CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES # PING CHENG YUEN # Higher order frames and linear connections Cahiers de topologie et géométrie différentielle catégoriques, tome 12, n° 3 (1971), p. 333-371 http://www.numdam.org/item?id=CTGDC_1971__12_3_333_0 © Andrée C. Ehresmann et les auteurs, 1971, tous droits réservés. L'accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ ### HIGHER ORDER FRAMES AND LINEAR CONNECTIONS by YUEN Ping Cheng #### Introduction. In the first part of this paper we develop some elementary properties of semi-holonomic k-frames parallel to those of holonomic k-frames. Our definition of a semi-holonomic k-frame is essentially equivalent to the one originally given by Ehresmann [1b]; our formulation, however, leads us easily to define a canonical 1-form θ_k on the principal fibre bundle $\overline{H}^k(V_n)$ of semi-holonomic k-frames on a differentiable manifold V_n . If we restrict θ_k to the principal sub-bundle $H^k(V_n)$ of holonomic k-frames on V_n , we obtain the canonical 1-form given by Kobayashi [3]. Our main result is the "Holonomy Theorem" where we give a geometrical interpretation of the holonomy conditions in terms of the canonical 1-form. This result will be useful for studying the integrability of higher order G-structures. These preliminary results served originally as an introductory part to a forthcoming paper which deals with the structure tensors of higher order regular G-structures and higher order geometric structures. The second part of this paper deals with the higher order linear connections. Let V_n be a differentiable manifold. A linear connection of order k on V_n is an infinitesimal connection on the principal fibre bundle $\overline{H}^k(V_n)$. Its torsion form is defined to be the exterior covariant derivative of θ_k . There is a one-to-one correspondence between the set of linear connections of order k (resp. quasi-holonomic linear connections of order k without torsion) on V_n and the set of invariant sections of the canonical projection $\overline{H}^{k+1}(V_n) \to H^1(V_n)$. We show further that a linear connection of order k on V_n is locally flat if and only if it can be obtained by successive prolongations of a first order linear connection without torsion and curvature. Some of these results have been summarized in [6] and are prepublished in French, in the first part of the author's thesis [7]. If V_n is a differentiable manifold, $T_x(V_n)$ is the tangent vector space of V_n at x. # Part 1 ### HIGHER ORDER FRAMES # 1. Semi-holonomic frames. Let V_n be an n-dimensional C^∞ -differentiable manifold. A first order frame (or a 1-frame) of V_n at the point x is an invertible 1-jet of \mathbf{R}^n into V_n with source $0 \in \mathbf{R}^n$ and target $x \in V_n$. The manifold of all 1-frames of V_n , denoted by $H^1(V_n)$, forms a principal fibre bundle over V_n with natural projection π_0^1 which assigns to each 1-jet its target, the structure group being $L_n^1 = GL(n,\mathbf{R})$. The trivial bundle $H^1(\mathbf{R}^n) \approx \mathbf{R}^n \times L_n^1$ can be identified with the group of all affine transformations on \mathbf{R}^n . There is a distinguished element in $H^1(\mathbf{R}^n)$, namely the 1-frame e_1 of \mathbf{R}^n defined by the 1-jet of the identity mapping of \mathbf{R}^n onto \mathbf{R}^n with source 0. Let $b:H^1(\mathbb{R}^n)\to H^1(V_n)$ be a local isomorphism. It induces a local diffeomorphism f of \mathbb{R}^n into V_n with f_0 $\pi_0^1=\pi_0^1$ o b (pseudo-products); we will denote all natural projections by the same symbol π with indices. We say that b is 1-admissible if the domain of b contains e_1 and b (e_1) = $j_0^1 f$. (Here $j_0^1 f$ denotes the 1-jet of f with source 0). The manifold of 1-jets $j_{e\,l}^{\,l}$ b, where b is a 1-admissible local isomorphism of $H^{\,l}(\,\mathbf{R}^{\,n})$ into $H^{\,l}(\,V_n^{\,})$, will be denoted by $\overline{H}^{\,2}(\,V_n^{\,})$. There are two natural bundle structures on $\overline{H}^{\,2}(\,V_n^{\,})$: - i) $\overline{H}^2(V_n)$ forms a principal fibre bundle over $H^1(V_n)$ with natural projection π_1^2 and structure group \overline{M}_n^2 consisting of all 1-jets of 1-admissible local isomorphisms of $H^1(\mathbf{R}^n)$ into $H^1(\mathbf{R}^n)$ with source and target e_1 . The structure group \overline{M}_n^2 acts on $\overline{H}^2(V_n)$ on the right by the composition of jets. Moreover $\pi_1^2(j_{e_1}^1 b) = b(e_1) = j_0^1 f$. - ii) $H^2(V_n)$ forms a principal fibre bundle over V_n with projection $\pi_0^2 = \pi_0^{1_0} \circ \pi_1^2$ and structure group \overline{L}_n^2 . Here \overline{L}_n^2 is the fibre of $\overline{H}^2(\mathbf{R}^n)$ over the origin $0 \in \mathbf{R}^n$. The multiplication in \overline{L}_n^2 is given by: if $g_1 = j_{e_1}^1 b_1 \in \overline{L}_n^2$ and $g_2 = j_{e_1}^1 b_2 \in \overline{L}_n^2$, then the pseudo-product $b_1 \circ b_2$ is a 1-admissible local isomorphism and $g_1 \cdot g_2 = j_{e_1}^1 (b_1 \circ b_2)$ depends only on $j_{e_1}^1 b_1$ and $j_{e_1}^1 b_2$. Notice there is again a distinguished element in $\overline{H}^2(\mathbf{R}^n) \approx \mathbf{R}^n \times \overline{L}_n^2$, namely the element e_2 defined by the 1-jet of the identity mapping of $H^1(\mathbf{R}^n)$ onto $H^1(\mathbf{R}^n)$ with source e_1 . An element $z \in \overline{H}^2(V_n)$ will be called a semi-bolonomic 2-frame of V_n at the point $x = \pi_0^2(z)$. We define by recurrence the principal fibre bundle $\overline{H}^k(V_n)$ of semi-holonomic k-frames of V_n . Let us assume that we have defined the principal fibre bundle $\overline{H}^{k-1}(V_n)$ of semi-holonomic (k-1)-frames of V_n , with base space V_n , structure group \overline{L}_n^{k-1} and projection π_{k-2}^{k-1} on $\overline{H}^{k-2}(V_n)$. A local isomorphism $u:\overline{H}^{k-1}(\mathbb{R}^n)\to \overline{H}^{k-1}(V_n)$ is said (k-1)-admissible if: - i) v is (k-2)-admissible, where v is the local isomorphism of $\overline{H}^{k-2}(\mathbb{R}^n)$ into $\overline{H}^{k-2}(V_n)$ induced by u, such that $v \circ \pi_{k-2}^{k-1} = \pi_{k-2}^{k-1} \circ u$. - ii) $u(e_{k-1}) = j_{e_{k-2}}^1 v$, where e_{k-1} (resp. e_{k-2}) is the distinguished element in $\overline{H}^{k-1}(\mathbf{R}^n)$ (resp. $\overline{H}^{k-2}(\mathbf{R}^n)$). The set $\overline{H}^k(V_n)$ of 1-jets of the form $j^1_{e_{k-1}}u$, where u is a (k-1)-admissible local isomorphism of $\overline{H}^{k-1}(\mathbf{R}^n)$ into $\overline{H}^{k-1}(V_n)$, forms a principal fibre bundle over V_n with structure group \overline{L}^k_n ; the underlying set of \overline{L}^k_n is just the fibre of $\overline{H}^k(\mathbf{R}^n)$ over $0 \in \mathbb{R}^n$. The space $\overline{H}^k(V_n)$ can also be regarded as a principal fibre bundle over $\overline{H}^{k-1}(V_n)$ with structure group $\overline{M}^k_n = Ker(\overline{L}^k_n \to \overline{L}^{k-1}_n)$. An element z of $\overline{H}^k(V_n)$ will be called a semi-bolonomic k-frame of V_n at the point x, where x is the projection of z into V_n . For $m \leq k$, the natural projection π_m^k of $\overline{H}^k(V_n)$ onto $\overline{H}^m(V_n)$ is compatible with the surjective homomorphism of \overline{L}_n^k onto \overline{L}_n^m . The distinguished element e_k in $\overline{H}^k(\mathbf{R}^n) = \mathbf{R}^n \times \overline{L}_n^k$ is defined by the 1-jet of the identity mapping of $\overline{H}^{k-1}(\mathbf{R}^n)$ with source e_{k-1} . # 2. Canonical form on $\bar{H}^k(V_n)$. An element $u \in \overline{H}^k(V_n)$ can be written as $u = j_{e_{k-1}}^l b$, where b is a (k-1)-admissible local isomorphism of $\overline{H}^{k-1}(\mathbf{R}^n)$ into $\overline{H}^{k-1}(V_n)$; it determines a linear isomorphism \widetilde{u} of $\overline{E}^{k-1} = T_{e_{k-1}}(\overline{H}^{k-1}(\mathbf{R}^n))$ onto $T_{u^*}(\overline{H}^{k-1}(V_n))$ with $u' = \pi_{k-1}^k(u) \in \overline{H}^{k-1}(V_n)$. Since $\overline{H}^{k-1}(\mathbf{R}^n) \approx \mathbf{R}^n \times \overline{L}_n^{k-1}$, we have a canonical decomposition $\overline{E}^{k-1} = \mathbf{R}^n \oplus \overline{\mathbb{Q}}_n^{k-1}$, where $\overline{\mathbb{Q}}_n^{k-1}$ is the Lie algebra of \overline{L}_n^{k-1} . From now on, we will identify \mathbf{R}^n with a vector subspace of \overline{E}^{k-1} given by the canonical decomposition. Since \widetilde{u} is a linear isomorphism, $\widetilde{u}(\mathbf{R}^n)$ is an n-dimensional vector subspace of $T_{u^*}(\overline{H}^{k-1}(V_n))$ transversal to the fibres, called the horizontal n-plane associated to the k-frame u. Let v be the projection of u under π_m^k . The following diagram $$\bar{E}^{k-1} \xrightarrow{\widetilde{u}} T_{u} \cdot (\bar{H}^{k-1}(V_n))$$ $$\downarrow \qquad \qquad \downarrow$$ $$\bar{E}^{m-1} \xrightarrow{\widetilde{v}} T_{v} \cdot (\bar{H}^{m-1}(V_n))$$ is commutative, where v' is the projection of v under π_{m-1}^m and where the vertical arrows are the natural projections. Consider a vector $Z \in T_u(\overline{H}^k(V_n))$. Its image $Z' = T \pi_{k-1}^k(Z)$ under the tangential map $T \pi_{k-1}^k$ is tangent to $\overline{H}^{k-1}(V_n)$ at the point $u' = \pi_{k-1}^k(u)$. The \overline{E}^{k-1} -valued differential 1-form θ_k defined by $$\theta_k(Z) = \tilde{u}^{-1}(T\pi_{k-1}^k(Z))$$ will be called the canonical form on $\overline{H}^k(V_n)$. For $m \le k$, we have the following commutative diagram $$T(\overline{H}^{k}(V_{n})) \xrightarrow{\theta_{k}} \overline{E}^{k-1}$$ $$\downarrow \qquad \qquad \downarrow$$ $$T(\overline{H}^{m}(V_{n})) \xrightarrow{\theta_{m}} \overline{E}^{m-1}$$ where the vertical arrows are the natural projections. The Lie group \overline{L}_n^k acts naturally on \overline{E}^{k-1} on the left. Each element g of \overline{L}_n^k defines a linear isomorphism \widetilde{g} of \overline{E}^{k-1} onto $T_{g^*}(\overline{H}^{k-1}(\mathbf{R}^n))$ with $g'=\pi_{k-1}^k(g)$. The right translation $R_g^{-1}=R_{(g^*)}-1$ determines a linear isomorphism TR_g^{-1} of $T_{g^*}(\overline{H}^{k-1}(\mathbf{R}^n))$ onto \overline{E}^{k-1} . If we put $\rho(g)=TR_{g^*}^{-1}\circ\widetilde{g}$, we obtain a linear representation ρ of \overline{L}_n^k on the vector space \overline{E}^{k-1} . For $m\leq k$, $$\overline{E}^{k-1} \qquad \rho(g) \qquad \overline{E}^{k-1} \\ \downarrow \qquad \qquad \downarrow \\ \overline{E}^{m-1} \qquad \rho(\pi_m^k(g)) \qquad \overline{E}^{m-1}$$ is a commutative diagram, where the vertical arrows are the natural projections. PROPOSITION I.1. The canonical form θ_k is a pseudo-tensorial 1-form on $\bar{H}^k(V_n)$ of type (ρ , \bar{E}^{k-1}), i.e. $$\theta_{k}(TR_{g}(Z)) = \rho(g^{-1})\theta_{k}(Z)$$ for all $Z \in T(\overline{H}^k(V_n))$ and $g \in \overline{L}_n^k$. # 3. Holonomic Frames. A diffeomorphism $f: V_n \to V_n'$ induces a principal fibre bundle isomorphism $f^{(k)}$ of $\overline{H}^k(V_n)$ onto $\overline{H}^k(V_n')$. This isomorphism $f^{(k)}$ possesses the following properties: - i) $\pi_{m}^{k} \circ f^{(k)} = f^{(m)} \circ \pi_{m}^{k}$ for all $0 \le m \le k$; - ii) $f^{(k)}$ is compatible with the canonical forms, i.e. $f^{(k)^*}\theta_k^* = \theta_k$, where θ_k (resp. θ_k^*) is the canonical form on $\bar{H}^k(V_n)$ (resp. $\bar{H}^k(V_n^*)$). Theorem i.2. Let ϕ be a local diffeomorphism of $\bar{H}^k(V_n)$ into $\bar{H}^k(V_n^*)$. Then locally $\phi = f^{(k)}$ for some local diffeomorphism f of V_n into V_n^* , if and only if ϕ is compatible