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CAHIERS DE TOPOLOGIE Vol.XII, 1
ET GEOMETRIE DIFFERENTIELLE

ABSTRACT VELOCITY FUNCTORS

by R.A. Bowsbhell

It is still uncertain which category differential geometry studies.One
general definition of a structured manifold is given by the notion of a higher
order G-structure, but the definition of admissible maps is elusive.

Since the theory of connections on groupoids plays a central role,
it would be desirable that a category of structured manifolds admit many
groupoids - a groupoid can, of course, be defined in any category with pull-
backs. This requirement indicates that the proper domain for geometry is a
category of groupoids. In any case all the familiar constructions on a mani-
fold B can be considered as constructions on the trivial groupoid II(B)=
B X B, and as such have immediate generalizations to any Lie groupoid.

Lacking any clear conception of what is required from a category of
structured manifolds, especially because to date differential geometry has
focussed on first order differential equations: existence of flows and the
Frobenius theorem, it seems premature to attempt a definition of admissible
maps. Nevertheless there seems some point in studying functors on the ca-
tegory o{ all manifolds which are likely to have significant analogies on a
category of structured manifolds.

In this paper we define an abstraction of Ehresmann's velocity func-
tors Tﬁ :Ti(R", -) called an extensor; it consists of a pair (7, Q), T be-
ing a local product preserving functor into fibre bundles 7M ~M on which
a Lie groupoid Q(M) acts effectively, such that local isomorphisms of M
are lifted by 7 into {1 (M) with appropriate continuity conditions satisfied.
The precise definition is given in (2.8). The assumption of product preser-
ving is needed to ensure that 7 preserves the structure of submanifolds;
for example, the functor into vector bundles M- Tk( M) :]k( M, R )t intro-
duced by Ambrose, Palais and Singer in [1] does not preserve products and

does not even preserve diagonals.
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2 R.A. BOWSHELL

In the final section of the paper we show that the lifting of local
isomorphisms factors through a homomorphism [Tk(M)~Q (M) for some &,
and thus that extensors are classified by sequences of smooth homomor-
phisms Lf- G,, where G, is a Lie group acting effectively on E™ for so-
me vector space E. For a category of locally flat pseudogroup structures
we would expect the same thing to hold, except that the homomorphism Lﬁ
- G, would be restricted. Similarly for general pseudogroup structures we
would have a restriction of the homomorphisms Hk(M)—' Q (M), however
in this case there is no obvious way of constructing an extensor (7, 1)
from . In fact the problem of constructing an extensor subordinated to the
prolonging groupoids (1 (M) is closely related to the problem of admissi-
ble maps, and it depends basically on a study of the (nonlinear) represen-
tations of a sequence G, of Lie groups on a vector space E.

We emphasize () rather than 7 because, as will be shown in Sec-
tion two, there is a notion of connection, on a Lie groupoid, associated to
each extensor (7, {1 ), which coincides with Ehresmann's higher order con-
nection for (Tﬁ, I1%), and depends only on the way in which the local iso-
morphisms are lifted into ).

In Section one, after presenting a few technical properties of Lie
groupoids and fibre bundles, we sketch the basic properties of the vector
bundle A® of infinitesimal translations of a groupoid. No essential use is
made of A®D, but nevertheless it carries the obstruction theory of groupoids
and connections, and as such plays the role of Lie algebra for a groupoid.

Section two begins with some consequences of the assumption of
product preservation for a local functor into fibered manifolds. Next exten-
sors are defined and the associated notion of connection is introduced. The
main part of the section is devoted to the construction of a prolongation of
a Lie groupoid ® which generalizes the holonomic prolongations ® k. This
notion of prolongation is at the heart of extensor connections and a fortiori
of higher order connections in the sense of Ehresmann. The section ends
with the proof of the existence of extensor connections.

In Section three we compare extensor connections with Ehresmann's

higher order connections,and with an abstraction of the lifting of velocities,
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ABSTRACT VELOCITY FUNCTORS 3

induced by an Ehresmann connection, that was introduced by Virsik.

The last section studies the structure of an extensor; it ends with a
generalization of a theorem of Ngo Van Que.

I would like to express my thanks to Ph.D. supervisor Dr.J. Virsik
for suggesting the topic of this paper, and for several useful discussions.

Finally a word on notation; we use throughout the terminology of
Lang (6] , thus, for example, a projection of maximal rank is called a sur-
jective submersion. In addition we denote the zero section of a vector bun-
dle by 7, and if F:E—~E’' is a map between fibre bundles we denote the
restriction of F to the fibre E_ over x by F_. A smooth map is differen-

tiable to any order.

1. Connections and Groupoids

In this section we sketch the theory of connections on groupoids,

and prove some results needed later.

1.1 DEFINITION. A groupoid is a category consisting of a set of objects
B, and a set of invertible maps ®. Each groupoid is equipped with right
and left unit projections a, b:® -~ B, thus f:af-bf, af being the right u-
nit of [ since it is traditional to compose maps backwards, and an injec-
tion ~:B-® of objects (units) onto identities.

A Lie groupoid is a groupoid for which @ and B have the structures
of smooth manifolds, ~, @, b, the inverse 0:®~®, and the composition
K:®4«®-® are smooth maps; and in addition ~:B~® is an embedding,
and (a, b): ®+ BXB is a surjective submersion.

In the above ®+«® =( axb) "}(A) where A is the diagonal of BX B;
®4+® is a submanifold of ® Xx® since a X b is transversal over A - in fact
both @ and b are submersions. We shall write f.g for K(f, g), [~ ! for o f,
and we shall identify the object x with the identity X, wherever conve-
nient.

We use the following notations:

® =at {x}={/ed:af=x),
®, =(ab) H(x.y)}={feD af=x, bf=y}.

It is clear by transversality that ®  is a submanifold of @, that <I)xy is a
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4 R.A. BOWSHELL

submanifold of @ , and that @, is a Lie group.

The following result is easily verified.

1.2 PROPOSITION. If ® is a groupoid over B for which ~, a, b, o, and
K are smooth maps between smooth manifolds, then ® is a Lie groupoid

iff, for some x in B, b: ® ~ B is a principal bundle with group D, .

We shall view a fibre bundle as a fibred manifold, i.e.a surjective

submersion, on which a Lie groupoid acts.

1.3 DEFINITION. Let ® be a Lie groupoid over B, and let 7:E—+B be a
fibred manifold; define ®«E =( ax7) (L) ; it is a submanifold of ® X E
by transversality. We say that ® acts on E if there is a smooth map ®«E
- E written (f, v)~fv which satisfies 77(f.v)=bf, and f.(g.v)=(f.g)v
whenever af=bg.

The following result gives a useful characterization for fibre bun-

dles.

1.4 LEMMA. Let ® be a Lie groupoid over B and let & be a functor from
® into the category of smooth manz’fola"s (i.e. & assigns to each x in B a
smooth manifold E  and to each [ in q)xy a smooth map E/,Ex—- Ey) such
that for some z in B the map ® xE_ ~E, defined by (s,v)~E(s)v

is smooth. Then E = ) E, has a canonical fibre bundle structure.

PROOF. Fix z in B so thet ® XE ~E_  is smooth. Construct a fibre
bundle by the standard mixing process: namely take the orbit space of
®_ X E, under the action of ®_, via s.(h,v)=(hs, s 1v). There is an
obvious one to one function onto E; thus E inherits the structure of a fi-
bred manifold on which the Lie groupoid ® clearly acts.

Notice that by a theorem in Montgomery and Zippin, [8] p- 212, it
suffices to assume continuity of D, X E_~E_ for some z.

The following result is well known.

1.5 PROPOSITION. If } is a subgroupoid over B of the Lie groupoid @
such that, for some z, sz is a Lie subgroup of ®,,, and B is covered by
local sections ¢;:U;~®_ of b:®, ~B which take values in (1, then )
is a Lie subgroupoid of ®@.

The following result can be found in Ngo Van Que [13].
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ABSTRACT VELOCITY FUNCTORS 5

1.6 PROPOSITION. If s is a section of the fibre bundle L associated to
the Lie groupoid ® over B, and the subgroupoid of D leaving s invariant
is transitive, i.e. for each x and y in B there is an [ in ® such that

f.s(x)=s(y), then this subgroupoid is a Lie subgroupoid.

Given a Lie groupoid (®, B), we define a groupoid ®* over B by
letting ‘f)é be the set of jﬁs where s is a local section of a: ®~ B such
that bs is a local isomorphism in B . We have right ak, and left b*, unit
projections: a* jis =x, b* jﬁs =bs(x), and composition

j’;sojfz:jﬁ {z=s(bt(z))t(z)}
whenever a* jf,s = bk jft.

