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ABSTRACT VELOCITY FUNCTORS

by R. A. Bowshell

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

Vol.XII, 1

It is still uncertain which category differential geometry studies.One

general definition of a structured manifold is given by the notion of a higher
order G-structure, but the definition of admissible maps is elusive.

Since the theory of connections on groupoids plays a central role,

it would be desirable that a category of structured manifolds admit many

groupoids - a groupoid can, of course, be defined in any category with pull-
backs. This requirement indicates that the proper domain for geometry is a

category of groupoids. In any case all the familiar constructions on a mani-

fold B can be considered as constructions on the trivial groupoid TT (B) =
B X B , and as such have immediate generalizations to any Lie groupoid.

Lacking any clear conception of what is required from a category of

structured manifolds, especially because to date differential geometry has

focussed on first order differential equations: existence of flows and the

Frobenius theorem, it seems premature to attempt a definition of admissible

maps. Nevertheless there seems some point in studying functors on the ca-

tegory of all manifolds which are likely to have significant analogies on a
category of structured manifolds.

In this paper we define an abstraction of Fhresmann’ s velocity func-

tors Tk =fJf ( Rn, - ) called an extensor; it consists of a pair (t, n ), 7 be-n o

ing a local product preserving functor into fibre bundles TM - M on which

a Lie groupoid D ( M) acts effectively, such that local isomorphisms of M

are lifted by T into n ( M) with appropriate continuity conditions satisfied.

The precise definition is given in (2.8). The assumption of product preser-

ving is needed to ensure that t preserves the structure of submanifolds;
for example, the functor into vector bundles M -&#x3E; T k ( M) =J k ( M, R): intro-

duced by Ambrose, Palais and Singer in Llj does not preserve products and

does not even preserve diagonals.
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In the final section of the paper we show that the lifting of local

isomorphisms factors through a homomorphism II k(M) -&#x3E;n (M) for some k ,

and thus that extensors are classified by sequences of smooth homomor-

phisms Lkn-&#x3E;Gn, where Gn is a Lie group acting effectively on En for so-

me vector space E . For a category of locally flat pseudogroup structures

we would expect the same thing to hold, except that the homomorphism La
Gn would be restricted. Similarly for general pseudogroup structures we

would have a restriction of the homomorphisms II k( M)-&#x3E;n (M), however
in this case there is no obvious way of constructing an extensor (t,n)
from 0 - In fact the problem of constructing an extensor subordinated to the

prolonging groupoids n ( M ) is closely related to the problem of admissi-

ble maps, and it depends basically on a study of the (nonlinear) represen-

tations of a sequence Gn of Lie groups on a vector space E.
We emphasize 0 rather than T because, as will be shown in Sec-

tion two, there is a notion of connection, on a Lie groupoid, associated to

each extensor ( T, D ), which coincides with Ehresmann’ s higher order con-
nection for ( Tf, IIk), and depends only on the way in which the local iso-
morphisms are lifted into n.

In Section one, after presenting a few technical, properties of Lie

groupoids and fibre bundles, we sketch the basic properties of the vector

bundle AD of infinitesimal translations of a groupoid. No essential use is

made of A D, but nevertheless it carries the obstruction theory of groupoids
and connections, and as such plays the role of Lie algebra for a groupoid.

Section two begins with some consequences of the assumption of

product preservation for a local functor into fibered manifolds. Next exten-

sors are defined and the associated notion of connection is introduced. The

main part of the section is devoted to the construction of a prolongation of
a Lie groupoid D which generalizes the holonomic prolongations Dk. This
notion of prolongation is at the heart of extensor connections and a fortiori

of higher order connections in the sense of Ehresmann. The section ends

with the proof of the existence of extensor connections.

In Section three we compare extensor connections with Ehresmann’s

higher order connections, and with an abstraction of the lifting of velocities,
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induced by an Ehresmann connection, that was introduced by Virsik.

The last section studies the structure of an extensor; it ends with a

generalization of a theorem of Ngo Van Que.

I would like to express my thanks to Ph.D. supervisor TJr. J . Virsik

for suggesting the topic of this paper, and for several useful discussions.

Finally a word on notation; we use throughout the terminology of

Lang [6] , thus, for example, a projection of maximal rank is called a sur-
jective submersion. In addition we denote the zero section of a vector bun-

dle by i , and if F: E - E’ is a map between fibre bundles we denote the

restriction of F to the fibre Ex over x by Fx . A smooth map is differen-
tiable to any order.

1 . Connections and Groupoids

In this section we sketch the theory of connections on groupoids,
and prove some results needed later.

1. 1 DEFINITION. A groupoid is a category consisting of a set of obj ects

B , and a set of invertible maps D. Each groupoid is equipped with right
and left unit proj ections a, b: D-&#x3E; B, thus f: af-&#x3E;bf, a f being the right u-

nit of f since it is traditional to compose maps backwards, and an injec-

tion ~: B-&#x3E; D of objects (units) onto identities.

A Lie groupoid is a groupoid for which ID and B have the structures

of smooth manifolds, ~, a, b, the inverse d:D-&#x3E;D, and the composition

K : D*D-&#x3E;D are smooth maps; and in addition ~: B -&#x3E;D is an embedding,
and (a,b): D-&#x3E; B X B is a surj ective submersion.

In the above D*D =(aXb)-1(A) where A is the diagonal of B X B;
D *D is a submanifold of (D x (D since a X b is transversal over in fact

both a and b are submersions. We shall write f. g for K ( f , g ), f-1 for o- f,
and we shall identify the object x with the identity ac, wherever conve-

nient.

We use the following notations:

It is clear by transversality that (Dx is a submanifold of D, that (Dxy is a
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submanifold of Dx, and that Dxx is a Lie group.
The following result is easily verified.

1.2 PROPOSITION. If (D is a groupoid over B for which ~, a, b, -o-, and

K are smooth maps between smooth manifolds, then (D is a Lie groupoid

iff, for some x in B , b : Dx-&#x3E; B is a principal bundle with group Dxx .
We shall view a fibre bundle as a fibred manifold, i.e. a surjective

submersion, on which a Lie groupoid acts.

1. 3 D E F IN IT IO N . Let D be a Lie groupoid over B , and let tt E-&#x3E; B be a

fibred manifold; define D*E =( aXtt) -1(A); it is a submanifold of V X E

by transversality. We say that D acts on E if there is a smooth map D*E

- E written (f,v)-&#x3E;f.v which satisfies tt( f. v) =b f, and f.(g.v)=( f.g).v
whenever a f = b g .

The following result gives a useful characterization for fibre bun-

dles.

1.4 LEMMA. L et D be a L ie groupoid over B and let &#x26;, be a functor from
(D into the category of smooth mani folds (i. e. &#x26; assigns to each x in B a

smooth mani fold Ex and to each f in (Dx y a smooth map El: Ex -&#x3E; Ey) such
that for some z in B the map (Dzz X EZ-&#x3E;Ez de f ined by (s,v) -&#x3E;E(s)v

is smooth. Then E = U Ex has a canonical fibre bundle structure.

PROOF. Fix z in B so th8t Dzz X E z -. £ z is smooth. Construct a fibre

bundle by the standard mixing process : namely take the orbit space of

Dz X Ez under the action of (Dzz via s. (b, v)=(b s, s-1 v). There is an

obvious one to one function onto E ; thus E inherits the structure of a fi-

bred manifold on which the Lie groupoid (D clearly acts.
Notice that by a theorem in Montgomery and Zippin, [8] p. 212, it

suffices to assume continuity of (D zz x Ez-&#x3E;E z for some z .

