) -continuous ( called

quasi-continuous in [1], [15]) if, for every x E X and every F E tt (x),

the images of the sets in F under f generate a filter f ( F ) E t(f (x)).

f is quasi-open if for every x E X and every G E T(f(x)), there is F E

77 ( x ) with f ( F ) C G . If A is a subset of X, the quasi-topology induced

on A by 77 is denoted 77 | A and we say that (A , tt |A ) is a ( quasi-topo-

logical ) subspace of ( X, 77 ).

A topology T on X is identified with the quasi-topology tt T on

X in which the filter of neighborhoods of x E X is the smallest filter in

71 T ( x ). The category f of topological spaces and continuous functions

is identified with a full subcategory of the category 2f of quasi-topolo-

gical spaces and quasi-continuous functions ( see e.g. [15] ).
The underlying topology T 17 of 77 is defined as follows : A set

U C X is open ( in T 17) if and only if, for every x E U , F E tt( x ) implies
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U E F . Thus every (77, t)-continuous function f : X -&#x3E; E is continuous in

the underlying topologies Ttt and T t. Note that 1: ( X , tt ) -&#x3E; ( X , T tt) is
( 77, T tt)-continuous. In fact, the underlying topology functor T :2f -&#x3E;f

is left adjoint to the inclusion functor fC 2f, i.e. , f is identified with

a coreflective subcategory of 11fl5 (in French term, T is a projector func-

tor). For further definitions and properties concerning quasi-topologies we

refer the readers to [1], [16] .
Convention. Let A be a subset of X. A (tt, T)-continuous func-

tion f : A -&#x3E; E is the restriction to A of a ( 77 I U, t) -continuous function

from an open neighborhood U of A to E . Thus if a is the directed set

(by inclusion) of open neighborhoods of A and if 2 f (U,E) denotes
the set of (77, T) -continuous functions from U E a to E , then the restric-

tion map

is a surjection, where {2f( U, E) | U E a} forms a direct system of sets
of ( 7T, T)-continuous functions with genuine restriction maps.

Let Q(x)= n {Fi|FiEtt(X)} be the filter that is the intersec-
section of all filters Fi in tt ( x ) . Then each Ax E Q ( x ) is the union of a

family of subsets of X one from each filter Fi E tt( x ) . A set Ax E Q (x)
is called a tt-neigbborbood of x ( thus every neighborhood is a 71-neigh-
borhood). Notice that: (1) each Ax E Q ( x ) contains x, but Q ( x ) may
not converge to x in 71, and (2) Ax may not be a 77-neighborhood of ano-
ther point y e Ax .

We proceed now to define germs and 77-germs of functions using
inductive limits. Let O (x) be the set of open neighborhoods of x (open
in the underlying topology T 7T of tt). Then O ( x ) C Q (x). Order both

sets O(x) and Q ( x ) by inclusion. Then O(x) is a directed subset of

Q ( x ) . The inductive limit

is the set of tt-germs ( resp. germs) o f (7T , ’T) -continuous functions at x .

Each f : A -&#x3E; E in 2f ( A , E) ( resp. f : U -&#x3E; E in 2f (U,E)) determine s
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a 7T-germ (resp. germ) fx of a (tt, t) -continuous function at x . Often,
we simply call fx the limit o f f at x . Since O ( x ) C Q ( x ) as directed

sets, there is a map

that associates to each germ fx at x a tt-germ f’x=yx(fx) at x . It fol-

lows from (1.1) that yx is surjective. If O (x) is cofinal in Q (x), then

the notions of germs and 71-germs coincide. In particular, this is the case

when tt is topological.

2. 77-sheaves.

A map p: E - X of quasi-topological spaces ( E , T) and (X, tt

defines a tt-sheaf E if the following conditions are satisfied (see [5] ):
(S1) For every point fx E E with p ( fx ) = x, there exists a subset

UfC E containing fx such that the map p | U f is a (t, tt)-homeomorphism
of ( U , T | Uf) onto an open neighborhood Ux of x ;

(S2) t is the final quasi-topology determined by all t| U f via inclu-
sion maps;

(S3) For every x E X, the stalk Ex = p-1 (x) is an abelian group and

the group operations are quasi-continuous in t.

In particular, if all Uf in (Sl) can be choosen open in the underlying topo-
logy Tt of T, then we say that p spreads E over X and E is a 71- sprea-

ding space. It is easy to see that:

PROPOSITION 2.1. 1 f E is a 71-sheaf, then p is (T, 77)-continuous and

quasi-open ( cf. proposition 1.2.16 of [15]).