®* is the k-th holonomic prolongation of ®. We have analogously
the k-th semi-holonomic, and k-th non-holonomic prolongations: Dk, B* res-
pectively; for the local structure see Virsik [14] . They were introduced by
Ehresmann in C.R. Acad. Sci. Paris, 240 (1955).

The basic invariant of a Lie groupoid ® is the vector bundle A®
of infinitesimal displacements. This was implicit in Ehresmann's original
paper defining connections on a fibre bundle, but was first emphasized by
Atiyah in [2] .

AD =) T,®, is a vector bundle associated to the groupoid ® L
Sections of A® correspond naturally to right invariant sections of T® .
Thus if V is a section of A®, then h~V(bb).ib is aright invariant vec-
tor field on @

where bbh =x defines a section of AD .

»» and given such a vector field W on ®_, then x~ W(h).ib~ 1

It follows that there is a Lie bracket of sections of A®. In fact if
V is a section of A® and ¢t(}’) is the local flow of the associated vec-
tor field h~V(bh).ih on ®,,we can define a local one-parameter group of

automorphisms L,bt(kb’l)zcﬁt(k)gbt(b)'l. It can then be shown that
Cv.wl(x)=tim L {w(x) =Ty, [Wey_ ,(%))] } coincides with the bra-

cket induced from the right invariant vector fields associated to V, W.

There is an exact sequence of vector bundles over B associated to
each Lie groupoid: Tb
0-LO-~AD-TB-0
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6 R.A. BOWSHELL

where L® = |J T,® _, and it is easily seen that
To[v.wl=[ToVv, TOW],
and that, if the sections V, W of A® take values in L®, then
[v.wl(x)=[v(x), W(x)]

where the latter is Lie bracket, by right invariant vector fields, in the Lie
algebra T Q.

Another basic property of A is that A®* ~J¥A® , a natural equiva-
lence under the twist map:

it~  ly=sey) )1 Y=k {y~jlle~sct.y)] ).

This was first noticed by P. Libermann in the case that ® is the trivial grou-
poid II(B)=BxB.

A first order connection on ® is defined to be a splitting of the e-
xact sequence

0-L®~ADP~TB-~0,
i.e. a section A\:TB~A® of Tb:AD ~ T B. Its curvature is the section
of L;(TB, L®) defined, on vector fields, by
ACX,Y)=x[x,Y]l-[xx,AY].

It can be shown that this is just the standard curvature moved down from
the principal bundle to the base manifold; it also coincides with the defi-
nition of curvature given by Ehresmann in [3].

Since TB=All(B), where II( B)=B X B, the role of curvature as

an obstruction is shown explicitly by the following result of Ngo Van Que

[12] .

1.7 THEOREM. Let ® and ®' be two Lie groupoids over B. Each local
bhomomorphism [:U—~®', defined in a neighbourbood U of the identity sub-
manifold of ®, induces a vector bundle map F:AD~A®' which satisfies
Tb.F =Tb, Tb being the canonical projection of A® and A®' on T B,and
which preserves Lie bracket: F [V, wl=[Fv,Fw].

Conversely any vector bundle map F:A®~A®' preserving Lie bra-
cket and satisfying Tb.F =Tb is induced by a local homomorphism f:U-®"
if both [:U~®" and [ :U'~®" induce F, then [ and f' agree on U U’.

It is interesting to notice that, if ® acts linearly on a vector bun-

dle E - B, then sections V of A® act as first order differential operators

62



ABSTRACT VELOCITY FUNCTORS 7

on sections s of E as follows:
(Vs)(x)=lim ; {6,(x)" s [b0,(x)] =s(x)},
where b-@t(bb).b is the local flow of h=V(bh).ibh. It can be shown

that [V, W]ls =V (Ws)-W( Vs); thus, if we define covariant derivative by
Vys=(AX)s, for X a vector field on B, then we have the classical formu-
la:

—A(X,Y)S:{vxvy "'VYVX -V[X, Y]}s'

The minus arises because in the classical case left invariant vector
fields are used to define the Lie algebra structure in each fibre of L®;
thus a different action of L® on E must be used to preserve the formula

[A,Bl(v)=A(Bv)-B(Av).

2. Extensors

In this section we study the properties of local product preserving
functors from manifolds into fibred manifolds. In particular we introduce ex-
tensors: an abstraction of the velocity functors Tﬁ. For each extensor we
define a notion of connection on a Lie groupoid which coincides with Eh-
resmann's higher order connection (3], in the special case of a velocity
functor. Finally we show that for any extensor such a generalized connection

exists in any Lie groupoid over a paracompact manifold.

2.1 DEFINITION. A natural [ibering is an endofunctor F of the category
of smooth manifolds with a natural retraction p: F ~ 1 onto the identity func-
tor, p having the natural section 7: I~ J, such that:

a) Each Py :FM~M is a submersion, necessarily surjective.

b) If {x} is a one point manifold, then F {x} is a one point manifold,
thus F{x}=A{ Z{x} x ).

o F preserves products; thus if bj: M XM, ~ M]. is the projection (j =
1,2), then

(Fo . Fp,):F(myxm,)~Fm xFu,

is a smooth isomorphism.

d F is a local functor; thus if g: U~ M is the inclusion of an open
submanifold, then FU :?M| U=p “LU) where Py $M-M, and ?q:

FU-FM is the inclusion of an open submanifold.
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8 R.A. BOWSHELL

This definition is adapted from Virsik's paper [14] in which he
calls the functor a local regular connector, and uses it to generalize the
lifting properties of connections. We will examine this problem briefly in
section 3.

In the following results we suppose that Fisa given natural fibe-

ring. The properties of transversality used here may be found in Lang [6] .

2.2 LEMMA. If g: M- N is an immersion, then Fg: FM-FN is an immer-
sion. Furthermore, if g embeds M on a submanifold A of N, then Fg em
beds M on the submanifold A of IN.

PROOF. Suppose g is an immersion, and take x in M; then there is an o-
pen neighbourhood V of g(x)and a map b: V-g"(V) such that bgi= lg— Lv)

where j:g"l(V)-'M is the inclusion. It follows that
Fr.FelFg M vi=15,,-1.v)

since F is local. Hence .C)Ig is locally a section; this implies that ?g is
an immersion.

It is clear that g injective implies J g injective. Suppose 4 isa
submanifold of N; the proof will be complete if we show that F A is a sub-
manifold of FN.

Take x in A and a chart ® U~V XW for N with ®(x)=(0,0),
where V, W are open sets in vector spaces E, F, such that ®(U N A)=
Vx0. Then F(UN A)=FAl(UN A) and F@|F(U N A)=F(vxo).

It is clear that F(V x0) is a submanifold of FVxFW~F(vxw),
and it follows that $(U ] A) is a submanifold of FU. Hence FA is lo-

cally a submanifold of M, and the result follows.

2.3 LEMMA. If g:M~N is transversal over the submanifold A of N, then
g Y A) is a submanifold of M, and F(g~ Y (A))=(Fg) Y FA).

PROOF. It is well known that g ~'(A) is a submanifold of M, and that
gi:g Y(A)~A is a smooth map, where j:g '(A)~M is the inclusion.
Hence g maps ?(g-l(A)) into A, since Lemma 2.2. shows that Fi
is an embedding. It follows that .‘,T‘( g"l( A))C(S:g) -1(?A).

For the converse we work locally. Take x in g-l( A) and put y =
g(x); take a chart Y: V=V XV, at y, where V; is an open set in the

1
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ABSTRACT VELOCITY FUNCTORS 9

vector space E,, i=1,2, such that Y(y)=(0,0), (v A)=V x0
Since g is transversal over A, there is an open neighbourhood U
of x for which p, Yg:U~-V=V XV,~V, is a submersion. This means
explicitly that there is a chart ® :U~U XV, CE;XE, such that
i v,
b, YN v, 1,

commutes (if necessary the chart | may be restricted).

Now suppose that X is in (Fg) Y FA) with pyX=x, then y=
g(pMX):pNggX isin A, and so x isin g *(A). Since ¥ is local, X
is in FU, and Fg(Xx) is in F(v N A4). ?@(X)ish15leq%O:
Fcu,x0) since ?pQEQ(X):?(pgngX):q%o.

Notice that ® :U ] g "'(A)~ U X0 is an isomorphism. It follows
that X=F 0~ 1F®(X) isin F(UN g~ A)) and thus in F(g~'(A)). The

result follows.

2.4 LEMMA. If ACMXM is the diagonal, then FOCIM XFM is also the

diagonal.

