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HIGHER ORDER FRAMES AND LINEAR CONNECTIONS

by YUEN Ping Cheng

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

Vol. XII, 3

Introduction.

In the first part of this paper we develop some elementary proper-
ties of semi-holonomic k-frames parallel to those of holonomic k-frames.

Our definition of a semi-holonomic k-frame is essentially equivalent to the
one originally given by Ehresmann £ 1b] ; our formulation, however, leads
us easily to define a canonical 1-form ok on the principal fibre bundle

Hk( Vn) of semi-holonomic k-frames on a differentiable manifold Vn . If we

restrict 8k to the principal sub-bundle Hk ( Vn ) of holonomic k-frames on

Vn, we obtain the canonical 1-form given by Kobayashi. [3]. Our main re-
sult is the «Holonomy Theorem" where we give a geometrical interpretation
of the holonomy conditions in terms of the canonical 1-form. This result

will be useful for studying the integrability of higher order G-structures.

These preliminary results served originally as an introductory part to a

forthcoming paper which deals with the structure tensors of higher order

regular G-structures and higher order gqometric structures.

The second part of this paper deals with the higher order linear con-

nections. Let Vn be a differentiable manifold. A linear connection of order
k on n is an infinitesimal connection on the principal fibre bundle Hk( n) .
Its torsion form is defined to be the exterior covariant derivative of 6k
There is a one-to-one correspondence between the set of linear connections

of order k (resp. quasi-holonomic linear connections of order k without

torsion) on n and the set of invariant sections of the canonical projection
Hk+ 1 (Vn) - H1 (Vn). We show further that a linear connection of order k
on V n is locally flat if and only if it can be obtained by successive pro-

longations of a first order linear connection without torsion and curvature.

Some of these results have been summarized in 161 and are prepublished
in French, in the first part of the author’s thesis 171 - If n is a differen-

tiable manifold, T ( V ) is the tangent vector space of V at x.
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Part I

HIGHER ORDER FRAMES

1. Semi-holonomic frames.

Let n be an n-dimensional Coo -differentiable manifold. A first or-
der frame ( or a 1-frame) of n at the point x is an invertible 1-jet of Rn

into V with source 0 E Rn and target x E V . The manifold of all 1-frames
of V , denoted by H1 (V n ), forms a principal fibre bundle over n with na-
tural projection TTl0 which assigns to each 1- j et its target, the structure

group being L1n=GL (n,R). The trivial bundle H1 ( Rn)= Rn X Lln can be

identified with the group of all affine transformations on Rn . There is a

distinguished element in H1 (Rn) , namely the 1-frame el of Rn defined

by the 1- j et of the identity mapping of Rn onto R" with source 0 .

Let b : H1( Rn ) - H 1 (Vn) be a local isomorphism. It induces a local
diffeomorphism f of Rn into n with f o TT10=TT10o,b (pseudo-products ); we
will denote all natural projections by the same symbol 77 with indices. We

say that h is 1-admissible if the domain of h contains e1 and b ( e1) = j10 f
(Here j10 f denotes the 1-j et of f with source 0) .

The manifold of 1-jets jlel b, where b is a 1-admissible local iso-

morphism of H1 ( Rn) into H1 (Vn) , will be denoted by H2 (Vn) . There are
two natural bundle structures on H2 ( Vn) :

i)H2 ( Vn) forms a principal fibre bundle over H 1 ( Vn) with natural

projection TT21 and structure group M2n consisting of all 1- j ets of 1- admi s-

sible local isomorphisms of H1 (Rn) into H 1 ( Rn ) with source and target

e 1. The structure group M2n acts on H2(Vn) on the right by the composi-
tion of ets. Moreover TT21 (j1e1 b)=b (e1)=j10f 

ii) H2( Vn) forms a principal fibre bundle over n with projection TT20 =
TT10o TT21 and structure group L2n. Here L2n is the fibre of H2(Rn) over the

origin 0 E Rn . The multiplication in L 2 is given by: if g1 = j1e1 h 1 E L 2
and g2 = je 1 b2 E L2n, then the pseudo-product b1 o b2 is a 1-admissible lo-

cal isomorphism and g1.g2=j1e1 ( b1 o b2) depends only on j1e1 b1 and

j1e1 h 2 . Notice there is again a distinguished element in
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namely the element e2 defined by the 7-jet of the identity mapping of

H1( Rn) onto H1( Rn) with source el . An element z E H2(Vn) will be cal-

led a semi-holonomic 2- frame of n at the point x =TT20(z) .
We define by recurrence the principal fibre bundle Hk( Vn) of semi-

holonomic k-frames of Vn . Let us assume that we have defined the princi-
pal fibre bundle fik-l (Vn) of semi-holonomic (k -1) -frames of n , with
base space V , structure group L and proj ection TTk-1 k-2 on Hk-2 (Vn).
A local isomorphism u : H-k-1 ( Rn ) - Hk-1 (Vn) is said ( k -1)- admissible if :

i) v is ( k -2)-admissible, where v is the local isomorphism of

Hk-2( Rn ) into Hk-2( Vn) induced by u , such that vo TTj-1 k-2 =TTk-1 k-2 o u
, where ek -1 (resp. ek-2) is the distingui-

shed element in Hk-1 ( Rn) ( resp. Hk-2 (Rn)),
The set Hk(Vn) of 1-jets of the form je u, where u is a (k -1)-

admissible local isomorphism of Hk-1 ( Rn) into Hk-1 (Vn), forms a prin-
cipal fibre bundle over n with structure group L n ; th e underlying set of

Lkn is just the fibre of Hk(Rn) over 0 E Rn . The space Hk(Vn) can also
be regarded as a principal fibre bundle over Hk-1 ( Vn) with structure group

Mkn = Ker ( Lk n - Lk-1 n) . An element z of Hk (V n) will be called a semi-holo-
nomic k-frame of n at the point x, where x is the projection of z into Vn.

For m  k , the natural projection TTk m of Nk( n ) onto Hm(Vn) is

compatible with the surjective homomorphism of Lkn onto Lr;:. The distin-

guished element ek in Hk( Rn ) = Rn X Lkn is defined by the 7-jet of the i-

dentity mapping of Hk-1 ( Rn) with source ek -1.
2. Canonical form on Hk (Vn).

An element u E Hk(n) can be written as u = j1ek-1 b, where b is a

( k -1 ) -admissible local isomorphism of Hk-1 (Rn) into Hk-1 ( Vn); it de-

termines a linear isomorphism 9 of onto

we have a canonical decomposition Ek-1=RnOLk-1 n, where Lk-1 n is the

Lie algebra of L k-1 n. From now on, we will identify Rn with a vector sub-

space of Ëk-l given by the canonical decomposition. Since f1 is a linear

isomorphism, u (Rn) is an n-dimen sional vector subspace of
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transversal to the fibres, called the horizontal n-plane associated to the

k-frame u .

Let v be the projection of u under TTkm . The following diagram

is commutative, where v’ is the projection of v under TTm m-1 and where the

vertical arrows are the natural projections.
Consider a vector Z E Tu ( Hk (Vn)) . Its image

under the tangential map T7T k is tangent to Hk-1 (Vn) at the point

The Ek-1 -valued differential I-form 8k defined by

will be called the canonical fo rm on Hk( Vn). For m  k , we have the fol-

lowing commutative diagram

where the vertical arrows are the natural projections.
The Lie group Ln acts naturally on Ek-1 on the left. Each ele-

ment g of Ln defines a linear i somorphi sm g of Ek-1 onto 7
The right translation R-1g’ = RlJ’ ).-1 determines a li-

near isomorphism T ) onto . If we put

we obtain a linear representation p of Lkn on the vector space
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is a commutative diagram, where the vertical arrows are the natural pro-

jections.

