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ON THE HOLONOMITY OF HIGHER ORDER CONNECTIONS

by Juraj VIRSIK

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

Vol. XII, 2

Higher order connections in Lie groupoids and their prolongations,
notions first introduced by C. Ehresmann in [3], are studied in this note
from their formal « holonomity» point of view. It is shown in particular, that

the prolongation of an r-th order connection is semi-holonomic only if the

connection is simple ( i. e. is obtained by subsequent prolongations of a

first order connection ) ; it is holonomic if and only if this first order con-

nection is curvature-free. A sequence of r connections of order r-1 is at-

tached to each r-th order connection. This sequence determines the r-th or-

der connections uniquely up to an r-th order «covariant tensor on the base»

with values in the isotropy Lie algebra bundle of the groupoid. The Appen-
dix describes the intuitively obvious characterization of simple connections

as those which give rise to «parallel transport». 
The term manifold represents always a Coo -differentiable finite di-

mensional manifold and similar restrictions apply to related notions. The

notions of non-holonomic, semi-holonomic and holonomic jets and the for-

malism of their calculus are those introduced by Ehresmann (cf. [21 ),
with the following notational conventions: If f : M-N is a local map, we

write sometimes jrx(u-f(u)) instead of jrx f, and jrx [y] =jrx(u-y) for a

fixed y E N . If M=N, jrx=jrx(u-u), jrx=jrx [x]. A fibred manifold is gi-
ven by a surjection of maximal rank PE : E - B between two manifolds; it

will be simply denoted by E . The fibred manifolds of non-holonomic, semi-

holonomic, holonomic jets of local sections in the fibred manifold E are de-

noted by 5"E or D’E or DrE respectively. A section g in Dr E is called

an s-wave (flot) if g(x)=jsx f for some section f in Dr-s E ; we write

briefly g=jSf. If f : E- F is a bundle morphism, then Dr f : Dr E -Dr F de-

fin ed as (Drf)(X) = (jrBXf)(X), will be al so denoted by j’ f ; we sali

agree that j’ f is to be regarded as either a section or a bundle morphism
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depending on whether f was a section or a bundle morphism. Also j0 is

understood to be the identity functor. ,(Ie shall identify I)r(M X N) with

Jr(M, N), thus regarding M X N always as a fibred manifold ill X N - .B1

with the natural surjection. Given a fibred manifold n and integers r &#x3E;q&#x3E;0,
we denote by prq : Dr E -&#x3E; DqE the natural ( target ) surj ections with pr be-

ing the identity on n’E, Together with prq, we have also the surjections

( jkprq-k-k) : DrE--&#x3E; DqE. 
LEMMA 1, The element Xe DrE is semi-bolonomic if and only if

lor mty integers 1 k q r. Especially if X E Dr E, then

for each

PROOF: X E Dr E mean s that X = j1x C, where C i s a local section in

Dr-1 E and (cf. [2])

i.e.

Thus the Lemma is evident for r= 2, and we can proceed by induction:

(A) Let X be semi-holonomic. Then (1) holds with q-: r - I and

k=1. We shall first show that

for

Since prq+1 (X) is also semi-holonomic, we know that

This is a recurrent formula for prq (X) and so having the desired formula

for q = r -1 one derives it immediately for all q = 1, ... , r-1.

As to the case k&#x3E;1, having X=j1x C, where f is a semi-holono-

mic section, we apply the induction assumption to it. This gives for 1I in

a neighbourhood of x, and for integers 2 k q r :

and so taking the one-jets at x of both the sides here, we establish the

rest of ( 1) for X EDr E.