PROOF. We have the isomorphism ( I, 1):M~1, hence (F1,¥51)=%F(1,1):
FM~FA is an isomorphism, and the result follows since ¥4 is a subma-
nifold of FMxF M.

2.5 COROLLARY. If [, g:M~=N are such that (f,g):M~NXN is transver-
sal over the diagonal A\ of NXN, then the equalizer e: E~M of [ and g
exists and is given by E:(/,g)-i(A). Furthermore Fe:FE-FM is the
equalizer of ¥ and Fg.

2.6 COROLLARY. If f:M~Q, g:N=Q are such that [Xg:MXN~-QXQ
is transversal over the diagonal D\ of QX Q, then the pullback P of [ and
g exists and is given by (fxg) Y A). Furthermore P is the pullback of
5/ and Fg.

Not even the tangent functor preserves arbitrary equalizers. Consi-
der for example f, g:R~R?2 given by f(t)=(t,0), g(t)=(t,t°%).

If we call linear fibering a functor F satisfying a), b) and d) of

definition 2.1 and such that each fibre is a vector space and each map g
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10 R.A. BOWSHELL

is linear on fibres, and say that it preserves diagonals iff
F(D)=(Fp,.Fp,) " AFM)

whenever A is the diagonal of M XM, AF M is the diagonal of FuxTm,

and p,, P, :MXM~M are the projections, then we have

2.7 PROPOSITION. A linear fibering preserves products iff it preserves

diagonals.

PROOF. Necessity follows from Lemma 2.4.

Suppose that F is a linear fibering which preserves diagonals. De-

fine J:FMXFN-F(MxXN) by

J(Vx, Wy)=F(1,5)(Vx) + F(x, 1)(Wy),
where y is the constant map M~ N with value y=py(Wy). (This defini-
tion is taken from Virsik [14] .)

It is clear that (?pl,FPQ)]:IgMXCfN, where p, and p, are
the projections. Furthermore, if f:M~M’, g: N~ N', then

J(FixFg)=F(ixg)].

We first prove that, if M=N, [, =] FMXFM-F(MxM) satisfies
J(F1.51)(v)=F(1,1)V. Thus take V in FM, then (F1.F1)(V)=
(V,V) is in the diagonal of FMXFM. Now (Fp ., Fp,)J(V,V)=(V,V)
and since F preserves diagonals we have J(V, V) in $A . But (1,1):
M~ is an isomorphism, thus J(V,V)=%(1, 1)(W) for some W in Fm,
and clearly we must have W=V. It follows that J(F1,F1)(V)=F(1.1)V.

For any smooth maps f: A-M, g: A= N, we have

J(E1.Fe)=1(F(xFenF1.F1)=F(fxg)Jp(FLF1)=
Forxe)Fc, D=3t g).
In particular take the projections p,-MXN~-M, p,:MXN-N; then

J(Fp,.5p,)=F(p,.p,)=F 1; it follows that ] is an isomorphism, and

thus § preserves products.

We remark that the only product preserving functors into vector bun-
dles are the first order velocities Tnl. This is a very special case of a the-
orem of Epstein [4] , and it is quite easy to prove directly.

Suppose that @ is a Lie groupoid on B with right and left unit pro-
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ABSTRACT VELOCITY FUNCTORS 11

jections a, b, with inverse o:®-+®, and with composition K:®s® ~d
where ®x® is the pullback of a:®~B and 6:®~ B. Since a, b are sub-
mersions, it follows that F(®4«®) is the pullback of @ and Fb; we can
thus prolong the composition to FK:F®+F®~F®, and since the axioms
for a groupoid can be expressed by commuting diagrams, it is clear that fo
is a differentiable groupoid over F¥B. Fd is alLie groupoid because it is
locally trivial: if g:U-~®_ is a local section of b, then ?g:fo—*cf(Dz
is a local section of ?@z:(?a)"l{ z'Bz}:(.cffl))iBz.

Finally it is easy to show that pg :FD-® is a homomorphism of
groupoids.
We now proceed to the definition of an extensor and the connection

associated with it.

2.8 DEFINITION. An extensor is a pair (7, {]) in which 7 is a natural fi-
bering and () assigns to each smooth manifold M a Lie groupoid {(M) o-
ver M, with right and left unit projections a, B, which acts effectively on
the fibred manifold 7M. In addition the pair (7, Q1) should satisfy the fol-
lowing conditions: ’

a) {J(M) leaves invariant the natural section 7:M~ 7M; thus &(iaf)
=i B for all £ in QM).

b) If U is an open submanifold of M, then

ﬁ QU)=0mU=(a B V).

There is an embedding (&, M)~ &X7 of (Q(M)XQ(N) onto a Lie
subgroupoid of (M XN ) for each pair of smooth manifolds M, N which sa-
tisfies (EXM)Xpu =EX(NXU).

c) If g:M—~N is a smooth isomorphism, then we have a smooth iso-
morphism of acting groupoids ((M)-Q(N) written & - Tgf’rg—l which
satisties (T,&7, ") (V) =Tl E(TeTV)]. .

A local isomorphism f:U-U'in M induces a local section of a:
Q(M)~M written x- T,/ which satisfies 7f(V)=7,[o V, the latter being
the action of (M) on 7(M).

If U is an open subset of RXM and if U~ M, (t,x)—*/t(x) is a
flow on M, then the map U-{)(M) given by (t,x)~ T, f, is smooth.
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12 R.A. BOWSHELL

The principal examples of extensors are given by 7TM :]S(R”, M)
and Q(M);Hk(M) and the analogous examples in which holonomic jets
are replaced by semi-holonomic or non-holonomic jets. It is straightforward
to check that (Tﬁ, Hk),(’ff, ﬁk), and ("fﬁ ﬁk) are in fact extensors.The
projection Tﬁ(M)-M is the target map, and the section 7: M~ Tﬁ(M) ta-
kes x into jé {y=x}, the k-jet of the constant map.

Since, if V is an n-dimensional manifold, we have J%(V, M) iso-
morphic to ]é(R”, M), it is clear that (]5( V,-),I1%) is an extensor. A si-
milar remark holds in the semi-holonomic and non-holonomic cases.

Take a fixed smooth manifold B; we now define functors @, £ from
the category of Lie groupoids over B to the category of fibre bundles over
B. @ and £ are constructed from T in the same way as the first order inva-

riants A and L are constructed from T. Thus

Ge=yr.

X

o, L= U 7 ®@xy (where 7,0, =7(D,) ),
X

and, if g:® =I is a smooth homomorphism of groupoids, let (g, £g be
the appropriate restrictions of Tg.
Notice that we have a projection 7b: @D~ 7B induced by the left

unit projection b.:® - B. Moreover,
7@, =T (B, N6~ H{x})=7,®, N (76) "  {ix};
hence £ ® consists of all V in @® such that 76V =i 7V, where 7: @® ~ B

is the obvious projection. This is analogous to the exact sequence of vec-

tor bundles over B,
0-LP~ADP-TB-0.

In order to complete the description of £ and @ and to define the
bundle C® of elements of T-connection, we must define the groupoids ac-

ting on £® and @D

It will be shown that ® acts on £® in a natural way.

2.9 DEFINITION. Let Q"((I)z) consist of all £ in Q(®, ) such that:
a) Forall V in Taé-q)z and A in 7. E(V.A)=£(V). A where

z T zz?
'.' indicates prolongation of composition in @ .

b) There is an element é:o in {(B) such that, for all V in Tagq)z,
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ABSTRACT VELOCITY FUNCTORS 13

TOE(V)=EqTh( V).

It is clear that QO(Q)Z) is a subgroupoid of ((®,). Moreover, sin-
ce C(B) acts effectively on 7B and Tb: T(I)z—°7'3 has local sections,it
is easy to check that £ is uniquely determined by &, and that &~ &, s
a homomorphism {1°(®,)~(B) of groupoids.

If h:U-®, is alocal section of b:®,~ B on a neighbouthood of z
such that h(z)=%, then we have an isomorphism h: T,®, -7, BXT,®
given by h(V)=(7bV, [7(hb)(V)]~LV)

If £ is another such local section at z, then it is easy to see that
Z"l.IZZTZf, where f is a local isomorphism of ®, given by

f(q)=k(bq).h(bq) " q.

Since f(gs)=f(gq)s for s in ‘l)zz, and bf(gq)=bgq, it follows
that 7, f is in QOZZ((I’)Z) with (Tz/)o =1, in Q(B).