COROLLARY 2.2. If (E,T) is a 71-spreading space, then (E, TT) is an
abelian sheaf over the topological space (X , T 17). ( We assume that the

readers are familiar with the general theory of abelian sheaves).

Let p : ( E , t ) -&#x3E; ( X , tt ) be a tt-sheaf. A section of E over a sub-

set A of X is a function s : A - E which is the restriction to A of a sec-

tion s’ of E over an open neigboorhood U of A (i. e. s’ : U - E is a

(tt| U, T) -continuous function such that p s’ is the identity of U); in par-

ticular, s is (TT, t)-continuous on A . The set I- ( A , E) of sections of E
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over A is an abelian group ( the addition is pointwise). It follows that the

restriction map

is an epimorphism for every tt-neighborhood A of x E X . This will be re-

ferred to as property (PS) in the definition of 77-presheaves in the next

section.

A map d: E -&#x3E; F of tt-sheaves ( E, T) and (F, a) is called a 71-

homomorphism if : (1) d is (t, d )-continuous, and (2) for every x E X the

map dx =d I Ex is a group homomorphism of Ex into Fx . We write d =

{dx | x E X } . The classes of 71-sheaves and 77-homomorphisms form a ca-
gory f!.17 called the category of 71-sheaves.
PROPOSITION 2.3. The class o f 77-spreading spaces form a full subcate-

gory 2X o f ltt. 1 f 2.T denotes the category of abelian sheaves over the

topological space (X, Ttt.), then the underlying topology functor T:2f -&#x3E; f

induces an isomorphism TX : lX -&#x3E; 2T of categories.
Indeed, TX sends a 77-spreading space p: ( E, t) -&#x3E; ( X , tt) to an

abelian sheaf p : ( E , tt) -&#x3E; (X , Ttt). The inverse of TX is defined as

follows. Let tt: ( E, U) -&#x3E; (X, T 17) be an abelian sheaf, where 1) is a topo-

logy on E . Th en, by definition, for every point f x E E with p (fx) =x,
there is a U E 1.J such that p I U is a homeomorphism of U onto an open
neighborhood Ux of x . Endow each U f with a quasi-topology Tf that ma-
kes p |U f a (t, 7T ) - homeomorphism and let t be the final quasi-topology
on E determined by all ’rf via inclusion maps. Then p : ( E, t)-&#x3E; ( X ,tt)
is a 77;-spreading space. Txl carries p : ( E, U)-&#x3E;( X, T 17) to p : ( E,T) -( X, tt).

3. Construction of 7T-sheaves.

Let Qtt be the category whose class of objects is the set

of 7T-neighborhoods of points of X and whose morphisms are inclusion

maps, and let Ab be the category of abelian groups and homomorphisms.
A 77-presheaves is a contravariant functor P : Qtt-&#x3E;Ab satisfying the condi-

tion :
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(PS) For every A E Q (x), the restriction map r : lim P ( U) -&#x3E; P ( A )
-&#x3E; a

is an epimorphism, where a is the set of all open neighborhoods U of A

directed by inclusion. A homomorphism of tt-presheaves is a natural trans-

formation of functors. 77-presheaves and their homomorphisms form a cate-

gory p 17 of functors.
A typical example of a tt-presheaf is the 71-presheaf TE of local

sections of a 77-sheaf E defined as follows. For every inclusion map

i: B -&#x3E; A in Qtt, the map (TE)(i):T(A,E)....T(B,E) is the restriction

map of sections of E over A to that of E over B . The property (PS) is

verified by (2.1) . In fact, there is a functor T:ltt-&#x3E; 7T called a local sec -
tion functor.

Let P be a 77-presheaf. We shall construct the associated 77-sheaf
S P of P as follows. For every x E X let

be the set of limits fx of f E P ( Ax ) at x, and let

We shall endow SP with a quasi-topology T so that the projection p : SP -X

defined by p (fx )= x is a 77-sheaf: For each open set U of X and for

each f E P (U) let

and

be the set of points of S P which are the limits of f at points of U . En-

dow each U with a quasi-topology that makes p|Uf: Uf-&#x3E;U a (tf, tt)-
homeomorphism. Then we have

open in

and tf and g agree on Uf n Vg for any two sets U f and Vg defined
by (3.3). T is the final quasi-topology on S P determined by all ’Tf via

inclusion maps. Then

P R O P O SIT I O N 3. 1. p :( S P , t ) -&#x3E; ( X , tt ) is a 71-shea f call ed the associa-

ted 71-sheaf of the 71-presheaf P .

