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CAHIERS DE TOPOLOGIE Vol. X11,3
ET GEOMETRIE DIFFERENTIELLE

HIGHER ORDER FRAMES AND LINEAR CONNECTIONS
by YUEN Ping Cheng

Introduction.

In the first part of this paper we develop some elementary proper-
ties of semi-holonomic k-frames parallel to those of holonomic k-frames.
Our definition of a semi-holonomic k-frame is essentially equivalent to the
one originally given by Ehresmann [1b] ; our formulation, however, leads
us easily to define a canonical I-form ek on the principal fibre bundle
ﬁk(Vn) of semi-holonomic k-frames on a differentiable manifold V. If we
restrict 0, to the principal sub-bundle Hk(Vn) of holonomic k-frames on
V,, we obtain the canonical I-form given by Kobayashi [3] . Our main re-
sult is the “Holonomy Theorem” where we give a geometrical interpretation
of the holonomy conditions in terms of the canonical I-form.This result
will be useful for studying the integrability of higher order G-structures.
These preliminary results served originally as an introductory part to a
forthcoming paper which deals with the structure tensors of higher order
regular G-structures and higher order geometric structures.

The second part of this paper deals with the higher order linear con-
nections. Let V  be a differentiable manifold. A linear connecti;m of order
k on V is an infinitesimal connection on the principal fibre bundle ﬁk(Vn).
Its torsion form is defined to be the exterior covariant derivative of t9k.
There is a one-to-one correspondence between the set of linear connections
of order k (resp. quasi-holonomic linear connections of order % without
torsion) on V, and the set of invariant sections of the canonical projeétion
ﬁk+1(Vn)~H1( Vn). We show further that a linear connection of order &
on V  is locally flat if and only if it can be obtained by successive pro-
longations of a first order linear connection without torsion and curvature.
Some of these results have been summarized in [6] and are prepublished
in French, in the first part of the author's thesis [7]. 1f Vn is a differen-

tiable manifold, Tx( Vn) is the tangent vector space of Vn at x.
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HIGHER ORDER FRAMES

1. Semi-holonomic frames.

Let V, be an n-dimensional C®-differentiable manifold. A first or-
der frame (or a I-frame) of V  at the point x is an invertible I-jet of R”
into Vwith source 0 € R" and target x € V.. The manifold of all I-frames
of V , denoted by HI(Vn),forms a principal fibre bundle over V with na-
tural projection 7Té which assigns to each I-jet its target, the structure
group being L,1,=GL (n,R). The trivial bundle HI(R")zR"XLrI‘ can be
identified with the group of all affine transformations on R™. There is a
distinguished element in H!(R"), namely the I-frame e, of R" defined
by the I-jet of the identity mapping of R" onto R™ with source 0.

Let h:-HI(R?)-~HI( V) be alocal isomorphism. It induces a local
diffeomorphism [ of R” into V, with fo7T —Trlob(pseudo -products); we
will denote all natural projections by the same symbol 77 with indices. We
say that b is I-admissible if the domain of b contains e; and b(el):jé !
(Here jé]' denotes the I-jet of / with source 0).

The manifold of 1]ets ] b where b is a I-admissible local iso-
morphism of H! (R") into H! (v, ) will be denoted by H2( v.). There are
two natural bundle structures on a2 ( Vn ):

1) 7?( V,) forms a principal fibre bundle over H( V,) with natural
projection W? and structure group Mﬁ consisting of all I-jets of I-admis-
sible local isomorphisms of HI(R”) into HI(R”™) with source and target

. The structure group /\"12 acts on [-72( V,) on the right by the composi-
tion of jets. Moreover 772(7e bh)=h(e;) —]Of

i) B%( V) forms a prmcxpal fibre bundle over V, with projection 775
77(1)077‘1? and structure group L2 Here L2 is the fibre of H2(R") over the
origin 0 € R”. The multiplication in L2 is given by: if g1—]e b €L2
and gz—]e hy€ L , then the pseudo product b0 b, is a I- adm1551b1e lo-
cal 1somorphlsm and 8185 ]e (hjoh,) depends only on ]e h; and

b2 Notice there is again a d1stmgulshed element in H2(R”) R”><L2
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HIGHER ORDER FRAMES AND LINEAR CONNECTIONS 3

namely the element e, defined by the I-jet of the identity mapping of
HI(R"”) onto HI(R"”) with source €;. An element z 6[72(‘/") will be cal-
led a semi-holonomic 2-frame of V, at the point x=7Tg(z).

We define by recurrence the principal fibre bundle Ak ( V,) of semi-
holonomic k-frames of V, . Let us assume that we have defined the princi-
pal fibre bundle ﬁk_I(Vn) of semi-holonomic (k-1)-frames of V, , with
base space V , structure group Eﬁ-l and projection Wli:é on ﬁ"'2(vn).
A local isomorphism u: I:I-k-l( R") -'ﬁk-l( Vn) is said ( k~1)-admissible if:

i) v is (k-2)-admissible, where v is the local isomorphism of
H*2(R™) into H*™2( V,) induced by u, such that v, 772:5 =7Tl,§:§o u.

i) u(ek_1)=jék_2 v, where e, _; (resp. e,-5) is the distingui-
shed element in H¥~1(R”) (resp. H*"2(R")).

The set H*( Vn) of I-jets of the form ji u, where v isa(k=-1)-
admissible local isomorphism of H*1(R") intt; qR =1 V,), forms a prin-

cipal fibre bundle over V = with structure group Eﬁ; the underlying set of

L’/: is just the fibre of H*(R") over 0 € R". The space "k ( V) can also
be regarded as a principal fibre bundle over H*=1¢ V) with structure group
Mﬁ: Ker(Eﬁ* Eﬁ_l). An element z of Hk( V,) will be called a semi-holo-
nomic k-frame of V_ at the point x, where x is the projection of z into V,,.

For m < k, the natural projection an of H*( V) onto "m( V,) is
compatible with the surjective homomorphism of Eﬁ onto L—,:l" The distin-
guished element e, in ﬁk( R") :R"Xif is defined by the I-jet of the i-
dentity mapping of H*~1(R"™) with source €pag-

2. Canonical form on H*(V ).
n

An element uéﬁk( Vn) can be written as u:jik b, where b is a
-1 .
(k=1)-admissible local isomorphism of H*“I(R”) into H*7I(V,;, it de-
termines a linear isomorphism # of FE*™! =T, (H*"I(R")) onto
k-1
T (HEI(V) ) with w=mk_ (u) e H¥ (V). Since H*"I(R”)=R"xLk~1,
we have a canonical decomposition EF~1=R"g £§'1, where ﬁ:"l is the
Lie algebra of Ef-l . From now on, we will identify R” with a vector sub-

space of Ek-1 given by the canonical decomposition. Since # is a linear

isomorphism, #(R™) is an n-dimensional vector subspace of Tu.(ﬁk—l( an)
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4 YUEN PING CHENG

transversal to the fibres, called the bhorizontal n-plane associated to the
k-frame u.

Let v be the projection of u under Wi. The following diagram

~

Ek=1 % T,.(A*1(V )
| '
Em=1 __f___’ Tv.(ﬁm-l(vﬂ»

is commutative, where v’ is the projection of v under 777_; and where the
vertical arrows are the natural projections.

Consider a vector Z eTu(ﬁk( V,)). Its image Z'= Tﬂlf_l (Z)
under the tangential map TW’,:_I is tangent to Hk'I(Vn) at the point
w=mk_(u).

The E*"-valued differential I-form 6, defined by

0,(z)=u"1(Tmk_(z))

will be called the canonical form on H¥( V). For m< k, we have the fol-

lowing commutative diagram

_ 6,  _..
T(HEV,)) % _ E*I
{ {

T(H™(V,))) — 2w E™!

where the vertical arrows are the natural projections.

The Lie group Eﬁ acts naturally on E*"1 on the left.| Each ele-
ment g of E,If' defines a linear isomorphism g of E*"1 onto Tg.(ﬁk'l( R"))
with g':'rrl,:_l(g). The right translation R;I- =R(g:)-1 determines a li-
near isomorphism TR;I. of Tg.(ﬁk—I(R")) onto E*"1. If we put p(g) =
TR;.IO g, we obtain a linear representation 0 of I:.-,]: on the vector space
E*"1 For m<k,

Fh-1 e Fr-1

{ ¢

k
g1 __A"m(8)) g
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HIGHER ORDER FRAMES AND LINEAR CONNECTIONS 5

is a commutative diagram, where the vertical arrows are the natural pro-

jections.

PROPOSITION 1.1. The canonical form Qk is a pseudo-tensorial I1-form on
HE( V,) of type (p, Ek-1) i

G (TR,(Z))=p(g)6,(Z)
for all ZeT(A*V )) and geLk.

3. Holonomic Frames.

A diffeomorphism f:V -V’ induces a principal fibre bundle iso-
morphism f(%) of Ek(Vn) onto H¥( V. ). This isomorphism /(k) posses-
ses the following properties:

i ko p(RI=f(m) 7k for all 0< m< &,
. *
ii) /(]"') is compatible with the canonical forms, i.e. /(k) Q'k =6,

where <9k (resp. t9k’ ) is the canonical form on ﬁk( Vn) (resp. I-Tk(V,;)).

THEOREM 1.2. Let ¢ be a local diffeomorphism of H*( V,) into ﬁk(V;).
Then locally ¢=f(k) for some local diffeomorphism [ of V, into V',
if and only if ¢ is compatible with the canonical forms,i.e. d)*@':@k.