2.10 DEFINITION. The bundle of elements of T connection, Cd, is con-
structed as follows: ed):zLéB@zq), where GZCD consists of all smooth
maps 7. T,BXT,®_ -7, ® satisfying

M(X,A)=m(X,z).A and TOb(X,A)=X,

and such that M5 is in Q°zz(®z) for some, and thus any, local section
b:U-°®2 with h(z)=%.
It will be shown that C® is a smooth fibre bundle over B that is

associated to @@ .
2.11 DEFINITION. A (7, {))-connection is a smooth section of Co.

The following propositions are devoted to showing that the objects

constructed are in fact smooth fibre bundles.

2.12 PROPOSITION. £® is a fibre bundle over B on which the Lie grou-

poid ® acts smoothly.

PROOF. If [ isin @ _ , define [:£,0-8 @ by f(A)=if. Aif™"
Since (I)yy:(a,b)”l{(y,y)} we have

£ycb:(¢a,7b)'1'{(z’y,iy)},

as a submanifold of 7®, and it follows that f( A) is in ‘qu) .
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14 R.A. BOWSHELL

It is clear that fg—:/z whenever af=bg. Furthermore
o :CI)xxxfx(I)—ogx(I) given by u(s,A)=is.Ais™ !
is a smooth action. The result follows.
In order to construct a Lie groupoid acting on @®, we must first

show that {lo (®,) is a Lie subgroupoid of Q(Qz). We proceed to do this

in two stages.

Let Q'(®,) consist of all £ in (®,) such that
THE(V)=1Tb(V) for all V in T(I)ag .

where 7), necessarily unique, is in Q(B). O ((I)z) is clearly a subgroupoid

of Q((Dz).
2.13 LEMMA. Q‘((I)z) is a Lie subgroupoid of Q(@z).

PROOF. Put G, :Q’zz (@), K, :sz(B), and let H_ consist of all £ in
G, such that TbE(V)=Tb(V) forall V in 7,0, .
It is clear that H, is a closed Lie subgroup of (1, (®, ). We will

exhibit G, as a semidirect product of H, and K_; it will follow that G, is

z
a Lie subgroup of sz((bz).
Choose a local section b:U-'(I)z of b:®,~B such that h(z)=%.

We have an induced isomorphism f:®, I U-UX®,, given by
f(q)=(bq.h(bq) " tq).

Define the homomorphisms g: K, -~ G, by

g(n)=(T, )X 1)(T,f).
Since (m, 1) is in Q(U)xQ(®, ), we have X1 in Q(UX®D, ), and
since [ is an isomorphism we have g(7) in Q(d)z); it is easy to check
that g(7m) isin Gz, and that g is a homomorphism .

Define J:K, ~Aut(H,) by Y(m)(£)=g(m)Eg(m)~". We have
now the isomorphism F: sz\sz"Gz given by F(m,£)=£g(m), with
inverse given by F~Y £)=(&,. gl fo—l)). where T6& =&, 7b. It is
clear that szn,sz is a Lie group, and that F: szlsz-onz((I)z) is a
smooth map. It follows that G, is a Lie subgroup of Q,_(®,).

To complete the proof of the lemma we must show that at each point
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of @, there is a smooth local section of f3: Q,(®,)~®, taking values in
Q. (d,).

Take a chart (Us, B ) at z in B such that O, (U,) =R™, n=dim(B),
6, (z) =0, and such that there is a local section ¢ : U, —~(I)z with ¢o(z)=
%. For some x in B take a chart (U, 8) with 8(x)=0, 6(U)=R", and
a local section ¢: U-®_; put by =¢(x).

For each v in R” define f,: U~ U by /,,(y):9°1(9y+v), then
fvfw:fv+w’ and /V(x):e-l(u). .

Define F,:®_ |U~® |U by F (q)=¢f,(bq).$(bq) q. then
and F,(ho)=¢f,(x)=¢6 " (v).

For each b in ®z|U, define Pb:fl)z|U~‘®z|U by

Pu(q)=Fgy,(q).¢(bh) " h.
Then P, (b, )=h. Define H:®_|U ~®_| U, by

H(t)=¢6 Y0, (bt). ¢o(bt) Lt
Then bH(1)=6"16,(bt).

It is now clear that ®_| U~ (®,) givenby h=7, P,.7T,H isa
local section of ,B:Qz(q)z)—'(l)z with values in Q'z(q)z); for H(z)=@(x)=
ho, bP,(q)=fg4,(bq), and T, [g,, is an element in Q(B).

Put g(h):b“1¢(bb), then P,(q)=g(h) [ng;,(q)],where to

each s in @ _, corresponds the map s:® ~®_  given by s( q)=gs 1. It

F F =F

v+ w?

follows that The Pb:'r(;t)bbg(b)’rb0 Fopp-

Now b-"rb F@bb is smooth since v-°’7'b° F , v in R", is smooth.
o

v

The latter is true because, if {el. ceesy en} is the standard basis for R”,
"191”' Fv e where (¢, q)*Ftei( q) is a flow.

then F =F
nn
Furthermore h- 7, ,,g(h) is smooth since q)zz—'Qq(CI)z) given by
s=7,s is smooth. The latter is true because if @, is any one-parameter

q

subgroup of @, , then t-7_a, is smooth.

q
It follows that b*Tbo Pb.TzH is a smooth local section of QZ(CI)Z)

with values in (' (®,). This completes the proof.

2.14 REMARK. The above proof shows that Q'(CDZ)-‘Q(B), given by

£~ &, where 76 £ =&, Th, is a smooth homomorphism of groupoids.
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16 R.A.BOWSHELL

2.15 LEMMA. Q°(’Dz) is a Lie subgroupoid of S0(®,).

PROOF. Define a fibre bundle E~®_ by setting E, equal to the isotropy
group of Q((I)Z)X(P at (b, z). The Lie groupoid Q'((I)z) acts smoothly
on E via £qw =(EX1)w(EX1)"! where w is in Ea§ ; it follows that

zz

E-®  is locally trivial.

Define the smooth isomorphism f:®, X® -~® x® _ by f(h,s)=
(bs,s); then b= T(b,z)f is a smooth section of E—°(Dz.

It is easily checked that (o (®_) is the subgroupoid of ('(®,) lea-
ving this section invariant;'it follows that Q°((I>z) is a Lie subgroupoid of

Qo).

2.16 PROPOSITION. ®,_ acts smoothly on (1o (®,) as a group of groupoid

zZzZ
automorphisms. The quotient 2=2(z)={l° (®,)/®,, is agroupoid over B.
PROOF. Define for £ in Qo(®_), s in @, , £Es=7,"'& T, where s:
‘Dz*q)z, s(h)=hs"1.

It is clear that (£s)t=&(st), and, if a&=8m7, then (£m)s=
(rfs)(ns). Furthermore (£,s)—~ & s is smooth since s-— T, S is smooth,
as was shown in the proof of 2.13.

Let 2(z) be the set of orbits under this action, and write f— for the
obit of £. Define a,B:5(z)~B by a(&)=ba’, B(Z)=bBE&. ( Note
that a(&s)=(aé)s.)

If a(&)=B(n) define o1 =Esm where s=(a&) Y Bn). It is
straightforward to show that this composition is well defined, and that it
tumns 2(z) into a groupoid over B. '

We prove next that 2(z) is a Lie groupoid over B.An equivalence
relation R on a manifold M is said to be regular if the quotient M/ R has
a manifold structure necessarily unique, making the projection M= M/ R a

submersion.

2.17 THEOREM. R is a regular equivalence relation on M iff R is a sub-
manifold of MXM and the projection p:R~M given by (x,y)=x is a sub-

mersion. A proof will be found in Serre [10] .

2.18 PROPOSITION. Z(z) is a Lie groupoz'd over B and the projection
Qo (®,)~2(z) is a submersion.
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PROOF. Write {10 for Q°(‘DZ), and let R be the subset of 1o x{lo con-
sisting of pairs (£, n) for which £s=7 for some s in @, .

The proof will be complete if we show that R is a regular equivalen-
ce relation on o ; for if p is a smooth surjective submersion, and f a fun-
ction, then f is a smooth map (or submersion) iff fp is a smooth map (or
submersion) .

Consider baxba:QoxQo+BXB; it is clearly a submersion. Put
RI:(baXba)"l(A). In addition axa:Qo° ><Q°-<I)z><(1)z is a submer-
sion. Put Slz(aXa)_l(A); it is clear that ACQo x{lo is a submanifold
of §,.

Define F:R,~S by F(&, n)=(&(aé) " Yamn),m); clearlly RC
R, and R=F"}(A). Take (£,7) in R and put F(&,7)=(£s,m). De-

1
fine G:S =R, by G(p,N)=(p s"H N\); then

G(Es,m)=(£,m) and FG(u, N)=(u,N).
[t follows that F is a submersion, and thus that R is a submanifold of
Qo x Qo ,
Take (£,7) in R, with £s=7 say, and define g:{°~R by
g(N=(N As). Then g is a section of p:R=° :p(u, N)=p, and g( &)=
(£,m). It follows that p:R~-(1° is a submersion.