with the canonical forms, i.e. $\phi^*\theta_k^* = \theta_k$. It remains to show that the condition is sufficient. For this we will proceed by induction on k. LEMMA I.3. Let ϕ be a local diffeomorphism of $H^1(V_n)$ into $H^1(V_n')$ with $\phi^*\theta_1'=\theta_1$. Then we can locally write $\phi=f^{(1)}$ for some local diffeomorphism f of V_n into V_n' . Consider a tangent vector $Z \in T_u(H^1(V_n))$ with $T\pi_0^1(Z)=0$. The condition $\phi^*\theta_1'=\theta_1$ implies that $T\pi_0^1(T\phi(Z))=0$. Thus ϕ sends a tangent space to the fibre of $H^1(V_n)$ onto a tangent space to the fibre of $H^1(V_n')$. This means that locally ϕ is a fibre map and induces a map f of V_n into V_n' satisfying $f_0\pi_0^1=\pi_0^1\circ\phi$. We want to show that $\phi=f^{(1)}$. Thus we want to show that for any u with $\pi_0^1(u)=x$ we have $\phi(u)=j_x^1f_0u$. Let $\xi\in \mathbf{R}^n$. Choose a vector $Z\in T_u(H^1(V_n))$ with $T\pi_0^1(Z)=\widetilde{u}(\xi)$. Then $(j_x^1f_0\widetilde{u})(\xi)=(Tf_0\widetilde{u})(\xi)=(Tf_0T\pi_0^1)(Z)=(T\pi_0^1\circ T\phi)(Z)$. On the other hand, $(\widetilde{\phi(u)})^{-1}\circ T\pi_0^1\circ T\phi)(Z)=(\widetilde{u}^{-1}\circ T\pi_0^1)(Z)=\xi$. Thus $\phi(u) = j_x^1 f_0 u$ holds proving the lemma. To prove the theorem for k we may assume that it has been established for k-1. Let $Z\in T_u(\overline{H}^k(V_n))$ with $T\pi_{k-1}^k(Z)=0$. The condition $\phi*\theta_k'=\theta_k$ implies $(T\pi_{k-1}^k\circ T\phi)(Z)=0$. Thus ϕ is a local fibre map with respect to the fibrations $\overline{H}^k(V_n)\to \overline{H}^{k-1}(V_n)$ and $\overline{H}^k(V_n')\to \overline{H}^{k-1}(V_n')$. There exists a local diffeomorphism ψ of $\overline{H}^{k-1}(V_n)$ into $\overline{H}^{k-1}(V_n')$ such that $\psi\circ\pi_{k-1}^k=\pi_{k-1}^k\circ\phi$. Since $\pi_{k-1}^{k*}\theta_{k-1}=T\pi_{k-2}^{k-1}\circ\theta_k$ (resp. $\pi_{k-1}^{k*}\theta_{k-1}'=T\pi_{k-2}^{k-1}\circ\theta_k'$), we have $$\begin{split} (\pi_{k-1}^{k}(\psi^{*}\theta_{k-1}^{\prime}))(Z) &= (\theta_{k-1}^{\prime} \circ T \psi_{\circ} T \pi_{k-1}^{k})(Z) \\ &= (\theta_{k-1}^{\prime} \circ T \pi_{k-1}^{k} \circ T \phi)(Z) \\ &= (\pi_{k-1}^{k} \theta_{k-1}^{\prime})(T \phi(Z)) \\ &= (T \pi_{k-2}^{k-1} \circ \theta_{k}^{\prime} \circ T \phi)(Z) \\ &= (T \pi_{k-2}^{k-1} \circ \theta_{k})(Z) \\ &= (\pi_{k-1}^{k} \theta_{k-1}^{\prime})(Z) \end{split}$$ for all $Z \in T_u(\bar{H}^k(V_n))$. As π_{k-1}^k is surjective, we deduce that $\psi * \theta_{k-1}' = \theta_{k-1}$. By the induction hypothesis, there exists a local diffeomorphism f of V_n into V_n' such that locally $\psi = f^{(k-1)}$. We have thus $f^{(k-1)} \circ \pi_{k-1}^k = \pi_{k-1}^k \circ \phi$ locally. Now we are going to show that locally $\psi = f^{(k)}$. An element $u \in \bar{H}^k(V_n)$ determines a linear isomorphism $\tilde{u} : \bar{E}^{k-1} \to T_u \cdot (\bar{H}^{k-1}(V_n))$ with $u' = \pi_{k-1}^k(u)$. Two elements u and v of $\bar{H}^k(V_n)$ are identical if and only if $\tilde{u} = \tilde{v}$. It suffices therefore to show that $\phi(u) = f^{(k)}(u)$ for all $u \in \bar{H}^k(V_n)$. Let $\xi \in \bar{E}^{k-1}$. Choose a tangent vector $Z \in T_u(\bar{H}^k(V_n))$ with $\theta_k(Z) = \xi$. We have $$\theta_k(Z) = (\phi^*\theta_k')(Z) = (\theta_k' \circ T\phi)(Z) = (\widetilde{\phi(u)})^{-1} \circ T\pi_{k-1}^k \circ T\phi)(Z).$$ On the other hand, $\xi = \theta_k(Z) = (\tilde{u}^{-1} \circ T \pi_{k-1}^k)(Z)$. It follows that for all $\xi \in \bar{E}^{k-1}$, $$\widetilde{\phi(u)}(\xi) = (T\pi_{k-1}^{k} \circ T\phi)(Z) = (Tf^{(k-1)} \circ T\pi_{k-1}^{k})(Z)$$ $$= (Tf^{(k-1)} \circ \widetilde{u})(\xi) = f^{(k)}(u)(\xi).$$ We have therefore $\phi = f^{(k)}$ locally and our theorem is proved. COROLLARY I.4. Let ϕ be a principal fibre bundle isomorphism of $\overline{H}^k(V_n)$ onto $\overline{H}^k(V_n')$. Let f be the diffeomorphism of V_n onto V_n' induced by ϕ . Then $\phi = f^{(k)}$ if and only if $\phi^*\theta_k' = \theta_k$. Consider a local diffeomorphism f of an open neighbourhood of $0 \in \mathbf{R}^n$ onto an open set of V_n . It induces a (k-1)-admissible local isomorphism $f^{(k-1)}: \overline{H}^{k-1}(\mathbf{R}^n) \to \overline{H}^{k-1}(V_n)$. It follows that $u=j^1_{e_{k-1}}f^{(k-1)}$ is an element of $\overline{H}^k(V_n)$. We say that $u \in \overline{H}^k(V_n)$ is a bolonomic k-frame of V_n if u can be written as $u=j^1_{e_{k-1}}f^{(k-1)}$ for some local diffeomorphism f of \mathbf{R}^n into V_n . A k-frame u of V_n is holonomic if and only if one can find a representative for u compatible with the canonical forms. The set of holonomic k-frames of V_n forms a principal fibre subbundle $H^k(V_n)$ of $\overline{H}^k(V_n)$. Its structure group is the subgroup L_n^k of \overline{L}_n^k consisting of holonomic elements. Notice there is a group isomorphism between L_n^k and the group of all invertible k-jets of \mathbf{R}^n into \mathbf{R}^n with source and target 0. The space $H^k(V_n)$ can also be regarded as a principal fibre bundle over $H^{k-1}(V_n)$ with structure group $M_n^k = \overline{M}_n^k \cap L_n^k$, kernel of the surjective homomorphism $L_n^k \to L_n^{k-1}$. # 4. Relations between $\overline{H}^k(V_n)$, $\overline{P}^k(V_n)$ and $\overline{J}^{k-1}(H^1(V_n))$. Let W and Y be two C^{∞} -differentiable manifolds. We will denote by $\overline{J}^k(W,Y)$ the differentiable manifold of semi-holonomic k-jets of W into Y. For the definition of semi-holonomic jets, see the works of Ehresmann. For $m \le k$, let p_m^k be the canonical projection of $\overline{J}^k(W,Y)$ onto $\overline{J}^m(W,Y)$. A jet $X \in \overline{J}^k(W,Y)$ is invertible if and only if $p_1^k(X)$ is invertible. Let $\overline{\prod}^k(W,Y)$ denote the set of invertible jets in $\overline{J}^k(W,Y)$. This set is then the inverse image of $\overline{\prod}^l(W,Y)$ by the submersion p_1^k . Since $\overline{\prod}^l(W,Y)$ is an open submanifold of $\overline{J}^l(W,Y) \equiv J^l(W,Y)$, it follows that $\overline{\prod}^k(W,Y)$ is an open submanifold of $\overline{J}^k(W,Y)$. Moreover, $p_m^k:\overline{\prod}^k(W,Y) \to \overline{\prod}^m(W,Y)$ is a submersion. A semi-holonomic k-frame (resp. holonomic k-frame) of V_n in the sense of Ehresmann is an invertible semi-holonomic k-jet (resp. invertible holonomic k-jet) of \mathbf{R}^n into V_n with source $0 \in \mathbf{R}^n$. The set $\bar{P}^k(V_n)$ (resp. $P^k(V_n)$) of semi-holonomic k-frames (resp. holonomic k-frames) of V_n in the sense of Ehresmann has a principal fibre bundle structure over V_n , the structure group being the group of all invertible semi-holonomic k-jets (resp. holonomic k-jets) of \mathbf{R}^n into $\dot{\mathbf{R}}^n$ with source and target $0 \in \mathbf{R}^n$. An element $u \in \bar{P}^k(V_n)$ can then be written as $u = j_0^1 f$, where f is a differentiable mapping of \mathbf{R}^n into $\bar{P}^{k-1}(V_n)$ satisfying the condition: $$j_0^1(p_{k-2}^{k-1} \circ f) = f(0).$$ Here we have also denoted by p_{k-2}^{k-1} the canonical projection of $\bar{P}^{k-1}(V_n)$ onto $\bar{P}^{k-2}(V_n)$. THEOREM 1.5. There exists a canonical diffeomorphism ν_k of $\overline{H}^k(V_n)$ onto $\overline{P}^k(V_n)$ satisfying the properties: (1) ν_k is a fibre map, i.e. $p_0^k \circ \nu_k = \pi_0^k$; (2) for $$m \le k$$, is a commutative diagram; (3) v_k , restricted to $H^k(V_n)$, is a diffeomorphism of $H^k(V_n)$ onto $P^k(V_n)$. We prove the theorem by induction on k. For k=1, $H^1(V_n)$ is identical with $P^1(V_n)$ and ν_1 is just the identity map. Let $u=j_{e_1}^1$ b be an arbitrary element in $\bar{H}^2(V_n)$. If η_1 denotes the "zero section" of $H^1(\mathbb{R}^n)$ the mapping $u \to \nu_2(u) = j_0^1(\nu_{10} \, b_0 \, \eta_1)$ defines a diffeomorphism of $\bar{H}^2(V_n)$ onto $\bar{P}^2(V_n)$, because the composition of jets is a differentiable map. Let us assume there exists ν_{k-1} such that, for all $z \in \bar{H}^{k-1}(V_n)$, $\nu_{k-1}(z) = (j_z^1, \nu_{k-1})_0 z_0 (j_0^1 \eta_{k-2})$ where $z' = \pi_{k-2}^{k-1}(z)$ and η_{k-2} is the "zero section" of the trivial bundle $\bar{H}^{k-2}(\mathbb{R}^n) \approx \mathbb{R}^n \times \bar{L}_n^{k-2}$. Consider then an arbitrary element $y=j_{e_{k-1}}^1 g$ in $\bar{H}^k(V_n)$. If η_{k-1} is the "zero section" of $\bar{H}^{k-1}(\mathbb{R}^n) = \mathbb{R}^n \times \bar{L}_n^{k-1}$, $g' = \nu_{k-1} \circ g \circ \eta_{k-1}$ defines a local diffeomorphism of \mathbb{R}^n : to $\bar{P}^{k-1}(V_n)$. Since $j_0^1(p_{k-2}^{k-1}\circ g') = g'(0)$, the 1-jet j_0^1g' , which ^{*)} corresponding to $\mathbf{R}^n imes \{e\}$, where e is the unit element. is independent of the choice of g for y, is an element in $\overline{P}^k(V_n)$. The mapping $y \to \nu_k(y) = j_0^1 g'$ defines a diffeomorphism ν_k of $\overline{H}^k(V_n)$ onto $\overline{P}^k(V_n)$. It is easy to check that ν_k has the desired properties. Consider the case where $V_n={\bf R}^n$. Let us recall that the underlying set of \overline{L}_n^k is just the fibre of $\overline{H}^k({\bf R}^n)$ over the origin 0. Since the multiplication in \overline{L}_n^k is given by the composition of jets, the restriction of ν_k to \overline{L}_n^k defines a group isomorphism of \overline{L}_n^k onto the group of all invertible semi-holonomic k-jets of ${\bf R}^n$ into ${\bf R}^n$ with source and target 0. It is easy to see that the diffeomorphism ν_k of the above theorem is compatible with this group isomorphism. We have therefore the following corollary: COROLLARY I.6. The principal fibre bundle $\overline{H}^k(V_n)$ (resp. $H^k(V_n)$) is canonically isomorphic to $\overline{P}^k(V_n)$ (resp. $P^k(V_n)$). Let E be a locally trivial fibre bundle over V_n . We will denote by J^kE the differentiable manifold of k-jets of local sections of E. Let $\tilde{J}^2E=J^1(J^1E)$. The k-th non-holonomic prolongation of E is defined by induction: $$\tilde{I}^k E = I^1 (\tilde{I}^{k-1} E).