In practice, most of 77-sheaves are constructed in this way from 71-
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presheaves of 77-germs of functions satisfying some prescribed properties
such as quasi-continuous, quasi-holomorphic [15], etc... In fact the in-

troduction of the notion of 77-sheaves is motivated by this sort of exam-

ples. We should point out that in the construction above the sets U f are
not open in T in general. Since the limit fx of f E P ( U ) is taken on the

directed set Q ( x ) , not on O ( x ) , there may exi st f , g E P ( U ) with

U f n Ug not open in U f or Ug. 
Finally, we shall see that there is a functor S: Ptt-&#x3E;ltt that sends

a homomorphism p: P - P’ of tt-presheaves to a 77-homeomorphism q; 
S P - S P’ defined as follows. Since p is a natural transformation of func-

tors, it consists of a family of group homomorphisms pA : P ( A ) -&#x3E; P’ ( A )

indexed by the objects A of Q 17 . For a point fx E 5 P, that is the limit of
f E P ( A ) at x , let d ( fx ) be the limit of pA ( f ) E P’ ( A ) at x , i.e.

where

It is obvious that 0 is a 71-homomorphism and that S is a functor.

4. The functors S ond r.

TH E O RE M 4. 1. The functor S : Ptt-&#x3E; ?7r is left adjoint to the functor F’ :

.? - T . 
17 tt

The proof will follow two lemmas.

LEMMA 1. There is a natural transformation from the composite functor
S r o f S and T to the identity f unctor o f fl70
PROOF. Let E be a tt-sheaf. Then for every x E X ,

That is, (ST E)x is the group of 77-germs at x of local sections of E ;
a point in (S T E)x is the 77-germ sx at x represented by a section s E

T ( A , E ) . Let 0 (sx ) = s (x). Then 0 : S T E -&#x3E; E so defined is a 77-homo-

morphism. The class of B (indexed by the objects E of 2 7T ) form a na-
tural transformation from Sl- to the identity functor of 2.. Moreover, it

is easily shown that:

COROLLARY. The quasi-topology o f E is the final quasi-topology deter-
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mined by that of S I- E via e, i. e. , e is a 7T- epimorphism.

LEMMA 2 . There is a natural trans formation from the identity functor of

Ptt to the composite f unctor T S o f rand S .

PROOF. Let P be a 77-presheaf. Then (TSP)(A)=T(A,SP) for every

A E |Qtt|. Define a map hA : P(A)-&#x3E;T(A, S P ) by hA ( f ) = s with s(x)=

fx for every x E A . This is well defined since, for every f E P ( A ), the

family {fx I x E A I do define a section s of S P over A . It is easily
checked that hA is a homomorphism and that

is a T-homomorphism from P to T S P . The family of such h (indexed by
the objects P of P 17) form a natural transformation from the identity func-
tor of P 17 to TS.
PROOF OF THEOREM 4.1. We want to show that there is a natural equi-

valence

of the set of 77-homomorphisms from S P to E to the set of homomorphisms
from P to hE. For any O£LTT(SP, E), define j(O)=T(O)b as in the

diagram 
n

Then j (ct) consists of a set of homomorphisms j(O)A:P(A)-&#x3E;(TE)(A)
defined by

where s £ T (A , E) is the section s ( x ) = fx. We claim that j is a bijec-
tion with inverse k defined by k ( p ) = 8 S ( p ) for every p £ P TT(P, T E ).
Indeed,
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for every f £ P ( A ) shows that j k ( p ) = p . On the other hand,

shows that k j ( O ) = O. Since j and k are defined by functors and natu-

ral transformations, the bijection j is natural.

R E M A R K . (1) P 7T and ? 7T are additive categories and j is indeed a

natural isomorphism of groups.
(2) p 7T and LTT are not abelian categories. For example, -T 7T

is not closed under the formation of kernels since the property (PS) which

is defined by colimits is not preserved by kernels.