It remains to show that the condition is sufficient. For this we will

proceed by induction on k.

LEMMA 1.3. Let ¢ be a local diffeomorphism of HI(Vn) into HI(Vr'l)
with ¢*<9j=t91. Then we can locally write <f>=/(1) for some local diffeo-
morphism f of V, into V.

Consider a tangent vector Z € Tu(HI( Vn)) with T’/Té(Z) =0. The
condition ¢*<9}=91 implies that TTré(Tda(Z)):O. Thus ¢ sends a tan-
gent space to the fibre of Hl(Vn) onto a tangent space to the fibre of
H¢ V'). This means that locally ¢ is a fibre map and induces a map [ of
V, into V; satisfying fo 7Té=7Té° ¢. We want to show that ¢=/(1)-
Thus we want to show that for any « with Wé(u)=x we have ¢(u)=
jlfou . Let £€R™. Choose a vector Z €T, (H(V,)) with Tm}(Z)=
#(£). Then (f,lcfo Z)E)=(Tfoa)(E)=(Tfo TW(I))(Z) =(T7Téo THNZ).
On the other hand, (#(u) 1o Tmlo TGN Z)=(2"1o TT])(Z)=£ . Thus
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6 YUEN PING CHENG

¢(u)=ji/o u holds proving the lemma.

To prove the theorem for k& we may assume that it has been establi-
shed for k=1. Let Ze T (H*(V,)) with Tmk_;(Z)=0. The condition
d* 6’,;:6’1‘ implies (Tﬂllz-l o Td)(Z)=0. Thus ¢ is a local fibre map with
tespect to the fibrations HE(V )=~HA*"I(V ) and HR(Vy)~H*1(Vy).
There exists a local diffeomorphism ) of H* -I(Vn) into H-k-l(V,;) such
that Yo ],: 1=7T’,: -70 ¢ Since Wffl Qk_lzTWl,::éo 6, (resp. 772_"_‘1 o =
T7Tk 1 o 0] ), we have

(ThE (W*O )N Z)=(6)ogo Tiho TR )(Z)
=(0) 1o TTE 10 TENZ)
=(mk* Oy NTEH(Z))
=(TTEL 0o TEN(Z)
—(Tﬂk_zo O, )Z)
= (%164 (Z)
for all Z € Tu(ﬁk( V.)). As Wi_l is surjective, we deduce that y*6,_; =
9k -7+ By the induction hypothesis, there exists a local diffeomorphism [ of
Vn into V! such that locally = f(k71). We have thus fOR1) WI,: 1=
~j0 ¢ locally. Now we are going to show that locally ¢= f(k) An ele-
ment u er( v,) determines a linear isomorphism #: BRI T (Hk I(V ))
with u"—"/'TIe 1(") Two elements u# and v of Hk( V ) are identical if and
o N—
only if #=17. It suffices therefore to show that ¢(u) f(k)(u) for all
ueHk (V). Let £ € EF~1. Choose a tangent vector Z € Tu(Hk(Vn)) with
<9k(Z)=§ . We have

0,(Z)=(F6)(Z)=(6o TE)(Z)=(F(u) o T} 1o TENZ).

On the other hand, & = <9 (z)=(2"1, TTri_I)(Z). It follows that for all
£ e BRI,

FNE)=(Trh_ o TE)(Z)=(T* D THE_)(Z)
f—‘h-J
(T 7)) €)=7*)u) € ).

Ve have therefore d::f(k) locally and our theorem is proved.
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HIGHER ORDER FRAMES AND LINEAR CONNECTIONS 7

COROLLARY I.4. ‘Lel & be a principal fibre bundle isomorphism of ﬁk(Vn)
onto HE( V,). Let [ be the diffeomorphism of V, onto V, induced by b.
Then ¢=f(*) if and only if q.‘;*@k':@k.

Consider a local diffeomorphism [ of an open neighbourhood of
0 € R" onto an open set of Vn. It induces a (k& =1)-admissible local iso-
morphism ((A~1): H¥~1(R") ~H*“1(V, ). It follows that u=j1 _/(*~1)
is an element of f_Ik(Vn). We say that z eﬁk(Vn) is a holonomic k-frame
:]‘ik 1/”‘-1) for some local diffeomor-

phism f of R” into V . A k-frame « of V, is holonomic if and only if one

of Vn if # can be written as u

can find a representative for uz compatible with the canonical forms. The
set of holonomic k,-f;ames of V forms a pﬁnéipal fibre subbundle H%( v.)
of H*( V). Its structure group is the subgroup Lf: of L—ﬁ consisting of
holonomic elements. Notice there is a group isomorphism between Lﬁ and
the group of all invertible k-jets of R” into R” with source and target O.
The space Hk(Vn) can also be regarded as a principal fibre bundle over
Hk1¢ V,) with structure group MﬁZlﬁﬁ N Lﬁ, kernel of the surjective ho-
momorphism Lfl-o Lﬁ_l .

4. Relations between A%(v,), PV ) and T*71(HI(V )).

Let W and Y be two C®-differentiable manifolds. We will denote
by Tk(W, Y) the differentiable manifold of semi-holonomic k-jets of W into
Y. For the definition of semi-holonomic jets, see the works of Ehresmann.
For m<k, let pﬁl be the canonical projection of J¥(W,Y) onto J™(W,Y).
A jet Xejk( W, Y) is invertible if and only if pI;(X) is invertible. Let
ITR(W,Y) denote the set of invertible jets in J¥( W, Y). This set is then
the inverse image of I I(W, Y) by the submersion p/;. Since ﬁI(W, Y)
is an open submanifold of 71(W, Y)=JI(W,Y), it follows that [I1*(W, Y)
is an open submanifold of fk( W, Y). Moreover, pf’”:ﬁk(W. Y)—-I—I”’( W,Y)
is a submersion.

A semi-holonomic k-frame (resp. holonomic k-frame) of V  in the
sense of Ehresmann is an invertible semi-holonomic k-jet (resp. invertible

holonomic k-jet) of R” into V_with source 0 € R”. The set Pk( V) (resp.
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8 YUEN PING CHENG

Pk( V,)) of semi-holonomic k-frames (resp. holonomic k-frames) of V  in
the sense of Ehresmann has a principal fibre bundle structure over V ,
the structure group being the group of all invertible semi-holonomic k-jets
(resp. holonomic &-jets) of R” into R” with source and target 0 € R”. An
element u € P¥( V,) can then be written as u=j01/, where f is a differen-
tiable mapping of R” into P*~J( V,) satisfying the condition:
idtotten)=100).

Here we have also denoted by plz:é the canonical projection of pk-1¢ v.,)
onto P*~2( v.,).
THEOREM 1.5. There exists a canonical diffeomorphism v, of ﬁk( Vn)
onto Ek( V,) satisfying the properties:

(1) v is a fibre map,i.e. pkov, =7k

k;
(2) for m<k,
HAv) — Tk o By )
k
w4 { P’;.
- v -
H™V ) ———= P™(V )

is a commutative diagram;
(3) v,, restricted to H¥(V,), is a diffeomorphism of H*(V_) onto
PE(V ).

We prove the theorem by induction on k. For k=1, HI(Vn) is i-
dentical with PI(Vn) and v} is just the identity map,Let u:ji b be an
arbitrary element in H2( V). If 1; denotes the «zero section» of HI(R™)
the mapping u~v,(u) :]'é( Vioho M) defines a diffeomorphism of ﬁZ(Vn)
onto P2( V), because the composition of jets is a differentiable map. Let
us assume there exists Vi1 such that, for all z €f_1k'1( Vn), vk_l(z):
(i;’vk~1)° Zo (jé N4-p) where z’ :7711::1(2) and 7),_, is the «zero sec-
tion» of the trivial bundle H*"2(R”)=~R"X L%~2. Consider then an arbi-
trary element y=j£k~1g in Hk( V.,). If m_; is the «zero section» of
H*"1(R?)=R7x Eﬁ'l, 8 =Vp_j0 8o My~ defines a local diffeomorphism
of R” -0 ﬁk"I(Vn). Since jé(p],::éo g')=g'(0), the I-jet jég', which

*) corresponding to R X {e}, where e is the unit element.
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HIGHER ORDER FRAMES AND LINEAR CONNECTIONS 9

is independent of the choice of g for y, is an element in Fk( V,). The
mapping y-'vk(y):jég' defines a diffeomorphism v, ‘of H( V,) onto
Ek( V,). It is easy to check that v, has the desired properties.

Consider the case where V. =R”™. Let us recall that the underlying
set of Eﬁ is just the fibre of H¥(R”) over the origin 0. Since the multi-
plication in Eﬁ is given by the composition of jets, the restriction of v,
to Zﬁ defines a group isomorphism of Ij,/: onto the group of all invertible
semi-holonomic k-jets of R” into R” with source and target 0. It is easy
to see that the diffeomorphism v, of the above theorem is compatible with

this group isomorphism. We have therefore the following corollary:

COROLLARY Le¢. The principal fibre bundle ﬁk(vn) ( resp. H*( V,)) is
canonically isomorphic to I-’-k(Vn) ( resp. Pk( V,)).