(B) Conversely, suppose X=j1x C E Dr E satisfies (1). Then espe-

cially (j1 pr-1r-2)(X)=Prr-1(X), and we only have to show that C can be
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chosen as a semi-holonomic section. We have , equating the left hand sides

of (1) corresponding to k&#x3E; 1 and k - 1 ,

We deduce (3) from this by applying a result proved e.g. in [1] : If a, b :

N- V is a transversal pair of maps ( i.e. d a -d b is surjective everywhere
where it is defined), and f : M - N a local map such that j1x(af) = j1x(bf)
for some x E M , then there is a local map f’ : M --&#x3E; N such that j1x f = j1x f’ and

a f’ =bf’ in a neighbourhood of x. Now it is an exercise in the coordinate

expressions of jets t o see that jk-1pr-k q-k, Pr-1 q-1 :Dr-1 E--&#x3E;Dq-1 E is a

transversal pair, and so we can suppose that f satisfies (3). But then by

the induction assumption f is a semi-holonomic section and so X E Dr E.

As to (2) , it is a special case of (1) with k = q= 1 if s = r. If s r,

then (2) follows from prs(X) = (j1 pr-1 s-1) (X). This completes the proof.

R E M A R K . In general there are more than q natural surj ection s Dr E --&#x3E; D q E,

namely all those that can be constructed by various « compositions » of the

surjections (1) . There are however (rq) independent surjections DrE --&#x3E; D q E

among them, constructed as follows : 

Let C= { r&#x3E; c1 &#x3E;... &#x3E; cr-q &#x3E; 1} be a decreasing sequence of inte-
gers. Note that the number of such sequences is exactly (rq), and that for
each C t (t= 1, ... , r-q), we have a surjection

of the form (1) . We define the surj ection prq, C : Dr E --&#x3E;D q E associated to
q

the sequence C as the composition

of the maps ( 1 a) with t = 1, ..: , r-q. It is not difficult to see that prq cor-

responds to the sequence {ct =r+1 -t} and the surjection (1) to the se-

quence {ct = r+1-t -k }. Also the maps on the right hand side of (2) cor-

respond to the sequence {1, 2, ... , r} with t = s omitted. Applying an ar-

gument analogous to that in the proof of Lemma 1 one could show that, if

X E Dr E, then all pr’ C(X) E Dq E are equal for each fixed q r.
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The following lemma is obvious.

LElt1MA 2. I f f, g are local sections in E such that j1x f= j1xg, then also

The notion of a Lie groupoid O over B is taken from L5J ? and
means the same as a locally trivial differentiable groupoid introduced by
Ehresmann in [2J . Especially a, b :O--&#x3E; B denote the right and left unit

projections respectively, and ~ : B --&#x3E; O (written also as x--&#x3E;x) is the natu-

ral inclusion of the manifold of units into the groupoid. Further let G =

G (O) be the isotropy group bundle, and L=L (O) the isotropy Lie alge-
bra bundle attached to (D, i. e.

and

as in [5]. We denote by Dr G C Dr G the kernel of all the surjections prq, C,
i.e. Drq G consists of those X6D’’G for which prq, C(X)=jqaX (~) for all

decreasing sequences C={ct} as in the above remark. Analogously
Dr LCD’ L is the kernel of all the surjections pTI C regarded as vector
bundle morphisms. Put

and

Note that jjr q G and D q L are actually the kernels of prq restricted to se-
mi-h olonomic j jets.

There is a natural diffeomorphism of fibred manifolds

where exp : L - G is the exponential map on fibres, exp 
-1 

being defined in

a neighbourhood of ~(B) CO. Note that (4) preserves holonomity and se-

mi-holonomity, and also takes each Drq G onto Drq L, q = 0, 1, ... , r-1. E s-

pecially (4) maps Dr r-1 G onto a vector bundle canonically isomorphic with
L O(Or T (B)*). We shall identify these two bundles and write simply

Dr r-1 G=LO(OrT(B)*) as well as Dr r-1 G=LO(Sr T(B)*).
In this sense one can regard elements of 5;-1 G as covariant tensors on



201

with values in L .