PROPOSITION I.1. The canonical form ’9k is a pseudo-tensorial 1- form on

3. Holonomic Frames.

A diffeomorphism f : Vn - V’n induces a principal fibre bundle iso-

morphism f (k) of Hk(Vn) onto Hk( V’n) . This isomorphism f (k) posses-
ses the following properties :

ii) I( k) is compatible with the canonical forms, i.e.

wh ere 8k ( resp. 8k ) is the canonical form on Hk (Vn) ( resp. Hk (V’n)).
THEOREM 1.2. Let 4J be a local diffeomorphism of Hk( n) into Hk (V’n).
Then locally o = f(k) for some local di f feomorphism f o f n into V n,
i f and onl y if o is compatibl e with the canonical forms, i. e. o*0’k=0k .

It remains to show that the condition is sufficient. For this we will

proceed by induction on k .

LEMMA 1.3. L et o be a local diffeomorphism o f H 1 (Vn) into H1 (V’n)
with o* 0’1 = 01. Then we can locall y write o = f (1) for some local di f feo-
morphism f o f n into n’.

Consider a tangent vector Z ET u ( H 1 (Vn)) with TTT10 ( Z ) = 0 . The
condition o*0’1=01 implies that T TT10 (T0 (Z))=0. Thus 4J sends a tan-
gent space to the fibre of H1(Vn) onto a tangent space to the fibre of

HI ( V’n) . This means that locally o is a fibre map and induces a map f of

n into V’n satisfying f o TT10 =TT10oO We want to show that O = f (1).
Thus we want to show that for any u with TT10 (u) = x we have O ( u ) =

j1xfou. Let E E Rn. Choose a vector Z E T u ( H1 (Vn)) with TTT10(Z)=
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O (u) = jlxfou holds proving the lemma.
To prove the theorem for k we may assume that it has been 

establi-

shed for k-l. Let Z E Tu( Hk(n)) with T TTk k-1 (Z)=0. The condition
O* 0’k = 0k implies ( T TTk k-1o T O) (Z)=0 . Thus O is a local fibre map with
respect to the fibrations

There exists a local diffeomorphism Y of . such

for all is surj ective, we deduce that Y * 0’k-1 =

0k-1 . By the induction hypothesis, there exists a local diffeomorphism f of

V into V’ such that locally Y=f (k-1). We have thus

1T1-10 rp locally. Now we are going to show that locally

ment u E Hk ( Vn) determines a linear isomorphism i

with u’= TTk k-1 (u) . Two elements u and v of Hk (Vn) are identical if and

only if u = v . It suffices therefore to show that for all

Choose a tangent ve.ctor ) with

On the other hand, It follows that for all

We have therefore O = f (k) locally and our theorem is proved.
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COROLLARY I.4. Let O be a principal fibre bundle isomorphism of Hk( n)
onto Hk(V’n). L et f be th e diffeomorphism o f n onto V induced by O .
Then O = f (k) if and only if O* 0’k = 0k.

Consider a local diffeomorphism f of an open neighbourhood of

0 E Rn onto an open set of V . It induces a ( k -1 ) -admissible local iso-

morphism f (k-1) : Hk-1 ( Rn) -Hk-1 (Vn) , It follows that u = j1e k -1 f(k-1)
is an element of Hk (Vn). We say that uE Hk (Vn) i s a hol onomic k- f ram e
of n if u can be written as u = jle k-1 f (k-1) for some local diffeomor-
phism f of Rn into Vn . A k-frame u of n is holonomic if and only if one

can find a representative for u compatible with the canonical forms. The

set of holonomic k-frames of V forms a principal fibre subbundle Hk (Vn)
of Hk(Vn). Its structure group is the subgroup Lkn of Lkn consisting of

holonomic elements. Notice there is a group isomorphism between Lkn and

the group of all invertible k-jets of Rn into Rn with source and target 0.

The space Hk(V n) can also be regarded as a principal fibre bundle over

Hk-1 (Vn) with structure group Mkn = Mfkn n Lkn , kernel of the surjective ho-
momorphism Lk -LK-1 . n n

4. Relations between

Let W and Y be two COO - -differentiable manifolds. We will denote

by Jk(W, Y) the differentiable manifold of semi-holonomic k-jets of W into
Y . For the definition of semi-holonomic jets, see the works of Ehresmann.

For m  k , let Pk be the canonical projection of Jk ( W,Y) onto Jm ( W, Y) .
A jet X E J k ( W, Y ) is invertible if and only if pk 1 (X) is invertible. Let

IT k( W, Y) denote the set of invertible jets in Jk(W, Y) . This set is then

the inverse image of fî 1 ( W. Y) by the submersion p7. Since 111( W, Y )
is an open submanifold of J1 (W. Y) ~J1 ( W , Y), it follows that fik(W, Y)
is an open submanifold of Jk( W, Y). Moreover, pkm : TTk( W, y)- Hm ( W, y)
is a submersion.

A semi-holonomic k-frame (resp. holonomic k-frame) of n in the

sense of Ehresmann is an invertible semi-holonomic k-jet ( resp. invertible

holonomic k-jet) of Rn into V with source 0 E Rn . The set Pk(Vn) (resp.
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pk(Vn)) of semi-holonomic k-frames ( resp. holonomic k-frames) of n in

the sense of Ehresmann has a principal fibre bundle structure over Vn’
the structure group being the group of all invertible semi-holonomic k-jets

(resp. holonomic k- jets) of Rn into kn with source and target 0 E Rn . An

element u E pk( Vn) can then be written as u = j10f, where f is a differen-
tiable mapping of Rn into pk-J ( Vn) satisfying the condition:

Here we have also denoted by pk;2 the canonical projection of pk-1 (Vn)
onto Pk-2(Vn ).

TH E O R E M I. 5. There exists a canonical di f feomorphism vk 01 Hk(Vn)
onto Pk(Vn) satisfying the properties:

(1) vk is a fibre map,i.e. pk0o vk =TTk0;
(2) for m  k,

is a commutative diagram;
(3) vk, restricted to Hk(Vn), is a diffeomorphism of Hk(Vn) onto

Pk(Vn).
We prove the theorem by induction on k . For k = 1, H1 (Vn) i s i-

dentical with pI (Vn) and vI is just the identity map,Let u = j1e1 b be an

arbitrary element in H2( Vn) . If N1 denotes the «zero section t of H1 ( Rn)
the mapping u -v2 (u) = j10 ( v1 o b o n1) defines a diffeomorphism of fi2 (Vn)
onto P2(Vn), because the composition of jets is a differentiable map. Let
us assume there exists vk-1 such that, for all zEHk-1 (Vn), vk-1 (z)=

where and nk-2 is the «zero sec-

tion) of the trivial bundle Hk-2( Rn) = Rn X Lk-2 n. Consider then an arbi-
trary element y = j e k-1 g in Hk( Vn) . If nk-1 i s the « zero section» of

defines a local diffeomorphism
of . Since the 1-jet jog, which
*) corresponding to Rn X tel, where e is the unit element.
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is independent of the choice of g for y, is an element in P k (Vn). The
mapping y-vk (y)=j10g’ defines a diffeomorphism Vk of Hk(Vn) onto