$$ We define also the semi-holonomic prolongation $\bar{J}^k E$ by restricting ourselves to those local sections such that, for all $0 \le m \le k$, the local section σ of V_n into $\tilde{J}^m E$ satisfies the condition: $j_x^1(\pi_{m-1}^m \circ \sigma) = \sigma(x)$, where π_{m-1}^m is the natural projection of $\tilde{J}^m E$ onto $\tilde{J}^{m-1} E$. We have $$I^k E \subset \overline{I}^k E \subset \widetilde{I}^k E$$. THEOREM I.7. There exists a canonical diffeomorphism μ_k of $\overline{H}^k(V_n)$ onto $\overline{J}^{k-1}(H^1(V_n))$ satisfying the following properties: - (1) for k = 1, μ_1 is just the identity map of $H^1(V_n)$; - (2) $\mu_{\mathbf{k}}$ is a fibre map; more explicitly $$\overline{H}^{k}(V_{n}) \xrightarrow{\mu_{k}} \overline{J}^{k-1}(H^{1}(V_{n}))$$ $$\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad$$ is a commutative diagram; (3) for $0 \le m \le k$, the following diagram commutes. We prove the theorem by induction on k. For k=1, $J^0(H^1(V_n))=H^1(V_n)$ by definition and μ_1 is just the identity map of $H^1(V_n)$. Let $u=j_{e_1}^1 b$ be an arbitrary element of $\overline{H}^2(V_n)$. Consider the local diffeomorphism f of \mathbf{R}^n into V_n defined by the condition: $\pi_0^1 \circ b = f_0 \pi_0^1$. If η_1 is the «zero section» of $H^1(\mathbf{R}^n) \approx \mathbf{R}^n \times L_n^1$, the mapping $$x \rightarrow \sigma(x) = b_0 \eta_{10} f^{-1}(x)$$ defines a local section σ of V_n into $H^1(V_n)$. If we put $\mu_2(u)=j_x^1\sigma$ with $x=\pi_0^1(u)$, the mapping $u\to\mu_2(u)$ defines an injection of $\overline{H}^2(V_n)$ into $\overline{J}^1(H^1(V_n))$. This differentiable mapping μ_2 is surjective. In fact let σ be a local section of V_n into $H^1(V_n)$ with $j_x^1\sigma\in\overline{J}^1(H^1(V_n))$. The target $\sigma(x)$ can be written as $\sigma(x)=j_0^1f$ for some local diffeomorphism f of \mathbf{R}^n into V_n . Let f be the local isomorphism of f with f into f into f with f into f defined by the conditions: i) $$\pi_{0}^{1} \circ b = f \circ \pi_{0}^{1}$$; ii) $$k \circ \eta_1 = \sigma \circ f$$. It is easy to check that b is l-admissible and $j_x^1\sigma=\mu_2(j_{e_1}^1b)$. The mapping μ_2 gives then a diffeomorphism of $\overline{H}^2(V_n)$ onto $\overline{J}^1(H^1(V_n))$ with the desired properties. Now, let us assume there exists μ_{k-1} and μ_{k-2} such that, for all $u\in \overline{H}^{k-1}(V_n)$, we have $$\mu_{k-1}(u) = (j_u^1, \mu_{k-2})_0 \ u_0 \ (j_0^1 \, \gamma_{k-2})_0 \ \omega^{-1}$$ with $u'=\pi_{k-2}^{k-1}(u)$, $\omega=\pi_1^k(u)$ and where η_{k-2} is the «zero section» of $\overline{H}^{k-2}(\mathbf{R}^n)=\mathbf{R}^n\times\overline{L}_n^{k-2}$. Let $z=j_{e_{k-1}}^1$ b be an arbitrary element of $\overline{H}^k(V_n)$. Let f be the local diffeomorphism of \mathbf{R}^n into V_n induced by b. If we denote by η_{k-1} the «zero section» of $\overline{H}^{k-1}(\mathbf{R}^n)=\mathbf{R}^n\times\overline{L}_n^{k-1}$, then $$b' = \mu_{k-1} \circ b \circ \eta_{k-1} \circ f^{-1}$$ defines a local section of V_n into $\overline{J}^{k-2}(H^1(V_n))$ and $j_x^1 h'$ determines an element $\mu_k(z)$ of $\overline{J}^{k-1}(H^1(V_n))$ independent of the choice of the representative h for z. It is easy to verify that $z \to \mu_k(z)$ defines a diffeomorphism μ_k of $\overline{H}^k(V_n)$ onto $\overline{J}^{k-1}(H^1(V_n))$ satisfying the required conditions of the theorem. COROLLARY I.8 [4c] $\overline{P}^k(V_n)$ and $\overline{J}^{k-1}(H^1(V_n))$ are canonically diffeomorphic. # 5. Local coordinate systems in $\bar{H}^k(V_n)$. Let $\{x^1, x^2, \dots, x^n\}$ be the natural coordinate system in \mathbb{R}^n . Let U be a coordinate neighbourhood in V_n with a local coordinate system $\{y^1, y^2, \dots, y^n\}$. Consider an element $u \in H^1(V_n)$ with projection $$\pi_0^1(u) = y = (y^1, y^2, ..., y^n) \in U.$$ The 1-frame u is completely determined by the linear isomorphism $$\tilde{u}:T_0(\mathbb{R}^n) \longrightarrow T_y(V_n).$$ In terms of local coordinates, \tilde{u} can be expressed by The 1-frame u is therefore completely determined by the set of local coordinates (y^i, y_k^j) with $det(y_k^j) \neq 0$. Thus we can take $\{y^i, y_k^j\}$ as a local coordinate system in $(\pi_0^1)^{-1}(U) \subset H^1(V_n)$. Similarly, we have a global coordinate system $\{x^i, x_k^j\}$ in $H^1(\mathbf{R}^n)$, with respect to which the distinguished element is given by $e_1 = (0, \delta_k^j)$. distinguished element is given by $e_1 = (0, \delta_k^j)$. The $n+n^2$ vectors $\{s_i = (\frac{\delta}{\delta x^i})_{e_1}, s_k^j = (\frac{\delta}{\delta x_j^k})_{e_1}\}$ form a basis for $E^1 = T_{e_1}(H^1(\mathbf{R}^n))$, and the $n+n^2$ local vector fields $\{\frac{\delta}{\delta y^i}, \frac{\delta}{\delta y_j^k}\}$ are linearly independent. Once again, any 2-frame v is completely determined by the linear isomorphism \widetilde{v} associated to v. In terms of local coordinates, we have $$\widetilde{v}: E^1$$ \longrightarrow $T_u(H^1(V_n))$ with $\pi_1^2(v) = u = (y^i, y_k^i)$ $$\begin{cases} s_i & \longrightarrow \sum_{m} (y_i^m \overline{s}_m + \frac{1}{2!} y_{pi}^m \overline{s}_m^p) \\ s_k^j & \longrightarrow T_u(s_k^j) \end{cases}$$ where $\overline{s}_m = (\frac{\delta}{\delta y^m})_u$, $\overline{s}_m^p = (\frac{\delta}{\delta y_p^m})_u$ and Tu is the tangential map of u, u being considered as a differentiable map. Thus v is completely determined by the set of local coordinates (y^i, y^i_j, y^i_{jk}) with $det(y^i_j) \neq 0$. By iteration we have a coordinate neighbourhood $(\pi_0^k)^{-1}(U)$ in $\overline{H}^k(V_n)$ with a local coordinate system $\{y^i,y^i_{j_1},\ldots,y^i_{j_1j_2\ldots j_k}\}$ with $\det(y^i_{j_1})\neq 0$. The natural projection of $\overline{H}^k(V_n)$ onto $\overline{H}^m(V_n)$ $(m\leq k)$ is given by $$(y^{i}, y^{i}_{j_{1}}, \dots, y^{i}_{j_{1} \dots j_{k}}) \longrightarrow (y^{i}, y^{i}_{j_{1}}, \dots, y^{i}_{j_{1} \dots j_{m}}).$$ If $u=(a^i,a^i_{j_1},\ldots,a^i_{j_1}\ldots_{j_k})\in \overline{H}^k(V_n)$, the associated linear isomorphism \tilde{u} can be expressed by $$\begin{cases} t_{j} \longrightarrow \Sigma \left(a_{j}^{i} \bar{t}_{i} + \frac{1}{2!} a_{j_{1} j}^{i} \bar{t}_{i}^{j_{1}} + \dots + \frac{1}{k!} a_{j_{1} \dots j_{k-1} j}^{i} \bar{t}_{i}^{j_{1} \dots j_{k-1}} \right) \\ t_{i}^{j_{1}} \longrightarrow Tu'(t_{i}^{j_{1}}) \\ \dots \\ t_{i}^{j_{1} \dots j_{k-1}} \longrightarrow Tu'(t_{i}^{j_{1} \dots j_{k-1}}) \end{cases}$$ where $$t_{i}^{j_{1}\cdots j_{m}} = \left(\frac{\delta}{\delta x_{j_{1}\cdots j_{m}}^{i}}\right) e_{k-1}$$ $$\vec{t}_{i}^{j_{1}\cdots j_{m}} = \left(\frac{\delta}{\delta y_{j_{1}\cdots j_{m}}^{i}}\right) u'$$ and $u' = \pi_{k-1}^k(u)$. The local coordinates $a_{j_1}^i, \ldots, j_k$ are symmetrical with respect to the lower indices if and only if u is a holonomic k-frame of V_n [1c]. # 6. Holonomy Theorem. Consider an arbitrary element u in $\overline{H}^k(V_n)$. In this paragraph we give a necessary and sufficient condition for u to be a holonomic k-frame. Let us recall that the horizontal n-plane defined by u is just the image of the \mathbf{R}^n -component of $\overline{E}^{k-1} = \mathbf{R}^n \oplus \overline{\mathbb{Q}}_n^{k-1}$ under the linear isomorphism \widetilde{u} . It is tangent to $H^{k-1}(V_n)$ at the point $u' = \pi_{k-1}^k(u)$, if u is holonomic. For k=1, there is no distinction between semi-holonomic frames and holonomic frames. For $k \geq 2$, $H^k(V_n) \subset \overline{H}^k(V_n)$. PROPOSITION I.9. An element u of $\bar{H}^2(V_n)$ is a bolonomic 2-frame if and only if the 2-form $d\theta_1$ vanishes on the borizontal n-plane associated to u. Let r_1, r_2, \ldots, r_n be a basis for \mathbf{R}^n . The canonical form θ_1 on $H^1(V_n)$ can be expressed as follows: $$\theta_{I} = \sum \theta^{i} r_{i}$$ In terms of a local coordinate system $\{y^i,y^i_j\}$ in $H^1(V_n)$, the components θ^i of θ_1 are given by $$\theta^{i} = \sum_{j} z_{j}^{i} dy^{j}$$ where (z_j^i) is the inverse matrix of (y_j^i) . By exterior differentiation, we get $$d\theta^{i} - \sum \frac{\delta z_{p}^{i}}{\delta y_{q}^{m}} dy_{q}^{m} \wedge dy^{p}.$$ Let $u=(a^i, a^i_j, a^i_{jk}) \in \overline{H}^2(V_n)$. The horizontal n-plane Q_u associated to u is generated by the n vectors $$X_{i} - \sum \left(-a_{i}^{j} \left(\frac{\delta}{\delta y^{j}} \right)_{u}, + \frac{1}{2!} - a_{ki}^{j} \left(\frac{\delta}{\delta y_{k}^{j}} \right)_{u} \right) \qquad \left(1 \leq i \leq n \right),$$ with $u' = \pi_1^2(u) = (a^i, a^i_j)$. The 2-form $d\theta_1$ vanishes on Q_u if and only if $$d\theta^{i}(X_{j}, X_{k}) = \sum \left(\frac{\delta z_{m}^{i}}{\delta y_{q}^{p}}\right)_{u}, \begin{vmatrix} \frac{1}{2!} & a_{qj}^{p}, & a_{j}^{m} \\ \frac{1}{2!} & a_{qk}^{p}, & a_{k}^{m} \end{vmatrix}$$ is zero for all $1 \le i, j, k \le n$. Since $(z_j^i) = (y_j^i)^{-1}$, we have the relation $z_p^i y_k^p = \delta_k^i$. By differentiation, we get $$\left(\frac{\partial z_m^i}{\partial y_a^p}\right)_u = -b_m^q b_p^i$$ where $(b_i^i) = (a_i^i)^{-1}$. It follows that $$\begin{split} d\,\theta^{i}(\,X_{j}^{},\,X_{k}^{}) &= -\frac{1}{2!}\,\,\Sigma\,\left(\,^{i}\,b_{m}^{\,q}\,b_{p}^{\,i}(\,a_{k}^{m}\,a_{qj}^{p}\,-\,a_{j}^{m}\,a_{qk}^{p})\,\right) \\ &= -\frac{1}{2!}\,\,\Sigma\,\left(\,^{i}\,b_{p}^{\,i}(\,a_{kj}^{p}\,-\,a_{jk}^{p})\,\right) \end{split}$$ Since $det(b_j^i) \neq 0$, we conclude that $d\theta^i(X_j, X_k) = 0$ for all $1 \leq i, j, k \leq n$ if and only if the a_{jk}^i are symmetrical with respect to their lower indices. Thus our proposition is proved. For the general case where $k \ge 2$, we have the following «Holonomy Theorem»: THEOREM I.10. An element $u \in \overline{H}^k(V_n)$ is a holonomic k-frame if and only if the following conditions are satisfied: - i) the horizontal n-plane Q_u associated to u is tangent to the submanifold $H^{k-1}(V_n)$ of $\bar{H}^{k-1}(V_n)$; - ii) the 2-form $d\theta_{k-1}$ vanishes on Q_u . Let us assume that u is a holonomic k-frame. We can then write $u=j^1_{e_{k-1}}f^{(k-1)}$ for some local diffeomorphism f of \mathbf{R}^n into V_n . If θ_{k-1} and $\widehat{\theta}_{k-1}$ are respectively the canonical form on $\overline{H}^{k-1}(V_n)$ and $\overline{H}^{k-1}(\mathbf{R}^n)$, we have $f^{(k-1)*}\theta_{k-1}=\widehat{\theta}_{k-1}$. It follows that $f^{(k-1)*}d\theta_{k-1}=d\widehat{\theta}_{k-1}$. Now, the 2-form $d\widehat{\theta}_{k-1}$ vanishes on the \mathbf{R}^n -component of $\overline{E}^{k-1}=\mathbf{R}^n\oplus \widehat{\mathbb{R}}^{k-1}$. As a consequence, $d\theta_{k-1}$ vanishes on Q_u . The first condition is obviously necessary. It remains to show that the conditions are sufficient. The first condition implies that $u' = \pi_{k-1}^k(u)$ is a holonomic (k-1)-frame, and that we can find a local coordinate system $\{y^i, y^i_{j_1}, \dots, y^i_{$ $2 \leq m \leq k-1$. Let $\{x^1, x^2, \dots, x^n\}$ be the natural coordinate system in \mathbb{R}^n . By iteration, we define a global coordinate system $\{x^i, x^i_{j_1}, \dots, \dots$ form a basis for \bar{E}^{k-2} and we can write $$\theta_{k-1} = \sum_{\alpha} \theta^{\alpha} t_{\alpha}$$. An element $v=(y^i,y^i_{j_1},\ldots,y^i_{j_1}\ldots j_{k-1})\in \overline{H}^{k-1}(V_n)$ defines a linear isomorphism \widetilde{v} of \widetilde{E}^{k-2} onto $T_{v'}(\widetilde{H}^{k-2}(V_n))$ with $v'=\pi_{k-2}^{k-1}(v)$. In terms of local coordinate systems, \widetilde{v} is given by $$\vec{v}: t_{\alpha} \longrightarrow \sum_{\beta} A_{\alpha}^{\beta} \bar{t}_{\beta}$$ where $1 \le \alpha$, $\beta \le n^{k-1} + n^{k-2} + \dots + n$, $\bar{t}_{\alpha} = (\frac{\delta}{\delta \bar{z}^{\alpha}})_v$, with $\bar{z}^{\alpha} = y^i_{j_1 \dots j_p}$. The matrix $A = (A^{\beta}_{\alpha})$ is of the form $$A = \begin{pmatrix} A_j^i & A_j^{\omega} \\ 0 & J \end{pmatrix} \qquad \begin{array}{c} I \leq i, j \leq n \\ n \leq \omega \leq n^{k-1} + n^{k-2} + \dots + n \end{array}$$ where J is the matrix corresponding to the linear isomorphism Tv'. We have therefore $y^i_{j_1...j_m} = A^\beta_{j_m}$ with $\beta = i\,n^{m-1} + j_{m-1}\,n^{m-2} + ... + j_1$. Let $B = (B^\beta_\alpha)$ be the inverse matrix of $A = (A^\beta_\alpha)$. The components θ^α of θ_{k-1} can be expressed by $$\theta^{\alpha} = \sum_{\beta} B^{\alpha}_{\beta} d\bar{z}^{\beta}.$$ By exterior differentiation, we get $$d\theta^{\alpha} = \sum \left(\frac{\delta B^{\alpha}_{\beta}}{\delta z^{\gamma}} \right) d\bar{z}^{\gamma} \wedge d\bar{z}^{\beta} + \sum \left(\frac{\delta B^{\alpha}_{\beta}}{\delta y^{i}_{j_{1} \dots j_{k-1}}} \right) dy^{i}_{j_{1} \dots j_{k-1}} \wedge d\bar{z}^{\beta}.