The following result is well known.

1.5 PROPOSITION. If n is a subgroupoid over B o f the Lie groupoid d)

such that, for some z, Dzz is a Lie subgroup of Dzz, and B is covered by
local sections di: Ui -&#x3E;Dz of b: Dz -&#x3E; B which take values in Oz, then 0
is a Lie subgroupoid of D.

The following result can be found in Ngo Van Que [13].
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1.6 PROPOSITION. I f s i s a section o f the f i bre bundle E associ ated to

the Lie groupoid D over B, and the subgroupoid of D leaving s invariant

is transitive, i. e. for each x and y in B there is an f in D such that

f. s (x) = s (y), then this subgroupoid is a Lie subgroupoid.

Given a Lie groupoid (D, B), we define a groupoid $ over B by

letting Dkx be the set of jx s where s is a local section of a : D-&#x3E;B such

that b s is a local isomorphism in B . We have right ak , and left bk, unit
projections: i and composition

whenever

(Dk is the k-th holonomic prolongation of D. We have analogously
the k-th semi-holonomic, and k-th non-holonomic prolongations: Dk,Dk res-
pectively ; for the local structure see Virsik [ 141 . They were introduced by
Ehresmann in C.R. Acad. Sci. Paris, 240 (1955).

The basic invariant of a Lie groupoid (D is the vector bundle AD 

of infinitesimal displacements. This was implicit in Ehresmann’s original
paper defining connections on a fibre bundle, but was first emphasized by

Atiyah in E 21 -

AD= Lj Tx Dx is a vector bundle associated to the groupoid D1.
Sections of A D correspond naturally to right invariant sections of T Dz .
Thus if V is a section of AD, then b-&#x3E; V (bh). ib is a right invariant vec-

tor field on Dz , and given such a vector field W on (Dz , then x- W(h).ih-1
where b h = x defines a section of A D.

It fdllows that there is a Lie bracket of sections of AD. In fact if

V is a section of A D and 4Jt( h) is the local flow of the associated vec-

tor field h-&#x3E; V (bh). ib on Dz ,we can define a local one-parameter group of
automorphi sm s It can then be shown that

coincides with the bra-

cket induced from the right invariant vector fields associated to V, W .

There is an exact sequence of vector bundles over B associated to

each Lie groupoid: 
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where L W = lJ TxDxx, and it is easily seen that

and that, if the sections V , W of AO take values in L I&#x3E;, then

where the latter is Lie bracket, by right invariant vector fields, in the Lie

algebra TxDxx. 
Another basic property of A is that ADk~Jk AD, a natural equiva-

lence under the twist map:

This was first noticed by P. Libermann in the case that D is the trivial grou-

poid II(B)=BXB.
A first order connection on (D is defined to be a splitting of the e-

xact sequence

i.e. a section y:TB -&#x3E; AD of Tb:AD-&#x3E;TB. Its curvature is the section

of La2 ( TB, LD) defined, on vector fields, by

It can be shown that this is just the standard curvature moved down from

the principal bundle to the base manifold; it also coincides with the defi-

nition of curvature given by Ehresmann in [3] .
Since T B = A II ( B), where Il( B) = B X B , the role of curvature as

an obstruction is shown explicitly by the following result of Ngo Van Que
[12] .

1.7 TH EO REM. Let (D and D’ be two Lie groupoids over B . Each local

homomorphism f : U - D’ , defined in a neighbourhood U of the identity sub-

manifold of D, induces a vector bundle map F : A D-&#x3E; A D’ whi ch satisfies
Tb. F = Tb, Tb being the canonical projection o f AD and A D’ on T B, and

which preserves Lie br(1cket: F [ V , W I = [ F V , F W I .

Conversely an y vector bundle map F : A D-&#x3E;A D’ preserving L i e bra-

cket and satisfying Tb. F = Tb is induced by a local homomorphism f : U -&#x3E;D’,

if both f : U-&#x3E;D’ and f’:U’ -&#x3E;D’ induce F, then f and f’ agree on U n U’ .

It is interesting to notice that, if D acts linearly on a vector bun-
dle E -&#x3E; B , then sections V of A (D act as first order differential operators
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on sections s of E as follows:

where b-&#x3E;0t (bb).b is the local flow of b -&#x3E; V (b b). i b . It can be shown

that [V, W]s = V ( Ws ) -- W( Vs ) ; thus, if we define covariant derivative by

VX s = (y.X)s , for X a vector field on B , then we have the classical formu-

la :

The minus arises because in the classical case left invariant vector

fields are used to define the Lie algebra structure in each fibre of L O ;
thus a different action of L$ on E must be used to preserve the formula

[A, B J (v)=A(Bv)-B(Av).

2. Extensors

In this section we study the properties of local product preserving
functors from manifolds into fibred manifolds. In particular we introduce ex-

tensors : an abstraction of the velocity functors Tkn. For each extensor we
define a notion of connection on a Lie groupoid which coincides with Eh-

resmann’s higher order connection 131 , in the special case of a velocity

functor. Finally we show that for any extensor such a generalized connection

exists in any Lie groupoid over a paracompact manifold.

2.1 DEFINITION. A natural f ibering is an endofunctor F of the category

of smooth manifolds with a natural retraction P: 5: -1 onto the identity func-
tor, p having the natural section i : I- F, such that:

a) Each pM: FM -&#x3E; M is a submersion, necessarily surjective.

b) If {x} is a one point manifold, then bi (x) is a one point manifold,

thus F{x} = {i{ x} x}.
c) it preserves products; thus if p . : M1 X M2 -&#x3E; Mj is the proj ection (j =

1,2), then

is a smooth isomorphism.

d) ? is a local functor; thus if q: U --i M is the inclusion of an open

submanifold, then FU=FM |U=p-1(U) where pM:FM-&#x3E;M , and 5: q:
FU-&#x3E;FM is the inclusion of an open submanifold.
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This definition is adapted from Virsik’s paper [14] in which he

calls the functor a local regular connector, and uses it to generalize the

lifting properties of connections. We will examine this problem briefly in

section 3 .

In the following results we suppose that ? is a given natural fibe-

ring. The properties of transversality used here may be found in Lang L6J .

2.2 LEMMA. I f g: M-&#x3E;N is an immersion, then Y g : F M-&#x3E;F N is an immer-

sion. Furthermore, if g embeds M on a submani fold A o f N, then 5:g em-
beds F M on the submanifold j= A of 5:N.

PROOF. Suppose g is an immersion, and take x in M ; then there is an o-

pen neighbourhood V of g(x) and a map h : V-&#x3E;g-1(V) such that h g j =1g-1(V)
where j: g -1( V ) -+ M is the inclusion. It follows that

since ? is local. Hence if g is locally a section; this implies that ?g is

an immersion.

It is clear that g injective implies Fg injective. Suppose A is a

submanifold of N ; the proof will be complete if we show that ii A is a sub-

manifold of j= N .

Take x in A and a chart D U-- V X W for N with D(x) =(0, 0),

where V, W are open sets in vector spaces E, F, such that D(U n A)=
vXo. Then F=(UnA)=F A|(UnA) and FD|F(UnA) = F(V X0).

It is clear that F(Vx0) is a submanifold of j= V X j= W 2:’ j= ( V X W ),
and it follows that F (UnA) is a submanifold of FU. Hence FA is lo-

cally a submanifold of 5:M , and the result follows.