Pk (Vn). It is easy to check that vk has the desired properties.
Consider the case where n = Rn . Let us recall that the underlying

set of L" is just the fibre of Hk ( R n) over the origin 0 . Since the multi-

plication in Lkn is given by the composition of jets, the restriction of vk
to L" defines a group isomorphism of Lkn onto the group of all invertible

semi-holonomic k-jets of Rn into Rn with source and target 0. It is easy

to see that the diffeomorphism vk of the above theorem is compatible with
this group isomorphism. We have therefore the following corollary:

COROLLARY 1.6. The principal fibre bundle Hk(Vn) (resp. Hk(Vn)) is

canonically isomorphic to Pk(Vn) ( resp. Pk (Vn)).
Let E be a locally trivial fibre bundle over Vn . We will denote by

Jk E the differentiable manifold of k-jets of local sections of E. Let j2 E =
J1 ( Jl E) . The k- th non-holonomic prolongation of E is defined by induction :

We define also the semi-holonomic prolongation Ïk E by restricting oursel-
ves to those local sections such that, for all 0  m  k, the local section

o- of n into JmE satisfies the condition: j1x (TTmm -1°o)=o (x), where
7TM is the natural projection of Jm E on to Jm-1E. We have

THEOREM I. 7. There exists a canonical di f feomorphism fLk of Hk (Vn)
onto J k-l (H1 (Vn)) satisfying the following properties:

(1) for k = 1, u1 is just the identity map of H1 (V n );
(2) fLk is a fibre map; more explicitly

is a commutative diagram,-
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(3) for 0  m  k, the following diagram

commutes.

We prove the theorem by induction on k . For k = 1, JO ( HI (Vn))=
HI ( n ) by definition and f.L 1 is just the identity map of H1 (Vn). Let

u = j1e1 b be an arbitrary element of H2(Vn) . Consider the local diffeomor-
phism f of Rn into n defined by the condition: TT10b=fo TT10. If TJI is

the  zero sections of H1 (Rn) = Rn x L1n, the mapping

defines a local section a of n into H1 (Vn). If we put u2 (u) = j1x o
with x = TT1 0 (u) , the mapping u -u2(u) defines an inj ection of H2 (Vn)
into J1 ( H1 (Vn)) . This differentiable mapping fL 2 is surjective. In fact

let cr be a local section of n into H1 (Vn) with j1x o E J1 (H1 (Vn)) . The
target o (x) can be written as o(x) = j10 f for some local diffeomorphism

I of Rn into Vn. Let h be the local isomorphism of H1 (Rn) into H1 (n)
defined by the conditions:

It is easy to check that h is I - admi s sibl e and j1x o =u2 (j1e1 b) . The map-

ping J.L2 gives then a diffeomorphism of H2(Vn) onto J1 (’/Y ( n )) with

the desired properties. Now, let us assume there exists uk-1 and J.Lk-2
such that, for all u E ilk-l ( n ), we have

with u’ =TT k-1 k-2 (u), w =TTk1 (u) and where nk-2 is the «zero section» of

1 h be an arbitrary element of Hk( Vn) .
Let f be the local diffeomorphism of R n into n induced by h . If we de-

note by nk-1 the «zero sections of
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defines a local section of n into J k-2( H1 (Vn)) and jx h’ determines
an element uk (z) of Jk-1 ( H1 (Vn)) independent of the choice of the re-
presentative h for z . It is easy to verify that z -uk (z) defines a diffeo-

morphism ILk of Hk(Vn) onto Jk-1 ( H1 (Vn)) satisfying the required con-

ditions of the theorem.

COROLLARY 1.8 [4c] pk(Vn) and Jk-i(H1( Vn)) are canonically dif-
feomorphic.

5. Local coordinate systems in Hk( Vn) .
Let { x1 , x2 , .... , xn ) be the natural coordinate system in Rn .

Let U be a coordinate neighbourhood in n with a local coordinate system
{ y1, y2, .... , yn) . Con sider an element u E H1 (Vn) with proj ection

The 1-frame u is completely determined by the linear isomorphism

In terms of local coordinates, M can be expressed by

The 7-frame u is therefore completely determined by the set of local co-

ordinates (yi, yjk) with det (yjk) #0. Thus we can take {yin, yjk} as a’lo-

cal coordinate system in (TT10-1 (U) C H1 (Vn). Similarly, we have a glo-
bal coordinate system {xi, xjk} in H1 ( Rn), with respect to which the

distinguished element is given by e1d=(0, djk). 
The n +n2 vectors form a basi s

x a

for El=T el (H1 (Rn)), and the n + n2 local vector fields

are linearly independent. Once again, any 2-frame v is completely determi-

ned by the linear isomorphism v associated to v . In terms of local coordi-

nates, we have
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where and Tu is the tangential map of u, u

being considered as a differentiable map. Thus v is completely determined

by the set of local coordinates ( yt, yij, Y;k) with det( yij) # 0 .
By iteration we have a coordinate neighbourhood (TTk0) -1 (U) in

Hk (Vn) with a local coordinate system {yi, yij,..., yij } with

The natural projection of

given by

If u =( ai, ai , ... , ai ...jk) E Hk( Vn), the associated linear isomorphism
j1 j1... jk

i7 can be expressed by 

where

and u’ = TTkk-1 (u). The local coordinates ai . are symmetrical with

respect to the lower indices if and only if u is a holonomic k-frame

of V n [1c] .

6. Holonomy Theorem.

Consider an arbitrary element u in Hk (Vn). In this paragraph we
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give a necessary and sufficient condition for u to be a holonomic k- frame.

Let us recall that the horizontal n-plane defined by u is just the image of

the Rn-component of Ek-1 = RnOLk-1 n under the linear isomorphism ü. It

is tangent to Hk-1 ( Vn ) at the point u’ = TTk k-1 (u) , if u is holonomic .

For k = 1, there is no distinction between semi-holonomic frames

and holonomic frames. For k &#x3E; 2 , Hk (Vn) C Hk (Vn).
PROPOSITION 1.9. An element u of H2 (Vn) is a bolonomic 2- frame if and
only i f the 2-fonn d01 vanishes on tbe horizontal n-plane associated to u.

Let r1 , r2, ... , rn be a basis for Rn. The canonical form 01 on

111 (Vn) can be expressed as follows:

In terms of a local coordinate system {yi}, yij} in H 1 (Vn) , the compo-

nents 0i of 81 are given by

where ( zij) is the inverse matrix of ( y)..9y exterior differentiation, we

get 
-

Let u=( ai, aij, aijk) E H2( Vn ) . The horizontal rz-pane Qu asso-
i jk n u

ciated to 11 is generated by the n vectors

with u’ =TT2(u) =( ai , aij). The 2-form d01 vanishes on Q if and only if
1 i u

is zero for all 1  i , j , k  n . Since (zij) = (yij)-1, we have the relationj j

zip ypk = dik) . By differentiation, we get
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where I . It follows that

Since det ( bij) # 0 , we con clude that d et( Xj, Xk ) =0 for all 1 i, j, k  n
if and only if the atk are symmetrical with respect to their lower indices.
.

Thu s our propo sition i s proved.
For the general case where k &#x3E; 2 , we have the following « Holono-

my Theorem»: 

THEOREM I.lo. An element u E Hk( Vn) is a holonomic k-frame if and on-

ly i f the following conditions are satis fied :
i) the horizontal n-plane Qu associated to u is tangent to the

submanifold Hk-1 ( V ) of Hk-1 (V n);
ii) the 2-form d 0k-1 vanishes on Qu .
Let us assume that u is a holonomic k-frame. We can then write

u = i eL, - 1 f( k-1 ) for some local diffeomorphism f of Rn into Vn. If 0k-1
and ek-1 are respectively the canonical form on

we have It follows that

Now, the 2-form d0k-1 vanishes on the Rn-component of I
As a consequence, d dk-1 vanishes on Qu. The first condition is obvious-
ly necessary.