The result now follows from 2.17.

Let 3(Z) act on ({® as follows: if V is in @xfl) and ai(f_) =x,
E(V)=&(V.iaf). i(BE) .
This is a well defined action, and since the projection Q"((Dz)-'Z(z) is

a submersion, it is easy to check that it is a smooth action.

2.19 THEOREM. @® is a smooth fibre bundle with base B, which is asso-
ciated to the Lie groupoid 2( z)

We now show that 2.(z) is essentially independent of z.

2.20 PROPOSITION. For each x and y in B, 2(x) is canonically isomor-

phic to Z(y).

PROOF. Take [ in q)xy and define an isomorphism Q°(‘Dx)-°Q°(<I>y) by
g_.ff'lszf'i}'l, where /:(I)x—*(l)y is given by f(h)=hf 1. If s is in
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18 R.A. BOWSHELL

X
the induced isomorphism F(f):Z(x)=2(y) given by F(f)(&)=&f1.
It is easy to check that F(f) is independent of the choice of f in (ny.

®, ., then (fs)/q:f/“l(/sf_l); but /s/" ! is in (Dyy, hence we have

Finally F(f) is a smooth map since Q°(<I)x)—02(x) is a submersion for
each x in B.
2.21 PROPOSITION. The homomorphism of groupoids p:2(z)~®x(B)
given by p(&)=((BE)(af) -1, fo) is a smooth surjective submersion.
PROOF. p is clearly well defined. It is a smooth surjective submersion
since the composition (l° ((Dz) -3(z)-®+Q(B) is.

To prove the latter statement it is enough to show that

Qo(® )~ 40 (B)

is a smooth surjective submersion, and an adaptation of the proof of 2.13
will achieve this. We omit the details.

Let 3(z) acton C® as follows; if \ is in @xq) and £isin >(z)
with a(&)=x, define

(EMY, A)=E(Np(E)TH Y. A)).
This is easily shown to induce a smooth action of an isotropy group

of Z(z) on a fibre of C®, and so we have the

2.22 THEOREM. C® is a smooth fibre bundle over B wbhich has the asso-
ciated groupoid 2(z).

We will show in the next section that, when (7, (1) is the velocity
extensor (Tfl,Hk), then C® with groupoid 2(z) is covariantly isomor
phic to the bundle qu) with groupoid ®*. In particular this shows that
two extensors (Tfn, Hk) and (Tﬁ, Hk) give rise to the same higher order

connections.

2.23 DEFINITION. Two extensors (7,()) and (7',§)") are associated if

for each M there is an isomorphism &M Q(M)-= (M) such that
2) gy xn| UMIXOAUN) =gy xgy -
b) If h: U~V is alocal isomorphism of M, then gy(7h)=T"'h.

2.24 PROPOSITION. If (T, Q) and (7', Q") are associated extensors, and
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ABSTRACT VELOCITY FUNCTORS 19

if ® is a Lie groupoid over B, then the corresponding bundles of elements

of connections (G(I), 3(z)) and (e' ®,>'(z)) are covariantly isomorphic.

PROOF. Define /.-d)zxq)zz*@zx(l)zz by f(bh,s)=(bhs,s); then [ is an
isomorphism. Hence Tf.-’rq)zxgzq)-'ﬂbzxgz@ induces an element of
Q(®_x®, ) for each b in ®,.If £ isin Q(®,), then £(V.A)=£&(V).A
for all V in 7,,®, and all A4 in £ @ iff (£x1)7f=T{(EX1).

It follows from the definition of the associated extensors that:

E(V.A)=£(V). A forall V and A
iff
g(E)(V.A)=g(E)(V).A forall V and A.

Let (U,¢) be a chart at z in B. For each map t9:U—‘(I)zz with
6(z)=z, define 8:®_|U-~®_|U by O(h)=h0(bh); € is a smooth iso-
morphism. It follows that Tb9 is in Q((I)z) for each b in <I>2| U, in parti-
cular '7‘29 is in sz(q)z)' .

If £ isin sz(@z), then 76 & =7b iff £70 =70 for all maps
9:U—~(I>zz. This is clear because Té-(V):V.TG'rbV, and 70 TbV is

in 7,®_ . Note that we can find a finite family 0;:U~ G, such that

(6, ...0,):U~G"

is an immersion, and thus such that (Txel, cees Txen) is injective. It fol-
lows that 76 & =7b iff T'bg(£)=T"'b, because g(§7‘<9-):g(§)7" g.
It is now straightforward to show that g induces an isomorphism
Qo(@,)-Qo(®_). It follows that g induces an isomorphism
2(z)~2'(z),
and it is clear that there is an isomorphism C®~C'® which is covariant
with respect to the isomorphism Z(z)=2"(z). The details are omitted.
We have thus shown that a (7, ()-connection depends only on the
groupoids {J(M) and the way in which local isomorphisms of M are lifted
into Q(M).
In the remainder of this section we prove that a ( 7, {1)-connection
exists on any Lie gtoupoid. over a para-compact manifold. We anticipate a

result that will be proved in the last section: there exists a positive integer
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k such that, if ji/ is represented by a constant map, then 7,f isa cons-

tant map.

2.25 LEMMA. Let G be a Lie group with -Lie algebra g, and let (T, (1) be
an extensor. Then with the prolonged structures, T,G is a simply connec-
ted nilpotent Lie group, T, g is its Lie algebra, and T(exp):To g~ 7,G is

the exponential map.

PROOF. It is clear that 7,G is a Lie group, that 7, g is a Lie algebra,
and that 7T(exp) is a smooth isomorphism. We can thus identify T _(7,G)
as a vector space with 7, g: if f(t) is a curve in TeG with f(0)=e,
then its tangent at t=0 is lz'mtl T(log)f(t).

Each A in 7, g induces a one-parameter subgroup 7(exp)tA of
7T,G, and it is clear from the above identification that all one-parameter
subgroups are of this form. To prove that 7, g is the Lie algebra of 7,G,
we must check that the Lie bracket prolonged from g coincides with Lie
bracket of right invariant vector fields.

Define ¢,: gXg—g by
¢t(A,B):Lzlog Lexp(-tB)exp(-tA)exp(tA)exp(tB)],
t

if 1#0 and ¢ (A,B)=[A,B]. It is clear that (1,4, B)~¢(A, B)=
@(t, A, B) is smooth, and it follows that

(t, V,W)—~T¢t(V,W):'r¢(it,V,W)

is smooth; in particular T¢0(V, W)=1Ilim T¢KV' W). But the latter is the
Lie bracket of V, W defined by the right invariant vector fields that they
induce.

It only remains to show that 7, g is a nilpotent Lie algebra. Con-
sider the special case 7' :]lg(R, -), It can be checked by a direct calcu-

lation that 7' g is nilpotent. Define - g"”~ g by
Mo (xqy e x,)= [xl [xg, ..[xﬂ_l, xn] 1

then, for some n, jé,un is represented by the constant map with value zero.
It follows that, for some n, 7, 1, is the zero map, where 7 is any exten-

sor. Thus 7,g is nilpotent.
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2.26 LEMMA. Let G be a simply connected, nilpotent Lie group, let M be
any smooth manifold, and let H be a connected Lie group acting effective-
ly on MX G in such a way that each [ in H satisfies

f(x,a)=(x,{(x).a)
for some [:M—=G. Then H is a simply connected, nilpotent Lie group.

PROOF. It is clear that f is a smooth map for each { in H, and that f- [
is injective and satisfies Fl?(x):?(x).-/;(x) for all x in M.
Let b, g be the Lie algebras of H, G respectively. For each F in
b define a map ﬁ:M-*g by exp F(x):gcp—F—(x). Since exp:g— G is a
smooth isomorphism (Hochschild [5], Ch.12), F is a smooth map.
Evidently F(x) generates the one-parameter subgroup exp ¢ F(x)
of G. It follows that F—~F is injective and preserves the Lie algebra

structure in the sense that
(aF+B8G)(x)=aF(x)+B8G(x) and [F,G)(x)=[F(x),G(x)].

Since g is nilpotent it follows that b is nilpotent, but exp : h~H
is injective since F~exp F=exp F is; it follows that H is isomorphic to
its universal covering group.

Unfortunately we can't work directly with the bundle Cd because
its fibres are not necessarily even connected. We must first pick out a sub-
bundle with connected fibres.