Let E be a locally trivial fibre bundle over V, . We will denote by
J*E the differentiable manifold of k-jets of local sections of E. Let 72E =
]1 (]1 E) . The k-th non-holonomic prolongation of E is defined by induction:
TRE=]1(J*1E).
We define also the semi-holonomic prolongation ]_kE by restricting oursel-
ves to those local sections such that, for all 0 < m< k, the local section
o of Vn into 7”’E satisfies the condition: ji(wz_loo):a(x), where
7™ _; is the natural projection of J™E onto J™1E. We have
JXE CJ*E CJ*E.
THEOREM 1.7. There exists a canonical diffeomorphism (i, of H*( V,)
onto JR~I(HI( V.)) satisfying the following properties:
(1) for k=1, p; is just the identity map of HI( V,):
(2) p, is a fibre map; more explicitly

- My _
HR(V ) ——— JFTI(HI(V )
{ {
id
1% - . v
n n

is a commutative diagram;
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10 YUEN PING CHENG

(3) for 0<m<k, the following diagram

Arv) L pelnicy))

{ {

Hm(v) — Bm | melcHlcy )

commutes.

Ye prove the theorem by induction on k. For k=1, JO(HI( V,))=
Hl(Vn) by definition and f; is just the identity map of HI(Vn)- Let
u=]'£ b be an arbitrary element of H% V,). Consider the local diffeomor-
phism f of R™ into V_ defined by the condition: 7)o h=fo 7). If 7, is
the «zero section» of HI(R") --R"><L711, the mapping

x=0(x)=homyof 1(x)

defines a local section o of V into HI(Vn). If we put ,uz(u):]‘io
with x=77é(u), the mapping u—(,(u) defines an injection of H2(Vn)
into jJ(HI(Vn)). This differentiable mapping i, is surjective. In fact
let o be a local section of V. into H'(V ) with jloeJI(HI(V )). The
target O(x) can be written as o(x) =7éf for some local diffeomorphism
f of R” into V,. Let b be the local isomorphism of HI(R”) into HI(Vn)
defined by the conditions:

D mleb=fom};

i) bomy=o,f.

It is easy to check that b is I-admissible and jia :;/,Z(jilb). The map-
ping (L, givestthen a diffeomorphism of H2( V,) onto TI(HI( V,)) with
the desired properties. Now, let us assume there exists u,_; and f,_,

such that, for all » € Hk-Z(Vn), we have
. . -1
/J«k_l(u):(]i' /-Lk_z)o Uo (]é nk'2)° (o3
iv—ith u’ZWi:é(uj, w :W?(.zl) and where 7),_, is the «zero section» of
Hk'z(R”):R"XLﬁ"Z. Let z=ji b be an arbitrary element of Hk(Vn)'
k=1

Let / be the local diffeomorphism of R” into V, induced by h. If we de-
note by 7),_; the «zero section» of Ek-J(R"):RnXEﬁ'I, then

342



HIGHER ORDER FRAMES AND LINEAR CONNECTIONS 11

bh'=p_10hoMp-j0 /1
defines a local section of V into Tk-Z(Hl(Vn)) and jib’ determines
an element 4,(z) of fk-I(HI( V,)) independent of the choice of the re-
presentative b for z. It is easy to verify that z~u,(z) defines a diffeo-
morphism u, of H*( V,) onto fk—l(Hl( V,)) satisfying the required con-
ditions of the theorem.
COROLLARY L [4c] PE(V ) and J*"I(HI(V,)) are canonically dif

/ebmorpbic.

5. Local coordinate systems in H%( V).

Let {xI,x2,....,x"} be the natural coordinate system in R”.
Let U be a coordinate neighbourhood in Vn with a local coordinate system

{yl, y2, ..., y"}. Consider an element z € H( V,) with projection
mhu)=y=(yl y? ..., y") e U.
The I-frame u is completely determined by the linear isomorphism
u:Ty(R") —= Ty(Vn)~

In terms of local coordinates, # can be expressed by

I

(1<i<n, 1€ m<n)

1 ’

m =
SV —bzyl ‘Um
m

0 _
where Ui:(gi)o , Um:(b—y’")y and det(y;-")#O.

The I-frame u is therefore completely determined by the set of local co-
ordinates (yi, yi) with det(yi) #0. Thus we can take { yi, y}e} as a'lo-
cal coordinate system in (775) “leu) cHI¢ V. ). Similarly, we have a glo-
bal coordinate system { x?, xi} in H'(R”), with respect to which the
distinguished element is given by erZ(O, 82)..

The n+n? vectors {SiZ(w) e, si:(b_x/?) e]} form a basis
for EI=T, (H1(R")), and the n+n? local vector fields (=)

1 oyt by;fc

are linearly independent. Once again, any 2-frame v is completely determi-
ned by the linear isomorphism 7’ associated to v. In terms of local coordi-

nates, we have

5EL —= T nl(V))) with mI(v)=u=(y" ¥}
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12 . YUEN PING CHENG

Si ——"Zm(y;”‘?m 2! ygzigm )

si —_— Tu(si)

where —(W)u —(_F")" and Ty is the tangential map of u, «
p

being considered as a differentiable map Thus v is completely determined
by the set of local coordinates (y y y: k) with det(y]) #0.
By iteration we have a coordmate ne1ghbourhood (77/"‘)—1( U) in

ﬁk( Vn) with a local coordinate system {y ,y]-I, } with

" yf1f2'--fle
det(y]’.l)qto. The natural projection of H%(V ) onto H™(V,) (m< k) is

given by
(Yoyl, oyl ) e (YL ).
e yf]...fk) (y e/ yfz"'fm)
If u=(a'.d, .., d . )eﬁk(V ), the associated linear isomorphism
7t ip i n

# can be expressed by

- L L 1+ k=1
t. Stadt.4+- at .t 4o +— at . L
i ( 77t oo gyt + +k/ Jpeeedpopl t )
j j
t} — Twidl)
Jpeedp- J1 oo fp -
F1 ke Turc 17 Tk=1,

where

Jpee-7
lzl m_( )e

ox . k-1

1" Im

Jp ool 0
tzl m:(b 7 )u'

Yip i,

and u'ZWZ_I(u). The local coordinates at are symmetrical with

]I,.-., ]k

respect to the lower indices if and only if « is a holonomic k-frame

of V. [1c].
6. Holonomy Theorem.

Consider an arbitrary element « in f-f-k(Vn). In this paragraph we
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HIGHER ORDER FRAMES AND LINEAR CONNECTIONS 13

give a necessary and sufficient condition for u to be a holonomic k-frame.
Let us recall that the horizontal n-plane defined by u is just the image of
the R”-component of F*71= R"€B§f_1 under the linear isomorphism #.It
Is tangent to Hk"l( V") at the point ' :7711:,_1(11), if # is holonomic.

For k=1, there is no distinction between semi-holonomic frames

and holonomic frames. For &> 2, H*( V) Cﬁk( V).

) ) . .
PROPOSITION L.9. An element u of H*(V ) is a bholonomic 2-frame if and

only if the 2-form d 8, vanishes on the horizontal n-plane associated to u.

Let 7,,7,,..., 7, be a basis for R”. The canonical form <91 on

i V) can be expressed as follows:
0,=5 0fr,.
13

In terms of a local coordinate system {yi, y]l} in III(V”), the compo-
nents 07 of 0, are given by
CIED WL N
, £z dy
where (z;:) is the inverse matrix of (y;). By exterior differentiation, we
get '
. ozt
d0t—-3> =P (Zy’”/\(/y/’.
by q -
q
Let u:(ai, a}’ a;k) eﬁg( V"). The horizontal n-plane Qu asso-
ciated to # is generated by the n vectors
SCay e d (P ) (1<i<n)
X. ai(-—=) o+ — a (-—— I<7<n
k jow !
i >y i Oyk

jlu o

with #' :7T12(71) :(ai, a;). The 2-form d@l vanishes on Qu if and only if

B
. ozt 2!
d@’(x.,xk)ﬁz( ..... my,
/ oy url al m
= A

is zero for all 1<i,j,k<n. Since (z]’:):(y]’:)—l, we have the relation

z[’; yz = 5,’;. By differentiation, we get
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14 YUEN PING CHENG

bzi ,
m — —
(=2),.==bi bl

where (bj’:):( a]’:) =1 It follows that

. 1 , .
i - 4 4icamab - gmab
d@(X].,Xk) 2/,2( bmbp(akaqj a; aqk))

_Lsceica? -at))
Since det(b7) #0, we conclude that dO'( X, X;)=0 for all 1< i, k<n
if and only if the a]’:k are symmetrical with respect to their lower indices.
Thus our pAroposition is proved.
For the general case where k> 2, we have the following «Holono-

my Theorem»:

THEOREM 1.10. An element u € H¥( V) is a bholonomic k-frame if and on-
ly if the following conditions are satisfied :

i) the horizontal n-plane Q associated to u is tangent to the
submanifold H*™1(V ) of H*™1(V ),

ii) the 2-form dek-l vanishes on Q,.

Let us assume that » is a holonomic k-frame. We can then write

u=]'£k_1f(k-1) for some local diffeomorphism f of R” into V . If §,_,

and é‘k-l are respectively the canonical form on ﬁk*l(Vn) and Hk"I(R?7),
we have f(*71 )tek-l = ék-l . It follows that f(*~! )_*a'@k_l = d_@;_l .
Now, the 2-form a’@k_l vanishes on the R™component of E*™1= R"@fﬁﬁ.
As a consequence, dek-] vanishes on Qu . The first condition is obvious-
ly necessary.