2.3 LEMMA. I f g: M -&#x3E; N is transversal over the submanifold A o f N , then

g-1(A) is a submanifold of M, and F(g-1(A)) =(Fg)-1( FA).

PROOF. It is well known that g-1(A) is a submanifold of Al , and th at

gj: g-1(A)-&#x3E; A is a smooth map, where j: g-1( A) -&#x3E; M is the inclusion.

Hence Fg maps F(g-1(A)) into FA, since Lemma 2.2. shows that 5:j
is an embedding. It follows that F(g-1(A))C(Fg)- 1(j=A).

For the converse we work locally. Take x in g-1(A) and put y =
g(x); take a chart w:V -&#x3E;V1xV2 at y, where Vi is an open set in the
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vector space Ei, i=1,2, such that w(y)=(0, 0), w(VnA) = V1X 0
Since g is transversal over A , there is an open neighbourhood U

of x for which p2 w g: U -&#x3E; V -&#x3E; V1 x V2 -&#x3E; V2 is a submersion. This means

explicitly that there is a chart D :U-&#x3E;U1 x V2 C E1 x E2 such that

commutes (if necessary the chart f may be restricted).
Now suppose that X is in (Fg)-1(FA) with PMX=x, then y =

g (p M X) = P N Fg X is in A , and so x is in g-1( A ) . Since ? is local, X

Notice that is an isomorphism. It follows

that and thus in ; 

result follows.

2.4 L E MM A. If A C M x M is the diagonal, then is also the

diagonal.

PROOF.We have the isomorphism (1, 1) : M -&#x3E; a, hence (F 1, F 1)F =(1,1):

FM-&#x3E;FA is an isomorphism, and the result follows since FA is a subma-

nifold of FM x FM.

2.5 COROLLARY. If f, g:M-&#x3E;N are such th at (f, g):M-&#x3E; N x N i s tran sver-

sal over the diagonal 6 o f N X N, then the equalizer e: E -&#x3E; M o f f and g

exists and is given by E = ( f, g)-1(A). Furthermore fe :FE-&#x3E; FM is the

equalizer of Ff and Fg.
2.6 COROLLARY. If f:A4- Q, g:N-&#x3E;Q are such that fxg: M XN- QxQ
is transversal over the diagonal 6 of Q X Q, then the pullback P of f and
g exists and is given by (fx g)-1(A). Furthermore FP is the pullback o f

Ff and ?g.
Not even the tangent functor preserves arbitrary equalizers. Consi-

der for example f, g: R-&#x3E;R2 given by f(t)=(t, 0), g(t) =(t, t3).
If we call linear fibering a functor if satisfying a), b) and d ) of

definition 2.1 and such that each fibre is a vector space and each map Fg
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is linear on fibres, and say that it preserves diagonals iff

whenever is the diagonal of MxM, AFM is the diagonal of FM x FM,

and p1, p2 : M xM -&#x3E; M are the proj ections, then we have

2.7 P R O P O SIT IO N . A linear fibering preserves products iff it preserves

diagonals. 

PROOF. Necessity follows from Lemma 2.4.

Suppose that if is a linear fibering which preserves diagonals. De-

fine J:FMxFN-&#x3E;F(MxN) by

where y is the constant map M - N with value y = pN ( Wy) . ( This defini-

tion is taken from Virsik [14].)
It is clear that (Fp1,Fp2)J=1FMxFN, where P, and P 2 are

the projections. Furthermore, if f: M - M’, g : N - N’, then

We first prove that, if M = N, JM =J: FMxFM-&#x3E; F(MxM) satisfies

J(F1,F1)(V)=F(1,1) V. Thus take V in FM, then (F1, F1) (V) =
(V, V) is in the diagonal of 3 M x if M . Now (Jp1, Cp2) J (V, V)=(V, V)
and since ? preserves diagonals we have J ( V , V ) in FA . But (1,1): 
M-&#x3E;A is an isomorphism, thus J ( V , V)=F( 1, 1) (W) for some W in Cj M,
and clearly we must have W = V. It follows that J (F1,F1)(V)=(1,1) V .

For any smooth maps f : A - M , g : A - N, we have

In particular take the projections p1: M X N - M, p2: M xN -&#x3E; N ; then

J (F:p1, Fp2) =F(p1,p2)=F1; it follows that j is an isomorphism, and

thus ? preserves products.

We remark that the only product preserving functors into vector bun-
dles are the first order velocities T n 1. This is a very special case of a the-
orem of Epstein 141 , and it is quite easy to prove directly.

Suppose that D is a Lie groupoid on B with right and left unit pro-
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j ection s a, b , with inverse d: D -&#x3E; D, and with composition K:D*D-&#x3E;D

where D*D is the pullback of a: D-&#x3E; B and b : D-&#x3E;B. Since a, b are sub-

mersions, it follows that F(D*D) is the pullback of bi a and Yb; we can
thus prolong the composition to FK: FD*FD -&#x3E; FD, and since the axioms
for a groupoid can be expressed by commuting diagrams, it is clear that FD

is a differentiable groupoid over fB. FD is a Lie groupoid because it is

locally trivial : if g: U-&#x3E;Dz is a local section of b, then Fg:FU-&#x3E;FDz
is a loc al section of FDz = (Fa)-1{i Bz}= (FD) i B z.

Finally it is easy to show that pD 5: FD -&#x3E; D is a homomorphism of

groupoids.
We now proceed to the definition of an extensor and the connection

associated with it.

2.8 D E F IN IT IO N . An extensor is a pair (T, 0) in which T is a natural fi-

bering and 0 assigns to each smooth manifold M a Lie groupoid O( M) o-

ver M, with right and left unit projections a, 13, which acts effectively on
the fibred manifold tM. In addition the pair (t,n) should satisfy the fol-

lowing conditions: 

a) n( M) leaves invariant the natural section i:M-&#x3E;tM; thus ç( i aç)

= iBE for all E in n (M).
b) If U is an open submanifold of M , then

There is an embedding (E,n )-&#x3E; Exn of n(M)xn(N) onto a Lie

subgroupoid of D( M X N ) for each pair of smooth manifolds M , N which sa-

tisfies (Exn)xu =Ex(nxu).
c) If g:M-&#x3E;N is a smooth isomorphism, then we have a smooth iso-

morphism of acting groupoids n(M)-&#x3E;n(N) written E-&#x3E;t g E tg-1 which

A local isomorphi sm f : U - U’ in M induces a local section of a. :

n(M)-&#x3E;M written x-&#x3E;tx f which satisfies t f (V) = tx f o V, the latter being
the action of n (M) on T( M ) .

If U is an open subset of R XM and if U-M, (t, x)-&#x3E; ft(x) is a

flow on M , then the map U-&#x3E;n(M) given by (t,x)-&#x3E;tx ft is smooth.
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The principal examples of extensors are given by tM =J k0 ( Rn, M)
and n (M) = IIk (M) and the analogous examples in which holonomic jets
are replaced by semi-holonomic or non-holonomic j ets. It is straightforward
to check that ( I are in fact extensors.The

projection Tkn (M) -&#x3E; M is the target map, and the section i:M-&#x3E;Tkn(M) ta-

kes x into ik f y-&#x3E;x}, the k-jet of the constant map.
Since, if V is an n-dimensional manifold, we have Jkx (V, M ) iso-

morphic to Jk0 (Rn, M), it is clear that (Jkx(V,-),IIk) is an extensor. A si-

milar remark holds in the semi-holonomic and non-holonomic cases.