Let H,_ be the component of the identity in the subgroup (1 (® )
consisting of & such that 76 &(V)=7b(V) and E(V.A)=£(V). A for
al Vin7,® , Ain 7,0 .

Let e'xfl) consist of all isomorphisms 7j:7 Bx7,® -7 ®_
such that, for any local section & of b:(I)x* B with 8(x)=X%, the isomor-
phism 7 2] (cf. 2.10) is in Hx. To show that @'x(l) is well defined, we
prove that, if ¢ is another section of b:® ~B with ¢,=%, then ¢o-1
is in H . It is more convenient to identify H_ with the connected compo-
nent of the subgroup of the isotropy group at (x,x) of Q(BX(Dxx) con-
sisting of 7 such that (X, A)=(X,7(X).A) for some map

M7, B 'erIDxx.

We must now show that ¢& ! is in H,.
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Now ¢0 Y X, A)=¢(TOX.A)=(X,7(¢ 2.0)X.A). Define the
local map f:B=® by f(y) =¢;1. t9y and define another local map [ by
f'(y)=exptlog {(y), and finally the local map F':Bx® - Bx® by

Fi(y,a)=(y.[(y).a).
It is clear that 7, x)Ft is a curve in Q(BX‘I)xx) joining <Z(9—_1 to the
identity; furthermore TF!( X, A)=(X, 7' X).A) for all ¢, X and A. It
follows that ¢80~ is in H,_.

Consequently C'® = |y C' @ is well defined and, since clearly the
action of Q°(<I>z)/®zz on C® leaves C'® invariant, it follows that C'®
is a subbundle of C®.

Each fibre of C'® is isomorphic to H,, and by lemmas 3.25 and
3.26 H, is a simply connected nilpotent Lie group, and thus is isomorphic
to a vector space: its Lie algebra.We can now apply Steenrod's theorems
on the existence of smooth sections [11] . Over a paracompact manifold

C'® has a section, and consequently so does C®.

2.27 THEOREM. A (T,Q)-connection exists on any Lie groupoid over a

paracomp act manifold.

3. Comparison Theorems

We show that a (Tﬁ, Hk) -connection is equivalent to Ehresmann's
notion of a k-th order holonomic connection [3] ; the same result holds
with the same proof for the semi-holonomic and non-holonomic velocity ex-
tensors (?ﬁ, ﬁk) and (?s, ﬁk).

We then compare a (T, {1)-connection with the notion of (@, T)-
connection introduced by Virsik in [14] as an abstraction of first order
connections. In the pair (C, T), T is a natural fibering, called a lgcal re-
gular connector in [14] ,and C is a category of fibred manifolds contai-
ning all the maps 7f: 7TM~ 7N between the fibred manifolds TM-M and
TN-N.

Recall that a first order connection on ® is a section A: TB— A
of Thb, a (@, T)-connection is the most natural generalization of this, na-

mely a section X:7B-Q® of 7b, where @® = U 7,®,, such that (-, ji)
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as a map of fibred manifolds 7B~ B into 7®~® is in C, - is the embed-
ding of B onto the identities of ®, and j is the inclusion of ({® in 7.
All the familiar definitions of a first order connection: by horizontal sub-
spaces, a Lie algebra valued form, etc..., have analogues for a (C, 7)-
connection. Furthermore Virsik has shown that, if 7 is the velocity func-
tor /’fs and C the category of fibred manifolds p -'?S(M)“ M with maps
(,BZ, Zp), where Z is a section of T(M, N)-M, then a (C, T)-connec-
tion is equivalent to a k-th order non-holonomic connection in the sense of
Ehresmann.

For our purposes O will be the category of fibre bundles and fibre
preserving maps, and 7 will be subordinate to an extensor (7.9), then
Ao will carry a natural fibre bundle structure. We show that, if the (G, 7)-
connection X:7B-@{® is, in a special sense, a fibre bundle map, ‘and for
some x, Xx=&, 7, where s is a local section of ® _~B with s(x)=%,
and £ an element of the groupoid of G®, then X is equivalent to a (7, {1)-
connection.

Let (7,Q) be the velocity extensor (TX, II¥) described in 2.8,
and let ® be a Lie groupoid on B.

3.1 THEOREM. There is an isomorphism F:QF¥®-C®, and an isomor-
phism G:®k~S(2) of groupoids such that F(£,m)=G(£)s F(m) when-
ever £ isin ®F, 7 isin QFR®, and £, 7 is defined.
PROOF. Define F:Q¥®~Cd as follows: if 7 isin Q¥® . , then

F(n): 7,Bx8, ®~Q 0
is given by

F(n)(X,A)=nX.A,
where 7) X is composition of jets. Note that, if a and [ are respectively
the source and target maps for jets, then BX=x=an and 87 = x. We
now show that F(7) isin C®.

In a neighbourhood of x take a local section 0 of b:® ~B such

that O x= x: We have the isomorphism o: @xfb-"prxgx(I) given by
G(vV)=(TbV (TOTbV) V).

It follows that
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E(V)=F(n)B(V)=nTbV.(TOT6V) LV,

Let K:®3®-d, and 0: P~ P be the composition and inverse, res-
pectively, in ®. We have £=7K {n7b, 7K(T70707b,T1) }, and this
is clearly an invertible k-jet from @ _ to @, hence & is in I1%(® )=
Q((I)x), It is easy to check that £ is in fact in Q°(<I)x), and it follows
that F(7m) isin CO.

The inverse of F is defined as follows: if A: 7, Bx® ®~@ D is
in C®, then put F'(A\)=\T7j, where j:B=BX® _ takes y into (y,x).
It is clear from the definition of C® that A isin J¥ (BX® ., ® ),
hence F'(A) is in ]ﬁ(B,fI)x), and it is easy to check that in fact F'(A)
isin QF® . It is straightforward to show that F' is the inverse of F.

Define G;(I)k—-Z(z) by G(f):ﬁ, where 7 in Q°bk(@z) is de-
fined by k=(B8E£).bh and M(V)=ETbV.V. It is clear that

N=TK(ETH, T1)
is in Q(‘Dz) and thus in Q"((I)z). We show that G is well defined. Sup-
pose that 771,~Tb1(<1)z)—07k1(‘1)z) in Q°(<Dz) is such that k1=(,5§).h1
and 7, (W)=&7bW.W; then there is a unique s in ®_, such that b, =hs

and k1:ks. Furthermore for W in 7, ((Dz) we have
1
Ns(W)=&To(W.is™1). Woislis=mn(W).
It follows that 7 =7,

We now show that G is a homomorphism. Suppose { and £ are in
% with a*( {)=b*(£), and that G({)=p and G(&)=N\. We may clear-
ly choose 4 and A in Qo(®_ ) so that au =B \. We have

G(LoM=G(LTbE. &)=,
say, where 7 in Q°(<I>z) is given by:
NV)=(LTbE.E)TOV.V=LTbETHV. ETHV.V
=LTONMV). NMV)=uNV).
It follows that
G(Lo &)= A=G(L)oG(&).

Furthermore it is clear that aG(&)=a*(£), and that 6G( &) =bk(&).

The inverse of G is defined as follows: if 7: T, ®,~7, P, isin
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Qo (®_), then put G'(M)=TK(mT10, T0T0), where O is a local sec-
tion of b:® - B satisfying 0(bh)=h. The routine verification that G’
is a well defined inverse of G is omitted. )
Suppose now that & in ®% and X in Q*® are such that a*( &)=
a X, and put G(f):%, where n"qu)z_'Tk(Dz is in Q°(‘Dz). We have:

(G(E)o F(N)(X, A)=n{ F(N (X, ibk™  Aikp™1).ib}. ik™?
=n{ Ay X ibk L ARLT b} ik
=ETbA X AT X bk A
=&t At i(BE)THX . A
=(EGM(X).A=F(ELN(X, A).

In this calculation we have used several definitions in the following order:
the action of 2(z) on @, the definition of F, the definition of G, the ac-
tion of ®* on Qk(D, and finally the definition of F again.

The proof is completed by a routine check that F and G are smooth
isomorphisms; we omit this.

Thus (Tnk,ﬂk)-connections are equivalent to holonomic connections
of order k. Similarly (Fﬁ, [T*%) and (”fﬁ,ﬁk)-connections are equivalent
to semi-holonomic and non-holonomic connections of order k respectively;
the proofs are the same. Notice that (2.24) shows that a (Tﬁ, Hk)-connec-
tion is independent of n.

q .
We turn to ( C, T)-connections.