It remains to show that the conditions are sufficient. The first con-
dition implies that u'=7711:_1(u) is a holonomic (k& -1)-frame, and that

we can find a local coordinate system {y?, y]’:I, y]’I "‘jk} in ﬁk(Vn)

such that #=(0,4al,...,a . ) where a! . are symmetrical with
]1 ]1...] ]1"'77!1 .
respect to their lower indices for 2< m< k =1 and a]‘. j, is symmetrical
1 LNy k

with respect to the first k=1 lower indices. By a change of local co-

ordinate systems, we can even suppose that a]’.=8]’- and a8 . =0 for

T ipm
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HIGHER ORDER FRAMES AND LINEAR CONNECTIONS 15

28m<k-1.
Let {x!,x2,...,x"} be the natural coordinate system in R”. By

iteration, we define a global coordinate system {x%, x]’:I, e x;-l i } in
vim
H™(R"). Let z°’=x; i with a:inp+7'pnp'1+.-.-+]'1. The vectors
1+0p

o]
t =(—_) (1€ al nk~ 14 k=24 +p)
z

form a basis for Ek-2 and we can write
— a
- _56 t,.

DA S | i Tk—1 . .
An element v=(y’, y]-I, Y _1) €H® *(V ) defines a linear

)
isomorphism ¢ of E*2 onto Tu.(Hk-Z( V,)) with v'=771,::§(v). In terms
of local coordinate systems, v is given by

* 8
- - " o
where 1< a, B nk ™1+ 0% "2+ . 440, t,= ga)v. with za=y]’.1‘_.],p. The
matrix A:(Ag) is of the form
A;.' AP 1€i,j<n
A=
0 ] n<w<nk T+ak™2 4 +n

where | is the matrix corresponding to the linear isomorphism Tv'. We ha-

i —AB - _om=l, . m=2 . — B
ve therefore Yj,. —-Aim with B=in™ " +j 2™ “+...+] . Let B=(BY)

i
be the inverse matrix of A=(Ag) . The components 8% of ek—l can be
expressed by
ge=3 Bagzh.

8 B

By exterior differentiation, we get

>B% > B .
dOe=3(—=B)dzY pdzB+ = (—5A ydyt . adzP.
324 OVt eines TpeeTk=1

Since X Bz AB=5%, we obtain by differentiation
>B% 0AH

—B8 = apv vy,
vy = PP
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16 YUEN PING CHENG

OB > AH
—A8 =-3B*BY( —X— ),
oyt . BByl
7peeedp~1 71 lk=1
hence
DAH > AH .
a— .5 BaBV (—Y¥Y)4zY 8-> Bagyv ¥ z "B.
do B}J-Bﬁ( Py )dz” Adz B;/-Bﬁ( by’: . )a’y}l iy N Z
oo dp=1
I:ziluz(o, 871'.'(?""'“]'1...]'16) and let O  be the horizontal n-plane of
H®"*(V,) associated to u. O, is generated by the n vectors
o 1 . o]
—_f —_ 1
XP"(ayP)“'+ S al (—— ),

Y PR P A
]1"']/5"1

where u'=77’1:_1(u) and 1 € p < n.
The nullity of d@k_l on Q, implies that d6% Xp' Xq)=0 for all
1€p,g<n and 1< a< n* 14+ 22724 . +7n. We have then

— a
0=d0%X,.X,)

Logi ABcyr)
DAH k! Tpe+lpapP b
=2 B u')By(u' )(—F——),
H B by]l. ) u l ai A'B(u')
1+ Tk=1 & ipeip-19 q

=L EBI(w) ok d )
- P u B a}.l

= . -d .
B! coofgeodP  Tqtig-2P9

with 8 =ink™2+.... +j,. Since det(B(u'))#0, we obtain
a‘: . = ai. . .
Jpe++lp-9P9 Jpe+lf29P
It follows that the a;:1 i are symmetrical with respect to their lower indices

and thus z is a holonomic k-frame.

Let us call « eﬁk( Vn) a quasi-holonomic k-frame if the horizon-
tal n-plane Q  of H* ¢ V,) associated to u is tangent to the submanifold
HE1¢ V,). We will denote by H*( V,) the set of quasi-holonomic k-frames.
We have obviously Hk( Vn) CI-'III‘( Vn) Cf_lk( V,). From the above theorem
a quasi-holonomic k-frame z is a holonomic one if and only if d@k_l va-

nishes on the horizontal n-plane Qu associated to u.
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HIGHER ORDER FRAMES AND LINEAR CONNECTIONS 17

7. Some remarks on H¥(R™").

In the preceding paragraphs, R”XEk has been identified with
ﬁk( R”). In this identification, a couple (x, g)€R"><Lk is identified
with the element t(k)(g)er(R") where t, denotes the translation in
R” sending the origin 0 to the point x. The tangent space EX to H*(R”)
at the distinguished element e, has a canonical Lie algebra structure. Let
us say a few words on this Lie algebra structure. Let u=(x, g)¢€ H*¥(R").
The translation ¢, in R” induces an automorphism t,(ck) of H¥(R™) which
commutes with the right translations of L% on H¥(R"), i.e.

t8)o Ry, =Ryo 1M

for all b €z: In particular, tx(k)o R!’,ZRgo tik) gives a diffeomorphism
of ﬁk(R") onto itself that we will denote by £, . We call a vector field
on Ek( R”™) invariant if it is invariant with respectto all diffeomorphisms
of the form ¢ , where « is an arbitrary element of H*(R”). There is a
one-to-one correspondence between E* and the set of invariant vector
fields on H®(R™). If X, Y are two invariant vector fields on H¥(R"), so
is the bracket [ X, Y] . The vector space E*, endowed with this muleipli-
cation, becomes a Lie algebra over the field of real numbers. The Lie al-
gebra ﬁﬁ of Z: is a Lie subalgebra of E"’:R"@ES.

To every differentiable map [ of a differentiable manifold W into
I;k(R”), we can associate a differential I-form wfz [~1df with values
in the Lie algebra E* defined by wp(X)=( Tt/( yo T/)(X) for all X
in T, (W). In particular, if W=H*R") and if [ is the identity map of
ﬁk( R™”), we get a differential I-form « on Ek( R”) with values in E*,

called the invariant form on H(R").

PROPOSITION L11. The invariant form w on H®(R") satisfies the equa-
tion
do+ [w, @]l =0
We recall that the form [w, w] is defined by [w, ] (X,Y)=
[w(X), w(Y))] for all vector fields X, Y on HE(R"). Since the mo-

dule of vector fields on HF(R™) is generated by the invariant vector

3%9



18 YUEN PING CHENG

fields, it suffices to prove the equation for two invariant vector fields X

and Y. We have
dw(X,Y)=Xae(Y)-Yu(X)-w([X,Y])
=—w(lXx, Y] )=-lw(X) w(Y)]
proving the proposition.

REMARK: Ye have adopted the following convention for the exterior pro-

duct :

(anB)(X,, Xy, X, )=2(=1)8a(X. ,....X. )B(X, ,....X. )
18 1 2 p+q 11 zp B lp+1 Ip-}-q

where the summation runs over all permutations i, ..., z'p, z'p+1, e z'p_,_q

of {1,2,....p+q} and where e denotes the signature of the correspon-

ding permutation. With this convention, we have the following formula: if

a is a p-form, then

ey i+ 1 2
— -7 )2
da(Xp, o Xy )= 2 (1)K a( Xy, o Xppo Xy )
Py N N
>(-1)*ac X, X : .
w2 al [X, X1, X oo X o X X, ),

Kumpera pointed out to me that the above Lie algebra structure on

E* comes from a canonical Lie group structure on H%(R"). Since (x, g)e€
R™XLE is identified with £,®)(g)=tMs R, (e,)=Ryot¥( e, ), we har
(k) (k) — (k) (k) _ (K 1rk

ve (1Mo Rp)o (1o Rp) =180 t[MoR o g =0 R, Let Ln
denote the underlying set of Lf endowed with the following multiplication:
gxh=h g where gxbh denotes the product in tiﬁ and b g denotes the pro-
duct in Eﬁ With the identification ﬁk(R")ZR"XZﬁ, H*(R”) becomes
a Lie group isomorphic to R” X ‘L_ﬁ Moreover, if u=(x,g), u' =(x',g"'),

then
uu' =(xtx', g'g)=tx(f;.o Rg.:g( e,)
= (e, Rg)o(zx(.k)o Rgi)(ey)
=(tMoR () =1, (),

where ¢ is the diffeomorphism defined in the opening paragraph of this

section. In fact, ¢, is no other than the left translation defined by « in
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HIGHER ORDER FRAMES AND LINEAR CONNECTIONS 19

the Lie group ﬁk(R"). The Lie algebra structure on E* defined above
is precisely the Lie algebra of the Lie group A*(R™). The invariant form

@ is simply the Maurer-Cartan form of the Lie group A*( R”).

Part I
HIGHER ORDER CONNECTIONS

1. Linear connections of order %.

An infinitesimal connection I'* in the principal fibre bundle of se-
mi-holonomic k-frames ﬁk(Vn) over Vn will be called a linear connection
of order k of V. Let «, be its connection form. We will sometimes say
that w, is a linear connection of order k£ of V. If D is the exterior co-
variant differentiation relative to w, , the tensorial 2-form ®k =D t9k (resp.
Qk szk) will be called the torsion form (reps. curvature form) of Tk or
w,. For Y,ZeT(A*(V )), geL¥, we have

O, (TR (Y)TR (Z)=p(g )8, (Y,Z).
where p is the linear representation of Ijﬁ on E*™! defined in Part I. If
Y or Z is a vertical vector, then ®k( Y, Z)=0.