$$ Since $\sum B_{\mu}^{\alpha} A_{\nu}^{\mu} = \delta_{\nu}^{\alpha}$, we obtain by differentiation $$\frac{\delta B^{\alpha}_{\beta}}{\delta \bar{z}^{\gamma}} = -\sum B^{\alpha}_{\mu} B^{\nu}_{\beta} \left(\frac{\delta A^{\mu}_{\nu}}{\delta \bar{z}^{\gamma}} \right),$$ $$\frac{\partial B^{\alpha}_{\beta}}{\partial y^{i}_{j_{1}\cdots j_{k-1}}} = -\sum B^{\alpha}_{\mu} B^{\nu}_{\beta} \left(\frac{\partial A^{\mu}_{\nu}}{\partial y^{i}_{j_{1}\cdots j_{k-1}}} \right),$$ hence $$d\theta^{\alpha} = -\sum B^{\alpha}_{\mu} B^{\nu}_{\beta} \left(\frac{\delta A^{\mu}_{\nu}}{\delta \bar{z}^{\gamma}} \right) d\bar{z}^{\gamma} \wedge d\bar{z}^{\beta} - \sum B^{\alpha}_{\mu} B^{\nu}_{\beta} \left(\frac{\delta A^{\mu}_{\nu}}{\delta y^{i}_{j_{1} \dots j_{k-1}}} \right) dy^{i}_{j_{1} \dots j_{k-1}} \wedge d\bar{z}^{\beta}.$$ Let $u=(0,\delta_j^i,0,\ldots,a_{j_1\cdots j_k})$ and let Q_u be the horizontal n-plane of $\overline{H}^{k-1}(V_n)$ associated to u. Q_u is generated by the n vectors $$X_{p} = (\frac{\delta}{\delta y^{p}})_{u}, + \frac{1}{k!} \sum_{i} a_{j_{1} \cdots j_{k-1} p}^{i} (\frac{\delta}{\delta y_{j_{1} \cdots j_{k-1}}^{i}})_{u},$$ where $u' = \pi_{k-1}^k(u)$ and $1 \le p \le n$. The nullity of $d\theta_{k-1}$ on Q_u implies that $d\theta^{\alpha}(X_p,X_q)=0$ for all $1 \le p$, $q \le n$ and $1 \le \alpha \le n^{k-1}+n^{k-2}+\ldots+n$. We have then $$0 = d \, \theta^{\alpha}(X_{p}, X_{q})$$ $$= \sum B^{\alpha}_{\mu}(u') B^{\nu}_{\beta}(u') (\frac{\delta A^{\mu}_{\nu}}{\delta y^{i}_{j_{1} \dots j_{k-1}}})_{u'} \begin{vmatrix} \frac{1}{k!} & a^{i}_{j_{1} \dots j_{k-1} p} & A^{\beta}_{p}(u') \\ \frac{1}{k!} & a^{i}_{j_{1} \dots j_{k-1} q} & A^{\beta}_{q}(u') \end{vmatrix}$$ $$= \frac{1}{k!} \sum B^{\alpha}_{\mu}(u') \circ^{\mu}_{\beta}(a^{i}_{j_{1}\cdots j_{k-2}qp} - a^{i}_{j_{1}\cdots j_{k-2}pq})$$ with $\beta = i n^{k-2} + \dots + j_l$. Since $det(B^{\alpha}_{\beta}(u')) \neq 0$, we obtain $$a^{i}_{j_{1}\cdots j_{k-2}p\,q} = a^{i}_{j_{1}\cdots j_{k-2}q\,p} \cdot$$ It follows that the $a_{j_1 \cdots j_k}^i$ are symmetrical with respect to their lower indices and thus u is a holonomic k-frame. Let us call $u \in \overline{H}^k(V_n)$ a quasi-holonomic k-frame if the horizontal n-plane Q_u of $\overline{H}^{k-1}(V_n)$ associated to u is tangent to the submanifold $H^{k-1}(V_n)$. We will denote by $\check{H}^k(V_n)$ the set of quasi-holonomic k-frames. We have obviously $H^k(V_n) \subset \check{H}^k(V_n) \subset \overline{H}^k(V_n)$. From the above theorem a quasi-holonomic k-frame u is a holonomic one if and only if $d\theta_{k-1}$ vanishes on the horizontal n-plane Q_u associated to u. # 7. Some remarks on $\overline{H}^k(\mathbb{R}^n)$. In the preceding paragraphs, $\mathbf{R}^n \times \overline{L}_n^k$ has been identified with $\overline{H}^k(\mathbf{R}^n)$. In this identification, a couple $(x,g) \in \mathbf{R}^n \times \overline{L}_n^k$ is identified with the element $t_x^{(k)}(g) \in \overline{H}^k(\mathbf{R}^n)$, where t_x denotes the translation in \mathbf{R}^n sending the origin 0 to the point x. The tangent space \overline{E}^k to $\overline{H}^k(\mathbf{R}^n)$ at the distinguished element e_k has a canonical Lie algebra structure. Let us say a few words on this Lie algebra structure. Let $u=(x,g) \in \overline{H}^k(\mathbf{R}^n)$. The translation t_x in \mathbf{R}^n induces an automorphism $t_x^{(k)}$ of $\overline{H}^k(\mathbf{R}^n)$ which commutes with the right translations of \overline{L}_n^k on $\overline{H}^k(\mathbf{R}^n)$, i.e. $$t_x^{(k)} \circ R_b = R_b \circ t_x^{(k)}$$ for all $b \in \overline{L}_n^k$. In particular, $t_x^{(k)} \circ R_g = R_g \circ t_x^{(k)}$ gives a diffeomorphism of $\overline{H}^k(\mathbf{R}^n)$ onto itself that we will denote by t_u . We call a vector field on $\overline{H}^k(\mathbf{R}^n)$ invariant if it is invariant with respect to all diffeomorphisms of the form t_u , where u is an arbitrary element of $\overline{H}^k(\mathbf{R}^n)$. There is a one-to-one correspondence between \overline{E}^k and the set of invariant vector fields on $\overline{H}^k(\mathbf{R}^n)$. If X, Y are two invariant vector fields on $\overline{H}^k(\mathbf{R}^n)$, so is the bracket [X,Y]. The vector space \overline{E}^k , endowed with this multiplication, becomes a Lie algebra over the field of real numbers. The Lie algebra $\overline{\mathbb{Q}}_n^k$ of \overline{L}_n^k is a Lie subalgebra of $\overline{E}^k = \mathbf{R}^n \oplus \overline{\mathbb{Q}}_n^k$. To every differentiable map f of a differentiable manifold W into $\overline{H}^k(\mathbf{R}^n)$, we can associate a differential 1-form $\omega_f=f^{-1}df$ with values in the Lie algebra \overline{E}^k defined by $\omega_f(X)=(Tt_{f(x)}^{-1})^{o}Tf)(X)$ for all X in $T_x(W)$. In particular, if $W=\overline{H}^k(\mathbf{R}^n)$ and if f is the identity map of $\overline{H}^k(\mathbf{R}^n)$, we get a differential 1-form ω on $\overline{H}^k(\mathbf{R}^n)$ with values in \overline{E}^k , called the invariant form on $\overline{H}^k(\mathbf{R}^n)$. PROPOSITION I.11. The invariant form ω on $\overline{H}^k(\mathbf{R}^n)$ satisfies the equation $$d\omega + [\omega, \omega] = 0$$. We recall that the form $[\omega, \omega]$ is defined by $[\omega, \omega](X, Y) = [\omega(X), \omega(Y)]$ for all vector fields X, Y on $\overline{H}^k(\mathbb{R}^n)$. Since the module of vector fields on $\overline{H}^k(\mathbb{R}^n)$ is generated by the invariant vector fields, it suffices to prove the equation for two invariant vector fields X and Y. We have $$d\omega(X, Y) = X\omega(Y) - Y\omega(X) - \omega([X, Y])$$ $$= -\omega([X, Y]) = -[\omega(X), \omega(Y)]$$ proving the proposition. α is a p-form, then REMARK: We have adopted the following convention for the exterior product: $$(\alpha \wedge \beta)(X_1, X_2, \dots, X_{p+q}) = \sum (-1)^{\mathfrak{E}} \alpha(X_{i_1}, \dots, X_{i_p}) \beta(X_{i_{p+1}}, \dots, X_{i_{p+q}}),$$ where the summation runs over all permutations $i_1, \dots, i_p, i_{p+1}, \dots, i_{p+q}$ of $\{1, 2, \dots, p+q\}$ and where $\mathfrak E$ denotes the signature of the corresponding permutation. With this convention, we have the following formula: if $$d\alpha(X_{1},...,X_{p+1}) = \sum_{i=1}^{p+q} (-1)^{i+1} X_{i} \alpha(X_{1},..., \hat{X}_{i},...,X_{p+1}) + \sum_{i \leq j} (-1)^{i+j} \alpha([X_{i}, X_{j}], X_{1},..., \hat{X}_{i},..., \hat{X}_{j},...,X_{p+1}).$$ Kumpera pointed out to me that the above Lie algebra structure on \overline{E}^k comes from a canonical Lie group structure on $\overline{H}^k(\mathbf{R}^n)$. Since $(x,g) \in \mathbf{R}^n \times \overline{L}_n^k$ is identified with $t_x^{(k)}(g) = t_x^{(k)} \circ R_g(e_k) = R_g \circ t_x^{(k)}(e_k)$, we have $(t_x^{(k)} \circ R_g) \circ (t_x^{(k)} \circ R_g) = t_x^{(k)} \circ t_x^{(k)} \circ R_g \circ R_g = t_{x+x}^{(k)} \circ R_g \circ R_g$. Let \overline{L}_n^k denote the underlying set of \overline{L}_n^k endowed with the following multiplication: g*b=b g where g*b denotes the product in \overline{L}_n^k and b g denotes the product in \overline{L}_n^k . With the identification $\overline{H}^k(\mathbf{R}^n)=\mathbf{R}^n \times \overline{L}_n^k$, $\overline{H}^k(\mathbf{R}^n)$ becomes a Lie group isomorphic to $\mathbf{R}^n \times {}^t \overline{L}_n^k$. Moreover, if u=(x,g), u'=(x',g'), then $$u u' = (x+x', g'g) = t_{x+x'}^{(k)} R_{g'g}(e_k)$$ $$= (t_x^{(k)} R_g) (t_x^{(k)} R_{g'})(e_k)$$ $$= (t_x^{(k)} R_g)(u') = t_y(u'),$$ where t_u is the diffeomorphism defined in the opening paragraph of this section. In fact, t_u is no other than the left translation defined by u in the Lie group $\overline{H}^k(\mathbf{R}^n)$. The Lie algebra structure on \overline{E}^k defined above is precisely the Lie algebra of the Lie group $\overline{H}^k(\mathbf{R}^n)$. The invariant form ω is simply the Maurer-Cartan form of the Lie group $\overline{H}^k(\mathbf{R}^n)$. #### Part II ### HIGHER ORDER CONNECTIONS ### 1. Linear connections of order k. An infinitesimal connection Γ^k in the principal fibre bundle of semi-holonomic k-frames $\overline{H}^k(V_n)$ over V_n will be called a linear connection of order k of V_n . Let ω_k be its connection form. We will sometimes say that ω_k is a linear connection of order k of V_n . If D is the exterior covariant differentiation relative to ω_k , the tensorial 2-form $\Theta_k = D \, \theta_k$ (resp. $\Omega_k = D \, \omega_k$) will be called the torsion form (reps. curvature form) of Γ^k or ω_k . For $Y, Z \in T(\overline{H}^k(V_n))$, $g \in \overline{L}_n^k$, we have $$\Theta_k(TR_g(Y),TR_g(Z)) = \rho(g^{-1})\Theta_k(Y,Z).$$ where ρ is the linear representation of \overline{L}_n^k on \overline{E}^{k-1} defined in Part I. If Y or Z is a vertical vector, then $\Theta_L(Y,Z) = 0$. The linear representation ρ induces a representation of $\overline{\mathbb{Q}}_n^k$ on \overline{E}^{k-1} : if $A \in \overline{\mathbb{Q}}_n^k$, $\xi \in \overline{E}^{k-1}$, we put $$A \quad \xi = \lim_{t \to 0} \frac{1}{t} (\rho(a_t) \xi - \xi)$$ where $a_t = exp \ tA$ is the 1-parameter group of transformations of \overline{L}_n^k generated by A. In particular, if ξ is vertical, i.e. $\xi \in \overline{\mathbb{Q}}_n^{k-1}$, we have $$A\xi = -[T\pi_{k-1}^{k}(A), \xi].$$ THEOREM II.1 (structure equations) Let ω_k be a linear connection of order k. Then $$\Omega_{\mathbf{k}} = d\omega_{\mathbf{k}} + \omega_{\mathbf{k}} \wedge \omega_{\mathbf{k}}$$ $$\Theta_k = d\,\theta_k + \omega_k \wedge \theta_k + 3\,\left[\,T\,\pi_{k-1\,\circ}^{\,k}\,\omega_k,\,T\,\pi_{k-1\,\circ}^{\,k}\,\omega_k\,\right]\;.$$ The first structure equation is well known. Let us show the second structure equation: $$\Theta_{k}(X,Y) = d\theta_{k}(X,Y) + \omega_{k}(X)\theta_{k}(Y) - \omega_{k}(Y)\theta_{k}(X)$$ $$+ 3 \left[T\pi_{k-1}^{k} \circ \omega_{k}(X), T\pi_{k-1}^{k} \circ \omega_{k}(Y) \right]$$ for all vectors $X \in T_u(\overline{H}^k(V_n))$ and $Y \in T_u(\overline{H}^k(V_n))$. It is sufficient to verify the equality in the following three special cases: - i) X and Y are horizontal. In this case, $\omega_{\pmb{k}}(X) = 0$, $\omega_{\pmb{k}}(Y) = 0$ and the equation reduces to the definition of $\Theta_{\pmb{k}}$. - ii) X and Y are vertical. Let $X=A_u^*$ and $Y=B_u^*$, where A^* and B^* are the fundamental vector fields on $\overline{H}^k(V_n)$ corresponding to $A=\omega_k(X)$ and $B=\omega_k(Y)$ respectively. We have $$\begin{split} \Theta_{k}(X,Y) &= 0 \,; \\ d\,\theta_{k}(X,Y) &= X\,\theta_{k}(B^{*}) - Y\,\theta_{k}(A^{*}) - \theta_{k}(\left[A^{*},B^{*}\right]_{u}) \\ &= -\left[T\,\pi_{k-1}^{k}(A),\,T\,\pi_{k-1}^{k}(B)\right] \,; \\ \omega_{k}(X)\,\theta_{k}(Y) &= A\,\theta_{k}(B_{u}^{*}) \\ &= -\left[T\,\pi_{k-1}^{k}(A),\,T\,\pi_{k-1}^{k}(B)\right] \,; \\ \omega_{k}(Y)\,\theta_{k}(X) &= -\left[T\,\pi_{k-1}^{k}(B),\,T\,\pi_{k-1}^{k}(A)\right] \,; \end{split}$$ and $$\left[T\pi_{k-1}^k \circ \omega_k(X), T\pi_{k-1}^k \circ \omega_k(Y)\right] = \left[T\pi_{k-1}^k(A), T\pi_{k-1}^k(B)\right].$$ The equality holds. iii) X is vertical and Y is horizontal. Let $X = A_u^*$ with $A = \omega_k(X) \in \overline{\mathbb{Q}}_n^k$. We can extend Y to an invariant horizontal vector field Y on $\overline{H}^k(V_n)$. We have then $$d\theta_{\mathbf{b}}(X,Y) = X\theta_{\mathbf{b}}(\widetilde{Y}) - Y\theta_{\mathbf{b}}(A^*) - \theta_{\mathbf{b}}([A^*,\widetilde{Y}]_{u}).$$ Since $\theta_k(A^*)$ is constant, $Y\theta_k(A^*)=0$. As \widetilde{Y} is an invariant horizontal vector field, $[A^*,\widetilde{Y}]=0$. Let $a_t=\exp tA$ be the 1-parameter group of transformations of \overline{L}_n^k generated by $A\in\overline{\mathbb{Q}}_n^k$. $$d\theta_{k}(X,Y) = A_{u}^{*} \theta_{k}(\widetilde{Y})$$ $$= \lim_{t \to 0} \frac{1}{t} (\rho(a_{t}^{-1}) \theta_{k}(\widetilde{Y}) - \theta_{k}(\widetilde{Y}))$$ $$= -A \theta_{L}(Y).