It remains to show that the conditions are sufficient. The first con-

dition implies that u’=IIkk-1 (u) is a holonomic ( k -1) -frame, and that

we can find a local coordinate system {yi, yijl,...yijl ...yijl...jk} in Hk (Vn)
such that u = ( 0 , ai jl,..., aij...jk) where aijl...jm are symmetrical with

respect to their lower indices for 2  m  k -1 and ai j l ...jk . is symmetrical
with respect to the first k -1 lower indices. By a change of local co-

ordinate systems, we can even suppose that aij=dij and aijl...jm = 0 for
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be the natural coordinate system in Rn . By

iteration, we define a global coordinate system

The vectors

form a basis for Ek-2 and we can write

An element defines a linear

isomorphism In terms

of local coordinate systems, v is given by

where 1 The

matrix A = ( A03B2a) is of the form

where J is the matrix corresponding to the linear isomorphism
ve therefore

be the inverse matrix of A =(,A,8) . The components
expressed by

By exterior differentiation, we get

Since we obtain by differentiation
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hence

and let Qu be the horizontal n-plane of
i 

as soci ated to u . Qu is gen erated by the n vectors

where an d 

The nullity of implies that c for all l

with Since det ( Ba03B2( u’ ))~ 0 , we obtain

It follows that the aijl...jk are symmetrical with respect to their lower indices

and thus u is a holonomic k-frame.

Let us call uE Hk (Vn) a quasi-holonomic k- frame if the horizon-

tal n-plane Qu of Hk-1 ( n ) associated to u is tangent to the submanifold

Hk-1 (Vn) . We will denote by Hk( Vn) the set of quasi-holonomic k-frames.

We have obviously Hk (Vn) C Hk (Vn) C Hk (Vn). From the above theorem
a quasi-holonomic k-frame u is a holonomic one if and only if d 8k-l va-

nishes on the horizontal n-plane Qu associated to u .
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7. Some remarks on H k ( Rn) .

In the preceding paragraphs, Rn X Ln has been identified with

Hk( Rn) . In this identification, a couple ( x, g ) E Rn X Ln is identified

with the element tx(k)(g) E Hk (Rn), where tx denotes the translation in

Rn sending the origin 0 to the point x. The tangent space Ek to iTk( Rn)
at the distinguished element ek has a canonical Lie algebra structure. Let

us say a few words on this Lie algebra structure. Let u = ( x, g ) E Hk( Rn) .
The translation tx in Rn induces an automorphism t(k)x of fik( Rn) which
commutes with the right translations of L k on Hk( Rn ), i. e.

for all b E L kn. In particul ar, t (k) xo R g =R go t (k)x gives a diffeomorphism

of iik( Rn) onto itself that we will denote by tu . We call a vector field
on lik( Rn) invariant if it is invariant with respect to all diffeomorphisms
of the form tu, where u is an arbitrary element of Hk( Rn) . There is a
one-to-one correspondence between Ëk and the set of invariant vector

fields on iik( Rn). If X, Y are two invariant vector fields on Hk(Rn), so
is the bracket [X, Y]. The vector space Ek, endowed with this multipli-
cation, becomes a Lie algebra over the field of real numbers. The Lie al-

gebra flf of n is a Lie subalgebra of Ek = Rn OLkn.
To every differentiable map f of a differentiable manifold W into

Hk(Rn), we can associate a differential 1-form cef = f-1df with values
in the Lie algebra Ek defined by for al l X

in Tx( W) . In particular, if W = Hk(Rn) and if f is the identity map of

Hk( Rn), we get a differential 1-form ú) on Hk( Rn) with values in Ek ,
called the invariant form on Hk ( Rn) .

PROPOSITION 1.11. The invariant form ú) on Hk( Rn) satisfies the equa-
tion

We recall that the form [w,w] is defined by [w,w] (X , Y)=
[w (X), w (Y)] for all vector fields X, Y on jfk( Rn ). Since the mo-
dule of vector fields on Hk( Rn) is generated by the invariant vector
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fields, it suffices to prove the equation for two invariant vector fields X

and Y . Behave

proving the proposition.

REMARK: VIe have adopted the following convention for the exterior pro-

duct :

where the summation runs over all permutations i1 , ... , i p , ip + 1, ... , i p + q
of {1 , 2, ..., p+q} and where 6 denotes the signature of the correspon-

ding permutation. With this convention, we have the following formula: if

a, is a p-form, then

Kumpera pointed out to me that the above Lie algebra structure on
Ek comes from a canonical Lie group structure on Hk(Rn). Since ( x , g ) E

; is identified with t

denote the underlying set of Lkn endowed with the following multiplication:
g*b =b g where g*h denotes the product in tLkn and b g denotes the pro-
duct in L k. With the identification Hk(Rn)=Rn x Lkn, Hk ( Rn) becomes

a Lie group isomorphic to Rn X tLkn. Moreover, if u = ( x, g ) , u’= (x’,g’)
th en

where tu is the diffeomorphism defined in the opening paragraph of this

section. In fact, tu is no other than the left translation defined by u in
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the Lie group Hk ( Rn) . The Lie algebra structure on gk defined above

is precisely the Lie algebra of the Lie group 17k( Rn) . The invariant form
6d is simply the Maurer-Cartan form of the Lie group Hk( Rn) .

Part II

HIGHER ORDER CONNECTIONS

1. Linear connections of order k .

An infinitesimal connection 1-k in the principal fibre bundle of se-

mi-holonomic k-frames Hk( Vn) over n will be called a linear connection

o f order k of Vn. Let w be its connection form. We will sometimes say
that cvk is a linear connection of order k of Vn. If D is the exterior co-

variant differentiation relative to wk , the tensorial 2-form Ok = D 0k (resp.
Qk = D wk ) will be called the torsion form ( reps. curvature form) of lk or

we have

where p is th-e linear representation of Lkn on Tk-’ defined in Part I . If

Y or Z is a vertical vector, then (3 k ( Y, Z) = 0. 
The linear representation p induces a representation of Lk on

, we put

where at= exp tA is the 1-parameter group of transformations of Lkn gene-
rated by A . In particular, if f is vertical,i.e. E E Lk-1 n , we have

THEOREM 11.1 1 ( s tru c tu re e qu a tio n s ) Let wk be a linear connection o f or-

der k. Then
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The first structure equation is well known. Let us show the second

structure equation:

for all vectors X E u ( Hk (V n)) and YeT u (Hk (Vn)). It is sufficient to

verify the equality in the following three special cases :

i) X and Y are horizontal. In this case, wk (X)=0, wk (Y) = 0 and

the equation reduces to the definition of (3 k .
ii) X and Y are vertical. Let X = A*u and Y=B*u, where A* and B*

are the fundamental vector fields on Hk (Vn) corresponding to A = wk (X)
and B = wk ( Y) respectively. We have

and

The equality holds.

iii) X is vertical and Y is horizontal. Let X = A*u with. A = wk (X) E
Lkn. We can extend Y to an invariant horizontal vector field Y on i7k( V ) .
We have then

Since 6k ( A*) is constant, Y 0k ( A*) =0 . As Y is an invariant horizontal
vector field, [A*, Y] = 0 . Let at = exp tA be the I-parameter group of

transformations of L n generated by A E Lkn . 
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Now, The equali-

ty therefore holds.