3.2 DEFINITION. A (U, 7)-connection on the Lie groupoid ® is a fibre
preserving map X:7B-{® such that 76X = 1.

X is regular if the subgroupoid X' of 2=Q00(®_)/®, consis-
ting of & such that £, X(X)=X(&,X) is a Lie subgroupoid.

X is normal if X is regular and if for some x in B there is 7 in

C,® such that (X, 4)=X(X).A for all (X,A) in 7,BXE O.

3.3 THEOREM. There is a one to one correspondence between normal { G, T)-

connections and (T, (1) -connections on ®.

prROOF. Let X:7B~Q@® be a normal (T, 7)-connection and suppose
N(X,A)=X(X). A for 1 in chb. Define A: B~ C® as follows: for each
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local section & of Z'(x)put Ay =&(y)o m. Then for (Y, C) in TyBx£y®

we have, if £(y)=1{ where { is in Qbk(q)z):
Ay(y,C):Zo(fx(g—OIY).ib.ik’l.c.ik.ib'l)
=Xty ik ik c=X(Y). C

Since {}(®,) acts effectively on 7®_, this shows that Ay is in-
dependent of the local section of X' chosen. It is clear that A is a
smooth section of C®.

Conversely, let A:B-C® be a (T,Q)-c_onnection. Define X:
TB-A® by X(X)=Ax(X,ix) for X in T,B; it is clear that ToX=1.

Furthermore it is easy to check that £, Ax=Ay for & in = xy iff

o X(X)=X(&,X) for all X in 7 B.
It follows that ' is the subgroupoid of X leaving the section A invariant,
and thus 2' is a Lie subgroupoid if it is transitive; we prove now that it
is transitive.
Take x and y in B; choose A in Qxy(B)’ [ in ‘ny, and b in
0] and define £:7,®,~7,®_, where k=/h, by

zx?
E(W)=Ay (N, [)AZNW.ib™ %) ik,
where (N, [): T,Bx& @~7 BxE ® takes (X, A) into (AX,if. A.[71).
Using the definition of C® it is straightforward although complicated to
show that £ is in Q°((Dz), and that Eo Ax =Ay.
It follows that X is a regular (C, T)-connection and by its defini-

tion X is also normal. Finally since the correspondence is given by
A(X,A)=X(X). A,

it is clearly one to one.

The regularity condition appears implicitly in the definition of a
first-order connection, for the iifting N: TB-A® is required to be a sec-
tion of L(TB, A®). Regularity should be implied by any reasonable lo-
cal definition of a fibre bundle map.

Normality in the first-order case is implied by linearity.

The projection p: Z~®4Q( B) (2.21) induces an isomorphism of
2" with ®«0(B), where ' is the Lie subgroupoid of = leaving inva-
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. Y .
riant a regular (O, 7)-connection. Thus:

3.4 PROPOSITION. A regular (G, 7) -connection is equivalent to a section
of p:2-®,Q(B). '

4. Structure of extensors

In this section we prove that, for some &, if jﬁ/ is represented by
a constant map, then 7, f is a constant map. We can then give a partial
structure theorem for extensors; we lack a means of constructing an exten-
sor (7,§)) from a given {1: We end the section by extending a theorem of
Ngo Van Que on groupoids which are prolongations of manifolds in the sen-
se that local isomorphisms lift into them.

We remark again that the only extensors taking manifolds into vec-
tor bundles are the first-order velocities Trf.

We use local methods, and, thus restrict an extensor (7, ) to the
category & of Euclidean spaces R” and smooth maps preserving the origin.
Write E” for the fibre of TR” over the origin, let H, be the isotropy group

(}(R") at the origin, and let b, be its Lie algebra.
4.1 PROPOSITION. E” is a vector space with base point as origin. If f
and g; R™ - R" are in &, then, for w in E™,

T f+Ag)(w)=p Tf(w)+ATg(w).

Furthermore T restricted to linear maps is given by L(V,-) for some vec-
tor space V.
PROOF. Since 7 preserves products, all operations in R” can be prolon-
ged to operations in E”, and all commutative diagrams in & are taken into
commutative diagrams. Finally it is clear that the functors L(V,-) from
vector spaces into vector spaces are the only ones that preserve products.
Each map F:R”-=R” in & induces a flow f,:R"~R" in & defi-
ned byifsft:/ﬁ_t, and F(x):lith [/’t(x)- x] as t tends to zero.

4.2 LEMMA. For each v in E",
TF(v)=limt [7f,(v)-0].

PROOF. Put g(t,x)=1(/,(x)~x) if t#0, g(0,x)=F(x). Then it is
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easy to check that g 1is smooth; hence (¢,v)— 7Tg(t,-)=Tg(it,v)
is smooth, and since Tg(¢, -):tl [ Tft -71] , the result follows.

Each A in b, induces a smooth map E”~ E” given by

A(v):lz'mTI-( atv-v)

where a,=exp tA. The following properties are easy to check:

(aA+BB)(v)=aA(v)+BB(v), LA, Bl (v)=B'(v)A(v)=-A"(v)B(v),
and A(v)=0 for all v in E™ iff A=0.

Write I, for the vector space of germs of smooth local maps R"=R"
in & at the origin, and write L = for the group of germs of local isomor-
phisms R”>R"” in &. We have a homomorphism ¢:L,~H, because an
extensor lifts local isomorphisms into the associated groupoid. There is a
corresponding function @ : [,~h, defined by exp t ¢x(F) :¢(/t) where
ft is the germ of the flow induced by some representative of F.

[, inherits the Lie bracket of local functions:

[F,Gl(x)=G"(x)F(x)-F'(x)G(x),
and if b isin L _, F in ln , we have ad(h)(F) in ln defined as the germ
of ;’(;J_"l(x))ﬁ(;'l(x)) , where » and F are representatives of b, F

respectively. Note that
ad(h) LF, Gl =0lad(h)(F),ad(b)(G)], ad(h)ad(k)(F)=ad(hk)(F).
4.3 LEMMA. by ln-‘bn is linear and furthermore:

(@) ¢lad(h)(F)] =ad ¢(b)(¢«F),

(b) ¢«[F,G] = [¢«F, ¢G].
PROOF. For each v in E”, ¢«(F)=7TF(v) by Lemma 4.2. Since,for
A in h,» A(v)=0 for all v iff A=0, it follows from Proposition 4.1 that
¢« is linear.

If f, is the flow for F, then hf,h™" is the flow for ad(h)(F). It
follows that b« [ ad(b)(F)] is the tangent at the identity to the curve
¢(hf,b~ ) =ad d(h)[¢(1,)], which proves (a).

Now it is well known that, for functions F and G,

[F.61(x)=limd1G(x)~ad(f,)(G)(x)]
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where f, is the flow induced by F. It follows that, for each v in E®,

7IF. Gl (v)=lim[7G(v)=7(ad(1,)(G))(v)]
Since 7 is local we can replace the functions F, G by germs to obtain
¢x[F.GY(v)=limE[pu(G)-tulad(1,)(G))] (v)
=limt [ paG-ad p(f)($+G)] (v),
and (b) follows from the expression for the bracket of right invariant vec-
tor fields in b .

We now show that there exists some positive integer k& such that*
D9f(0)=0 q< k implies ¢+/=0. F is flat if D*F(0)=0 for k>0. The
following device is taken from Peetre [9] . Let S, and S be any disjoint
closed subsets of the unit sphere in R”; choose a smooth map ® defined
on the sphere such that ®(S )=0, ®(S,)=1, and put O(x)=®(x/|x])
Then O is smooth outside the origin, and if F is flat, then 0. F is smooth

and zero is a limit point of the interior of each of the sets
{x|6(x)F(x)=0} and {x|6(x)F(x)=F(x)}

- provided that neither S| nor §, is nowhere dense.

4.4 LEMMA. If F in I is flat, then ¢x(F)=0.

PROOF. Let G be a representative of F and let U be the interior of
{xl B(x)G( x)=0}; there is a sequence %, in U tending to zero. Put
Rx(y):(H.G)(x+y); then T(Rxn)(v)zo for all v in E” since R,

n
vanishes in a neighbourhood of the origin. It follows that

(6. G)(v)=TR (v)=0 for all v;
hence $x(OF)=0. Similarly ¢« (1-0)F] =0 and it follows that
¢%(F)=0.

The sequence of pseudonorms |F| = |DkF(O) | defines a topo-
logy on I, and the germs of flat functions form a closed ideal. If we factor
out by this ideal, then by an extension of a theorem of Borel, Mirkil [7 ],
we get the I"'rechet space of formal power series, here taken as Taylor se-

ries in Lang's sense.