$$ Now, $\omega_k(Y) = 0$, $\Theta_k(X, Y) = 0$ and $\omega_k(X) \theta_k(Y) = A \theta_k(Y)$. The equality therefore holds. The projection π_m^k of $\overline{H}^k(V_n)$ onto $\overline{H}^m(V_n)$ being compatible with the natural surjection of \overline{L}_n^k onto \overline{L}_n^m ($m \le k$), any linear connection ω_k (of order k) induces a linear connection ω_m of order m, given by $$\pi_m^{k*}\omega_m = T\pi_m^{k} \circ \omega_k$$. PROPOSITION II.2 Any linear connection ω_k of order k induces canonically a linear connection ω_m of order $m \le k$ given by $$\pi_m^k * \omega_m = T \pi_m^k \circ \omega_k$$. We have the relations: $$\pi_m^k * \Omega_m = T \pi_m^k \circ \Omega_k ,$$ $$\pi_m^k * \Theta_m = T \pi_{m-1}^{k-1} \circ \Theta_k .$$ Let us verify only the last formula. We know that $$\pi_m^k * \theta_m = \theta_m \circ T \pi_m^k = T \pi_{m-1}^{k-1} \circ \theta_k$$. As a consequence, $\pi_m^{k*}d\theta_m = T\pi_{m-1}^{k-1} \circ d\theta_k$. From the second structure equation, we obtain $$\begin{split} \pi_{m}^{k*} \Theta_{m} &= \pi_{m}^{k*} d \, \theta_{m} + \pi_{m}^{k*} \omega_{m} \wedge \pi_{m}^{k*} \, \theta_{m} \\ &\quad + 3 \left[T \, \pi_{m-1}^{m} \circ \pi_{m}^{k*} \omega_{m}, T \, \pi_{m-1}^{m} \circ \pi_{m}^{k*} \omega_{m} \right] \\ &= T \, \pi_{m-1}^{k-1} \circ d \, \theta_{k} + T \, \pi_{m}^{k} \circ \omega_{k} \wedge T \, \pi_{m-1}^{k-1} \circ \theta_{k} \\ &\quad + 3 \left[T \, \pi_{m-1}^{k} \circ \omega_{k}, T \, \pi_{m-1}^{k} \circ \omega_{k} \right] \\ &= T \, \pi_{m-1}^{k-1} \circ \left(d \, \theta_{k} + \omega_{k} \wedge \theta_{k} + 3 \left[T \, \pi_{k-1}^{k} \circ \omega_{k}, T \, \pi_{k-1}^{k} \circ \omega_{k} \right] \right) \\ &= T \, \pi_{m-1}^{k-1} \circ \Theta_{k} \, . \end{split}$$ COROLLARY II.3 If the torsion form (resp. the curvature form) of ω_k vanishes identically on $T(\overline{H}^k(V_n))$, the induced connection ω_m ($m \le k$) is without torsion (resp. without curvature). Let ω_k be a linear connection of V_n . We say that ω_k is quasi-ho- lonomic if the connection form ω_k , restricted to $T(H^k(V_n))$, defines a connection in the principal fibre bundle $H^k(V_n)$ over V_n . If ω_k is quasi-holonomic, all induced connections ω_m ($m \le k$) are quasi-holonomic. The canonical connection in $\overline{H}^k(\mathbf{R}^n) = \mathbf{R}^n \times \overline{L}_n^k$ is quasi-holonomic. # 2. Second order linear connections. Let u be an element of $\overline{H}^2(V_n)$. Consider a coordinate neighbourhood U of $a_0 = \pi_0^2(u)$ with a system of local coordinates $\{x^1, x^2, ..., x^n\}$. The 2-frame u can be represented by a set of local coordinates (x^i, x^i_j, x^i_{jk}) with $det(x^i_j) \neq 0$. Let U' be another coordinate neighbourhood of a_0 with a system of local coordinates $\{y^1, y^2, ..., y^n\}$. The same u is represented by (y^i, y^i_j, y^i_{jk}) . The changes of local coordinates are given by $$y^{i} = y^{i}(x)$$ $$y^{i}_{j} = \sum \left(\frac{\delta y^{i}}{\delta x^{m}}\right) x^{m}_{j}$$ $$y^{i}_{jk} = \sum \left(\frac{\delta^{2} y^{m}}{\delta x^{j} \delta x^{k}}\right) x^{i}_{m} + \sum \left(\frac{\delta y^{p}}{\delta x^{j}}\right) \left(\frac{\delta y^{q}}{\delta x^{k}}\right) x^{i}_{pq}.$$ An element $g \in \overline{L}_n^2$ can be represented by $u = (a_j^i, a_{jk}^i)$ with $det(a_j^i) \neq 0$. In terms of these coordinates, the multiplication in \overline{L}_n^2 is given by $$(a_{j}^{i},a_{jk}^{i}).(b_{j}^{i},b_{jk}^{i}) = (\sum a_{m}^{i}b_{j}^{m},\sum a_{m}^{i}b_{jk}^{m} + \sum a_{pq}^{i}b_{j}^{p}b_{j}^{q}).$$ The action of \overline{L}_n^2 on $\overline{H}^2(V_n)$ is given by $$(\,x^{i}\,,\,x^{i}_{j},\,x^{i}_{jk}\,)(\,a^{i}_{j},\,a^{i}_{jk}\,) = (\,x^{i}\,,\,\Sigma\,\,x^{i}_{m}\,a^{m}_{j}\,,\,\Sigma\,\,x^{i}_{m}\,a^{m}_{jk}\,+\,\Sigma\,\,x^{i}_{p\,q}a^{p}_{j}\,a^{q}_{k}\,)\,.$$ Let α be the automorphism of \overline{L}_n^2 defined by $\alpha(a_j^i, a_{jk}^i) = (a_j^i, a_{kj}^i)$. It is evident that α leaves fixed every element in L_n^2 . Moreover, $\alpha^2 = identity$. We have immediately PROPOSITION II.4 There exists an involutive automorphism α of \overline{L}_n^2 such that L_n^2 is the subgroup of all the fixed points of α . THEOREM II.5 The homogeneous space \overline{L}_n^2/L_n^2 is weakly reductive: there exists a vector subspace \mathbb{M} of $\overline{\mathbb{Q}}_n^2$ such that $$\overline{\mathbb{Q}}_n^2 = \mathbb{Q}_n^2 \oplus \mathbb{M} \ (direct \ sum),$$ $$ad(L_n^2) \mathfrak{M} \subset \mathfrak{M}$$, where \mathfrak{L}_n^2 (resp. $\overline{\mathfrak{L}}_n^2$) is the Lie algebra of L_n^2 (resp. \overline{L}_n^2). This result is an immediate consequence of the following lemma proved in [2]. LEMMA II.6 Let α be an involutive automorphism of a Lie group \overline{G} . The set of fixed points of α forms a Lie subgroup G of \overline{G} . Moreover, the homogeneous space \overline{G}/G is weakly reductive: there exists a vector subspace \mathbb{M} of the Lie algebra $\overline{\mathbb{G}}$ of \overline{G} such that $$\overline{\mathbb{G}} = \mathbb{G} \oplus \mathbb{M}$$ (direct sum) $$ad(G)M\subset M$$ where G is the Lie algebra of G. The vector space M can be given by $M = \{X \in \overline{G} : T\alpha(X) = -X\}.$ Let $\mathbb M$ be the vector subspace of $\overline{\mathbb Q}_n^2$ defined by the above lemma. If $X \in \mathbb M$, $Y \in \mathbb M$, $T\alpha([X,Y]) = [T\alpha(X), T\alpha(Y)] = [-X, -Y] = [X,Y]$ showing that $[X,Y] \in \mathbb Q_n^2$, i.e. $[\mathbb M,\mathbb M] \subset \mathbb Q_n^2$. We have therefore the following result. COROLLARY II.7 The homogeneous space \overline{L}_n^2/L_n^2 is a symmetric space. For the rest of this section, we fix once for all a decomposition $\overline{\mathbb{Q}}_n^2 = \mathbb{Q}_n^2 \oplus \mathbb{M}$, where \mathbb{M} is the vector subspace defined in the theorem II.5. We denote by i the canonical injection of $H^2(V_n)$ into $\overline{H}^2(V_n)$. Let $\overline{\omega}_2$ be a connection form in $\overline{H}^2(V_n)$. We can write $i^*\overline{\omega}_2=\omega_2+t$, where ω_2 (resp. t) is the \mathfrak{L}_n^2 -component (resp. \mathbb{M} -component) of $i^*\overline{\omega}_2$. Since $ad(L_n^2)\mathbb{M}\subset\mathbb{M}$, ω_2 defines a connection in the principal fibre bundle $H^2(V_n)$ over V_n and t is a \mathbb{M} -valued tensorial l-form on $H^2(V_n)$, called the quasi-holonomic form of $\overline{\omega}_2$. Inversely, the couple (ω_2,t) determines a connection $\overline{\omega}_2$ in $\overline{H}^2(V_n)$. In fact, if $\xi\in T_u(\overline{H}^2(V_n))$ with $u\in H^2(V_n)$, we can write $\xi=\xi'+\xi''$, where ξ' is a horizontal vector with respect to the connection ω_2 and ξ'' is a vertical vector. Let us put $\overline{\omega}_2(\xi)=t(\xi')+u^{-1}(\xi'')$. Now, if $\overline{\xi}\in T_v(\overline{H}^2(V_n))$ where $v\notin H^2(V_n)$, there exist $u\in H^2(V_n)$ and $g\in \overline{L}_n^2$ such that v=ug and $\overline{\xi}=TR_g(\xi)$ for some $\xi \in T_u(\overline{H}^2(V_n))$. It is easy to check that $\overline{\omega}_2(\overline{\xi}) = ad(g^{-1})\overline{\omega}_2(\xi)$ does not depend on the choice of u and g. The mapping $\xi \to \overline{\omega}_2(\xi)$ gives the required connection form on $\overline{H}^2(V_n)$. Besides, $i^*\overline{\omega}_2 = \omega_2 + t$. We have thus established the following result. PROPOSITION II.8 There is a one-to-one correspondence between the set of all second order connections $\overline{\omega}_2$ of V_n and the set of all couples (ω_2, t) , where ω_2 is a connection form in $H^2(V_n)$ and t is a \mathbb{M} -valued tensorial 1-form on $H^2(V_n)$; the correspondence is given by $$i^*\bar{\omega}_2 = \omega_2 + t$$. COROLLARY II.9 A linear connection $\bar{\omega}_2$ is quasi-holonomic if and only if its associated quasi-holonomic form t vanishes identically on $H^2(V_n)$. Let ϕ be a tensorial form on $\bar{H}^2(V_n)$. From the structure equation $$\vec{D}\phi = d\phi + \vec{\omega}_2 \wedge \phi$$ where $\bar{D}\,\phi$ is the exterior covariant derivative of ϕ with respect to $\bar{\omega}_2$, we deduce that $$\begin{split} i^*(\,\overline{D}\,\phi) &= i^*d\,\phi + i^*\bar{\omega}_2 \wedge i^*\phi \\ &= d(\,i^*\phi) + i^*\bar{\omega}_2 \wedge i^*\phi \\ &= d(\,i^*\phi) + \omega_2 \wedge i^*\phi + t \wedge i^*\phi \,. \end{split}$$ The induced form $i^*\phi$ is a tensorial form on $H^2(V_n)$. If D is the exterior covariant differentiation with respect to ω_2 , we have $$D(i^*\phi) = d(i^*\phi) + \omega_2 \wedge i^*\phi.$$ Thus $$i^*(\bar{D}\phi) = D(i^*\phi) + t \wedge i^*\phi$$. Let $\overline{\Omega}_2$ (resp. Ω_2) be the curvature form of $\overline{\omega}_2$ (resp. ω_2). From the structure equation $$\overline{\Omega}_2 = d\,\overline{\omega}_2 + [\,\overline{\omega}_2,\,\overline{\omega}_2\,]$$ we have $$i^* \overline{\Omega}_2 = i^* (d\overline{\omega}_2) + i^* ([\overline{\omega}_2, \overline{\omega}_2])$$ $$= d(i^* \overline{\omega}_2) + [i^* \overline{\omega}_2, i^* \overline{\omega}_2]$$ $$=\Omega_2+Dt+[t,t]$$ The form Dt + [t, t] is a tensorial 2-form on $H^2(V_n)$. We may call it the quasi-holonomic curvature of $\overline{\omega}_2$. From the structure equation $$\vec{\Theta}_2 = d\theta_2 + \vec{\omega}_2 \wedge \theta_2 + 3 \left[T \pi_1^2 \circ \vec{\omega}_2, T \pi_1^2 \circ \vec{\omega}_2 \right]$$ we have $$\begin{split} i^*\,\overline{\Theta}_2 &= i^*d\,\theta_2 + i^*\overline{\omega}_2 \wedge i^*\theta_2 + 3\left[T\,\pi_1^2\circ i^*\overline{\omega}_2,\,T\,\pi_1^2\circ i^*\overline{\omega}_2\right] \\ &= \Theta_2 + t\wedge i^*\theta_2 + 3\left[T\,\pi_1^2\circ(\,\omega_2 + t),\,T\,\pi_1^2\circ(\,\omega_2 + t)\right] \,. \end{split}$$ The form $$T = t \wedge i^* \theta_2 + 3 \left[T \pi_{1 \circ}^2 (\omega_2 + t), T \pi_{1 \circ}^2 (\omega_2 + t) \right]$$ $$-3 \left[T \pi_{1 \circ}^2 \omega_2, T \pi_{1 \circ}^2 \omega_2 \right]$$ is a tensorial 2-form on $H^2(V_n)$, which may be called the *quasi-holonomic* torsion of $\overline{\omega}_2$. If $\overline{\omega}_2$ is quasi-holonomic, its associated quasi-holonomic form t vanishes identically on $H^2(V_n)$. Therefore, the quasi-holonomic curvature and the quasi-holonomic torsion of $\overline{\omega}_2$ are zero. # 3. &-connections. Let u be an arbitrary element of L_n^1 . There exists a unique automorphism f of the vector space \mathbf{R}^n such that $u=j_0^1f$. The induced map $f^{(k-1)}: \overline{H}^{k-1}(\mathbf{R}^n) \to \overline{H}^{k-1}(\mathbf{R}^n)$ is a (k-1)-admissible isomorphism, and $j_{e_{k-1}}^1 f^{(k-1)} \in L_n^k$. The mapping $u \to \iota^k(u) = j_{e_{k-1}}^1 f^{(k-1)}$ gives a canonical identification of L_n^1 with a subgroup of L_n^k (hence of \overline{L}_n^k). For m < k, $\iota^m = \pi_m^k \circ \iota^k$. An invariant section of the fibration $\overline{H}^{k+1}(V_n) \to H^1(V_n)$, i.e. a lift ϕ_{k+1} of $H^1(V_n)$ into $\overline{H}^{k+1}(V_n)$ compatible with the canonical homomorphism $\iota^{k+1}\colon L_n^1 \to \overline{L}_n^{k+1}$, will be called an $\mathfrak E$ -connection of order k of V_n . It is given by a reduction of the structure group of $\overline{H}^{k+1}(V_n)$ from \overline{L}_n^{k+1} to L_n^1 . There is a one-to-one correspondence between the set of all $\mathfrak E$ -connections (of order k) of V_n and the set of all semi-holonomic connections (of order k) defined in the sense of Ehresmann on the principal bundle $H^1(V_n)$. [4c]. We say that an \mathfrak{S} -connection ϕ_{k+1} is symmetrical or holonomic (resp. quasi-holonomic) if $$\phi_{k+1}(H^{1}(V_{n})) \subset H^{k+1}(V_{n}) \text{ (resp. } \phi_{k+1}(H^{1}(V_{n})) \subset \check{H}^{k+1}(V_{n})).