Let us recall here the notion of higher order connections in (D as

in tro du c ed in 131 -

D E F IN IT IO N 1 . A non-holonomic or semi-holonomic or holonomic in finite-
simal connection ( to be abbreviated as IC) o f order r&#x3E; 1 in (D is a Coo-

map r: B - J’’( B, O) or Jr( B, O) or jr( B, O) satisfying
for all

It is well known that for r=1 this corresponds to the standard no-

tion of a connection in any of the principal bundles determined by O, as

defined e.g. in [4]. It is also evident that, if r is an r-th order IC, then

prq T (q=1, ... , r-1) is a q-th order IC .

Let now C= C(1) : x--&#x3E;j1x Cx be a first order IC in O and define for
each integer r &#x3E;1 the map

It follows from Lemma 2 that C (r) is well defined. Denoting by a dot the

composition in 4Y as well as its prolongation to each Jr(B, O) (cf. [2] ; 
see also [6] for more explicite rules), we easily derive that for any r-th

order IC I-’ and any first order IC C the map

is a well def in ed IC of order r+1 in O. Note that T’ =T*pr1 T is. called

in [3] th e prolongation of r .

Given r first order connections C1, C2, ... , Cr in O, we can defi-
ne recurrently their composition C1 *... * Cr, which is an r-th order IC in
O, defined explicitly as

Conversely, if T is an r-th order IC in (D admitting a decomposition in the

form (5), then all the Cs (s = 1, ... , r) are first order connections unique-

ly determined by T. This is established by the

LEMMA 3. 1 f r’ is a r-th order IC in (D, then each of the maps
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s - 1, ... , r, is a first order connection in O. If r is given as in (5), then

the maps (6) coincide with the generating connections Cs (s =1,... , r).
PROOF : We have

and analogously

So evidently the maps (6) represent connections.

Let now be as in (5). We first have to make sure that the map

(j1 ps-1 0) prs commutes with the prolonged multiplications in (5). Accor-

ding to the definition of the latter, it is sufficient to show that- denoting

by Y the composition rule in 0 - for any j et X E Jr(B, O X O) we have

provided the left hand side is defined. But this relation can be easily es-

tablished by induction on r . Thus we conclude that the expression in (6)

is a «prolonged multiple» of expressions of the form

If q&#x3E;s, this expression equals

If q  s, the expression is equal to

Finally for q = s we obtain

From there we easily conclude that
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and this completes the proof.
Vle shall denote the connections in (6) by Cs( T). If r is decom-

posable ( i.e. of the form C1*... * Cr), then the connections Cs(T)=Cs
(s= 1, ... , r) are called its generating connections.

We derive immediately from Lemma 1 and the semi-holonomity of

simple connections (cf. [3]) the

T H E 0 R E M 1 . I f T- is a semi-holonomic in finitesimal connection in (D, then

all the Cs( r) are equal. A decomposable infinitesimal connection is se-

mi-holonomic if and only if it is simple, i. e. all its generating connections

are e qu al.

More generally, extending only formally the argument in the proof of

Lemma 1 , one can see that if r is an IC of order r, then all the pT I C r
q

are IC of order q . Especially pr,k q T= (jk pr-k q-k) T, k=1, ... , q, are infini-

tesimal connections in O, and evidently

T H E O R E M 2 . An infinitesimal connection T in (D is semi-holonomic if and

only if prq, k T=prq T for all 1 k q r,
A formally straightforward but rather awkward manipulation with

jets leads to the following lemma, the proof of which will be omitted.

L EMM A 4 . If T is a section in Jr ( B, (D) and if Cs( T) i s de f ined b y
( 6) , th en

for any integers 1 k  q  r.

If C is a section in j1 ( B, (D) and if C (t) is defined as above, then

for an y in tegers 1 k  q r .
As a corollary of this lemma we have

TH EOREM 3 . If r is an r-th order infinitesimal connection in (D, then
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for
I for

if r is a decomposable connection C1*...* Cr, then the connec-

tions prq, k T are given byq

Especially all the prq, k T are also decomposable.
R E M A R K . One could derive again in the general case that Cs(prq, CT)=

Cd (T), where ( dl , d q is the increasing sequence obtained by de-

leting the elements ct, t = 1, ... , r-q, from (1, ..., r). A1 so th e conn ec-

tion prq, C(C1*... * Cr) is equal to the expression obtained by deleting

from C1*... *Cr the members Cct, t = 1, ... , r-q .