The linear representation p induces a representation of Qﬁ on

E*1:if Ae 8k, £eEFL, we put
A E=limnlip(a)e-¢)
=0

where a,=exp tA is the I-parameter group of transﬁormations of Eﬁ gene-
rated by A. In particular, if £ is vertical,i.e. £ egﬁ_l, we have

Af=-[Tnmt_(A4)£].

THEOREM IL1 (structure equations) Let w, be a linear connection of or-

der k. Then

Qk:dcuk+wkﬁwk

Op=dOtayn G +3 [Tme 0w, T jow,].
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20 YUEN PING CHENG

The first structure equation is well known. Let us show the second

structure equation:

O (X, Y)=dOy (X, Y)+wu(X)G(Y)-w,(Y)E(X)

+3 [Tk g (X), Tmk o, (Y)]
for all vectors XeTu(ﬁk( V,)) and Ye Tu(ﬁk(Vn)). It is sufficient to
verify the equality in the following three special cases:

i) X and Y are horizontal. In this case, wk(X):O, cuk( Y)=0 and
the equation reduces to the definition of ®,

ii) X and Y are vertical. Let X=A% and Y=B¥, where A* and B*
are the fundamental vector fields on ﬁk( Vn) corresponding to A =wk(X)
and B=w, (Y) respectively. We have

®,(X,Y)=0;

dO,(X,Y)=X6,(B*)-YO,(A*)-6,( [A* B*] )

=-[rmf_jcA). Tnk_(B)];

@ (X)6,(Y)=AG,(B¥)
— - k k .
=-lrmk_ja), Tk _(B)],

W, (Y)6,(X)==[Tmk_,(B), Tmk_j(A)];

and
[T7k_ oy (X), Tk gy (Y)) =[Tnk_jcA), TmE_(B)).

The equality holds.

iii) X 1is vertical and Y is horizontal. Let X = A* w1th A= w,(X)e
gk We can extend Y to an invariant horizontal vector field Y on Hk( v,).
We have then

A0, (X, Y)=X0(Y)-YG(4a*)-6,( [ T¥] ).
Since Qk(A*) is constant, Y@k(A*):O. As Yy is an invariant horizontal

vector field, [4* ¥]=0. Let a,=exp tA be the I-parameter group of

transformations of Eﬁ generated by Aegﬁ.
dO,(X,Y)=A%6,(Y) N
= JimL ~1 Y
_;I-I.Zn—t-(’o(a’ )Qk(Y)-Gk(Y))
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HIGHER ORDER FRAMES AND LINEAR CONNECTIONS 21

==AG,(Y).
Now, w,(Y)=0,0,(X,Y)=0 and w,(X)G (Y)=AO,(Y). The equali-

ty therefore holds.

The projection 7771;"1 of ﬁk(Vn) onto ﬁ”’(Vn)} being compatible

with the natural surjection of Lﬁ onto L7 (m< k), any linear connection

@, (of order k) induces a linear connection w,, of order m, given by
k — k
moXw, =TT, 0wy -
PROPOSITION 1L.2 Any linear connection w, of order k induces canoni-
cally a linear connection w,, of order m< k given by
k% _ k
. wm‘TT’mOwk .
We bhave the relations:
rkok _ k
To¥Q, =TT, o Q)
k — k=1
¥ =TTl 71008, .
L.et us verify only the last formula. We know that
kx — k_ k=1
mi¥0, =06 o T7e =TT, 10 Gk .
As a consequence, Wi*d Qm = Tan:f o d@k . From the second structure

equation, we obtain

k% _ k% kx . ko
T @, =T *d0 +mi*e AT 0,

k*w ]

m k% m
+3[Tnm_  mkxaw T ego Ta¥w

:Twi:f od5k+T7TZ°wk/\TTTi:f 0 0,
T3 LTT jowy, Tk o]

=Tkl (A0 +wyn6+3 [Trk_ow,, THh_ o))

=T7kl.®, .

COROLLARY II.3 If the torsion form (resp. the curvature form) of w, va
nishes identically on T(Hk( Vn)), the induced connection «,, (m<k)

is without torsion ( resp. without curvature).

Let w, be a linear connection of V,- We say that w, is quasi-ho-
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22 YUEN PING CHENG

lonomic if the connection form w,, restricted to T(Hk(Vn)). defines a
connection in the principal fibre bundle H*( V,) over V. If w, is quasi-
holonomic, all induced connections w, (m< k) are quasi-holonomic. The

canonical connection in H®(R”)= R”XEf is quasi-holonomic.

2. Second order linear connections.

Let u be an element of H2( V,). Consider a coordinate neighbout-
hood U of a0—770(u) with a system of local coordinates {1, x2,.., x"}.
The 2-frame u can be represented by a set of local coordinates (x%, x%,

7]
x]’.k) with det(x;.);fo. Let U’ be another coordinate neighbourhood of a,

with a system of local coordinates {yl, y2, y"}. The same u is re-

presented by (yi. y]’:, y.ik). The changes of local coordinates are given by

¥ =yi(x)
i
X .
]
. o2 ym doy? .
i-s oY s i
ik (O o k)x + 2 (— x)(bxk)qu

An element g€ Zﬁ can be fepresented by u=( a;, a]':k) with a’et(a;:) +0.1In
terms of these coordinates, the multiplication in Z‘i is given by
i i iy — igm ipm S giopP .
(a]., jk)'(bj' ik) (2 amb]. , 2 a, b;k+ aqu] bZ)
The action of E‘? on ﬁ2(V ) is given by

(%, xb x]k)(a a]k) (%, Zx am S Xk ak+2qu]a2).

J’
Let a be the automorphism of Li defined by a(a]., a]’.k) =(a]’:, a;;].) .

It is evident that a leaves fixed every element in Lf. Moreover, a? =

identity. We have immediately

PROPOSITION I1.4 There exists an involutive automorphism o of L-,i such

that L2 is the subgroup of all the fixed points of a.

THEOREM IL.5 The homogeneous space Ei/Li is weakly reductive:

there exists a vector subspace b of ££ such that

gizgi & M ( direct sum),
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where Qﬁ (resp. Eﬁ) is the Lie algebra of Li ( resp. L_:fz).

This result is an immediate consequence of the following lemma

proved in [2].

LEMMA 11.6 Let a be an involutive automorphism of a Lie group G. The
set of fixed points of a forms a Lie subgroup G of G. Moreover, the homo-

geneous space G /G is weakly reductive: there exists a vector subspace

M of the Lie algebra G of G such that
§=§® M ( direct sum)
ad(G) Mc M
where G is the Lie algebra of G. The vector space M can be given by
M={xeG: Tarx)=-x}.
Let M be the vector subspace of Ei defined by the above lemma.
If XeM, YeM, Ta([x,v))=[Tarx), Ta(y)] =[-x,-yY]=[X, Y]
showing that [X, Y] 583, ie. [N, M) Cgi. We have therefore the follo-

wing result.
COROLLARY I1.7 The homogeneous space Eﬁ/Li is a symmetric space.

For the rest of this section, we fix once for all a decomposition
gﬁ:ﬁi@ m, where M is the vector subspace defined in the theorem IL.5.
We denote by i the canonical injection of H2( Vn) into P72( Vn).

Let &, be a connection form in 72( V,). We can write *«, =
w,+t, where w, (resp. t) is the gi-component (resp. m-component) of
*d&, . Since ad(Li)mC n, w, defines a connection in the principal fibre
bundle HZ( V,) over V, and t is a M-valued tensorial I-form on H2( V.,),
called the quasi-holonomic form of &, . Inversely, the couple (w,,t) de-
termines a connection @, in H2( V). In fact, if £e Tu(ﬁz{ V.)) with
ueH?( V,), we can write £ =£'+£", where &' is a horizontal vector
with respect to the connection @, and £" is a vertical vector. Let us put
@y(E)=t(E)+u"1(£E"). Now, if £€T (H(V,)) where v ¢ H3(V,),
there exist u € H?( V,) and géti such that v=ug and ngRg(§) for
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some £ € Tu(ﬁz( V,)). It is easy to check that 52(5.):ad(g'1)w‘2(§)
does not depend on the choice of z and g. The mapping £~ @,( &) gives
the required connection form on 172( Vn). Besides, z‘*652=o.>2+t. We have

thus established the following result.

PROPOSITION 11.8 There is a one-to-one correspondence between the set
of all second order connections &, of V, and the set of all couples (w,,
t), where w, is a connection form in H?( V,) and t is a M-valued tenso-

rial 1-form on H2( V), the correspondence is given by
.= _
MWy =wytt.
COROLLARY IL.9 A linear connection &, is quasi-holonomic if and only
if its associated quasi-holonomic form t vanishes identically on H2( v.).
Let ¢ be a tensorial form on H2( V,). From the structure equation
Dp=d¢ +w,n¢
where D is the exterior covariant derivative of ¢ with respect to @y,

we deduce that
#*(D¢)=d¢ +i*d, A ¥
=d(#*¢)+i*Gy A%
:d(i*¢)+w2/\i*¢ +t ATED.

The induced form 7*¢ is a tensorial form on H2( V,). If D is the exterior

covariant differentiation with respect to w,, we have

D(z*¢)=d(i*¢)+a_)2/\z’*¢.
Thus

#(Dp)=D(*¢)+tni*ed.

Let 52 (resp. Qz) be the curvature form of 6752 (resp. wz). From

the structure equation
we have
#Q,=*(da,)+i* (@, @,] )

=d(*@,)+ [*a,, i*a,)
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=Q,+D¢+ [z, 4]

The form D¢+ [t,¢] is a tensorial 2-form on H2( Vn). We may call it the
quasi-holonomic curvature of &, .