5. The subcategory 2x of LTT.
Recall that TTT is the underlying topology of TT. Regard T 17 as a

category with morphisms inclusion maps; then it is a full subcategory of

Q 17. Let Tx be the category of presheaves over (X, T 17)’ i.e., the cate-

gory of contravariant functors from T 17 to Ab . Then there is a functor

R’ : PTT -&#x3E; PX defined by R’ ( P ) = P | TTT. On the other hand, we define a

functor J’ : PX -&#x3E; PTT as follows. For every presheaf G : T TT -&#x3E; Ab, let J’G
be a mapping on QTT to Ab with

where a is the set of open neighborhoods of A directed by inclusion.

Then J’G verifies the property (PS) and thus defines a 7T-presheaf. By a

routine limit argument in category theory, one shows that the correspon-
dence G - J’G defines a functor J’ from PX to PTT and that
P R O P O SITION 5. 1. J’ is left adjoint to R’ . Moreover, the composite func-
tor R’J’ o f R’ and J’ is naturally equivalent to the identity functor o f

P X ( and there fore J’ is a full embedding).

Recall that 2x is a full subcategory of LTT (see proposition 2.3 ).
I-’ 2x defines a functor F’ from LX to P X that can be identified with

the composite functor R’r J, where J is the inclusion functor of 2x in

LTT. On the other hand, a functor S’ : PX -&#x3E; LX with
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where (

can be defined by replacing QTT by T 17 in the construction of S in section
3. Notice that here the limit fx of f at x is taken on O(x) instead of

Q ( x ) ; contrary to the remark of section 3 , Uf n Vg is always open in

Tf and T. Therefore, the quasi-topology T on S’G is the only quasi-to-g

pology that renders each U f an open subset of S’G (cf. [16], p.28). In
fact, the family of all subsets U f form a basis for the underlying topology
TT on S’G . Similar to theorem 4.1 we have

PROPOSITION 5.2. S’ is left adjoint to T’. Moreover, the composite func-
tor S’h’ is naturally equivalent to the identity functor o f 2x 

If 2x is identified with the category LT of abelian sheaves over

( X, TTT) by the functor TX of proposition 2.3 , then the functors S’ and

r’ are identified with the associated sheaf functor and the local section

functor, respectively, of the theory of sheaves.

Like 2T, 2x is an abelian category with enough injectives; it is

AB5 (see [11]). The injective structure on LX is called the canonical

injective structure on LX.
6. Germs of local sections of a 77-sheaf.

In the diagram

of categories and functors, let R = S’ R’ T . Then for any 77-sheaf E ,

since (R’T E)(U)=T(U, E) for every U in T7r Thus RE= U (R E)x
x £ X

is the 77-sheaf ( indeed a sheaf) of germs of local sections of E . Since
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is the 77-sheaf of 71-germs of local sections of E , formula (1.2) and pro-

perty ( PS) show that there is a surjective 71-homomorphism , : R E -&#x3E; ST E
defined by the set of group epimorphisms :

We claim that the quasi-topology cr’ on S T E is the final quasi-topology
determined by the quasi-topology a on R E via C and therefore C is a

71-epimorphism. Indeed, since ( resp. cr’) is the final quasi-topology
determined by the family crf=cr I U ( resp. cr’ f = cr’ | Uf ) via inclusion

maps U C R E (resp. Uf C ST E ) , every p | Uf is a (cr , TT)-homeomor-

phism ( resp. (cr-’ ,TT)-homeomorphism) of U f onto U . Now, let (Y,cr") be

a quasi-topological space and let O : ST E -&#x3E; Y be a map such that ct’ is

(cr, cr" ) -continuous. Then, since each O| Uf = ( O C | Uf)(C |Uf)-1 i s

(cr’, cr" )-continuous, so is O (cf. [16]). This shows that o,’ is the final

quasi-topology determined by 0- via C.
Recall ( corollary of lemma 1 of section 4) that 8 : S T E -&#x3E; E is a

71-epimorphism; so is

We identify LX with 2. T and see that every 17-sheaf E is a quotient of

the sheaf of germs of local sections of E . More generally, we shall prove
that 2x is a reflective subcategory of LTT and that W of (6.4) is a reflec-
tion. Thus every 77-sheaf is reflected by the sheaf of germs of its local

sections.

TH EOR E M 6. 1. R : LTT -&#x3E; LX is right adjoint to the inclusion functor j :

LX -&#x3E; LTT, i. e., R is a reflector.