Take a fixed smooth manifold B ; we now define functors (a,l from
the category of Lie groupoids over B to the category of fibre bundles over

B . Q and are constructed from t in the same way as the first order inva-

riants A and L are constructed from T. Thus

and, if g: D-&#x3E;II is a smooth homomorphi sm of groupoids, let (i g, 2 g be

the appropriate restrictions of Tg .

Notice that we have a projection tb: aD-&#x3E;tB induced by the left

unit proj ection b:Dx-&#x3E;B. Moreover,

hence Y (D consists of all V in aD such that rb V = i7TV,where 7T: aD-&#x3E; B

is the obvious projection. This is analogous to the exact sequence of vec-

tor bundles over B,

In order to complete the description of l and d and to define the

bundle cD of elements of T-connection, we must define the groupoids ac-

ting on flO and aD

It will be shown that D acts on ?(D in a natural way.

2.9 DEFINITION. Let no(Dz) consist of all f in n(Dz) such that:
a) For all V in taEDz and A in tz Dzz, E(V.A) =E(V). A where
indicates prolongation of composition in (D.

b) There is an element E0 in .0 ( B) such that, for all V in t aE Dz,
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It is clear that no(Dz) is a subgroupoid of n(Dz). Moreover, sin-

ce Q( B ) acts effectively on TB and tb:tDz-&#x3E;tB has local sections,it
is easy to check that Eo is uniquely determined by f , and that ç - Ço is

a homomorphism no (Dz)-&#x3E;n(B) of groupoids.
If b : U -&#x3E;Dz is a local section of b: Dz -&#x3E; B on a neighbourhood of z

such that b (z)=z, then we have an isomorphism

given by
If k is another such local section at z , then it is easy to see that

k-1. b = Tzf, where f is a local isomorphism of Dz given by

Since f(qs) = f(q)s for s in Dzz, and b f (q) = b q, it follows

2.10 DEFINITION. The bundle of elements of T connection, CD, is con-
structed as follows : consists of all smooth

and such that 7J h is in no zz (Dz ) for some, and thus any, local section

b: U-&#x3E;Dz with b(z)=z.
It will be shown that CO is a smooth fibre bundle over B that is

associated to aD.

2.11 D E F IN IT IO N . A ( ’7-, 0)-connection is a smooth section of CD.

The following propositions are devoted to showing that the objects
constructed are in fact smooth fibre bundles.

2.12 PROPOSITION. LD is a fibre bundle over B on which the Lie grou-

poid V acts smootbly.

define 

as a submanifold of tD, and it follows that f (A) is in LyD.
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It is clear that f g = f g whenever a f = b g . Furthermore

is a smooth action. The result follows.

In order to construct a Lie groupoid acting on NO, we must first
show that no(Dz) is a Lie subgroupoid of n(Dz). We proceed to do this
in two stages.

where q, necessarily unique, is in D( B). n’(Dz) is clearly a subgroupoid

2. 13 LEMMA.n’ (Dz) is a Lie subgroupoid o f n(Dz).
and let H consist of all f in

It is clear that Hz is a closed Lie subgroup of nzz(Dz ). We will
exhibit Gz as a semidirect product of Hz and Kz ; it will follow that Gz i s

a Lie subgroup of nzz (Dz).
Choose a local section b :U-&#x3E;Dz of b :Dz-&#x3E;B such that b (z)=z.

We have an induced isomorphism f:Dz U - UxDzz given by

Define the homomorphisms g: Kz-&#x3E;Gz by

Since (7), 1) is in we have n x1 in and

since f is an isomorphism we h ave g(n) in n(Dz); it is easy to check

that g (n) is in Gz , and that g is a homomorphism .
Define . We have

now the isomorphism gi ven by with

inverse given by where tbE=Eo tb. It is
clear that Kz x wHz is a Lie group, and that F: Kz xw Hz-&#x3E;nzz(Dz) is a

smooth map. It follows that Gx is a Lie subgroup of nzz (Dz).
To complete the proof of the lemma we must show that at each point
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of $ there is a smooth local section of taking values in

Take a chart (Uo, eo ) at z in B such that 0o (Uo) = Rn, n =dim (B),

eo (z) = 0 , and such that there is a local section do: Uo-&#x3E;Dz with do (z)=
z. For some x in B take a .chart (U,0) with 0(x)=0, 0(U) = Rn, and

a local section ( ; put

For each v in R n define then

Define then

For each h in Dz ( U , define

Then F Define

Then

It is now clear that

local section of with values in

and is an element in n(B).

Put g(b)=b-1d(bb), then Pb(q) = g (b) [F0 b b (q) ], where to
each s in O corresponds the map s : Dz-&#x3E;Dz given by s (q) = qs-1. It
follows that

Now h - Tbo Fe b h is smooth since v - Tho Fv, v in Rn , is smooth.

The latter is true because, if {e 11 ... , en} is the standard basis for R n,

then Fv = Fv,e , ... Fvn,en where ( t, q) -&#x3E; Ft e (q) is a flow.

Furthermore is smooth since given by

S -&#x3E;t q S is smooth. The latter is true because if at is any one-parameter

subgroup of (Dzz then t -&#x3E;tq at is smooth.

It follows th at b -&#x3E;tbo Pb.tz H is a smooth local section of nz(Dz)
with values in n’z(Dz) This completes the proof.
2.14 R E M A R K . The above proof shows th at n’(Dz)-&#x3E;D(B), given by

wh er e is a smooth homomorphism of groupoids.
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2.15 LEMMA. no (Dz) is a Lie subgroupoid of n’(Dz).
PROOF. Define a fibre bundle E-(Dz by setting Eh equal to the isotropy

group of n(Dz)x Dzz at (b,z). The Lie groupoid n’ (Dz ) acts smoothly

on E vi a where Cd is in EaE; it follows that

E-&#x3E;Dz is locally trivial.

Define the smooth isomorphism

( h s, s); then h-+T(h,z)f is a smooth section of E-&#x3E;Dz.
It is easily checked that f1 o (Dz) is the subgroupoid of n’ (Dz) lea-

ving this section invariant; it follows that .0 0 (Dz) is a Lie subgroupoid of

n’ (Dz).
2 . 1 G P R O P O SIT IO N . Dzz acts smoothl y on Do (Dz) as a group of groupoid
automorphisms. The quotient is a groupoid over B .

PROOF. Define for f in no (Dz), s in where s :

It is clear that (Es)t=E(st), and, if a,E=Bn, then (En)s =

(Es) (ns ) . Furthermore (E,s) -&#x3E;Es is smooth since s-&#x3E;tb s is smooth,

as was shown in the proof of 2.13 . 

L et E(z) be the set of orbits under this action, and write 5 for the

straightforward to show that this composition is well defined, and that it

turns E (z) into a groupoid over B . 
y

We prove next that 2(z) is a Lie groupoid over B . An equivalence
relation R on a manifold M is said to be regular if the quotient M / R has

a manifold structure necessarily unique, making the projection M - M / R a

submersion.

2.17 THEOREM. R is a regular equivalence relation on M iff R is a sub-

mani fold o f M X M and the projection p : R - M given by ( x, y) - x is a sub-

mersion. A proof will be found in Serre [10J .