4.5 LEMMA. There exists a positive integer k such that, if A is any gli-
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near map from R™ into R"™ with q>k, and if A’ is the germ of x—~Ax1,
then ¢(A')=0.

PROOF. If the lemma were false, then there would be an increasing sequence

q; of positive integers and for each i a g;-linear map A; such that
¢*(A',~) £0.

We show that the ¢« Ai') are linearly independent; this invoves a con-

tradiction because b, is finite dimensional. Suppose that ZX\;¢«(A})=0;

then for each v in E™ and ¢ in R we have
q.
St N, TAYv)=EN; TAY(tv)=0.

Hence A\;7A!(v)=0 for each v and each i; it follows that N;Ex(A})=0
.and thus >\i:0'

A combination of the two Lemmas and the remark proves that for
each 7 there is a least integer &, such that, if F isin [, and DIF(0)=

0 for q<k,, then ¢«(F)=0, i.e. TF=0.
4.6 LEMMA. k_ is independent of n.

PROOF. k <k, ., for all » because, if F is in [, and DI9F(0)=0 for
qSer_l, then DY(FX0)=0 where FXO0 isin [ hence ¢« FX0)=
0 and thus ¢«(F)=0.
Suppose that F in [, satisfies D7F(0) =0 for q<k .Let
A:R-R" and B:R"-R

be linear; then DY(BFA)=0 for q<k ; hence 7(B)7T(F)T(A)=0, and
by 4.1, B.7(F). A=0 for any linear B and A. It follows that ¢«F =0,
and thus that k <k '

n+ 13

1

Call the common value %k the order of the extensor 7. The Lie
group Ls of k-jets of local isomorphisms preserving the origin of R” has
Lie algebra lﬁ:]ﬁ(R",R")o,exp tjlgF:jﬁft where f, is the flow of F
and [jAF, 2 G] =j*k(G'F-F G).

It follows immediately that we have a Lie algebra homomorphism
N l,’:-'bn and it is easy to see that the underlying group homomorphism

ko : : -k _

N:LE~H, is globally defined, because A;j*=d.

Notice that any local map F:R™- R" can be factored into the lo-
cal maps q'_Rm_,Rm-{-rz’ F' .,Rm-i-n_, Rm+n’ and p .Rmtn_ pn given by
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q(x)=(x,0), F'(x,y)=(x,y+F(x)), and p(x,y)=y.
It is clear that F' is a local isomorphism. We employ this device to give

a structure theorem for extensors.

4.7 THEOREM. There is, up to isomorphism, a one to one correspondence
between an extensor (T,Sl) and the following list of objects: a positive
integer k, a vector space V, a sequence of Lie groups H  such that H

acts effectively on L(V,R") so that there is an embedding

HyXHy~H, s
for each m and n, compatible with this action, and finally for each n a
smooth homomorphism >\n: Lf;-' H, of Lie groups which is compatible with

the embeddings H XH -H and Li X Lﬁ ~ L% . and which does not

m+n m+n

factor through the projection Lﬁ—' L’l:—l.
PROOF. We have already shown that an extensor gives rise to the above
list of objects.

Given the objects listed we construct an extensor (7, {)) as fol-
lows.

Let M be a manifold of dimension n. Define 7,M to be the set of
equivalence classes of pairs (¢,v), where ¢ is a chart around x and v
isin L(V,R"); (¢,v) is equivalent to (), w) iff A jR(¢ Y7y (w)=v
where ¢ (y)=¢(y)~ ¢(x). Pur 7M= | T M, it is clear that M is a
manifold, since each chart ¢:U—R" gives an isomorphism of 7U with
UXL(V,R"™) and such isomorphisms are smoothly compatible.

We define ()(M) in the same way. Let Qxy(M) consist of triples
(Y,s,¢), where J,¢ are chares around x, y respectively, s in H_, and
we identify (Y, s, ¢) with (Y', s, ¢") if

SN ie(ad i) =N b (b Y)s.
Put Q(M)={J Qxy(M); a pair of charts ¢:U~R", : V= R" induces an
isomorphism of (M) l UXV with VXH XU. These isomorphisms are
smoothly compatible and thus define the structure of a manifold on )(M).

Write 7¢"!(v) for the equivalence class of (¢, v) at x, and
x

T(k/l;l)sT(Cﬁx) for the equivalence class of (Y, s,¢) in Qxy(M). De-
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fine (a,fB):Q(M)-MXM by (a.ﬁ){7(¢;1)s7(¢x)}:(x,y). This
map is locally the projection VXH XU=UXV; hence it is a surjective

submersion. Define composition in {J(M) by

(Y s T @, )0 T(w )70, ) =T(Y 7 ) s N ik( ¢l )eT(6,).
If we take @ =¢, then locally composition is given by (z, s, y)(y,t, x)=
(z,st,x ), it is therefore a smooth map. Similarly the inverse map is smooth,
and it follows that (M) is a Lie groupoid over M. {(M) acts on 7M
as follows:

TP s TS )0 T ) (v)=T( b s N k(4,07 D} w).
This is é smooth effective action because, after a choice of charts, the ac-
tion of {1, (M) on T, M is thatof H, on L(V,R").

If f:M—=N is a smooth map, then 7f:7M— TN is defined as fol-

lows: take a chart ¢ around x and a chart Y around y=f(x) and define
Tf{qé;l(v)}:Tn/zy‘l{pz)\ner(jﬁF)(u,O)},
where n=dim M, p =dim N, where F:R"t?+R"%? s given by

Flo,u)=(v, uth, [ ¢ (v)),

and where p,:L(V, R"P)~L(V,R?) is the projection. It is clear, u-
sing the isomorphisms 7M | U= UXL(V,R™"), that 7f is smooth.

Checking of the outstanding properties of an extensor is straight-
forward. Finally it is clear that

local structure - extensor - local structure

is the identity; it remains to show that, if two extensors give rise to the
same local structure, then they are isomorphic. Taking charts gives local
isomorphisms and it is easy to check that these isomorphisms are compati-
ble.

Note that an extensor of order £ admits a smooth homomorphism
A:TTR(M)~Q(M) of groupoids for each manifold M, through which the lif-
ting of local isomorphisms factors. This is true in a more general context.

We sketch a proof of the following extension of a theorem of Ngo
Van Que [12]

4.8 DEFINITION. A prolongation of a manifold M is a Lie groupoid (1 o-
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ver M, and a lifting of local isomorphisms of M into (] such that each iso-
morphism f:U-V induces a section U~-{) of the source projection a:
Q- M, written x=p,f, so that Bp,[=f(x) and such that, if [, is a lo-

cal flow, then (¢, x)~ /Ox/t is smooth.

4.9 THEOREM. Every prolongation {1 of M admits for some k a smooth
homomorphism of groupoids N:T1R < Q) through which the lifting of local iso-

morbhisms factors.

PROOF. We have only to prove that there exists £ > I such that ji/:jﬁ]
implies o (f)= Xx.

Take a chart ¢:U~-R"” with f(U)=R", such that there is a lo-
cal section 0:U=Q of B:(1 ~M where x=¢"1(0). We have a homo-
morphism a).'Ln-°G:Qxx taking germs of flows into one- parameter sub-

groups. Let g be the Lie algebra of G and define wx:/ —~g by
exp twx(F)=w(f,),

where [, is the germ of the flow of arepresentative of F. As in [12] it

can be shown that wx is R-linear and preserves bracket. Lemma 4.4 can

be adapted to show that wx vanishes on flat functions by noting that, if

f, is the flow of S :y~0G(x+y)=-6G(x), then x~w(f,) is smooth

and thus so is x - wx( Sx). The adaptation needed in Lemma 4.5is clear;

we need only check that, if u, is the germ of multiplication by ¢, then
wx(py F ) =ad ofp,)wox(F).

We note that compactness is not required in the above theorem be-
cause k is from the start bounded by the dimension of G. We remark fur-
ther that the really hard part of this theorem has been slurred over as it
was in [12] . To prove that wx is R-linear and preserves the bracket,
without additional continuity hypotheses on the lifting of local isomor-
phisms, requires quite subtle arguments of the kind used by Epstein (4]
to prove the continuity of natural vector bundles.

It is worth noticing that a spray on a manifold M induces a first or-
der connection on each groupoid {1 prolonging the manifold. For it induces
a first order connection on I1¥(M) for each k; thus define \: TM~ ATIR(M)
by
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X(X):]'é{t-q'ﬁ [y—~expx(tX—|~log y)1},

where X is’in T M, exp,: TxM—'M is the exponential map, and log is
the local inverse of exp .
It can be shown that for k=1 this is precisely the linear connec-

tion without torsion associated to a spray by Ambrose, Palais, and Singer

in [1].
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