The proj ection TTkm of Hk (Vn) onto Hm(Vn ) being compatible
with the natural surjection of Lkn onto Lmn ( m  k), any linear connection
wk ( of order k ) induces a linear connection úJm of order m , given by

P R O P O SIT IO N II. 2 Any linear connection wk o f order k induces canoni-

cally a linear connection wm o f order m  k given by

We have the relations:

Let us verify only the last formula. We know that

As a consequence, From the second structure

equation, we obtain

COROLLARY II. 3 1 f the torsion form ( resp. the curvature form) o f úJk va-

nishes identically on T (Hk (Vn)), the induced connection úJ m (m  k )
is without torsion ( resp. without curvature ) .

Let wk be a linear connection of Vn. We say that wk is quasi-ho-
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lonomic if the connection form wk , restricted to T (H (Vn)), defines a

connection in the principal fibre bundle Hk( Vn) over Vn . If wk is quasi-

holonomic, all induced connections úJm ( m  k ) are quasi-holonomic. Th e

c anonical connection in Hk (Rn)=RnX Lkn i s quasi-holonomic.

2. Second order linear connections.

Let u be an element of H2( Vn ) . Consider a coordinate neighbour-
hood U of a0 = TT20(u) with a system of local coordinates {x1,x2,...xn}.
The 2-frame u can be represented by a set of local coordinates (xi, xij,

xijk) with det ( xij) ~0 . Let U’ be another coordinate neighbourhood of a0

with a system of local coordinates {y1, y2, ... , yn} . The same u is re-

presented by (yi, yij, yijk) . The changes of local coordinates are given by

An element g E L2n can be represented by u = ( aij, aj k) with det ( aij)~0. In
terms of these coordinates, the multiplication in L2n is given by

The action of L2n on H2(Vn) is given by

Let a be the automorphism of L2n defined by a(aij , aijk)= (aij , aikj).
It is evident that a leaves fixed every element in L 2. Moreover, a 2 =

identity. We have immediately

P R O P O SIT IO N II. 4 There exists an involutive automorphism Cx, o f L2n such
that L2n is the subgroup o f all the f ixed points o f a.

T H E O R E M II. 5 The homogeneous space L2n/L2n is weakl y reductive:

there exists a vector subspace such that
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where ?2 ( resp. F2) is the Lie algebra of L 2 ( resp. L2n.
This result is an immediate consequence of the following lemma

proved in [2] .

LEMMA 11.6 Let a be an involutive automorphism of a Lie group G. The

set of fixed points of a forms a Lie subgroup G of G. Moreover, the homo-

geneous space G/G is weakly reductive: there exists a vector subspace
m of the Lie algebra q of G such that

where 9 is the Lie algebra of G . The vector space m can be given by

Let ? be the vector subspace of 22 defined by the above lemma.

showing that We have therefore the follo-

wing result.

COROLLARY II.7 The homogeneous space E2 /L 2 is a symmetric space.
For the rest of this section, we fix once for all a decomposition

where t is the vector subspace defined in the theorem II.5 .

We denote by i the canonical inj ection of H2 ( Vn) into H2 (Vn) .
Let éJ2 be a connection form in H2 (Vn). We can write i*w2 =

w2 + t, where Ú)2 ( resp. t ) is the L2n-component ( resp. m-component) of
i*w2 . Since ad (L2n)MCM, w2 defines a connection in the principal fibre
bundle H2(Vn) over n and t is a M-valued tensorial 1-form on H2(Vn)
called the quasi-holonomic form of w2. Inversely, the couple (w2, t) de-

termines a connection w2 in H2 (Vn). In fact, if EETu (H2(Vn)) with

uE (H2 (Vn), we can write E =E’+E", where E’ is a horizontal vector

with respect to the connection Ú)2 and E" is a vertical vector. Let us put

w2(E)=t(E’)+u-1(E"). Now, if E E Tv(H2(Vn)) where v E H2(Vn) ,
there exist u E H2(Vn) and g E L2n such that v = ug and E = TRg(E) for
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some EE Tu(H2(Vn)). It is easy to check that w2(E)=ad(g-1)w2(E)
does not depend on the choice of u and g . The mapping E -w2 (E) gives
the required connection form on H2(Vn) . Besides, i*w2 = w2 + t . We have
thus established the following result.

P R O P O SIT IO N II. 8 There is a one-to-one correspondence between the set

o f all second order connections w2 o f Vn and the set of all coupl es (w2,
t), where Ú)2 is a connection form in H2(Vn) and t is a ’)IT-valued tenso-

rial 1- form on H2(Vn) ; the correspondence is given by

COROLLARY II.9 A linear connection w2 is quasi-holonomic if and only

if its associated quasi-holonomic form t vanishes identically on H2( Vn) .

Let O be a tensorial form on fi2( Vn) . From the structure equation

where D 4J is the exterior covariant derivative of 4J with respect to ce 21
we deduce that

The induced form i*O is a tensorial form on H2(Vn). If D is the exterior

covariant differentiation with respect to w2 , we have

Thus

Let Q2 ( resp. Q2) be the curvature form of w2 (resp. W2). From
the structure equation

we have
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The form D t + [t, t] is a tensorial 2-form on H2( Vn). We may call it the

quasi-holonomic curvature of w2 .
From the structure equation

we have

The form

is a tensorial 2-form on H2(Vn) , which may be called the quasi-holonomic
torsion of w2. 

If w2 is quasi-holonomic, its associated quasi-holonomic form t

vanishes identically on H2( Vn). Therefore, the quasi-holonomic curvature
and the quasi-holonomic torsion of w2 are zero.

3. E-connections.

Let u be an arbitrary element of L n . There exists a unique auto-
morphism f of the vector space Rn such that u-j10f. The induced map

v

is a ( k -1 ) -admissible isomorphism, and

jle k-1 f( k-1) E L kn . The mapping u- l k (u) = jle 
k -1 

f (k-1) givesacanoni-
cal identification of L1n with a subgroup of Lk ( hence of Lkn) . For m  k ,
im=TTkmoik.

An invariant section of the fibration Hk+1 (Vn) - H1 (Vn), i.e. a
lift cPk+ 1 of H1 (Vn) into Hk+ 1 (Vn) compatible with the canonical ho-

momorphism 6 L1n - Lk+1 n will be called an E-connection of order k

of Vn . It is given by a reduction of the structure group of Hk+ 1 ( Vn ) from

Lk+1n to L n , There is a one-to-one correspondence between the set of all
E-connections ( of order k ) of n and the set of all semi-holonomic con-

nections ( of order k ) defined in the sense of Ehresmann on the principal
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bundle H1(Vn). [4c] -
We say that an E-connection O k+1 is symmetrical or holonomic

( resp. quasi-holonomic ) if

f cPk+ 1 is symmetrical ( resp. quasi-holonomic ) , all proj ections cPm+ 1 =
are symmetrical.

Consider an open set U of n with a system of local coordinates
{x1, x2, ... , xn}. In terms of the induced local coordinates, a lift Ok +1
of H1( Vn) Hk+1 (Vn) can be expressed by

If Ok+1 is invariant, the functions xijlj2, ... , xij1 "’ J , k + 1 can be written in

th e form

where ri m2,..., - - - ri m2 ... mk+1 are differentiable funct ions defined on

U. These are the Christoffel symbols of the E-connection Ok+1. They
are not entirely arbitrary; they have to satisfy certain conditions when we

change the local coordinates system. It is clear that Ok+1 is symmetrical
if and only if all the Christoffel symbols are symmetrical with respect to

their lower indices.