T H E O R E M 4 . I f I is an r-th order in f initesimal connection in (D and C a

first order connection in O, then

and

The proof follows directly from the definition of T* C. This toge-
ther with Theorem 1 leads to

T H E O R E M 5 . I f T i s an r -th order infinitesimal connection, and C a first
order connection in (D such that T* C is semi-holonomic, then necessarily

C = C1 ( T ), i.e. T*C= T’.

THEOREM 6. If T is an r-th order infinitesimal connection such that its

prolongation T, is semi-holonomic, then I is necessarily simpl e, i. e.

T=C*...*C.

PROOF : According to Theorem 2 , the semi-holonomity conditions for T * C

imply

for all q=1, ... , r-1. But this means that
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THEOREM 7 . A simple in f initesimal conn ection C*... *C in (D i s holono-

mic if and only if the generating first order connection C is curvature-

free.

To prove this we first state an almost obvious

LEMMA 5 . Let $ and i5 be two L ie groupoids over B , and let F: 4)

be a C°°- functor which is the identity on B . For T : B --&#x3E; Jr ( B,O), denote
FT : B--&#x3E; Jr(B, O) the map x--&#x3E;(jr F)T (x). I f no w r is an IC in (D, then

Fr is an IC in O. lf 7 is semi-holonomic or holonomic, then so is Fr.

If T= T*C then Fr=Fr*F’. Especiall y F takes decomposable IC-s

into decomposabl e ones and simpl e IC- s into simpl e ones.

PROOF OF THEOREM 7. If I- is holonomic, then so is pr2 T= C * C and the
curvature of C vanishes according to the result in [3].

Conversely, let C be curvature-free. If U C B is open, denote by

O jj c4J the corresponding full subgroupoid and by C|U the restriction

of C to U. Evidently C |U is a connection in O|U, and if C |U*... *
U is holonomic for each element U of an open cover of B , then so is

T =C*... * C. But a well known result about curvature-free connections,

( see e.g. [4]) states that B can be covered by open substes U , each U

admitting an invertible COO -functor from ID u onto the trivial groupoid

U X C Gz X U ( z E B being fixed ) which takes C|U into the trivial connec-

tion x--&#x3E; j1x (u --&#x3E;(x, z, u ) ) . Now it is very easy to see that all the prolon-

gations of this trivial connection are holonomic. Hence, according to Lem-

ma 4 , so are those of C rl and this completes the proof.

Let now and r be two r-th order infinitesimal connections in

(D. Then T. T-1 : x--&#x3E;T-(x). T-1(x) (or T. T-1) is a section in 5rG.

We shall say that and F are equivalent in the q-th order (1 q r) if

prq, CT = pr, CT for all decreasing sequences C={r&#x3E;c1&#x3E;...&#x3E;cr-q&#x3E;1}. 
Especially they are equivalent in the first order if
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they are equivalent in the ( r - 1 ) - st order if

It is not difficult to see that T and I are equivalent in the q-th order iff

T.T -1 is a section in D q G CD G. (One has only to verify that prq, C
commutes with the prolonged composition in O. This can be done similar-

ly as for the special case in the proof of Lemma 3 ) . Especially they are

equivalent in the (r-1)-st order if r.r 
-1 is a section in

THEOREM 8 . Let (D be a Lie groupoid over B satisfying the second ax-

iom of countability. Then there is a natural correspondence between (r-1)-
st order equivalence classes of r-th order infinitesimal connections in (D, 

and r-tuples of (r-1) -st order infinitesimal connections in CP. 1 f rand F

belong to the same equivalence class, then they differ by a covariant ten-

sor on B with values in the Lie algebra bundle L of O, i. e. T. T -1 is

a section in L O(Or T ( B) *).