2.18 PROPOSITION. 2(z ) is a Lie groupoid over B and the projection
is a submersion.
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P ROO F. Write and let R be the subset of Do x no con-

sisting of pairs (E, n) for which E s =n for some s in Dzz.
The proof will be complete if we show that R is a regular equivalen-

ce relation on Do; for if p is a smooth surjective submersion, and f a fun-

ction, then f is a smooth map (or submersion) iff f p is a smooth map (or

submersion) .

Consider b ax ba:noxno-&#x3E; BxB; it is clearly a submersion. Put

R1=(b a x b a) -1(A). In addition axa:noxno-&#x3E;(Dz x Dz i s a submer-

sion. Put S1=(axa)-1(A); it is clear that A Cno xDo is a submanifold

of S1.
Define

It follows that F is a submersion , and thus that R is a submanifold of

Take (E,n) in R , with Es=n say, and define g:no-&#x3E;R by

g(y)=(y,ys). Then g is a section of p : R -&#x3E;no: p (u,y)=u, and g(E)=
( E, n). It follows that p:R-&#x3E;no is a submersion.

The result now follows from 2.17 .

Let E(Z ) act on Q$ as follows: if V is in Clx(D and a(E) = x ,

This is a well defined action, and since the projection no (Dz) -&#x3E;E(z) is

a submersion, it is easy to check that it is a smooth action.

2.19 T H E O R E M. aD is a smooth f ibre bundle with base B , which is asso-

ciated to the Lie groupoid I( z)

VUe now show that 2( z ) is essentially independent of z .

2.20 PROPOSITION. For each x and y in B, 2(x) is canonically isomor-

phic to ¿(y).

PROOF. Take f in °xy and define an isomorphism by
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(D xx , then i is in Dyy, hence we have
the induced isomorphism F(f):E(x)-&#x3E;E(y) given by F(F)(E) =E f-1.
It is easy to check that F(f) is independent of the choice of f in (Dxy. 
Finally F( f) is a smooth map since no(Dx)-&#x3E;E(x) is a submersion for

each x in B .

2.21 P R O P O SIT IO N . The homomorphism o f groupoids

given by is a smooth surjective submersion.

PROOF. p is clearly well defined. It is a smooth surjective submersion

since the composition
To prove the latter statement it is enough to show that

is a smooth surjective submersion, and an adaptation of the proof of 2.13

will achieve this. We omit the details.

Let 2( z) act on CO as follows; if y is in CxD and f is in E(z)
with a(E)=x, define

This i s easily shown to induce a smooth action of an isotropy group
of 5i( z ) on a fibre of CD, and so we have the

2.22 THEOREM. CD is a smooth fibre bundle over B which has the asso-

ciated groupoid E(z).

We will show in the next section that, when f7’, 0) is the velocity
extensor ( Tk, II k), then CD with groupoid 2 (z) is covariantly isomor-

phic to the bundle QkD with groupoid (Dk. In particular this shows that

two extensors and ( give rise to the same higher order

connections.

2.23 DEFINITION. Two extensors (T, D) and (t’,n’) are associated if

for each M there is an isomorphism gM:n(M)-&#x3E;n’ (M) such that

b) Jf h : U- V is a local isomorphism of M, then gM (tb )=t’b .
2.24 P R O P O SIT IO N . If (t, n.) and (t’,n’) are associated extensors, and
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if 0 is a Lie groupoid over B , then the corresponding bundlés of elements

o f connections (CD, E(z)) and (C’ D, E’ (z)) are covariantl y isomorphic.

z by fbh, s) =(bs, s); then f is an

isomorphism. induces an element of

for each h in D then E
for all V in (Dz and all A in Lz D iff (Ex 1)t f =t f (Ex 1).

It follows from the definition of the associated extensors that:

iff

Let ( U, d) be a chart at z in B . For each map 6 : U - 4DZZ with
0 ( z ) = z, define 0:Dz| U -&#x3E;Dz|U by 0 (b)=b.0 (bb); 0 is a smooth iso-

morphism. It follows that Th e is in n(Dz) for each h in Dz U, in parti-
cular z e is in nzz(Dz) 

This is clear because

ih tz Dzz. Note that we can find a finite family 0j: U - Gz such that

is an immersion, and thus such that (tx 01, ... , x en) is injective. It fol-

lows that Tbç=Tb iff t’ bg(E) =t’b, because g(E t 0) =g(E)t’0.
It is now straightforward to show that g induces an isomorphism

It follows that g induces an isomorphism

and it is clear that there is an isomorphism CD-&#x3E; C’D which is covariant

with respect to the isomorphism E(z)-&#x3E;E’(z). The details are omitted.

aUe have thus shown that a ( T, n)-connection depends only on the

groupoids n( M) and the way in which local isomorphisms of lVI are lifted

into .0 ( M ) .
In the remainder of this section we prove that a (t,n)- connection

exists on any Lie groupoid over a para-compact manifold. We anticipate a

result that will be proved in the last section: there exists a positive integer
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k such that, if jkx f is represented by a constant map, then Tx f is a cons-

tant map.

2.25 L EMMA. Let G be a Lie group with ,Lie algebra g, and let (t,n) be

an extensor. Then with the prolonged structures, Te G is a simply connec-
ted nilpotent Lie group, To g is its Lie algebra, and T(exp): to g -&#x3E; te G is
the exponential map.

P ROO F. It is clear that te G is a Lie group, that To g is a Lie algebra,
and that T( exp) is a smooth isomorphism. We can thus identify Te(’TeG)
as a vector space with To g : if f (t) is a curve in Te G with f(0) = e ,
then its tangent at t = 0 is lim 1/t t( log) f(t).

Each A in to g induces a one-parameter subgroup t( exp ) t A of

Te G, and it is clear from the above identification that all one-parameter

subgroups are of this form. To prove that ’To g is the Lie algebra of Te G,
we must check that the Lie bracket prolonged from g coincides with Lie

bracket of right invariant vector fields.

if t"* 0 and d0(A, B)= [A, B] . It is clear that (t, A, B)-&#x3E;Ct(A, B)=
d (t, A , B ) is smooth, and it follows that

is smooth; in particular t d0 (V , W ) = lim Tdt (V, W ) . But the latter is the
Lie bracket of V, W defined by the right invariant vector fields that they

induce.

It only remains to show that to g is a nilpotent, Lie algebra. Con-

sider the special case t’ =Jk (R,-), It can be checked by a direct calcu-

lation that t’o g is nilpotent. Define /i , : g’ - g by

then, for some n , jk0u n is represented by the constant .map with value zero.

It follows that, for some n, to u n is the zero map, where T is any exten-

sor. Thus to g is nilpotent.
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2.26 L EMMA. Let G be a simply connected, nilpotent Lie group, let M be

any smooth manifold, and let H be a connected Lie group acting effective-

ly on M X G in such a way that each f in H satisfies

for some f : M -i G. Then H is a simply connected, nilpotent Lie group.

PROOF. It is clear that f is a smooth map for each f in H , and that f-&#x3E;f
is injective and satisfies fk( x ) = f(x), k (x) for all x in M .

Let b, g be the Lie algebras of H, G respectively. For each F in

h define a map F: M - g by exp F (x) - exp F (x). Since exp : g - G is a

smooth isomorphism (Hochschild [5], Ch.12), F is a smooth map.

Evidently F (x) generates the one-parameter subgroup exp t F (x)

of G. It follows that F-F is injective and preserves the Lie algebra
structure in the sense that

Since g is nilpotent it follows that h is nilpotent, but exp : h - H

is injective since F - exp F = exp F is; it follows that H is isomorphic to

its universal covering group.