$$ If ϕ_{k+1} is symmetrical (resp. quasi-holonomic), all projections $\phi_{m+1} = \pi_{m+1}^{k+1} \circ \phi_{k+1}$ of ϕ_{k+1} are symmetrical. Consider an open set U of V_n with a system of local coordinates $\{x^1, x^2, \ldots, x^n\}$. In terms of the induced local coordinates, a lift ϕ_{k+1} of $H^1(V_n)$ into $\widetilde{H}^{k+1}(V_n)$ can be expressed by $$(x^i, x^i_j) \rightarrow (x^i, x^i_j, \dots, x^i_{j_1 j_2 \dots j_{k+1}}).$$ If ϕ_{k+1} is invariant, the functions $x^i_{j_1j_2},\dots,x^i_{j_1,\dots,j_{k+1}}$ can be written in the form $$\begin{aligned} x_{j_{1}j_{2}}^{i} &= -\sum \Gamma_{m_{1}m_{2}}^{i} x_{j_{1}}^{m_{1}} x_{j_{2}}^{m_{2}} \\ x_{j_{1}}^{i} j_{2} j_{3} &= -\sum \Gamma_{m_{1}m_{2}m_{3}}^{i} x_{j_{1}}^{m_{1}} x_{j_{2}}^{m_{2}} x_{j_{3}}^{m_{3}} \\ &\vdots \\ x_{j_{1}j_{2}\cdots j_{k+1}}^{i} &= -\sum \Gamma_{m_{1}m_{2}\cdots m_{k+1}}^{i} x_{j_{1}}^{m_{1}} x_{j_{2}}^{m_{2}} \dots x_{j_{k+1}}^{m_{k+1}} \end{aligned}$$ where $\Gamma^i_{m_1m_2},\dots,\Gamma^i_{m_1m_2\dots m_{k+1}}$ are differentiable functions defined on U. These are the *Christoffel symbols* of the $\mathfrak E$ -connection ϕ_{k+1} . They are not entirely arbitrary; they have to satisfy certain conditions when we change the local coordinates system. It is clear that ϕ_{k+1} is symmetrical if and only if all the Christoffel symbols are symmetrical with respect to their lower indices. Let us consider some particular cases: case (i): k = 1. Let Γ^i_{rs} (resp. $\bar{\Gamma}^i_{rs}$) be the Christoffel symbols of a first order &-connection ϕ_2 relative to a coordinate neighbourhood U (resp. \bar{U}) with a local coordinates system $\{x^1, x^2, \dots, x^n\}$ (resp. $\{\bar{x}^1, \bar{x}^2, \dots, \bar{x}^n\}$). If $U \cap \bar{U} \neq \phi$, we obtain easily the classical formula for the Christoffel symbols of a linear connection $$\Gamma^{i}_{jk} = \Sigma \overline{\Gamma}^{\alpha}_{\beta\gamma} (\frac{\delta \bar{x}^{\beta}}{\delta x^{j}}) (\frac{\delta \bar{x}^{\gamma}}{\delta x^{k}}) (\frac{\delta x^{i}}{\delta \bar{x}^{\alpha}}) + \Sigma (\frac{\delta^{2} \bar{x}^{\alpha}}{\delta x^{j} \delta x^{k}}) (\frac{\delta x^{i}}{\delta \bar{x}^{\alpha}}).$$ The quantities Γ^i_{jk} define then a linear connection of V_n . On the other hand, if $u \in H^1(V_n)$, the lift $\phi_2(u)$ of u determines a horizontal n-plane $Q_{\phi_2(u)}$ of $H^1(V_n)$ at u. Since ϕ_2 is compatible with $\iota^2: L^1_n \to \overline{L}^2_n$, it is easy to check that the distribution $u \to Q_{\phi_2(u)}$ defines an infinitesimal connection on $H^1(V_n)$, thus a linear connection ω_1 of V_n . The quantities Γ^i_{jk} are simply the classical Christoffel symbols of the associated linear connection ω_1 . In fact, if $X_j = \sum x^i_j (\frac{\delta}{\delta x^i})_x$ $(1 \le j \le n)$ is a basis for $T_x(V_n)$, with $x \in U$, the horizontal lift of X_j at $u = (x^i, x^i_j) \in H^1(V_n)$ with respect to ω_1 , is given by $$X_{j}^{*} = \sum x_{j}^{i} \left(\frac{\delta}{\delta x^{i}}\right)_{u} + \sum x_{jk}^{i} \left(\frac{\delta}{\delta x_{k}^{i}}\right)_{u}$$ where $x_{jk}^i = -\sum_{rs} \Gamma_{rs}^i x_j^r x_k^s$. Let $r_i^j = (\frac{\delta}{\delta x_j^i})_{e_I}$ ($1 \le i, j \le n$) be a basis for \mathfrak{L}_n^1 . The components of $\omega_1 = \sum \omega_i^i r_i^j$ can be expressed by $$\omega_i^i = \sum y_k^i \left(dx_i^k + \sum C_{mp}^k x_i^p dx^m \right)$$ where (y_k^i) is the inverse matrix of (x_k^i) and C_{mp}^k are the classical Christoffel symbols of the linear connection ω_1 . Consequently, $\omega_j^i(X_k^*) = 0$ for all indices $1 \le i, j, k \le n$. It follows that $$x_{jk}^{i} = -\sum \Gamma_{rs}^{i} x_{j}^{r} x_{k}^{s} = -\sum C_{rs}^{i} x_{j}^{r} x_{k}^{s}.$$ Since $det(x_i^i) \neq 0$, we have $\Gamma_{ik}^i = C_{ik}^i$. PROPOSITION II.10 [42] (i) There is a one-to-one correspondence between the set of first order linear connections of V_n and the set of invariant sections of $H^1(V_n)$ into $\bar{H}^2(V_n)$. (ii) Two linear connections of V_n have the same torsion if and only if the images of $H^1(V_n)$ by the corresponding invariant sections are contained in a principal subbundle of $\overline{H}^2(V_n)$ having the structure group L^2_n . It remains to prove the second part of the proposition. Let ϕ_2 , $\bar{\phi}_2$ be two invariant sections of $H^1(V_n)$ into $\bar{H}^2(V_n)$. In terms of local coordinates, these \mathfrak{E} -connections are given by where Γ^i_{jk} , $\overline{\Gamma}^i_{jk}$ are the corresponding Christoffel symbols. As $\phi_2(x^i, x^i_j)$ and $\overline{\phi}_2(x^i, x^i_j)$ are on the same fibre of $\overline{H}^2(V_n)$, there exists an element $(\delta^i_j, g^i_{jk}) \in \overline{M}^2_n = Ker(\overline{L}^2_n \to \overline{L}^1_n)$ such that $$(x^i,x^i_j,-\Sigma\overline{\Gamma}^i_{rs}\,x^r_jx^s_k) = (x^i,x^i_j,-\Sigma\,\Gamma^i_{rs}\,x^r_j\,x^s_k)(\,\delta^i_j,\,g^i_{jk}\,).$$ It follows that $$\sum \overline{\Gamma}_{rs}^{i} x_{j}^{r} x_{k}^{s} = \sum \Gamma_{rs}^{i} x_{j}^{r} x_{k}^{s} - \sum x_{m}^{i} g_{jk}^{m},$$ Consequently, we have $$(*) \sum (\overline{\Gamma}_{rs}^{i} - \overline{\Gamma}_{sr}^{i}) x_{j}^{r} x_{k}^{s} = \sum (\Gamma_{rs}^{i} - \Gamma_{sr}^{i}) x_{j}^{r} x_{k}^{s} - \sum x_{m}^{i} (g_{jk}^{m} - g_{kj}^{m}).$$ If the two linear connections have the same torsion, that is if $\Gamma^i_{rs} - \Gamma^i_{sr} = \overline{\Gamma}^i_{rs} - \overline{\Gamma}^i_{sr}$, we have $\sum x^i_m (g^m_{jk} - g^m_{kj}) = 0$. Since $\det(x^i_m) \neq 0$, we get $g^m_{jk} = g^m_{kj}$, which shows that $(\delta^i_j, g^i_{jk}) \in M^2_n = \overline{M}^2_n \cap L^2_n$. Hence the condition is necessary. If ϕ_2 and $\overline{\phi}_2$ map $H^1(V_n)$ into the same principal subbundle of $\overline{H}^2(V_n)$ having the structure group L_n^2 , we still have the formula (*) with $g_{jk}^m = g_{kj}^m$. Consequently, $$\sum \, (\, \overline{\Gamma}_{rs}^{i} - \overline{\Gamma}_{sr}^{i}) \, x_{j}^{r} x_{k}^{s} = \sum \, (\, \Gamma_{rs}^{i} - \Gamma_{sr}^{i}) \, x_{j}^{r} \, x_{k}^{s} \, .$$ Since $det(x_i^i) \neq 0$, we get $$\overline{\Gamma}_{rs}^{i} - \overline{\Gamma}_{sr}^{i} = \Gamma_{rs}^{i} - \Gamma_{sr}^{i}$$ Hence the connections have the same torsion, proving that the condition is sufficient. Case (ii): k=2 An element of \overline{L}_n^3 can be represented by a set of coordinates $(a_j^i, a_{jk}^i, a_{jkm}^i)$ with $det(a_j^i) \neq 0$. The multiplication is given by $$(\,a^i_j,\,a^i_{jk},\,a^i_{jkm}\,).\,(\,b^i_j,\,b^i_{jk},\,b^i_{jkm}\,) = \,(\,\Sigma\,\,a^i_r\,b^r_j,\,\Sigma\,(\,a^i_{rs}\,b^r_j\,b^s_k + a^i_r\,b^r_{jk}\,)\,,$$ $\Sigma \left(\left. a_{rst}^i b_j^r b_k^s b_m^t + a_{rs}^i b_{jk}^r b_m^s + a_{rs}^i b_k^r b_{jm}^s + a_{rs}^i b_j^r b_{km}^s + a_r^i b_{jkm}^r \right) \right).$ If $u = \left(\left. x^i, \, x_{jk}^i, \, x_{jkm}^i \right) \in \widetilde{H}^3(V_n)$, the action of \widetilde{L}_n^3 on $\widetilde{H}^3(V_n)$ can be expressed by $$\begin{split} (\;x^i,\;x^i_j,\;x^i_{jk},\;x^i_{jkm})(\;a^i_j,\;a^i_{jk},\;a^i_{jkm}) &= (\;x^i\,,\;\sum\;x^i_r\,a^r_j\,,\;\sum\;(\;x^i_{rs}\;a^r_j\,a^s_k + x^i_r\,a^r_{jk})\,,\\ &\sum\;(\;x^i_{rs\,t}\;a^r_j\,a^s_k\,a^t_m + x^i_{rs}\;a^r_{jk}\,a^s_m + x^i_{rs}\;a^r_k\,a^s_{j\,m} + x^i_{rs}\;a^r_j\,a^s_{km} + x^i_r\,a^r_{jkm})\;)\,. \end{split}$$ Consider an \mathfrak{E} -connection ϕ_3 of order 2. In terms of local coordinates, ϕ_3 is given by $$(x^{i}, x_{j}^{i}) \longrightarrow (x^{i}, x_{j}^{i}, -\sum \Gamma_{rs}^{i} x_{k}^{r} x_{k}^{s}, -\sum \Gamma_{rst}^{i} x_{k}^{r} x_{k}^{s} x_{m}^{t})$$ where Γ^i_{rs} , Γ^i_{rst} are the Christoffel symbols. If $\overline{\Gamma}^i_{rs}$, $\overline{\Gamma}^i_{rst}$ are the Christoffel symbols of ϕ_3 in an other local coordinates system, we have $$\begin{split} \Gamma^{i}_{jk} &= \sum \overline{\Gamma}^{\alpha}_{\beta\gamma} (\frac{\delta \bar{x}^{\beta}}{\delta x^{j}}) (\frac{\delta \bar{x}^{\gamma}}{\delta x^{k}}) (\frac{\delta x^{i}}{\delta \bar{x}^{\alpha}}) + \sum (\frac{\delta^{2} \bar{x}^{\alpha}}{\delta x^{j} \delta x^{k}}) (\frac{\delta x}{\delta x^{\alpha}}), \\ \overline{\Gamma}^{i}_{jkm} &= \sum (\frac{\delta x^{r}}{\delta \bar{x}^{j}}) (\frac{\delta x^{s}}{\delta \bar{x}^{k}}) (\frac{\delta x^{t}}{\delta \bar{x}^{m}}) \left\{ \Gamma^{\alpha}_{rst} (\frac{\delta \bar{x}^{i}}{\delta x^{\alpha}}) - (\frac{\delta^{3} \bar{x}^{i}}{\delta x^{r} \delta x^{s} \delta x^{t}}) + \right. \\ &\qquad \qquad \qquad \Gamma^{\alpha}_{rs} (\frac{\delta^{2} \bar{x}^{i}}{\delta x^{\alpha} \delta x^{t}}) + \Gamma^{\alpha}_{rt} (\frac{\delta^{2} \bar{x}^{i}}{\delta x^{s} \delta x^{\alpha}}) + \Gamma^{\alpha}_{st} (\frac{\delta^{2} \bar{x}^{i}}{\delta x^{r} \delta x^{\alpha}}) \right\}. \end{split}$$ By direct computations, we have the following result: PROPOSITION II.11 Let Γ^i_{jk} , Γ^i_{jkm} be the Christoffel symbols of a second order &-connection of V_n . If the induced first order &-connection is symmetrical, then the following quantities $$A_{jkm}^{i} = \Gamma_{jkm}^{i} - \Gamma_{kjm}^{i},$$ $$B_{jkm}^{i} = \Gamma_{jkm}^{i} - \Gamma_{mkj}^{i},$$ $$C_{jkm}^{i} = \Gamma_{jkm}^{i} - \Gamma_{jmk}^{i}$$ are respectively the components of a (1,3)-tensor on V_n . The given \mathfrak{E} -connection is symmetrical if and only if these three tensors are zero. ### 4. Linear connections and &-connections. The Lie group \bar{L}_n^{k+1} (resp. L_n^{k+1}) acts linearly on \bar{E}^k (resp. $E^k=T_{e_1}(H^k(\mathbf{R}^n))$) on the left. We denote by \bar{S}^kT (resp. S^kT) the association ted vector bundle of $\overline{H}^{k+1}(V_n)$ (resp. $H^{k+1}(V_n)$) with standard fibre \overline{E}^k (resp. E^k) and structure group \overline{L}_n^{k+1} (resp. L_n^{k+1}). For k=0, $S^0T=T(V_n)$. PROPOSITION II.12 The vector bundle $\overline{S}^k F$ (resp. $S^k T$) is canonically isomorphic to the vector bundle $T(\overline{H}^k(V_n))/\overline{L}_n^k$ (resp. $T(H^k(V_n))/L_n^k$). An element $u \in \overline{H}^{k+1}(V_n)$ determines a linear isomorphism \widetilde{u} of \overline{E}^k onto T_u , $(\overline{H}^k(V_n))$ with $u' = \pi_k^{k+1}(u)$. On the other hand, u can be considered as a linear isomorphism of \overline{E}^k onto the fibre $(\overline{S}^kT)_x$ over x, where x is the projection of u on V_n . We have then a linear isomorphism $\widetilde{u} \circ u^{-1}$ of $(\overline{S}^kT)_x$ onto T_u , $(\overline{H}^k(V_n))$. If v is another element of $\overline{H}^{k+1}(V_n)$ with projection $x = \pi_0^{k+1}(v)$, we can write v = ug for a unique $g \in \overline{L}_n^{k+1}$. Similarly, we have a linear isomorphism $\widetilde{v} \circ v^{-1} : (\overline{S}^kT)_x \to T_v$, $(\overline{H}^k(V_n))$, where $v' = \pi_k^{k+1}(v)$. Now, $v = u \circ \rho(g)$ and $\widetilde{v} = TR_g \circ \widetilde{u} \circ \rho(g)$ with $g' = \pi_k^{k+1}(g) \in \overline{L}_n^k$. Consequently, $\widetilde{v} \circ v^{-1} = TR_g \circ \widetilde{u} \circ u^{-1}$. Since $\overline{H}^{k+1}(V_n) \to \overline{H}^k(V_n)$ is surjective, we get an isomorphism of S^kT onto $T(\overline{H}^k(V_n))/\overline{L}_n^k$. Similarly, one establishes an isomorphism of S^kT onto $T(H^k(V_n))/L_n^k$. P. Libermann showed that $T(\bar{H}^k(V_n))/\bar{L}_n^k$ (resp. $T(H^k(V_n))/L_n^k$) is canonically isomorphic to \bar{J}^kT (resp. J^kT), the k-th semi-holonomic (resp. holonomic) prolongation of the vector bundle $T(V_n)$. Thus, we have an isomorphism of \bar{S}^kT (resp. S^kT) onto \bar{J}^kT (resp. J^kT). $H^{k+1}(V_n)$ being a principal fibre subbundle of $\overline{H}^{k+1}(V_n)$ and the action of L_n^{k+1} on E^k being the restriction of that of \overline{L}_n^{k+1} on \overline{E}^k , the vector bundle S^kT can be considered as a vector subbundle of \overline{S}^kT . The projection π_{m+1}^{k+1} of $\overline{H}^{k+1}(V_n)$ onto $\overline{H}^{m+1}(V_n)$ induces a surjection p_m^k of \overline{S}^kT onto \overline{S}^mT . Moreover, the restriction of p_m^k to each fibre of \overline{S}^kT is linear. Similarly, we have a projection of S^kT onto S^mT for $m \leq k$. An &-connection $\phi_{k+1}:H^1(V_n)\to \overline{H}^{k+1}(V_n)$ induces a splitting of the following exact sequence of vector bundles $$0 \longrightarrow \overline{N}^k \longrightarrow \overline{S}^k T \longrightarrow T(V_n) \longrightarrow 0$$ where \bar{N}^k is the kernel of the projection $\bar{S}^k T \to T(V_n)$. More precisely, we have the following result: THEOREM II.13 There exists a one-to-one correspondence between the set of $\mathfrak E$ -connections of order k of V_n and the set of splittings of the exact sequence of vector bundles over V_n : $$0 \longrightarrow \bar{N}^k \longrightarrow \bar{S}^k T \longrightarrow T(V_n) \longrightarrow 0.