PROOF. If r is an r-th order IC , then ( jk pr-k r-k-1) T,k =0,1, ... , r-1, is
an r-tuple of IC of order r-l. We only have to show the converse, i.e. that

given ( r-1 )-st order connections y1 , ... , YT there is an r-th order IC I-

such that (jk pr-k r-k-1)T-yk+1’ k =0, 1,..., r -1. Let QsCJs (B, O) be

the submanifold of those X which satisfy

with x=a X ; Q S is a fibre bundle (cf. [3]), and an IC of order s is a

section in Qs .Denote II : Qr--&#x3E;Qr-1 X... X Qr-1 ( r times ) the map

It is now sufficient to show that II admits a section, i.e. a right inverse

in the category of differentiable manifolds. But the second countability
of 4J implies that of Qr-1 X... X QIV r -1 ( especially its paracompactness),
and the fibre of IT is diffeomorphic to Rm r +n , where m = dim B and n is

the dimension of the isotropy group of (D - Thus by a well known result

(cf. [4]) II admits a section. The rest of the Theorem follows from the
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previous results.

The following is obvious.

T H E 0 R E M 9 . An r -th order inf initesimal connection which is equivalent
in the (r-1) -st order to a semi-holonomic connection is itsel f semi-holo-

nomic. Such an equivalence cl ass consists of semi-holonomic infinitesi-
mal connections if and only if all the corresponding (r-1)-st order con-

nections Y1,..., Yr are semi-holonomic and equal.

One could also show that, if rand 7 are equivalent in the q-th

order, then so are T*C ) and T*C ) for any first order IC
Each IC T- is equivalent in the first order to T)*... * Cr(T) ;

especially for r=2, these two connections differ by a quadratic tensor on

B with values in L . Hence we also have

T H E O R E M 10. Every second order inf initesimal connection I in (D is u-

niquely determined by two first order connections (T), C2(T), and a
linear map A(T) : T (B)O T (B)--&#x3E;L (O). T is semi-holonomic iff

Any two of the following conditions imply the third:

(a) r is holonomic,

(b) A(T) is symmetric,

(c) p2T- is curvature- free.
In general we put

for any r-th order IC i . This is a section in Dr1 G and can be regarded as
the obstacle to the decomposability of r. The map A commutes with all

our «natural surjections" ( especially preserves semi-holonomity), takes

prolongations of connections into waves of sections, and carries the «irre-
ducible» part of the non-holonomity of a higher order connection. All this

is more precisely stated in the

T H E O R E M 11. L et r be an infinitesimal connection o f order r in O.

Then A(T) de fined by (7) is a section in 5; G satisf ying the conditions:

( I ) T is un i qu e I y determined by C1 (T) , ... , Cr (T), and A (T).
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(II) A (r) is the trivial section j’( ~) i f f r is decomposable.

(lll) A((jk pr-k q-k) T) = (jk pr-k q-k) A(T) for all 0 k q r.
(IV) A (F. = j1 A (T) for an y first order connection C. Converse-

ly, if A F) is a one-wave, then F’ = pr r-1 T*Cr(T).
( V) T is semi-holonomic iff all the Cs (T) are equal, and A (r) is

semi-holonomic.

( VI) Any two of the following prop erties impl y the third :

(a) r is holonomic,

(b) A( I) is holonomic,

(c) pr1 is curvature- free.
PROOF: (I) and (II) are evident. As for ( III ) , knowing that prq, k com-q

mutes with the prolonged multiplication in CP, we have to prove

but this is an immediate consequence of Theorem 3. Now according to

Theorem 4 we have

and this proves the first part of ( IV ) . Suppose now that A(T) = j1 U, i.e.