Unfortunately we can’t work directly with the bundle C$ because

its fibres are not necessarily even connected. We must first pick out a sub-

bundle with connected fibres.

Let Hx be the component of the identity in the subgroup nxx((Dx)
consisting of E such that A for

Let C’x D consist of all isomorphisms n:txBxtxD-&#x3E;txDx
such that, for any local section 0 of b :Dx-&#x3E; B with 0(x)=x, the isomor-
phism n 0 ( cf. 2.10) is in HX. To show that C’xD is well defined, we

prove that , if d is another section of b:Dx-&#x3E;B with dx=x. then 7j-l
is in Hx . It is more convenient to identify Hx with the connected compo-

nent of the subgroup of the isotropy group at (x, x) of n (BxDxx) con-
sisting of n such that q (X, A) = (X, n (X). A) for some map

We must now show that is in Hx.
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. Define the

local map f: B-&#x3E; Dxx by f (y)= d-1y. 0 y and define another local map f t by
ft( y) = exp t log f( y), and finally the local map Fl: B XDxx -&#x3E; B X (Dxx by

It is clear that r(x,x)F 
t is a curve in n(BxDxx) joining d0-1 to the

identity; furthermore t Ft(X, A) = (X,-t f t( X ). A) for all t, X and A . It

follows that d 0-1 is in Hx.
Consequently C’D = U C lx(D is well defined and, since clearly the

action of no(Dz)/(Dzz on CD leaves C’D invariant, it follows that C’D

is a subbundle of CD.

Each fibre of C’D is isomorphic to Hx, and by lemmas 3.25 and

3.?6 Hx is a simply connected nilpotent Lie group, and thus is isomorphic
to a vector space: its Lie algebra.We can now apply Steenrod’ s theorems

on the existence of smooth sections [11]. Over a paracompact manifold
C’D has a section, and consequently so does e$.

2 . 2 7 T H E O R E M . A (7, D)-connection exists on any L ie groupoid over a

paracompact manifold.

3. Comparison Theorems

We show that a ( Tf, llk) -connection is equivalent to Ehresmann’s
notion of a k-th order holonomic connection [3] ; the same result holds

with the same proof for the semi-holonomic and non-holonomic velocity ex-

tensors (yk, fÏk) and ( Tk, IIk). n n

We then compare a ( ’r, n)-connection with the notion of (v T)-
connection introduced by Virsik in [ 141 as an abstraction of first order

connections. In the pair (C, r), T is a natural fibering, called a local re-

gular connector in [14], and C is a category of fibred manifolds contai-

ning all the maps Tf: tM -&#x3E;tN between the fibred manifolds tM-&#x3E;M and

7N""N.

Recall that a first order connection on (D is a section y: T B -&#x3E; AD

of Tb; a (v, T) -connection is the most natural generalization of this, na-

mely a section P, where such th at (~, j X)



79

as a map of fibred manifolds TB - B into tD -&#x3E; D is in v, ~ is the embed-

ding of B onto the identities of (D, and j is the inclusion of aD in tD.

All the familiar definitions of a first order connection: by horizontal sub-

spaces, a Lie algebra valued form, etc..., have analogues for a (u, T) -
connection. Furthermore Virsik has shown that, if T is the velocity func-

tor if and C the category of fibred manifolds p: T kn(M) -&#x3E;M with maps

(BZ , Zp ), where Z is a section of J( M, N) -&#x3E; M, then a (C, T) - C. onn ec-
tion is equivalent to a k-th order non-holonomic connection in the sense of

Ehresmann.

For our purposes v will be the category of fibre bundles and fibre

preserving maps, and T will be subordinate to an extensor (t, Q), then
aD will carry a natural fibre bundle structure. We show that, if the (C, t)-
connection X: tB-&#x3E;aD is, in a special sense, a fibre bundle map, ’and for

some x , Xx = Eo Tx s where s is a local section of Dx-&#x3E;B with s (x) =x,

and E an element of the groupoid of d0, then X is equivalent to a (t, n)-
connection.

Let (t,n) be the velocity extensor ( Tk, Ilk) described in 2.8,

and let $ be a Lie groupoid on B .

3.1 THEOREM. There is an isomorphism F:QkD-&#x3E;CD, and an isomor-

phism G: Dk -&#x3E;E(z) of groupoids such that F (E o n ) = G (E) o F (n) when-

ever f is in Dk, n is in Qk D and Eo n is defined.
P ROO F . Define F : QkD-&#x3E; CD as follows: if 77 is in Q kDx, then

is given by

where n X is composition of jets. Note that, if a and 8 are respectively
the source and target maps for jets, then BX = x = a n and Bn = x. We

now show that F ( n) is in XD .

In a neighbourhood of x take a local section e of b:Dx-&#x3E;B such

that 0x = x : We have the isomorphism given by

It follows that
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be the composition and inverse, res-

pectively, in D. we have

is clearly an invertible k-jet from Dx to Dx, hence f is in

It is easy to check that f is in fact in no (Dx), and it follows

th at F (n) is in (

The inverse of F is defined as follows: if ; 

in CD, then put F’(y)=ytj. wh ere j : B - B X V takes y into ( y, x) .

It is clear from the definition of CD that k is in

hence F’( X) is in jkx (B,Dx), and it is easy to check that in fact F’ (y)

is in Qk(D . It is straightforward to show that F’ is the inverse of F.

fined by It is clear that

is in n(Dz) and thus in no(Dz). We show that G is well defined. Sup-

pose that is such that k1 = (BE).b1
and n1(W) =E tb W . W ; then there is a unique s in $ such that h 1=h s
and k 1= k s . Furthermore for W in tb (Dz ) we have

It follows that n = n1

We now show that G is a homomorphism. Suppose E and f are in

Dk with ak(E) = bk(E), and that an d 1 We may clear-

ly choose u and À in no (Dz) so that au = j3 y. We have

say, where q in no (Dz ) is given by:

It follows that

Furthermore it is clear that and th at

The inverse of G is defined as follows: i
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Ho (Dz), then put where 0 is a local sec-

tion of b: Dz -&#x3E; B satisfying 0(bb)=b. The routine verification that G’

is a well defined inverse of G is omitted. 

Suppose now that f in Dk and À. in QkD are such that ak(E)=
and put G (E ) -&#x3E;n, where

In this calculation we have used several definitions in the following order:

the action of 2( z ) on D, the definition of F, the definition of G, the ac-

tion of (Dk on QkD, and finally the definition of F again.
The proof is completed by a routine check that F and G are smooth

isomorphisms; we omit this.

Thus (yk, IIk) -connections are equivalent to holonomic connections
of order k . Similarly (Tk n, IIk ) and (Tkn , nk) -connection s are equivalent
to semi-holonomic and non-holonomic connections of order k respectively;
the proofs are the same. Notice that ( 2.24) shows that a ( T’n, IIk)-connec-
tion is independent of n .

QUe turn to (C, t) - conn ection s.

3.2 DEFINITION. A (v,t) -connection on the Lie groupoid (D is a fibre

preserving map X: tB -&#x3E; aD such that tb X=1.