PROOF, We want to show that for E’ in LX and E in LTT, there is a na-
tural bijection

We observe that J = S J’ T’. Indeed, since 
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we have

Therefore S J’ T’ E’ = E’. Now, by theorem 4.1 and proposition 5 .1 ,

LTT(J E’, E) = LTT(S J’ T’E’, E) = PTT (J’ T’ E’, T E) = PX (T’ E’, R’ T E).
Since S’)|T’(LX) is a full embedding, proposition 5.2 shows that

Thus, LTT(JE’,E) is naturally isomorphic to 2x ( E’, R E ).
COROLLARY 6.2. R|LX is the identity functor of 2x*
7. An ef f acement structure on LTT.

Let the canonical injective structure of LX be denoted (M, 8)
and identify Tx with 2T . Then ? is the class of sheaf monomorphisms
and E is the class of injective sheaves [11]. (m, 8) induces an efface-

ment structure (F’,H’) on LX, where F’ = M and h’ is the class of 77-

homomorphisms that factor through an injective object of 2X (see propo-
sition 2.13 of [13]).

The notion of an effacement structure on a category C was first

defined by Zimmermann [19] under the German name « Erweiterungspaare».
It consists of a pair (F,H) of two classes of morphisms of C satisfying
the following three conditions :

(1) H is the class of all morphisms h : A -&#x3E; B such that, for every

f : X -&#x3E; Y in if and for every given u : X -&#x3E; A in C, there is a morphism
v : Y -&#x3E; B such th at v f = h u ;

(2) if is the class of all morphisms f : X -&#x3E; Y such that, for every

h : A -&#x3E; B in h and for every given u: X - A in C, there is a morphism
v : Y -&#x3E; B such that v f = h u ;

(3) for every object A in C, there is a morphism fé if n h with

domain A .

We need also the following definition from [l3]. 5:’C ’f is a sub.

basis for if if F is the class of morphisms f : X -&#x3E; Y such that there

exists a push-out
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with f’ £ 5=’ and a morphism k : Y - Z with k f = O.
Let (F’, H’) be the effacement structure on LX induced by (m, £)

as mentioned in the first paragraph. We have

TH E O R E M 7.1. There is an e f facement structure (F, H) on LTT in which

H = R-1 (H’) and F has F’ as a subbasis.

In view of theorem 4.6 of [13], (F, H) i s the inverse transfer of

(F’, H’) by the pair of adjoint functors J and R provided that push-outs
exist in ? 7T-

Given TT-homomorphisms O : E -&#x3E; F and E -&#x3E; G, we shall cons-

truct the push-out K of qb by W. For every x £ X, let Kx be the push-out
of Ox : Ex -&#x3E; F, by tjJx: E, - Gx ( since push-outs exist in Ab ) and let K =

r U Kx. Then we have a diagram
x £ X

Endow K with the final quasi-topology T determined by the quasi-topolo-

gies of F and G via i and j . Then (K, T) is a 7T-sheaf which is the

push-out of q,’ by W.
Finally, we shall generalize the notion of injective resolutions in

sheaf theory to that of 77-injective resolutions. Recall that for every sheaf

E’ ( e.g. E’ = R E of a 77-sheaf E ) there is an injective resolution

defined as follows: Choose a map i’ : E’ -&#x3E; Q’0 in 3’ n Y, (i.e. i’ is a mo-

nomorphism with Qo injective ) and let G0 be the cokernel of i’ . Then we

obtain an exact sequence
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Choose a map k’ : G0 -&#x3E; Q’1 in ?’ n H’ and let G1 be the cokernel of k’ .

Then an exact sequence

is obtained. Continuing in this way, we get an injective resolution

We shall generalize this construction to one for a 7T-sheaf E . Let Qo be
the push-out of i’ : R E - Q’ 0 by the reflection W : R E -&#x3E; E

Then it is easy to show that, since i’ £ F’ n H’, i £ F n H. Moreover, i

is a 77-monomorphism. In the diagram

let Fo be the cokernel of i , Q1 be the push-out of k’ by h , F1 be the
cokernel of do = k j and Q2 be a push-out again. Then by repeating this

construction we obtain an exact sequence

called a 77-injective resolution of E in LTT. We remark that, in general, nei-
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ther Qi is injective in 2,T7 nor is R Qi in 2x . We call (7.2) a «77-injec-
tive» resolution just because it is constructed out of an injective resolu-

tion of R E . Nevertheless, when Q’* is replaced by another injective re-

solution of R E , the corresponding 77-injective resolution of E is chain

homotopic to (7.2). Therefore, there is a cohomology theory on LTT defined
by resolutions that generalizes the sheaf cohomology. We shall study this

further under a more general topic.
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