From the structure equation
0,=d0,+a,n0,+3 [T12 @, Tn?, ]
we have
*0,=*d 0, + *@, ni*0,+3[T7? , i*@,, Tm? 4 i*@,)
=0,+ 1A% 60, + 3 [TT2 ((w,+1), T2 o(wy+1)].
The form
T=tn*0,+3[T72 o (wy+1), T2 (w,+1)]
=3[T72 ,w,, TT2 , w,]
is a tensorial 2-form on HZ( Vn), which may be called the gquasi-holonomic
torsion of &, .
If @, is quasi-holonomic, its associated quasi-holonomic form ¢

vanishes identically on H2( Vn). Therefore, the quasi-holonomic curvature

and the quasi-holonomic torsion of &, are zero.

3. &-connections.

Let u be an arbitrary element of Li. There exists a unique auto-
morphism / of the vector space R” such that u:jé /- The induced map
/(k -1).qg*"I1(R7)-H*"I(R") is a (k~-1)-admissible isomorphism, and

/(k ”eLk. The mapping u ~*(u)= ]e /(k ) gives a canoni-
cal 1dent1f1cat1on of Ll with a subgroup of Lle (hence of L* n)- For m<k,
ok b,

An invariant section of the fibration ﬁk+1(Vn)~H1(Vn ), i.e. a

lift ¢y, of HI(V ) into A**1(V ) compatible with the canonical ho-

Lk+1:L711-*E’]2+1, will be called an & connection of order k

momorphism
of V . Itis given by a reduction of the structure group of HET 1 V,) from
LT:""] to LZI. There is a one-to-one correspondence between the set of all
& connections (of order k&) of Vn and the set of all semi-holonomic con-

nections (of order k) defined in the sense of Ehresmann on the principal
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bundle HI(V ). [4c] .
We say that an &-connection ¢k+1 is symmetrical or holonomic

(resp. quasi-holonomic) if
Gy (HHV))CHRY(V ) (resp. ¢y (HI(V, )3 CH* (V).

If ¢k+1 is symmetrical (resp. quasi-holonomic), all projections ¢, , ;=
Wiif oty of ¢4 are symmetrical.

Consider an open set U of V, with a system of local coordinates
{x1, x2,...,x"}. In terms of the induced local coordinates, a lift ¢k+1

of HI( V) into 1-7“’1("”) can be expressed by

(xi,x’:) - (xi,x’:,...,x’: . . )
] ] J112 0+ Tp+1
If ¢k+1 is invariant, the functions x;:1].2, cees x]ll iasi can be written in
the form
i . m 1 s
x5 . - ‘ZI"Z _1 P>
wi o == i xf"zx’”zx’”a
j123 mpmm3 ip “h R
. m m m
xt . . :—ZF:” x.lx.2...x.k+1
IpoJk+1 1M My I 12 Tkt+1
where [ N are differentiable functions defined on

mymy’ CLORIR oSS
U. These are the Christoffel symbols of the & connection ¢k+1. They
are not entirely arbitrary; they have to satisfy certain conditions when we
change the local coordinates system. It is clear that ¢k+1 is symmetrical
if and only if all the Christoffel symbols are symmetrical with respect to
their lower indices.

Let us consider some particular cases:
case (1): k=1.

Let ris (resp. I:'_is) be the Christoffel symbols of a first order &-
connection <752 relative to a coordinate neighbourhood U (resp. U) with
a local coordinates system {x1, x2,..., x"} (resp. {71, %2, ..., ""}). If
Uun L7;t¢, we obtain easily the classical formula for the Christoffel sym-

bols of a linear connection
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Y 7 oxt Zx* o4t
ri —ZFM(-&)(—E)( ()

The quantities I_']’.'le define then a linear connection of V. On the other
hand, if ze€H( V,), the lift $,(u) of u determines a horizontal n-plane
QqS (u) . of HI(V) at u. Since ¢2 is compatible with 12:141*52, it is
easy to check that the distribution u- Q¢> (u) defines an infinitesimal
connection on HI(V ), thus a linear connection w; of V,. The quanti-

ties F]k are simply the classical Chnstoffel symbols of the associated

linear connection w; . In fact, if X Zx (-——) (1€j<n) is a basis for

Tx(Vn), with x € U, the honzontal lift of X]. at u:(xi. x]':)eHI(Vn)

with respect to w,, is given by

X*=3 xig2
]'* xi(b_xl‘)u"' k( )

. . . 0
where x}kz-zrisx;xz.. Let ré:(bxi)el (1<i, j<n) be a basis for £1
. i
The components of w, =2 a,]’ 7} can be expressed by
i=3 yi (dx*+Z Ck xPdx™

w] yk(dxl + Cmpx] dx™)
where (yi) is the inverse matrix of (x};) and Cfnp are the classical Chri-
stoffel symbols of the linear connection c«;. Consequently, cc;:( X%¥)=0

for all indices 1< 7, j, E<n. It follows that

4 ==3T xx
]

rs k

$=.5 Ct xTx5,
rs”i7k

Since det(x]’.');fo, we have F].sz].k.
PROPOSITION II.10 L4a) (i) There is a one-to-one correspondence be-
tween the set of first order linear connections of V, and the set of inva-
riant sections of HI( V,) into a2?( V,).

(ii) Two linear connections of V, have the sa-
me torsion if and only if the images of H1¢ V) by the corresponding inva-
riant sections are contained in a principal subbundle of f72(Vn) baving

2
the structure group L7.

It remains to prove the second part of the proposition. Let ¢,, ¢2
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be two invariant sections of HI( Vn) into ﬁz(‘Vn). In terms of local co-
ordinates, these &-connections are given by

(xhxf) — ¢p(xtxl)=(xf xl, =S T a0x}),

(xhxl) —= Ey(xh xl)=(xd xl, -STE ol }).
where ' ik’ F]k are the corresponding Christoffel symbols. As ¢2(x )X f)
and ¢2(x x; 1) are on the same fibre of H2( V ), there exists an element
( 5;-. gjk) eMi— Ker (Lﬁ—* LTII) such that

(x,x, ZF‘ xp)= (x,x, N x'xlsc)(S;,g]‘:k).

rs J

It follows that

ZF; x.xl‘::Z I—'i x

r s _ i _m
s % Xy meg].k,

r
rs ]
Consequently, we have

® s (T =T )xr fxg=2 (% - )x s -z x, (8l =8k
If the two linear connections have the same torsion,that is if l“iq-l“g,:
Fi ~1“;r, we have Sx! (g]k 8L] ”)=0. Since det(x )J#0, we get g]-’”k‘—'
gk”;-, which shows that (8]-. gjk) EMﬁ—M‘gﬂLi. Hence the condition is
necessary.

If ¢, and ¢_2 map HI(Vn) into the same principal subbundle of

H?( V,) having the structure group Li, we still have the formula (%) with
g,.’z——-g,;”j. Consequently,
S (T1 =T )alxf=5 (T -8 )l xg
Since det (x]l:)#(), we get
De-T5, =TT,

Hence the connections have the same torsion, proving that the condition
is sufficient.
Case (ii): k=2

An element of Ez can be represented by a set of coordinates (a;,
a]’-k, a}km) with det ( a’.)#O. The multiplication is given by

i 1 i — i i i
(a, /'k'“ )(b b]k,b]km)—(Za;b;,Z(a;sb]{szra;b;k),

360



HIGHER ORDER FRAMES AND LINEAR CONNECTIONS 29

st i 1r 1s i r ;s i prys 1. r
Z(arstb;b b +arsb] bS +a; by ]m+arsbjbk rb]km))'
If u=(x,x].,x].k,x].km)eHB(Vn), the action of Ez on Hj(Vn) can be

expressed by
(x,x x]k, ]km)(“'“]k’a]km) (xt, Zx‘a' Z(xrs i k+x ak)
i
2(xrst i k‘z +xrs 7k m+x ak ]m+xrs ]akm+x a]km))'

Consider an &-connection ¢‘3 of order 2. In terms of local coordi-

nates , ¢ is given by

i -
( x%, x) — (x,x, ZF;SJ Zr;st ]xkxm)
where l—'rs, l—'rst are the Christoffel symbols. If F,s, I_',St are the Chris-

toffel symbols of ¢3 in an other local coordinates system, we have

) —  oxP oz ox! 27 ox
| 2 a —_— R
M=sTh (s k)( AR Gevre e ?s

be t =i 63 El

-— x
i, =3(— ) {re -
jkm (b:?])(bfz)(bf”’){ ’S’(bxa') (bx'bxsbxt)+

2=7 2=i 2=
>4x 3 3

ra %% ,ipe % jipa, %% |y
fs(bxabxt) rt(bxsbxa) St( bx’bxa)

By direct computations, we have the following result:

PROPOSITION IL11 Let I_‘]Z:k‘ l_';:km be the Christoffel symbols of a second
order &-connection of V,. If the induced first order &-connection is sym-
metrical, then the following quantities

Al =i Tt

jkm jkm kjm’

i i T
B]/em I-.l'lem l—‘mkj’
ct, =TI -[i

jkm jkm jmk
are respectively the components of a (1, 3)-tensor on V,. The given &

connection is symmetrical if and only if these three tensors are zero.
4. Linear connections and &-connections.

The Lie group Eﬁ'” (resp. Lﬁ+1) acts linearly on E* (resp. Ek=
Tek(Hk( R”))) on the left. We denote by SkT (resp. SET) the associa-
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ted vector bundle of A**I( Vn) (resp. Hk+1(Vn)) with standard fibre EX
(resp. E*) and structure group E5+1 (resp. L,]:_H)- For k=0, S0T=
T(V,).