Let us consider some particular cases :

case (i): k=l. 

Let be the Christoffel symbols of a first order E-

connection 12 relative to a coordinate neighbourhood U ( resp. U ) with

a local coordinates system {x1, x2, ... , xn} ( resp. x-1, x-2,...xn}) . If

U Q U ~O , we obtain easily the classical formula for the Christoffel sym-
bols of a linear connection
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The quantities Tijk define then a linear connection of Vn . On the other

hand, if uE H1 (Vn), the lift O2 (u) of u determines a horizontal n-pl ane
QO2 (u) 

of H1 (Vn) at u . Since O2 is compatible with (2: L1n - L2 n , it is

easy to check that the distribution u -Qo2 (u) defines an infinitesimal

connection on H1 ( n ), thus a linear connection ú) 1 of Vn. The quanti-
ties rjk are simply the classical Christoffel symbols of the associated

linear connect ion ú) 1. In fact, if . is a basis for

Tx (Vn) with xEU, th e horizontal lift of X. at u=(xi, xij)E H1 (Vn)
with respect to w1, is given by

wh ere a be a basis for L1n .

The components of wI =2 wijrji can be expressed by

where (y1) is the inverse matrix of ( x1) and Ckmp are the classical Chri-

stoffel symbols of the linear connection w1. Consequently, wij (X*k)=0
for all indices 1  i , j , k  n . It follows that

Since det ( xij)~0 , we have

P RO P O SIT IO N II-10 [4 a] (i) There is a one-to-one correspondence be-

tween the set o f first order linear connections o f n and the set of inva-
riant sections o f H1 (Vn) into H2(Vn) .

(ii) Two linear connections of n have the sa-

me torsion if and only if the images of H1 ( V ) by the corresponding inva-
riant sect ions are contained in a princip al subbundl e of H2 ( V ) having
th e structure group L2

It remains to prove the second part of the proposition. Let O2, O2
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be two invariant sections of H 1 (Vn) into H2(Vn) . In terms of local co-

ordinates, these E-connections are given by

wh ere r
, are the corresponding Christoffel symbol s. As O2 ( xi , xij)
are on the same fibre of H2(Vn) , there exists an element

such that

It follows that

Consequently, we have

If the two linear connect ions have the same torsion, that is if

which shows that ( Hence the condition is

necessary. 

If 12 and 12 map H1 (Vn) into the same principal subbundle of

H2(Vn) having the structure group L2n, we still have the formula (*) with

gmjk=gmkj. Consequently.

Since det ( xij) ~ 0 , we get

Hence the connections have the same torsion, proving that the condition

is sufficient.

Case (ii) : k = 2

An element of L3 can be represented by a set of coordinates (aj.

aijk, aJkm ) with det (aij)~ 0 . The multiplication is given by
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If u = ( xi, xij, xijk, xijkm ) EH3(Vn), the action of L3n on H3(Vn) can be

expressed by

Consider an E-connection O3 of order 2. In terms of local coordi-

nates, cP 3 is given by

where T’rs, Tirst are the Christoffel symbols. If ffi rs Tirst are the Chris-

toffel symbols of O3 in an other local coordinates system, we have

By direct computations, we have the following result:

PROPOSITION 11.11 Let Tijk, Tijkm be the Christoffel symbols of a second
order &#x26;-connection o f V - I f the induced first order &#x26;-connection is sym-

metrical, then the following quantities

are respectively the components o f a ( 1, 3) - tensor on Vn . The given E-

connection is symmetrical if and only if these three tensors are zero.

4. Linear connections and E-connections.

The Lie group [L+k+1n (resp. L k+1n) acts linearly on Ek ( resp. Ek=

T’e k ( Hk( Rn))) on the left. We denote by Sk T ( resp. SkT) the associa-
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ted vector bundle of with standard fibre Ek

( re sp . Ek) and structure group For k = 0 , S0T =

P R O P O SIT IO N II. 12 The vector bundl e Sk T ( resp. Sk T ) is canonicall y
isomorphic to the vector bundle T ( Hk(Vn) )/Lkn ( resp. T ( Hk(Vn) )/Lkn) .

. 

An element u E Hk+1 (Vn) determines a linear isomorphism u of
Ëk onto Tu’ (Hk (Vn)) with u’=TTkk+1 (u). On the other hand, u can be

considered as a linear isomorphism of Ëk onto the fibre ( Sk T)x over x ,

where x is the projection of u on Vn. We have then a linear isomorphism

uou 1 of (SkT)x onto Tu,(Hk (Vn)). If VI is another element of Hk+1(Vn)
with project ion x =TTk0+1 ( v), we can write v = u g for a unique gELk+1 n.
Similarly, we have a linear isomorphism vo v -1 : ( Sk T)x - Tv, (Hk (Vn)),
where v’=TTk+1 k (v). Now, v=uop(g) and v=TRg,o uo p(g) with g’=
 TTk+1 k (g) E Lk n. Consequently, vo v -1 =T R g ,o u o u-1. Since  Hk+1 (Vn)-
Hk( Vn) is surjective, we get an isomorphism of SkT onto T (Hk (Vn))/Lkn.
Similarly, one establishes an isomorphism of Sk T onto T (Hk (Vn))/Lkn.

P . Libermann showed th at T( Hk ( n ) )/ L n (resp. T ( Hk ( n ) )/ L n )
is canonically isomorphic to JkT (resp. J k T) , the k-th semi-holonomic

( resp. holonomic) prolongation of the vector bundle T (Vn). Thus, we ha-
ve an isomorphism of Sk T ( resp. Sk T) onto Ïk T ( resp. J k T) .

Hk+ 1 (Vn) being a principal fibre subbundle of Hk+1(Vn) and the
action of Lk + 1 n on E k being the restriction of that of L k + 1 n on Ëk, the
vector bundle Sk T can be considered as a vector subbundle of Sk T.

The proj ect ion TTk+1 m+1 of Hk+ 1 (Vn) onto Hm+ 1 (Vn) induces a
surjection pm of Sk T onto sm T. Moreover, the restriction of pm to each

fibre of Sk T is linear. Similarly, we have a proj ection of Sk T onto sm T

for m k .

An E-connection Ok + 1; H 1 ( Vn) - H k+ 1 (Vn) induces a splitting
of the following exact sequence of vector bundles

where Nk is the kernel of the proj ection SkT -T(Vn) . More precisely,
we have the following result:
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TH E O R E M II. 13 There exists a one-to-one correspondence between the set

of E-connections of order k of n and the set of splittings of the exact

se quence of vector bundl es over V :

LEMMA II. 14 L et Ek = RnO 2k be the canonical decomposition of Ëk de-
fined by the canonical connection in Hk ( Rn ) = Rn X Lkn . For every other

decomposition of Ek of the form Ek = QkO Lk , there exists a unique g E

such th at p (g) ( Rn) - Qk.
’ff.!e prove the lemma by induction on k . For k = 1, we have the ca-

nonical decomposition E1 = Rn OL1n. Let E1=Q1OL1 n be another decom-
position of E1 . Consider a local section o- 1 of H1 (Rn)-Rn such that

o-1 (0 ) = eland To1 ( Rn) = Q1. Let f be the admissible local isomorphism
of H1( Rn) into H1 ( Rn) defined by the condition : f o n1 =o1, where n1
is the «zero section » of H1 ( Rn) = Rn X Ln - Rn . The 1-jet j1e, f = g defi-

nes an element ) sati sf ying th e property: p (g) (R n) =

Q1 . Uniqueness follows from the fact that the neutral element is the only
element of M2 leaving stable the two components of E1 = RnOL1n