$$ Let us first prove two lemmas: LEMMA II.14 Let $\overline{E}^k = \mathbf{R}^n \oplus \overline{\mathbb{Q}}_n^k$ be the canonical decomposition of \overline{E}^k defined by the canonical connection in $\overline{H}^k(\mathbf{R}^n) = \mathbf{R}^n \times \overline{L}_n^k$. For every other decomposition of \overline{E}^k of the form $\overline{E}^k = Q^k \oplus \overline{\mathbb{Q}}_n^k$, there exists a unique $g \in \overline{M}^{k+1} = \operatorname{Ker}(\overline{L}_n^{k+1} \to L_n^1)$ such that $\rho(g)(\mathbf{R}^n) = Q^k$. We prove the lemma by induction on k. For k=1, we have the canonical decomposition $E^1=\mathbf{R}^n\oplus \mathcal{Q}_n^1$. Let $E^1=Q^1\oplus \mathcal{Q}_n^1$ be another decomposition of E^1 . Consider a local section σ_1 of $H^1(\mathbf{R}^n)\to \mathbf{R}^n$ such that $\sigma_1(0)=e_1$ and $T\sigma_1(\mathbf{R}^n)=Q^1$. Let f be the admissible local isomorphism of $H^1(\mathbf{R}^n)$ into $H^1(\mathbf{R}^n)$ defined by the condition: $f\circ \eta_1=\sigma_1$, where η_1 is the "zero section" of $H^1(\mathbf{R}^n)=\mathbf{R}^n\times L_n^1\to \mathbf{R}^n$. The I-jet $j_{e_1}^If=g$ defines an element $g\in \overline{M}_n^2=Ker(\overline{L}_n^2\to L_n^1)$ satisfying the property: $\rho(g)(\mathbf{R}^n)=Q^1$. Uniqueness follows from the fact that the neutral element is the only element of \overline{M}_n^2 leaving stable the two components of $E^1=\mathbf{R}^n\oplus \mathcal{Q}_n^1$. Let us assume that the lemma is proved for $m\leqslant k-1$. If $\overline{E}^k=Q^k\oplus\overline{Q}^k_n$ is a decomposition of \overline{E}^k , we may consider a local section σ_k of $\overline{H}^k(\mathbf{R}^n)\to\mathbf{R}^n$ satisfying the conditions: $\sigma_k(0)=e_k$ and $T\sigma_k(T_0(\mathbf{R}^n))=Q^k$. Now, $$\overline{E}^{k-1} = T\,\pi_{k-1}^k(\,\overline{E}^k) = T\,\pi_{k-1}^k(\,Q^k) \oplus T\,\pi_{k-1}^k(\,\overline{\mathbb{Q}}_n^k) = T\,\pi_{k-1}^k(\,Q^k) \oplus \overline{\mathbb{Q}}_n^{k-1}.$$ From the induction hypothesis, there is a unique $g' \in \overline{M}^k = Ker(\overline{L}_n^k \to L_n^1)$ such that $\rho(g')(\mathbf{R}^n) = T\pi_{k-1}^k(Q^k)$. Let b be the admissible local isomorphism of $\overline{H}^k(\mathbf{R}^n)$ into $\overline{H}^k(\mathbf{R}^n)$ defined by the condition: $b \circ \eta_k = R_{g' \circ \sigma_k}$ where η_k is the «zero section» of $\overline{H}^k(\mathbf{R}^n) = \mathbf{R}^n \times \overline{L}_n^k \to \mathbf{R}^n$. The 1-jet $j_{e_k}^1$ b defines an element g of $\overline{M}^{k+1} = Ker(\overline{L}_n^{k+1} \to L_n^1)$ such that $\rho(g)(\mathbf{R}^n) = Q^k$. Suppose that there is another $\overline{g} \in \overline{M}^{k+1}$ satisfying the condition: $\rho(\overline{g})(\mathbf{R}^n) = Q^k$. We have then $\rho(\pi_k^{k+1}(\overline{g}))(\mathbf{R}^n) = T\pi_{k-1}^k(Q^k)$. Consequently, $g' = \pi_k^{k+1}(\overline{g})$. We can write $\overline{g} = gm_0$ where m_0 is an element $g \in \overline{M}^k$. ment of $Ker(\overline{L}_n^{k+1} \to \overline{L}_n^k)$. Since the neutral element is the only element of $Ker(\overline{L}_n^{k+1} \to \overline{L}_n^k)$ leaving stable the two components of $\overline{E}^k = \mathbb{R}^n \oplus \overline{\mathbb{Q}}_n^k$, we conclude that $\overline{g} = g$ proving the uniqueness of g. LEMMA II.15 The Lie group $\iota^{k+1}(L^1_n)$ is the largest subgroup of \bar{L}^{k+1}_n which leaves invariant the two direct summands of $\bar{E}^k = \mathbf{R}^n \oplus \bar{\mathbb{Q}}^k_n$. It is easy to check that $\iota^{k+1}(L_n^1)$ leaves invariant the two direct summands of $\overline{E}^k = \mathbf{R}^n \oplus \overline{\mathbb{Q}}_n^k$. Now, consider an element $g \in \overline{L}_n^{k+1}$ such that $\rho(g)(\mathbf{R}^n) = \mathbf{R}^n$. Let $g_0 = \pi_1^{k+1}(g)$. The action of $\iota^{k+1}(g_0)$. g^{-1} on $\mathbf{R}^n \subset \overline{E}^k$ is trivial. Consequently, we have $g = \iota^{k+1}(g_0) \in \iota^{k+1}(L_n^1)$ in virtue of the preceeding lemma. Let us go back to the proof of the theorem. We have seen that there is a mapping F of the set of \mathcal{E} -connections of order k of V_n into the set of splittings of the exact sequence of vector bundles over V_n : $$0 \longrightarrow \bar{N}^k \longrightarrow \bar{S}^k T \longrightarrow T(V_n) \longrightarrow 0.$$ This mapping F is injective. Let us consider two &-connections ϕ_{k+1} and ψ_{k+1} which induce the same splitting $$F(\phi_{k+1}) = F(\psi_{k+1}) : T(V_n) \to \overline{S}^k T$$. If $y \in T(V_n)$, we can write $y = q_1(u, \xi)$, where $u \in H^1(V_n)$, $\xi \in \mathbb{R}^n$ and q_1 is the natural projection of $H^1(V_n) \times \mathbb{R}^n$ onto $T(V_n)$. The condition $F(\phi_{k+1})(y) = F(\psi_{k+1})(y)$ implies that $$q_{k+1}(\phi_{k+1}(u), \xi) = q_{k+1}(\psi_{k+1}(u), \xi),$$ where we have denoted by q_{k+1} the natural projection of $\overline{H}^{k+1}(V_n) \times \overline{E}^k$ onto \overline{S}^kT . From the above lemma, we deduce that $\phi_{k+1}(u) = \psi_{k+1}(u)$ for all $u \in H^1(V_n)$. Let us show that F is surjective. Consider a splitting of the exact sequence $$0 \longrightarrow \bar{N}^k \longrightarrow \bar{S}^k T \longrightarrow T(V_n) \longrightarrow 0$$ given by the lift $\sigma: T(V_n) \to \overline{S}^k T$. Let x be an arbitrary element of V_n . An element u of the fibre of $\overline{H}^{k+1}(V_n)$ over x determines a linear isomorphism of \overline{E}^k onto $(\overline{S}^k T)_x$. The image $u^{-1}(\sigma(T_x(V_n)))$ is a vector subspace of \overline{E}^k . More exactly, we have $\overline{E}^k = u^{-1}(\sigma(T_x(V_n))) \oplus \overline{\mathbb{Q}}_n^k$. From the lemma II.14, there exists a $g \in \overline{M}^{k+1} = Ker(\overline{L}_n^{k+1} \to L_n^1)$ such that $\rho(g)(\mathbf{R}^n) = u^{-1}(\sigma(T_x(V_n)))$. The element $v = ug \in \overline{H}^{k+1}(V_n)$ defines therefore a linear isomorphism of $\overline{E}^k = \mathbf{R}^n \oplus \overline{\mathbb{Q}}_n^k$ onto $(\overline{S}^kT)_x$, mapping \mathbf{R}^n onto $\sigma(T_x(V_n))$. Every element of $\overline{H}^{k+1}(V_n)$ lying on the fibre over x and having the same property is of the form vg_0 with $g_0 \in \iota^{k+1}(L_n^1)$. Since x is arbitrary, we obtain in this way a principal subbundle of $\overline{H}^{k+1}(V_n)$ with structure group $\iota^{k+1}(L_n^1)$, hence the \mathfrak{E} -connection that we are looking for. The vector bundle $T(\bar{H}^k(V_n))/\bar{L}_n^k$ is isomorphic to \bar{S}^kT . We have therefore a one-to-one correspondence between the set of linear connections of order k of V_n and the set of splittings of the exact sequence of vector bundles $$0 \longrightarrow \bar{N}^k \longrightarrow \bar{S}^k T \longrightarrow T(V_n) \longrightarrow 0.$$ From the preceeding result, we have THEOREM II.16 There is a one-to-one correspondence between the set of linear connections of order k and the set of &-connections of the same order. Consider an &-connection $\phi_{k+1}: H^1(V_n) \to \overline{H}^{k+1}(V_n)$. Let $\phi_k = \pi_k^{k+1} \circ \phi_{k+1}$. If $u \in H^1(V_n)$, $\phi_{k+1}(u)$ determines a horizontal n-plane of $\overline{H}^k(V_n)$ at $\phi_k(u) \in \overline{H}^k(V_n)$. We obtain thus a field of n-planes of $\overline{H}^k(V_n)$ defined on $\phi_k(H^1(V_n))$. It is easy to check that this local field is invariant with respect to the right translations defined by the elements of $\iota^k(L_n^1)$ on $\overline{H}^k(V_n)$. Consequently, we can extend it to a global field of n-planes of $\overline{H}^k(V_n)$ invariant with respect to the right translations of \overline{L}_n^k on $\overline{H}^k(V_n)$. We obtain thus a linear connection ω_k of order k of V_n . This correspondence $\phi_{k+1} \to \omega_k$ is exactly the one we have established in the above theorem. For k=1, we have a one-to-one correspondence between the set of symmetrical linear connections of V_n and the set of invariant sections of $H^1(V_n)$ into $H^2(V_n)$ (cf. Prop. I.9 and Prop. II.10). Let us assume that there is a one-to-one correspondence between the set of symmetrical &-connections of order m ($m \le k-1$) and the set of quasi-holonomic linear connections of the same order having zero torsion. If ϕ_{k+1} is a symmetrical &-connection of order k, the corresponding linear connection ω_k is quasi-holonomic and without torsion (cf. Theorem I.10). Inversely let ω_k be a quasi-holonomic linear connection having zero torsion and let ϕ_{k+1} be the corresponding &-connection established in the above theorem. The connection projection ω_{k-1} (of order k-1) of ω_k is a quasi-holonomic connection without torsion. From the induction hypothesis, the corresponding &-connection ϕ_k is symmetrical. It is easy to check that $\phi_k = \pi_k^{k+1} \circ \phi_{k+1}$. Hence $\phi_{k+1}(H^1(V_n)) \subset H^{k+1}(V_n)$ from the «Holonomy Theorem». We have thus established the following result: COROLLARY II.17 There is a one-to-one correspondence between the set of symmetrical &-connections and the set of quasi-holonomic linear connections without torsion. # 5. Pseudo-connections and multi-connections. A pseudo-connection of order k of V_n is a couple (ψ_{k+1}, Ψ_{k+1}) , where Ψ_{k+1} is a homomorphism of \overline{L}_n^k into \overline{L}_n^{k+1} and ψ_{k+1} is a differentiable lift of $\overline{H}^k(V_n)$ into $\overline{H}^{k+1}(V_n)$ such that $$\psi_{k+1}(ug) = \psi_{k+1}(u) \Psi_{k+1}(g)$$ for all $u \in \overline{H}^k(V_n)$ and $g \in \overline{L}_n^k$. It follows that Ψ_{k+1} is a lift of \overline{L}_n^k into \overline{L}_n^{k+1} . The condition of compatibility implies that an invariant vector field of $\overline{H}^k(V_n)$ can be lifted to an invariant vector field of $\overline{H}^{k+1}(V_n)$. We obtain thus an infinitesimal connection in the principal fibre bundle $\overline{H}^{k+1} \to \overline{H}^k(V_n)$, or equivalently, a splitting of the exact sequence of vector bundles over V_n $$0 \ \longrightarrow \ \overline{N}_k^{k+1} \ \longrightarrow \ \overline{S}^{k+1} T \ \longrightarrow \ \overline{S}^k T \ \longrightarrow \ 0$$ where \overline{N}_{k}^{k+1} is the kernel of $\overline{S}^{k+1}T \to \overline{S}^{k}T$. Consider a pseudo-connection (ψ_{k+1}, Ψ_{k+1}) of V_n . The lift ψ_{k+1} of $\overline{H}^k(V_n)$ into $\overline{H}^{k+1}(V_n)$ defines an absolute parallelism on $\overline{H}^k(V_n)$. If $Z \in T_u(\overline{H}^k(V_n))$, we put $\alpha(Z) = \widehat{\psi_{k+1}(u)}^{-1}(Z)$. The mapping $Z \to \alpha(Z)$ defines a differentiable l-form α on $\overline{H}^k(V_n)$ with values in \overline{E}^k . There is an induced linear representation of \overline{L}^k_n on \overline{E}^k given by $$\sigma = \rho \circ \Psi_{k+1}$$, where we have denoted by ρ the linear representation of \overline{L}_n^{k+1} on \overline{E}^k . If $Z \in T(\overline{H}^k(V_n))$, we have $\alpha(TR_g(Z)) = \sigma(g^{-1})\alpha(Z)$, i.e. α is a pseudotensorial 1-form on $\overline{H}^k(V_n)$, called the pseudo-connection form of (ψ_{k+1}, Ψ_{k+1}) . A multi-connection of order k of V_n is given by a sequence of pseudo-connections (ψ_{m+1}, Ψ_{m+1}) , $m=1,2,\ldots,k$ such that $\Psi_{m+1}\circ \iota^m=\iota^{m+1}$. The composite map $\phi_{k+1}=\psi_{k+1}\circ \psi_k\circ \ldots \circ \psi_2$ defines an $\mathfrak E$ -connection of V_n . Inversely, given a sequence of homomorphisms $\Psi_{m+1}: \overline{L}_n^m \to \overline{L}_n^{m+1}$ such that $\Psi_{m+1}\circ \iota^m=\iota^{m+1}$ $(m=1,2,\ldots,k)$, an $\mathfrak E$ -connection $\phi_{k+1}: H^l(V_n) \to \overline{H}^{k+l}(V_n)$ determines a multi-connection of order k of V_n . We are going to define a natural sequence of group homomorphisms $$L_n^1 \xrightarrow{\Lambda_2} \overline{L}_n^2 \xrightarrow{\Lambda_3} \dots \longrightarrow \overline{L}_n^k \xrightarrow{\Lambda_{k+1}} \overline{L}_n^{k+1} \longrightarrow \dots$$ satisfying the conditions: $\pi_k^{k+1} \circ \Lambda_{k+1} = identity$, $\Lambda_{k+1} \circ \iota^k = \iota^{k+1}$ for $k=2,3,\ldots$. We put $\Lambda_2 = \iota^2$, the canonical injection of L_n^1 into \overline{L}_n^2 . It induces a lift of $H^1(\mathbf{R}^n) = \mathbf{R}^n \times L_n^1$ into $\overline{H}^2(\mathbf{R}^n) = \mathbf{R}^n \times \overline{L}_n^2$. We will denote this lift by the same symbol Λ_2 . Let $u = i_{e_1} f \in \overline{L}_n^2$, where f is an admissible local isomorphism of $H^1(\mathbf{R}^n)$ into $H^1(\mathbf{R}^n)$. Consider the local isomorphism f of $\overline{H}^2(\mathbf{R}^n)$ into $\overline{H}^2(\mathbf{R}^n)$ defined by the condition: $$b \circ \eta_2 = R_u \circ \Lambda_2 \circ R_u^{-1} \circ f \circ \eta_1$$, where $u' = \pi_1^2(u)$ and η_i (i=1,2) are the «zero sections». The l-jet $j_{e_2}^l h$ depends uniquely on u and the mapping $u \to \Lambda_3(u) = j_{e_2}^l h$ defines a group homomorphism of \overline{L}_n^2 into \overline{L}_n^3 satisfying the required conditions. Let us assume that we have defined homomorphisms $\Lambda_2, \Lambda_3, \ldots, \Lambda_k$ satisfying the required conditions. Let $v=j_{e_k-1}^l \cdot b \in \overline{L}_n^k$, where b is an admissible local isomorphism of $\overline{H}^{k-1}(\mathbf{R}^n)$ into $\overline{H}^{k-1}(\mathbf{R}^n)$. Consider the admissible local isomorphism g of $\overline{H}^k(\mathbf{R}^n)$ into $\overline{H}^k(\mathbf{R}^n)$ defined by the condition: $$g \circ \eta_k = R_{\upsilon} \circ \Lambda_k \circ R_{\upsilon}^{-1} \circ b \circ \eta_{k-1}$$ with $v' = \pi_{k-1}^k(v)$ and η_i (i = k-1, k) are the «zero sections». It is easy to check that the mapping $v \to \Lambda_{k+1}(v) = j_{e_k}^1 g$ defines a group homomorphism of \overline{L}_n^k into \overline{L}_n^{k+1} with the desired properties. We obtain thus a natural sequence of group homomorphisms $$L_n^1 \xrightarrow{\Lambda_2} \bar{L}_n^2 \longrightarrow \cdots \longrightarrow \bar{L}_n^k \xrightarrow{\Lambda_{k+1}} \bar{L}_n^{k+1} \longrightarrow \cdots$$ PROPOSITION II.18 There is a one-to-one correspondence between the set of &-connections of order k of V_n and the set of multi-connections of the form $\left\{\left(\lambda_m, \Lambda_m\right)\right\}_{2 \leqslant m \leqslant k}$, where the Λ_m are the homomorphisms of the natural sequence. # 6. Prolongations of linear connections. We have seen that a linear connection of order 1 of V_n can be given by an invariant section ϕ_2 of $H^1(V_n)$ into $\bar{H}^2(V_n)$. We are going to construct a lift of $\phi_2(H^1(V_n))$ into $\overline{H}^3(V_n)$. Let $u=j_{e_1}^1f\in\phi_2(H^1(V_n))$, where f is an admissible local isomorphism of $H^1(\mathbb{R}^n)$ into $H^1(V_n)$. Let b be the admissible local isomorphism of $\overline{H}^2(\mathbb{R}^n)$ into $\overline{H}^2(V_n)$ defined by: $h \circ \eta_2 = \phi_2 \circ f \circ \eta_1$. The mapping $u \to \phi_2^3(u) = j_{e}^1 h$ defines a lift of $\phi_2(H^1(V_n))$ into $\overline{H}^3(V_n).$ The composite mapping $\phi_3=\phi_2^3\circ\phi_2$ defines an invariant section of $H^1(V_n)$ into $\overline{H}^3(V_n)$. The \mathcal{E} -connection ϕ_3 obtained by this way or the corresponding linear connection of order 2 will be called the first prolongation of ϕ_2 . The principal subbundle $\phi_3(H^I(V_n))$ of $\overline{H}^3(V_n)$, possesses the following property: for every $v \in \phi_3(H^1(V_n))$, there exists an admissible local isomorphism g of $\overline{H}^2(\mathbb{R}^n)$ into $\overline{H}^2(V_n)$ such that $v=j_{e_2}^1g$ and that g maps the (local) zero section of $\overline{H}^2(\mathbf{R}^n)$ into $\phi_2(H^1(V_n))$. By means of this property, we can construct a lift ϕ_3^4 of $\phi_3(H^1(V_n))$ into $\overline{H}^4(V_n)$ and the composite mapping $\phi_4 = \phi_3^4 \circ \phi_3$ defines an \mathcal{E} -connection of order 3, called the second prolongation of ϕ_2 . Notice that the projections of ϕ_4 are respectively ϕ_3 and ϕ_2 . By iterations, we construct the k-th prolongation of ϕ_2 . If we consider only the prolongations of linear connections of order l of V_n , we do not obtain all the linear connections of higher order of V_n , A linear connection of order k is called simple if it is the (k-1)-th prolongation of a first order linear connection of V_n . Let ω_k (resp. ω_k^*) be a linear connection of order k of V_n (resp. V_n^\prime). We will say that ω_k is equivalent to ω_k^\prime if there exists a diffeomorphism f of V_n onto V_n^\prime such that $f^{(k)*}\omega_k^\prime=\omega_k$. A linear connection ω_k is called locally flat if it is locally equivalent to the canonical connection in the trivial bundle $\overline{H}^k(\mathbf{R}^n) = \mathbf{R}^n \times \overline{L}_n^k$. THEOREM II.19 A linear connection of order k is locally flat if and only if it is simple, without torsion and without curvature. It is well known that a first order connection is locally flat if and only if its torsion and curvature are zero. For k > 1, the conditions are obviously necessary, because the canonical connection in $\overline{H}^k(\mathbf{R}^n)$ is simple, without torsion and without curvature. Let us show that the conditions are sufficient. Consider such a linear connection $\omega_{\pmb{i}}$. The connection projection ω_1 of order 1 of ω_k is locally flat, because its torsion and its curvature are both zero. Since $\omega_{\pmb{k}}$ is simple, we can obtain $\omega_{\pmb{k}}$ by taking the successive prolongations of ω_1 . Let ϕ_{k+1} be the invariant section of $H^1(V_n)$ into $\overline{H}^{k+1}(V_n)$ corresponding to ω_k . We put $\phi_k = \pi_k^{k+1} \circ \phi_{k+1}$. For all $y \in H^1(V_n)$, the horizontal n-plane of $\overline{H}^k(V_n)$ associated to the (k+1)-frame $\phi_{k+1}(y)$ is tangent to $\phi_k(H^1(V_n))$, because ω_k is simple. From the «Holonomy Theorem», we have $\phi_{k+1}(H^1(V_n)) \subset H^{k+1}(V_n)$. On the other hand, the nullity of the curvature form of ω_{k} implies that the distribution of n-planes of $\overline{H}^k(V_n)$ defined by ω_k is involutive. Let W be the maximal integral submanifold passing through $u \in \phi_k(H^1(V_n))$. We have $W \subset \phi_k(H^1(V_n))$. The canonical form θ_k (resp. $\hat{\theta}_k$) of $\overline{H}^k(V_n)$ (resp. $\bar{H}^k(\mathbf{R}^n)$), restricted to W (resp. $Q = \eta_k(\mathbf{R}^n)$), will be denoted by θ_w (resp. $\hat{ heta}_O$). These forms $heta_W$ and $\hat{ heta}_O$ have their values in $\mathbf{R}^n \subset ar{E}^{k-1}$. Consider the 1-form $\beta = p_1^* \theta_W - p_2^* \hat{\theta}_Q$ on the product manifold $W \times Q$, where p_i (i=1 , 2) are the projections on W and Q respectively. In terms of a basis $\{a^1, a^2, \ldots, a^n\}$ for \mathbf{R}^n , the components β_i of β are linearly independant. Consider now the module $\mathfrak M$ of vector fields X on $W \times Q$ such that $\beta_i(X) = 0$ for i = 1, 2, ..., n. If $X \in \mathbb{M}$, $Y \in \mathbb{M}$, we have $$d\beta(X,Y) = X\beta(Y) - Y\beta(X) - \beta([X,Y]) = -\beta([X,Y]).$$ On the other hand, $d\beta(X,Y)=0$. Consequently, $[X,Y]\in\mathbb{M}$ showing that \mathbb{M} is involutive. Therefore, there exists a maximal integral submanifold M of dimension n passing through $(u,e_k)\in W\times Q$. For any non-zero vector Z tangent to $p_2^{-1}(e_k)$, $\beta(Z) \not= 0$. We can find an open neighbourhood U of e_k in Q and a differentiable section λ of U into $W\times Q$ such that we have $\lambda(U) \subset M$. Let $b = p_{I \circ} \lambda$. The form β vanishes identically on M, we have $\lambda^*\beta = 0$, showing that $\hat{\theta}_Q = b^*\theta_W$. We can now extend b to a local isomorphism \tilde{b} of $\overline{H}^k(\mathbf{R}^n)$ into $\overline{H}^k(V_n)$ satisfying $\hat{\theta}_k = \tilde{b}^*\theta_k$. In virtue of theorem I.2, we can find an open neighbourhood N (resp. N') of $0 \in \mathbf{R}^n$ (resp. $x = \pi_0^k(u) \in V_n$) and a diffeomorphism f of N onto N' such that locally $\tilde{b} = f^{(k)}$. Consequently, ω_k is locally flat. Département de Mathématiques, Tour 55, Université Paris 7, 2 Place Jussieu 75- PARIS (5^e) # References. - [1] C. EHRESMANN. (a) Introduction à la théorie des structures infinitésimales et des pseudogroupes de Lie, Colloque de Géométrie Différentielle, Strasbourg (1953), p.97. - (b) Extension du calcul des jets aux jets non holonomes, C.R.A.S. Paris 239 (1954), p.1762. - (c) Application de la notion de jet non holonome, $C.R.A.S.\ Paris\ 240\ (1955),\ p.397$. - (d) Les prolongements d'un espace fibré différentiable, C.R.A.S. Paris 240 (1955), p.1755. - (e) Sur les connexions d'ordre supérieur, Atti del V° Congresso del Unione Mat. Ital. (1956), p.326. - [2] A. GOETZ, A general scheme of inducing infinitesimal connections in principal bundles, Bull. Acad. Polon. Sci. 10 (1962), p.29. - [3] S. KOBAYASHI, Canonical forms on frame bundles of higher order contact, Proceedings of Symposia in Pure Math. vol. III, A.M.S. (1961), p.186. - [4] P. LIBERMANN, (a) Sur la géométrie des prolongements des espaces fibrés vectoriels, Ann. Inst. Fourier 14 (1964), p.145. - (b) Surconnexions et connexions affines spéciales, C.R.A.S. Paris 261 (1965), p.2801. - (c) Connexions d'ordre superieur et tenseurs de structure, Atti del Convegno Internazionale di Geometria Differenzia-le, Bologna (1967). - [5] P. VER EECKE, Calcul des jets, São Paulo, Sociedade de Mathematica (1967). - [6] P.C. YUEN, Sur les repères d'ordre supérieur et les connexions linéaires d'ordre supérieur, C.R.A.S. Paris 270 (1970), p.957. - [7] P.C. YUEN, Sur les prolongements de G-structures, Esquisses Mathématiques 9 (1970), Université Paris 7.