X is regul ar if the subgroupoid 2’ of E=no (Dz)/Dzz consis-

ting of E such that Eo X(X) =X(Eo X) is a Lie subgroupoid.
3C is normal if X is regular and if for some x in B there is n in

Cx D such that n (X , A ) =X ( X ) . A for all (X, A) in txB xLxD.
3.3 THEOREM. There is a one to one correspondence between normal ( C, T)-
connections and (T, D) -connections on (D -

PROOF. Let X: tB -&#x3E; AD be a normal (v,t) -connection and suppose

in Cx D. Define A: B-&#x3E;CD as follows: for each
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local section 6 of E’(x ) put Ay =E (y)on. Then for ( Y , C ) in

we have, if where E is in 

Since n(Dz) acts effectively on tDz, this shows that Ay is in-

dependent of the local section of 5i’ chosen. It is clear that A is a

smooth section of CD.

Conversely, let A: B-&#x3E;CD be a (T, D) -connection. Define X:

TB-&#x3E;aD by X(X)=Ax(X,ix) for X in xB; it is clear that tbX=1.

Furthermore it is easy to check that Eo Ax =Ay for f in 2 xy iff

It follows that 21 is the subgroupoid of 5i leaving the section A invariant,

and thus 5i’ is a Lie subgroupoid if it is transitive; we prove now that it

is transitive.

Take x and y in B ; choose k in H (B,), f in Dxy, and h in

0 and define where k = f h , by

where ( takes (X, A) into (XX, if. A, f- 1).
Using the definition of CD it is straightforward although complicated to

show that E is in n° (Dz ), and that Eo Ax =Ay.
It follows that X is a regular (v, T) -connection and by its defini-

tion X is also normal. Finally since the correspondence is given by

it is clearly one to one.

The regularity condition appears implicitly in the definition of a

first-order connection, for the lifting y: T B -&#x3E; AD is required to be a sec-

tion of L ( T B, A D). Regularity should be implied by any reasonable lo-

cal definition of a fibre bundle map.

Normality in the first-order case is implied by linearity.
The projection p: E-&#x3E;D*n(B) (2.21) induces an isomorphism of

’ with D*n(B), where E’ is the Lie subgroupoid of 5 leaving inva-



83

riant a regular (v, T) -connection. Thus:

13.4 PROPOSITION. A regular (v, T) -connection is equivalent to a section

of p:E-&#x3E;D*n(B). 

4. Structure of extensors

In this section we prove that, for some k , if jkx f is represented by
a constant map, then x f is a constant map. We can then give a partial
structure theorem for extensors; we lack a means of constructing an exten-

sor ( ’r, n) from a given 0: We end the section by extending a theorem of

Ngo Van Que on groupoids which are prolongations of manifolds in the sen-

se that local isomorphisms lift into them.

.We remark again that the only extensors taking manifolds into vec-

tor bundles are the first-order velocities T 1.
n

We use local methods, and thus restrict an extensor (T, Q) to the

category @ of Euclidean spaces Rn and smooth maps preserving the origin.
Write En for the fibre of TRn over the origin, let Hn be the isotropy group

n(Rn) at the origin, and let hn be its Lie algebra.

4.1 PROPOSITION. E n is a vector space with base point as origin. 1 f f
and g; R m-&#x3E;Rn are in E, then, for ú) in Em,

Furthermore ’T restricted to linear maps is given by L ( V , - ) for some vec-
tor space V .

P ROO F . Since T preserves products, all operations in Rn can be prolon-

ged to operations in En, and all commutative diagrams in E are taken into
commutative diagrams. Finally it is clear that the functors L ( V , - ) from
vector spaces into vector spaces are the only ones that preserve products.

Each map F : Rn -&#x3E; Rn in &#x26; induces a flow ft : Rn -&#x3E; R n in &#x26; defi-

ned by fsft=fs+t, and F(x) = lim -1/t [ft (x)- x] as t tends to zero.

4.2 LEMMA. For each v in E n ,

PROOF. Put Then it is
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easy to check that g is smooth; hence ( t, v) -&#x3E; ’Tg( t, - ) = ’Tg( i t, v)
1 r -

is smooth, and since t the result follows.

Each A in hn induces a smooth map En -t En given by

where at = exp t A . The following properties are easy to check:

and A(v)=0 for all v in En iff A=0.

Write In for the vector space of germs of smooth local maps Rn-&#x3E;Rn

in &#x26; at the origin, and write Ln for the group of germs of local isomor-

phisms Rn -&#x3E; Rn in E. We have a homomorphism d: Ln -&#x3E; Hn because an

extensor lifts local isomorphisms into the associated groupoid. There is a

corresponding function d*:ln-&#x3E;bn defined by exp t d*( F) = d (ft) where
It t is the germ of the flow induced by some representative of F.

ln inherits the Lie bracket of local functions:

and if h is in Ln , F in ln , we have ad (b) (F) in In defined as the germ
of b’ (b-1(x)) F(b-1(x)), where h and F are representatives of h , F

respectively. Note that

4.3 LEMMA. d*:ln -&#x3E;bn is linear and furthermore:

PROOF. For each v in En, d*( F ) = tF(v) by Lemma 4.2. Since,for
A in hn , A (v) = 0 for all v iff A = 0 , it follows from Proposition 4.1 that

d* is linear.

If ft is the flow for F, then b ftb-1 is the flow for ad(hb(F). It

follows that d* [ad(b)(F)] is the tangent at the identity to the curve

d(b f t b-1) =ad d(b)[d(ft)], which proves (a).
Now it is well known that, for functions F and G,
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where f t is the flow induced by F . It follows that, for each v in E ,

Since T is local we can replace the functions F, G by germs to obtain

and (b) follows from the expression for the bracket of right invariant vec-

tor fields in h .

We now show that there exists some positive integer k such that

Dqf(0)=0 q k implies d*f=0. F is flat if DKF(O) --0 for k &#x3E;0. The

following device is taken from Peetre [9J . Let So and S1 be any disjoint
closed subsets of the unit sphere in Rn; choose a smooth map $ defined
on the sphere such that D (S0) = 0, D(S1) = 1, and put 0(x) =D(x/|x|)
Then e is smooth outside the origin, and if F is flat, then e . F is smooth

and zero is a limit point of the interior of each of the sets

{x|0(x)F(x)=0} and {x|0(x) F(x) = F(x)}
- provided that neither So nor S1 is nowhere dense.

4.4 LEMMA. 1 f F in ln is flat, then d*( F) =0.

PROOF. Let G be a representative of F and let U be the interior of

f x 0(x)G(x)=0}; there is a sequence xn in U tending to zero. Put

Rx(y)=(0.G)(x+y); then t(Rxn )(v) =0 for all v in En since Rxn n

vanishes in a neighbourhood of the origin. It follows that

hence d*(0F) =0. Similarly d* [(1-e)F] = 0 and it follows that

d*(F) =0 .
The sequence of pseudonorms |F|k = |Dk F (0) | defines a topo-

logy’on lk and the germs of flat functions form a closed ideal. If we factor

out by this ideal, then by an extension of a theorem of Borel, Mirkil [7],
we get the Frechet space of formal power series, here taken as Taylor se-

ries in Lang’s sense.

4.5 L EMMA. T’here exists a positive integer k such that, i f A is any q-li-
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near map from R n into R n with q &#x3E; k , and if A’ is th e germ of x -&#x3E; A x q,

then d*(A’) =0. 

P ROO F. If the lemma were false, then there would be an increasing sequence

qi of positive integers and for each i a qi -linear map A i such that

We show that the d*( Ai’ ) are linearly independent; this invoves a con-

tradiction because bn is finite dimensional. Suppose that Eyid*(A’i) =0;
then for each v in En and t in R we have

Hence yi tA’i(v) =0 for each v and each i ; it follows that yiC*(A’i) =0
. and thus yi=0 .