( cf. (5)). Applying now pr r-1 to both sides of this relation we find

As to (V), if h is semi-holonmic, then all the Cs (T) are equal by The-

orem 1, hence C1 (T)*... * Cr(T) is semi-holonomic and so is also A (T).
The converse is trivial, and so is (VI). This completes the proof.

Note here again that (III) could have been replaced by the more

general law
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APPENDIX

For an arbitrary manifold M denote by A ( M ) the set of all smooth

paths in M , i. e. all COO -maps from [0 ,1] into M . Denote also by A ( M )

the set of all piecewise smooth and continuous paths.

D E F IN IT IO N 2 . Let (D be a Lie groupoid over B . A path connection a in

(D is a map

satisfying the relations

and the following «transport» condition:

If is a diffeomorphism, then

It follows immediately from (9) that o-A (0) =~(A(0)). Moreover,
if A, A E A(B) are such that A(0) =A(1), i.e. the path A * A is defined,

then we have

and

where U(t) =1 2 t, U1(t) = 1 t+1 2. If now A * A E A (B), we can apply

(9) to the path A* A and 1jJ 0 or U1. This gives
ro r

for
z

and especially

Analogously (9) yields 0- (X-l (1) = [oA (1)]-1, and shows that 0-x
is the constant path if k is constant.

The expression (10) can be used to define a even when the com-

position A * A is not a smooth path. Thus we can uniquely extend each

path connection to a map o : A (B)--&#x3E; A(O), with the preservation of all
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its listed properties.
The relations (11) and the following show that

defines a subgroupoid of O over B called the holonomy groupoid of o- -

The path connection cr is called flat if o- maps closed paths onto closed

paths, or equivalently, if H( o-) is isomorphic to the trivial groupoid BXB.

The path connection thus defined is essentially a structure of only

«topological character». One can namely modify very easily Definition 2

to replace the Lie groupoid by a topological groupoid. To make use of the

differentiable structure on (D , we shall suppose that the r-jet at 0 of oA
is uniquely determined by that of À, and that this correspondence is itself

infinitesimal. More exactly, we shall say that a path connection o- in (D is

infinitesimal of order r if there is a map T : B--&#x3E;Jr( B I cI» such that

imply

It is not difficult to see that i is then necessarily an IC in 4Y,

and that it is uniquely determined by the path connection cr and the inte-

ger r. We shall be concerned with the converse: given an r-th order IC F"
does there exists a path connection such that (12) be satisfied? It fol-

lows from the standard theory of (first order) connections that for r=1

the answer is always affirmative, i.e. each first order IC admits a unique

path connection, and this path connection is flat iff the first order IC is

curvature-free. As for the general case it is immediately clear that T can

admit at most one path connection, because (12) implies

An easy application of Lemma 1 shows that, if r admits a path connec-

tion, then it is necessarily semi-holonomic.

T H E O R E M 12 . Let r be an r-th order infinitesimal connection in (D ad-

mitting the path connection o-. Then the connections prs T, (s=1, ....

... , r-1 ), and r, = T*pr1 T admit the same path connection o- .

P ROO F : The first part is trivial. As for r, let us substitute Ao Uu ( for
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each fixed u E [ 0, 1]) instead of k into (12) and apply (9) with

We get

(13) A E A (M), u E I imply

Now to show that T’ admits o we have to show explicitly that À.EA(M),

A (0)=x and (12) imply

wh ere

Using (13) we have for a fixed k E A (M), 

because of Lemma 2 and the fact that (12) implies j10 oA = j10 (Cx A). 
Now the first member in the last expression is clearly j1x T jr+0 A and the
second is j1x(u--&#x3E;jru[ Cx(u)]) jr0+1 A, q.e.d.
COROLLARY. The in f initesimal connection r admits a path connection

if and only if r is simple. The path connection is flat if and only if r is
holonomic, i. e. generated by a curvature-free first order connection.

PROOF : The first part follows from Theorem 6 and the fact that r’ admit-

ting a path connection must be semi-holonomic. The second part is a con-

sequence of Theorem 7.
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