PROPOSITION 11.12 The vector bundle SKF (resp. SkT) is canonically
isomorphic to the vector bundle T(I-Tk( Vn))/E: ( resp. T(Hk(Vn))/LS).

An element u€1~7k+1(Vn) determines a linear isomorphism #Z of
E* onto Tu.(ﬁk( Vn)) with u'=7TI]:+1(u)- On the other hand, # can be
considered as a linear isomorphism of E* onto the fibre (§kT)x over x,
where x is the projectionof » on V, . We have then a linear isomorphism
foul of (S:kT)x onto Tu.(l-.lk( V_)).If v.is another element ofﬁk"'l(vn)
with projection x=7715+1(v), we can write v=ug for a unique geEﬁ'H .
Similarly, we have a linear isomorphism o vl .'(§kT)x-° TU.([-.Ik( Vn)),
where v'=771/:+1(v). Now, v=uo p(g) and z7=TRg.o %o o(g) with g'=
7Tlf+1( g) 61:,]2. Consequently, 7o v I=T Rg.o %oul. Since H"“(vn)*
Hk( Vn) is surjective, we get an isomorphism of SET onto T(ﬁk(Vn))/Z’I:.
Similarly, one establishes an isomorphism of SET onto T(Hk(Vn))/L:.

P. Libermann showed that T( HE( Vn))/zs (resp. T(Hk(Vn))/Lﬁ)
is canonically isomorphic to JkT (resp. J*T), the k-th semi-holonomic
(resp. holonomic) prolongation of the vector bundle T(Vn). Thus, we ha-
ve an isomorphism of S¥T (resp. SET) onto JET (resp. J*T).

HEH1( V) being a principal fibre subbundle of HEHL( V) and the
action of Lf‘“ on Ek being the restriction of that of Eﬁ+1 on Ek, the
vector bundle S*T can be considered as a vector subbundle of S¥T.

The projection anif of f_lk+1(Vn) onto H"H'I(Vn) induces a
surjection pi of ST onto S T. Moreover, the restriction of pﬁl to each
fibre of S¥T is linear. Similarly, we have a projection of S¥T onto S™T
for m< k.

An G-connection ¢k+1"H1( V,)= AR+ V) induces a splitting
of the following exact sequence of vector bundles

where N* is the kernel of the projection SKT - T( V,). More precisely,

we have the following result:
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THEOREM 11.13 There exists a one-to-one correspondence between the set
of &-connections of order k of V, and the set of splittings of the exact

sequence of vector bundles over V :
0 —= Nt — $*T — T(V ) — 0.
Let us first prove two lemmas:

LEMMA I1.14 Let E*=R"® Ei be the canonical decomposition of E* de-
fined by the canonical connection in ﬁk(R”):R”XES. For every other
decomposition of E* of the form E*k= ok Eﬁ, there exists a unique g€
ikt = Ker.(ZfH - sz) such that p(g)(R") = Qk'

We prove the lemma by induction on k. For £=1, we have the ca-
nonical decomposition El :R”@S’i, Let E! =Q1®£i be another decom-
position of E!. Consider a local section o, of HI(R")-R” such that
0,(0)=e, and To;(R")=0. Let f be the admissible local isomorphism
of HI(R™) into H'(R™) defined by the condition: [, M, =0y, where 7,
is the «zero section» of H!(R")=R"XLI<R". The I-jet jilf:g defi-
nes an element g¢€ Mﬁ = Ker(Zi* Li) satisfying the property: p(g) (R?) =
ol. Uniqueness follows from the fact that the neutral element is the only
element of Mﬁ leaving stable the two components of El= R"@ﬁfz.

Let us assume that the lemma is proved for m< k-1 . If E—k:Qk@
gﬁ is a decomposition of E*, we may consider a local section o of
H%(R”)~R™ satisfying the conditions: 0,(0)=e, and Toy(Ty(R"))=
Qk. Now,

Etl=Tok_(E*)=Tnk_ (0t @eTnt_(®k)=Tr_ (0k)p8k~1,
From the induction hypothesis, there is a unique g’EMk:Ker(Ei—oLi)
such that ,O(g’)(R"):T?Ti_I(Qk). Let b be the admissible local iso-
morphism of H*(R”) into H*(R™) defined by the condition: 5, N =
Rg.(,cf]e where 7), is the «zero section» of H%( R"):R"XES*R”. The
I-jet ji b defines an element g of /\_4k+1:Ker(Eﬁ+1"L,11) such that
plg)(R?) =Q*k. Suppose that there is another geMkH satisfying the con-
dition: p(z)(R”)=0Q%. We have then ,O(7T£+1(§))(R")=T77:_1( 0%).

Consequently, g':772+1(§'). We can write g=gm, where m, is an ele-
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ment of Ker(E£+1 -‘zﬁ). Since the neutral element is the only element of
Ker(E§+1*Eﬁ) leaving stable the two components of Ek:R"@S?ﬁ, we

conclude that g=g proving the uniqueness of g.

LEMMA 11.15 The Lie group Lk+1(L'12) is the largest subgroup of l:i'u

which leaves invariant the two direct summands of Ek= R"@fﬁ .

It is easy to check that Lk+1(L;lz) leaves invariant the two direct
summands of Ek:Rn@gﬁ. Now, consider an element gezﬁ"'l such that
p(g)(R")=R"”. Let gO:W’;+1(g)i The action of Lk+1(go). g~ ! on
R?c E* s trivial. Consequently, we have g=¢k+](go) €Lk+1(Lr11) in
virtue of the preceeding lemma.

Let us go back ta the proof of the theorem. We have seen that there
is a mapping F of the set of &connections of order k of V, intothe set
of splittings of the exact sequence of vector bundles over V, :

0 — Nt —S*7 — T(V) — 0.

This mapping F is injective. Let us consider two &-connections Frri

and Y, ,; which induce the same splitting
F(¢k+1):F(¢k+1)-'T(‘/,l)"§kT.
If yeT(V ), we can write y=q,(u, &), where ueHl(Vn), £ eR” and

9, is the natural projection of HI( Vn)XR" onto T( Vn). The condition
F(¢k+1)(y)=F(l,bk+1)(y) implies that

Gt 10 Par1(u) E)= Qi (Ypy (w). ),
where we have denoted by ¢, ; the natural projection of HR+1 (V,)x E*
onto SET. From the above lemma, we deduce that ¢k+1(u) =y 4 1(u) for
all ueHI( V,). Let us show that F is surjective. Consider a splitting of
the exact sequence
0 — Nk — SkT — T(V,) — 0

given by the lift o : T(Vn)-§kT. Let x be an arbitrary element of Vn.
An element u of the fibre of ﬁk+1(Vn) over x determines a linear iso-
morphism of E* onto (fkT)x. The image o (T,(V,))) is a vector
subspace of Ek. More exactly, we have E-k=u—1(0’ ( Tx( Vn)))dagﬁ. From
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the lemma II.14, there exists a g¢€ MEHT = Ker(Z5+1 - L,Iz) such that
p(g)(R")=u"T(o (T (V,))). The element v=uge H**1(V ) defines
therefore a linear isomorphism of Ek:R”®§§ onto (fkT)x, mapping R”
onto o(T,(V )). Every element of HR 1 V,) lying on the fibre over x
and having the same property is of the form vg, with g 6(k+1(L,12). Sin-
ce x is arbitrary, we obtain in this way a principal subbundle of ﬁk+1(Vn)
with structure group ck+1(L,11), hence the &connection that we are loo-
king for.

The vector bundle T(ﬁk(‘/,l))/iﬁ is isomorphic to SET. We ha-
ve therefore a one-to-one correspondence between the set of linear con-

nections of order £ of V and the set of splittings of the exact sequence

of vector bundles
0 — Nt —= ST — T(V) — 0.
From the preceeding result, we have

THEOREM I1.16 There is a one-to-one correspondence between the set of
linear connections of order k and the set of & connections of the same or-

der.

Consider an &-connection ¢k+1:H1(Vn)—°F—1k+1( V). Let ¢, =
7T£+1 o Py If eHI( V), ¢441(u) determines a horizontal n-plane
of A¥(V ) at ¢,(u)el*(V ). We obtain thus a field of n-planes of
H*( V,) defined on ¢k(H1( V,)). It is easy to check that this local field
is invariant with respect to the right translations defined by the elements
of ck(Li) on A*( V). Consequently, we can extend it to a global field of
n-planes of Hk( V) invariant with respect to the right translations of Eﬁ
on ﬁk( Vn). We obtain thus a linear connection @, of order k of Vn. This
correspondence ¢k+1-‘wk is exactly the one we have established in the
above theorem. For k=1, we have a one-to-one correspondence between
the set of symmetrical linear connections of V, and the set of invariant
sections of HI(Vn) into H2( V,) (cf. Prop. 1.9 and Prop. I1.10). Let us
assume that there is a one-to-one correspondence between the set of sym-
metrical &-connections of order m (m< k=1) and the set of quasi-holono-

mic linear connections of the same order having zero torsion. If ¢k+1 is a
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symmetrical &-connection of order k, the corresponding linear connection
@, is quasi-holonomic and without torsion (cf. Theorem 1.10). Inversely
let w, be a quasi-holonomic linear connection having zero torsion and let
¢k+1 be the corresponding & connection established in the above theorem.
The connection projection Cpag (of order k=1) of w, is a quasi-holono-
mic connection without torsion. From the induction hypothesis, the corres-
ponding &-connection ¢, is symmetrical. It is easy to check that ¢, =
772+1 o $py1- Hence ¢k+1(H1(Vn))CHk+1( V,) from the Holonomy

Theorem». We have thus established the following result:

COROLLARY 11.17 There is a one-to-one correspondence between the set
of symmetrical & connections and the set of quasi-holonomic linear connec-

tions without torsion.