Let us assume that the lemma is proved for m  k - 1. If Ek = Qk O
n is a decomposition of Ek , we may consider a local section o-k of

Hk( Rn) -Rn satisfying the conditions: ok(0) = ek and Tok( T0 (Rn))=
Ok. Now,

From the induction hypothesis, there is a unique g’EMk = Ker (Lkn - L1n)
such that Let h be the admissible local iso-

morphism of i7k( RI) into j7k( R’) defined by the condition : b onk =

g where 7Jk is the « zero sections of Hk(Rn)=RnXLkn-Rn. The
1-jet il h def ines an element g of

b -

such that

p (g) (Rn)= Qk Suppose that there is another g E Mk+1 satisfying the con-

dition : p (g) (Rn)=Qk. We have then p (TTk+1 k (g))(Rn)=TTTk k-1 (Qk)
Consequently, g’=TTk+1 k (g) . We can write g= gm0 where m0 is an ele-
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ment of Since the neutral element is the only element of

leaving stable the two components of

conclude that g = g proving the uniqueness of g .

L EMMA II. 15 The Lie group ik+1 ( L1n) is the largest subgroup of Lk+1 n
which leaves invariant the two direct summands o f Ek = Rn EÐ Lkn .

It is easy to check that ik+1 ( L1n) leaves invariant the two direct

summands of Ek=RnOLkn. Now, consider an element g E L 
k+1 such that

n n

Th e action of

k is trivial. Consequently, we have g = ik+1 (g0) Eik+1 (L1n) in

virtue of the preceeding lemma.
- 

Let us go back to the proof of the theorem. We have seen that there

is a mapping F of the set of E-connections of order k of n into the set
of splittings of the exact sequence of vector bundles over n :

This mapping F is injective. Let us consider two E-connections Ok+1
and Yk+ 1 which induce the same splitting

,If yE T (Vn) we can write y = q1 ( u,E) , where uE H1 (Vn), E E Rn onto T (Vn). The condition and

q1 is the natural proj ection of H 1 (Vn) X R n onto T (Vn) . The condition

implies that

where we have denoted by qk+1 the natural projection of Hk+1 (Vn) X Ek
onto Sk T . From the above lemma, we deduce that Ok + 1 (u) =Y k+ 1 (u) for
all u E H 1 ( Vn) . Let us show that F is surjective. Consider a splitting of
the exact sequence

given by the lift cr T (Vn) -SkT . Let x be an arbitrary element of Vn .
An element u of the fibre of Hk+ 1 (Vn) over x determines a linear iso-

morphism of Ëk onto ( SkT)x . The image u-1 (o (Tx( Vn))) is a vector

subspace of Ek . More exactly, we have From
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the lemma 11.14, there exists a such that

p(g)(Rn)=u -1(o-( x(n))). The element v=ugEHk+1(Vn) defines

therefore a linear isomorphism of mapping R n

onto o( Tx ( Vn )) . Every element of Hk+ 1 (Vn) lying on the fibre over x

and having the same property is of the form v go with go E i k+ 1 ( L1n) , Sin-

ce x is arbitrary, we obtain in this way a principal subbundle of Hk+ 1 (Vn)
with structure group ik+1 ( L1n), hence the E-connection that we are loo-

king for .

The vector bundle T(Hk(Vn))/Lkn is isomorphic to SkT. We ha-

ve therefore a one-to-one correspondence between the set of linear con-

nections of order k of V n and the set of splittings of the exact sequence
of vector bundles

From the preceeding result, we have

T H E O R E M 11.16 There is a one-to-one correspondence between the set o f
linear connections o f order k and the set o f &#x26;-connections o f the same or-

d e r.

Consider an E-connection Ok+1 : H1 ( Vn) - Hk+1 (Vn), Let Ok =
TTk+ 1 k ° Ok+ 1. If u E H1 (Vn) , Ok+1(u) determines a horizontal n-plane
of Hk(Vn) at Ok (u) EHk (Vn). We obtain thus a field of n-planes of

Hk(V n) defined on Ok (H1 ( Vn)) . It is easy to check that this local field

is invariant with respect to the right translations defined by the elements

of ik (K1n) on Hk(Vn) . Consequently, we can extend it to a global field of
n-planes of Hk ( Vn) invariant with respect to the right translations of Lkn
on Hk (Vn) . We obtain thus a linear connection ú)k of order k of Vn . This

correspondence Ok+1 -wk is exactly the one we have established in the

above theorem. For k = 1, we have a one-to-one correspondence between

the set of symmetrical linear connections of n and the set of invariant

sections of H1 (Vn) into H2(Vn) ( cf . Prop. 1.9 and Prop. 11.10). Let us

assume that there is a one-to-one correspondence between the set of sym-

metrical E-connections of order m ( m  k -1) and the set of quasi-holono-
mic linear connections of the same order having zero torsion. If Ok+1 is a
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symmetrical E-connection of order k , the corresponding linear connection

k is quasi-holonomic and without torsion ( cf. Theorem I.10) . Inversely
let ú) k be a quasi-holonomic linear connection having zero torsion and let

Ok+ 1 be the corresponding E-connection established in the above theorem.
The connection projection wk-1 (of order k -1 ) of wk is a quasi-holono-
mic connection without torsion. From the induction hypothesis, the corres-

ponding E-connection 4J k is symmetrical. It is easy to check that Ok =
TTk+1 k o Ok+1. Hence Ok+ 1 ( H1 (Vn)) C Hk+1 (Vn) from the«Holonomy
Theorem » . We have thus established the following result:

COROLLARY II.17 There is a one-to-one correspondence between the set

o f symmetrical E-connections and the set o f quasi-holonomic linear connec-

tions without torsion.

5. Pseudo-connections and multi-connections.

A pseudo-connection of order k of Vn is a couple (Yk+1’Yk+1)
where Yk+1 is a homomorphism of Lkn into Lk+1n and ’-Pk+1 is a diffe-

rentiable lift of Hk (Vn) into Hk+ 1 (Vn) such that

for all u E Hk(Vn) and g E Ln . It follows that Yk+1 is a lift of Ln into
Lk+1 n. The condition of compatibility implies that an invariant vector field
of Fikr Vn ) can be lifted to an invariant vector field of Hk+1 ( Vn). We ob-
tain thus an infinitesimal connect ion in the principal fibre bundle ¡¡k+ 1 ..

Hk (Vn) , or equivalently, a splitting of the exact sequence of vector bun-
dies over V

n 

where TVk-+ 1 is the kernel of Sk+ 1 T - Sk T .

Consider a pseudo-connection (Yk+1’ Yk+ 1) of V - The lift Yk+1
of Hk(Vn) into Hk+ 1 (Vn) defines an absolute parallelism on Hk ( Vn) .
If Z E Tu(Hk(Vn)), we put a(Z)=Yk+1(u) -1(Z). The mapping Z-
a(Z) defines a differentiable 1-form a on rrk( V ) with values in Ek .