A combination of the two Lemmas and the remark proves that for

each n there is a least integer k n such that, if F is in / and D q F ( 0 ) =
0 for qkn, then d*(F)=0, i.e. TF =0 .

4.6 LEMMA. kn is independent o f n .

PROOF. kn kn+1 for all n because, if F is in ’n and DqF(O)-O for

q  kn+1, then Dq( Fx0) =0 where Fx0 is in ln+1; hence d*( Fx0)
0 and thus C*(F)=0.

Suppose that F in ln, satisfies DqF(0) =0 for q k1. Let

be linear; then Dq(BFA)=0 for qk1; hence T(B)T(F)T(A)=0; and
by 4.1, B . T( F ) . A = 0 for any linear B and A . It follows that C* F = 0 ,
and thus that kn  k1. 

Call the common value k the order of the extensor t. The Lie

group Ln of k-jets of local isomorphisms preserving the origin of Rn has

Lie algebra where f t is the flow of F

It follows immediately that we have a Lie algebra homomorphism

y*:lkn-&#x3E; hn and it is easy to see that the underlying group homomorphism

y:Lkn-&#x3E;Hn is globally defined, because yjk=d.
Notice that any local map F: Rm-&#x3E;Rn can be factored into the lo-

cal maps given by
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It is clear that F’ is a local isomorphism. We employ this device to give
a structure theorem for extensors.

4.7 THEOREM. There is, up to isomorphism, a one to one correspondence
between an extensor ( T, Q) and the following list of objects: a positive

integer k, a vector space V, a sequence of Lie groups Hn such that Hn
acts effectively on L ( V , Rn ) so that there is an embedding

for each m and n, compatible with this action, and finally for each n a

smooth homomorphism yn: Lkn-&#x3E; Hn o f Lie groups which is compatible with

the embeddings Hm x Hn -&#x3E; Hm+n and and which does not

factor through the projection

P ROO F. We have already shown that an extensor gives rise to the above

list of objects.
Given the objects listed we construct an extensor ( T, n) as fol-

low s.

Let M be a manifold of dimension n . Define r M to be the set of

equivalence classes of pairs (C,v), where (1, is a chart around x and v

is in L(V, Rn); (C,v) is equivalent to (w, w) iff ynjk0(Cxw-1x)(w)=v
where Cx (y) =C(y)- C(x). Put tM = U xM; it is clear that T Mis a

manifold, since each chart cP: V -. Rn gives an isomorphism of TU with

U x L ( V , Rn ) and such isomorphisms are smoothly compatible.
We define fl(M ) in the same way. Let D xy (M) consist of triples

(w, s, d), where’-/; , 4J are charts around x, y respectively, s in Hn , and
we identify (qj , s, (t) with (w’, s’ , d’ ) if

Put n(M)=Unxy(M); a pair of charts d: U-&#x3E;Rn, w:V-&#x3E;Rn induces an

isomorphism of n(M)|UxV with V X Hn X U. These isomorphisms are

smoothly compatible and thus define the structure of a manifold on n(M)-
Write td-1x(v) for the equivalence class of (d,v) at x, and

t(w-1y ) S t(dx) for the equivalence class of (w, s, d) in .0 (M). De-
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fine This

map is locally the projection V X Hn X U -&#x3E; U X V ; hence it is a surjective
submersion. Define composition in D( M) by

If we take w then locally composition is given by ( z, s, y) ( y, t, x )=
(z, st,x); it is therefore a smooth map. Similarly the inverse map is smooth,

and it follows that D( M) is a Lie groupoid over M . D( M) acts on TM

as follows:

This is a smooth effective action because, after a choice of charts, the ac-

tion of nxx (M ) on x M is that of Hn on L ( V , R n ) .

If /: M - N is a smooth map, then Tf:TM-’TN is defined as fol-

lows : take a chart d, around x and a chart w around y = f (x) and define

where n =dim M, p =dim N, where F:Rn+p....Rn+p is given by

and where p2: L (V, Rn+P)-&#x3E; L ( V , Rp) is the projection. It is clear, u-

sing the isomorphisms tM |U -&#x3E; U X L ( V, R n), that 7-f is smooth.

Checking of the outstanding properties of an extensor is straight-
forward. Finally it is clear that

local structure-&#x3E; extensor-&#x3E; local structure

is the identity; it remains to show that, if two extensors give rise to the

same local structure, then they are isomorphic. Taking charts gives local

isomorphisms and it is easy to check that these isomorphisms are compati-
ble.

Note that an extensor of order k admits a smooth homomorphism

y:IIk( M) -&#x3E;n(M) of groupoids for each manifold M, through which the lif-

ting of local isomorphisms factors. This is true in a more general context.

We sketch a proof of the following extension of a theorem of Ngo
Van Que [l2]

4.8 DEFINITION. A prolongation of a manifold M is a Lie groupoid Q o-
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ver M, and a lifting of local isomorphisms of Minto D such that each iso-

morphi sm f:U-&#x3E;V induces a section U-&#x3E;n of the source proj ection a. :

D - M, written x-&#x3E;px f , so that B px f = f (x) and such th at, if f t i s a lo-

cal flow, then (t, x) -&#x3E; px f t is smooth.

4.9 TH E O R E M. Every prolongation fl of M admits for some k a smooth

homomorphism o f groupoids À.: II k - D through which the lifting of local iso-

rrtorphisms factors.

PROOF, We have only to prove that there exists k&#x3E;1 such that jkx f = jkx 1
implie s px ( f ) = x .

Take a chart d: U -&#x3E; Rn with f ( U ) = Rn , such that there is a lo-

cal section 0:U -&#x3E;nx of B: nx-&#x3E;M where x =d 1(0). We have a homo-

morphism w:L-&#x3E;G=nxx taking germs of flows into one-parameter sub-

groups. Let g be the Lie algebra of G and define w*: ln-&#x3E;g by

where f t is the germ of the flow of a representative of F . As in L 12J it

can be shown that ce* is R-linear and preserves bracket. Lemma 4.4 can

be adapted to show that úJ* vanishes on flat functions by noting that, if

ft is the flow of Sx:y-&#x3E;0G(x+y)-0G(x), then x-úJ(ft) is smooth

and thus so is x-&#x3E;w*(Sx). The adaptation needed in Lemma 4.5 is clear;
we need only check that, if u t is the germ of multiplication by t, then

We note that compactness is not required in the above theorem be-

cause k is from the start bounded by the dimension of G . We remark fur-

ther that the really hard part of this theorem has been slurred over as it

was in Ll2J . To prove that ú)* is R-linear and preserves the bracket,

without additional continuity hypotheses on the lifting of local isomor-

phisms, requires quite subtle arguments of the kind used by Epstein [4]
to prove the continuity of natural vector bundles.

It is worth noticing that a spray on a manifold M induces a first or-

der connection on each groupoid Q prolonging the manifold. For it induces
a first order connection on IIk(M) for each k; thus define À: TM -&#x3E; A II k (M)
by
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where X is in TxM, expx: Tx M-&#x3E; M is the exponential map, and log is

the local inverse of expx.
It can be shown that for k = 1 this is precisely the linear connec-

tion without torsion associated to a spray by Ambrose, Palais, and Singer
in [1] .
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