5. Pseudo-connections and multi-connections.

A pseudo-connection of order k of V is a couple (Y, ;. ¥, ;),

where ¥, ; is a homomorphism of Ei into Zﬁ'u and ¢k+1 is a diffe-

rentiable lifc of A*(V ) into H*T1(V ) such that

Vg1 (ug) =y () ¥y (g)
for all ueﬁk(Vn) and g eiﬁ. It follows that ¥, ; is a lift of E: into
E§+1 . The condition of compatibility implies that an invariant vector field
of Hk( V,) can be lifted to an invariant vector field of Fktig V,). We ob-
tain thus an infinitesimal connection in the principal fibre bundle R+
Hk(Vn), or equivalently, a splitting of the exact sequence of vector bun-
dles over V
0 —= Nl — Sk+IT — SkT — 0

where N]EH is the kernel of S¥*IT~SkT,

Consider a pseudo-connection (Y, , ;. ¥, ;) of V, . The lift Vi1
of H( V,) into HRH ¢ V,) defines an absolute parallelism on Hk(\/'n).
If ZeT,(A*V,)), we put a(Z)=0, (%) (Z). The mapping Z -
a(Z) defines a differentiable I-form «a on ﬁk( Vn) with values in EX.

There is an induced linear representation of Ef on E* given by

o=po¥pyy

366



HIGHER ORDER FRAMES AND LINEAR CONNECTIONS 35

where we have denoted by o the linear representation of E,]:H on E*.
If ZeT(H*(V,)), we have a(TRg(Z)):o-(g'I)a(Z), ie. a isa
pseudotensorial I-form on Hk(Vﬂ), called the pseudo-connection form of
(Vv Yarr)

A multi-connection of order k of V, is given by a sequence of pseu-
do-connections (Y, . ;, ¥, ;). m=1,2,....k such that ¥ L ;0. =
«™*1 . The composite map Frr1=Vpr10Ph 00y, defines an &~con-
nection of V . Inversely, given a sequence of homomorphisms L S
Z;"-' E;”"” such that ¥ ot™=0"t1 (m=1,2,...,k), an &-connec-

tion ¢k+1" HI( Vn) - i'{k+1( Vn) determines a multi-connection of order & of Vn.

We are going to define a natural sequence of group homomorphisms

A, __ A _, A -
L1 "2 p2 3 ... . Lk RLILAEAD
n n n n
satisfying the conditions :W:'H o Ay =identity, Ak+1 o K=k for
kE=2,3,.... We put A2=L2, the canonical injection of L] into L2. It in-

duces a lift of HI(R")ZR"XL,Iz into H2( R”):R”XL—,i. We will denote
this lift by the same symbol A,. Let u:je1/€ Ei, where [ is an admis-
sible local isomorphism of HI(R”) into H!(R"). Consider the local iso-

morphism b of H2(R”) into H?(R") defined by the condition :
hoty=R,0hy0R o fomy,
where u':Wf( u) and n; (i=1,2) are the «zero sections». The I-jet
ji2b depends uniquely on z and the mapping u~ A3(u) =ji2b defines a
group homomorphism of Ei into Ei satsfying the required conditions. Let
us assume that we have defined homomorphisms™4,, A3, ..., A, satsifying
the required conditions. Let U:jik ib efﬁ, where b is an admissible lo-
cal isomorphism of A*"1(R”) into H*“I(R™). Consider the admissible
local isomorphism g of H%(R") into H¥(R”) defined by the condition:
8o =R, o8y oR b0,

with v’=7T]I:_1(v) and 7; (i=k=1,k) are the «zero sections». It is easy
to check that the mapping v- AkH(v):jikg defines a group homomor

phism of Eﬁ into Ei‘” with the desired properties. We obtain thus a natu-

ral sequence of group homomorphisms

367



36 YUEN PING CHENG

A
1 2 72 Tk Tktl17k+tl
L —_— Ln E—— e — Ln —_— Ln

n

PROPOSITION 11.18 There is a one-to-one correspondence between the
set of & connections of order k of V. and the set of multi-connections of
the form {( A A )}rg m <y where the A

n are the homomorphisms of

the natural sequence.

6. Prolongations of linear connections.

We have seen that a linear connection of order 1 of Vn can be gi-
ven by an invariant section ¢, of H( V) into H?( V,). We are going to
construct a lift of ¢2(H1( V.)) into 3¢ V,). Let u=ji1f€¢>2(H1(Vn)),
where [ is an admissible local isomorphism of HI(R”) into H( V,). Let
b be the admissible local isomorphism of H2(R™) into H?( V) defined
by: hoTpy=¢s0 07 - The mapping u=@¢3(u)=71 b defines a lift of
¢2(H1( V.)) into H3( V,). The composite mapping ¢, =¢g o ¢, defines
an invariant section of HI(Vn) into 173(Vn). The & connection ¢3 ob-
tained by this way or the corresponding linear connection of order 2 will
be called the first prolongation of ¢, The principal subbundle ¢3(H1(Vn ))
of H3( V.,), possesses the following property: for every v € ¢3(H1(Vn)),
there exists an admissible local isomorphism g of H?(R™) into H?( v.)
such that v=7'£ g and that g maps the (local) zero section of H?(R™)
into ¢2(H1( V_.)). By means of this property, we can construct a lift ¢§
of ¢3(H1(Vn)) into H¥( V) and the composite mapping ¢4=¢§°¢3
defines an &-connection of order 3, called the second prolongation of ¢2 .
Notice that the projections of ¢4 are respectively ¢3 and ¢,. By itera-
tions, we construct the k-th prolongation of ¢2.

If we consider only the prolongations of linear connections of order
1 of Vn, we do not obtain all the linear connections of higfler order of Vn,
A linear connection of order & is called simple if it is the (k ~1)-th pro-
longation of a first order linear connection of V.

Let wy (resp. w}a) be a linear connection of order & of V, (resp.
V,). We will say that «, is equivalent to « if there exists a diffeomor

phism / of V onto V, such that /(k)*wl'e:wk'
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A linear connection w, is called locally flat if it is locally equi-

valent to the canonical connection in the trivial bundle A%(R")= R”Xff.

THEOREM I11.19 A linear connection of order k is locally flat if and only

if it is simple, without torsion and without curvature.

It is well known that a first order connection is locally flat if and
only if its torsion and curvature are zero. For k> 1, the conditions are ob-
viously necessary, because the canonical connection in H%(R") is sim-
ple, without torsion and without curvature. Let us show that the conditions
are sufficient. Consider such a linear connection «,. The connection pro-
jection @; of order I of w, is locally flat, because its torsion and its
curvature are both zero. Since «, is simple, we can obtain «, by taking
the successive prolopgations of «;. Let ¢k+1 be the invariant section of
H! (V,) into Hk+1(V ) corresponding to w, - We put gz':k—Trk °¢k+1
For all y€H1( V), the horizontal n-plane of k¢ V) associated to the
(k+1)-frame ¢k+1(y) is tangent to ¢k(H1(Vn))’ because w, is sim-
ple. From the «Holonomy Theorem», we have ¢k+1(H1( Vn))CHk+1( V,).
On the other hand, the nullity of the curvature form of wy implies that the
distribution of n-planes of H*( V,) defined by w, is involutive. Let W be
the maximal integral submanifold passing through u €¢k(H1( V.)). We ha-
ve WCqﬁk(H](Vn)). The canonical form &, (resp. ék) of H( V) (resp.
A*(R™)), restricted to W (resp. Q—T)k(R")), will be denoted by 9
(resp. é ). These forms Oy and GQ have their values in R”?CE*~1. Con-
sider the I-form [ =p% HW -p% QQ on the product manifold WX Q, where p,
(i=1,2) are the projections on W and Q respectively. In terms of a ba-
sis {al, 4® ...,a"} for R", the components B; of B are linearly inde-
pendant. Consider now the module M of vector fields X on Wx Q such

that ,Bi(X)z(j for i=1,2,....n.If XeM, Yel, we have
dB(X,Y)=XB(Y)-YB(X)-B([Xx,¥])=-8¢[x,v]).
On the other hand, d3( X, Y)=0. Consequently, [X, Y] el showing that

M is involutive. Therefore, there exists a maximal integral submanifold M
of dimension » passing through (u, e,) € WX Q. For any non-zero vector
Z tangent to p;l(ek), ,B(Z)%O. We can find an open neighbourhood U

of e, in Q and a differentiable section A of U into WX Q such that we
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have A(U) CM. Let h=p; o, A. The form [ vanishes identically on M,
we have X*ﬁ =0, showing that éQ :b*‘9W' We can now extend b to a lo-
cal isomorphism b of A*(R™) into H*( V) satisfying ék Z};*Qk- In virtue
of theorem 1.2, we can find an open neighbourhood N (resp. N') of O¢
R” (resp. x:w(’;(u)evn) and a diffeomorphism [ of N onto N’ such
that locally ZZ/'(/“). Consequently, w, is locally flat.

Département de Mathématiques, Tour 55,
Université Paris 7,

2 Place Jussieu

75- PARIS (5°)
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