There is an induced linear representation of L on pk given by
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where we have denoted by p the linear representation of L n on Ek.
If Z E T (Hk (Vn)), we have a (TRg (Z))= o (g-1)a (Z), i.e. a is a

pseudotensorial 1-form on Hk (Vn), called the pseudo -connection form of

(Yk+1, Yk+1).
A multi-connection of order k of V n is given by a sequence of pseu-

do-connections (Ym+1, Ym+1), m = 1, 2, ..., k such that Y m+1 0 i m =
im+1 . The composite map O k+1 = Yk+1 oYk o...oY2 defines an 6-con-
nection of V . Inversely, given a sequence of homomorphisms Ym+1.

such that Ym+1 o i m=im+1 an E-connec-

tion determines a multi-connection of order k of Vn.
We are going to define a natural sequence of group homomorphisms

satisfying the conditions : TTk+1 k o A k+1 = identity, A k+1 o ik = ik+1 for

k = 2 , 3 , .... We put A2 = i2, the canonical inj ection of L1n into L2n. It in-
duces a lift of H1 ( Rn) = Rn X L1n into H2( Rn) = Rn X L2n . We will denote
this lift by the same symbol Âr Let u = j e 1 f E L2n , where f is an admis-

sible local isomorphism of H1 ( Rn) into H1 ( Rn) . Consider the local iso-

morphism h of H2( Rn) into H2( Rn) defined by the condition :

where u’ =TT2 1(u) and Ni ( i = 1, 2 ) are the «zero sections». The 7-jet

j1e2 h depends uniquely on u and the mapping u-A3( u) = j1e 2b defines a

group homomorphism of L2n into L3n satsfying the required conditions. Let

us assume that we have defined homomorphisms A2, A3’ ... , Ak satsifying
the required conditions. Let v=j1ek-1. b E Lkn, where b is an admissible lo-

cal isomorphism of Hk-1 ( Rn) into Hk-1(Rn) . Consider the admissible
local isomorphism g of Hk(Rn) into Hk( Rn ) defined by the condition:

with v’=TTk k-1 (v) and ni(i=k-1,k) are the« zero sect ions ». It is easy
to check that the mapping v -Ak+1(v)=j1 e g defines a group homomor-

phism of Lkn into Lk+1n with the desired properties. We obtain thus a natu-
ral sequence of group homomorphisms
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PROPOSITION II.18 There is a one-to-one correspondence between the

set o f E-connections o f order k o f n and the set o f multi-connections o f
the form {(Bm, Am ) }2  m  k’ where the Am are the homomorphisms o f
th e n atural se quence.

6. Prolongations of linear connections.

We have seen that a linear connection of order 1 of n can be gi-
ven by an invariant section 4:;2 of H1 ( Vn) into H2 (V n) . We are going to
construct a lift of O2 ( H 1 (Vn)) into H3 (Vn) . Let u = j1 e1 f EO2 ( H1 (Vn)) ,
where f is an admissible local isomorphism of H1 ( Rn) into H1(Vn). Let
h be the admissible local isomorphism of H2( Rn ) into H2( Vn ) defined

by : bon2=O2ofon1. The mapping u -O3 2 (u)=j1e1b def ines a lift of

O2( H1 (Vn)) into H3(Vn) . The composite mapping O3 = O32oO2 defines
an invariant section of H 1 (Vn) into H3 (Vn) . The E-connection O3 ob-
tained by this way or the corresponding linear connection of order 2 will

be called the first prolongation of O2. The principal subbundle O3 ( HI (Vn))
of H3 (Vn) , possesses the following property : for every vEO3 (H1 (Vn)),
there exists an admissible local isomorphism g of H2 ( Rn) into H2 (Vn)
such that v = j1e 2 g and that g maps the ( local ) zero section of H2 ( Rn)
into O2 ( H 1 (Vn)) . By means of thi s property, we can construct a lift O43
of O3(H1)(Vn)) into H4(Vn) and the composite mapping (O4=O43oO3
defines an E-connection of order 3 , called the second prolongation of ct2.
Notice that the projections of ct 4 are respectively O3 and ct2. By itera-
tions, we construct the k- th prolongation of ct2.

If we consider only the prolongations of linear connections of order
1 of Vn , we do not obtain all the linear connections of higher order of Vn ,
A linear connection of order k is called simple if it is the ( k -1) -th pro-

longation of a first order linear connection of Vn.
Let Ú)k ( resp. úJk) be a linear connection of order k of n ( resp.

V’n) . We will say that Ú)k is equivalent to w’k if there exists a diffeomor-

phism f of n onto V’n such that f (k)*w’k=wk.



369

A linear connection wk is called locall y fl at if it is locally equi-
valent to the canonical connection in the trivial bundle Hk (Rn)=Rn X Lkn
THEOREM II.19 A linear connection of order k is locally flat if and only

if it is simple, without torsion and without curvature.

It is well known that a first order connection is locally flat if and

only if its torsion and curvature are zero. For k &#x3E; 1 , the conditions are ob-

viously necessary, because the canonical connection in Hk( Rn) is sim-

ple, without torsion and without curvature. Let us show that the conditions

are sufficient. Consider such a linear connection Ú)k. The connection pro-

jection ú) 1 of order 1 of ú) k is locally flat, because its torsion and its

curvature are both zero. Since Ú)k is simple, we can obtain Ú)k by taking
the successive prolongations of Ú)1. Let cPk+1 be the invariant section of

H1 (Vn) into Hk+ 1 (Vn) corresponding to wk . We put Ok = TTk+1 k o + OK+1
For all y E H 1 (Vn), the horizontal n-plane of Jik( V ) associated to the

( k +1) -frame Ok+1 (y) i s tangent to Ok( H1 (Vn)) , because Ú)k is sim-

ple. From th e «Holonomy Theorem», we h ave Ok + 1 ( H 1 ( n ) ) C H k + 1 (Vn) .
On the other hand, the nullity of the curvature form of wk implies that the

distribution of n-planes of Hk( Vn ) defined by Ú)k is involutive. Let W be

the maximal integral submanifold passing through u E q; k ( H 1 ( Vn ) ) . We ha-
ve W C Ok ( H 1 (V n)) . The canonical form 8k (resp. Ok) of Hk(Vn) (resp.
Hk( Rn ) ) , restricted to W ( resp. Q = Nk ( Rn) ) , will be denoted by 0W
( resp. 0Q). These forms ew and 0Q have their values in R n C Ek-1. Con-
sider the 7-form 03B2=p*10W-p*20Q on the product manifold W X Q , where p Z
( i = 1, 2) are the projections on W and Q respectively. In terms of a ba-
sis {a1, a2, ... , an} for Rn , the components f3i of f3 are linearly inde-

pendant. Consider now the module M of vector fields X on W X Q such

that 03B2i(X)=0 for i=1, 2,..., n. If X Em, Y Em, we have

On the other hand, d 03B2 ( X , Y ) = 0 . Consequently, [X, Y] E M showing that
m is involutive. Therefore, there exists a maximal integral submanifold M
of dimension n passing through ( u , ek ) E W X Q . For any non-zero vector
Z tangent to p-1 2 ( ek ) , f3( Z) io. We can find an open neighbourhood U
of ek in Q and a differentiable section k of U into W X Q such that we
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have B( U ) C M . Let h = p 1 0 X. The form /3 vanishes identically on M,

we have B f3 = 0, showing that 8Q =h 8w. We can now extend b to a lo-

cal isomorphism b of Hk( Rn) into i7k( V ) satisfying e =b *0k. In virtue
of theorem 1.2, we can find an open neighbourhood N (resp. N’ ) of OE

Rn (resp. x = TTk 0 ( u ) EV n) and a diffeomorphism f of N onto N’ such

that locally h = f(k). Consequently, wk is locally flat.
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