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MODEL INDUCED ADJOINT FUNCTORS

by H. APPELGATE and M. TIERNEY (1)

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

V ol. XI, 1

the Eilenberg-Moore comparison cp is defined by
0 . Introduction.

This paper should be considered as an addendum to [ 1]. There

we developed a general theory of categories with models and treated a

number of examples in detail. Here we discuss certain adjoint pairs that

arise from a factorization of the models. Namely, given a diagram

for (A, 01) E A G , I with a corresponding effect on morphisms. What is
1

asserted is that y is an equivalence of categories. This observation is

also due to Beck, and again holds for any adjoint pair induced by a mor-

phism of cotriples. We sketch a short direct proof, since none is available

in the literature.

First of all, cp is clearly faithful since J is. Now suppose
we obtain an induced functor J

is a morphism of J -coalgebras, i. e.

compatible with the underlying functors L and L2 ( G 1 and G 2 are the

model induced cotriples corresponding to I1 and 1 2 Assuming that the
lifted cotriples G 1 and G 2 are trivial (i.e. 6 Gi-&#x3E; AGi for i = 1 , 2, -

a condition holding often in practice) , we show in § 2 how to construct an

adjoint / to J . We also sketch a proof of the fact that / is cotripleable,

meaning that, if J is the cotriple generated by the adjoint pair J -l J , then

A G 
1 

is canonically equivalent to (AG2)J.Both of these are general results
about triples - i. e. depend only on the existence of certain limits in A G 

1

and not on the fact that G1 and G 2 are model induced - and their proof,

(1) The second named author was partially supported by the NSF under Grant GP-8618.

is a morphism of G 2 -coalgebras such that
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in a different form, is due originally to Jon Beck (unpublished) . We are

mainly interested in applications to manifolds, and at the end of §2 obtain
a general adjoint to a forgetful functor between manifolds that generalizes
the orientation cover of a topological manifold.

In order to make the paper as self-contained as possible, we have

included iit Y 1 a brief resume of the basic facts about categories with

models, together with a quick discussion of several examples; details and

proofs should be sought in [ 1 ] .

1. Categories with models.

A category with models is a category A , together with a functor

I : M - A where M , the model category, is assumed small. We refer to A

as the ambient category.

commutes. But then consider the diagram

Any category with models defines a singular functor

given by

for A EA, and M, a in M. For fEA(A1,A2), sf : sA1-&#x3E; sA2 is the

natural transformation induced by composition with f , and we will gene-

rally drop the A from the notation A (A1,A2) when there is no danger
of confusion.

If A has small colimits (direct limits) we can construct a coadjoint
to s as follows. For F 6(M*,§) let MF be the (small) category whose

objects are pairs ( M , x ) consisting of a model M and a point x E F M,

and whose morphisms a : (M,x )-&#x3E; (M’,x’) are morphisms a: M -&#x3E; M’ in

M such that Fa (x’) = x . Let 9 : M F -&#x3E; M be the projection

and let rF be a colimit of the composite

(This construction is due originally to D. Kan [ 3 ] ) . 
For each ( M , x ) E M F , let i ( M , x ) - or more simply i x if M is

understood- denote the canonical injection of a colimit,

Then if y : F - F’ is a natural transformation, r y : rF -&#x3E; rF’ is the unique
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morphism such that

commutes for each ( M , x ) E MF .
To show that r is coadjoint to s we need natural transformations

(the counit and unit respectively) such that the usual identities hold. These

are defined as follows : For each A E A , 8A: rs A - A is that morphism

satisfying

for each M E M and cp E s A (M) = (IM, A) ; and .if F E (M*,S) then

7) F : F - s r F is the natural transformation whose value at the model M

is the function

where x E F M . It is easy to verify that (E,n): r -l s. We call r the

realization (see example 1 below) .

M -OBJECTS AND A T’LASES.

Let A E A. A pre-atlas (î for A is any subfunctor of the singular
functor s A : (î -+ s A . A pre-atlas is then simply a functorial collection of

A -morphisms of the form cp: I M -+ A . Letting j : a -&#x3E; s A denote the inclu-

sion, we define e : r (î -+ A to be the composite
that e is characterized by the diagrams

Note
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where cp E A (M) C (IM, A ).
An M -object with atlas (t is an object A together with a pre-atlas

A -&#x3E; s A for which e : r A -&#x3E; A is an isomorphism. Intuitively, an M -object
is one which is «locally like the models». e epic means A is «covered»

by the cp : 1M 4 A in (t, and e monic says that the cp’s in Q are «compa-
tible on overlaps». The meaning of this last phrase will become clear in

the examples below. There the ambient category A will be equipped with

a good underlying set-functor so that terms like «covering» will have an

obvious meaning. The fact that e is not only epic and monic but an iso-

morphism says that in addition the «A - structure», e. g. the topology of A ,

is determined by the morphisms cp in d.

Note that, by definition, an M -object A is a colimit of a functor

with small domain that factors through the models :

Let I" be any such functor, i.e. suppose we are given a diagram

with N small. Then A = lim I" is an M -object. Here an atlas A -&#x3E; s A is

generated by the canonical morphisms of a colimit I(DN) k (N) lim I’ . That

is, (I(M) consists of all composites 

with a: M -&#x3E; DN in M . In particular, each realization r F is an M -object
with atlas d given by Q (M)= {ix I x EFM}. Thus M -objects are, dis-

regarding any additional structure given by the choice of (i, images of
functors F E (M*,S) under r. An M -object may have distinct defining
atlases A-&#x3E;sA. Later we shall distinguish these using a certain «coal-

gebra» structure canonically associated with (

EXAMPLES.

1 . Simplicial Spaces. Let M == A, the simplicial category. The
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objects of 0 are sequences [n] =(0,1,...,n), n &#x3E; 0, and the mor-

phisms are monotone functions a : [m] -&#x3E; [n]. Let Top be the category

of topological spaces and continuous functions, and let I : A -&#x3E; Top be the

functor

where 6n is the standard n -simplex and where 6a is the unique affine

map determined by a on the vertices. lli has enough colimits, so we

get a realization r coadjoint to s

The functor category here is just the category of simplicial sets (semi-

simplicial complexes). The singular functor s is the usual functor which

assigns to each topological space X its singular complex s X , and the

realization r is the geometric realization of Milnor [ 5 ] . Given a simplicial
set K E (A*,S), r K = I K I is defined as follows : Let r 0 K be the space

ro K = e Kn x On , where. Kn is K [n] with the discrete topology.Let
nj 0 

, be the equivalence relation on ro K generated by the relation :

if there is an a in A such that Ka(k’) = k and Aa(t) = t’. Then r K is

the quotient space r K = r 0 K /, . If we denote by I k, t | the equivalence
class containing (k,t)E Kn x 6 , then the canonical injections of the

colimit r K , i k : An -&#x3E; rK , are simpry ik(t)=|k,t|. The topology of r K

is : U C r K is open if and only if i-1 k U is open in 6n for all k E Kn,
n &#x3E; 0 . (The i k for non-degenerate k give r K the structure of a CW -com-

plex [ 5 ]).

We remark that, for any category with models I : M 4 A , if A has

a colimit preserving underlying set functor U : 14 then the underlying
set of r F, for any FE(M*,S), is given by exactly the same construc-

tion as above - see [ 1] for details.

Let X E Top and let A -&#x3E; s X be a pre-atlas for X. It is not h ard

to see that e : r A -&#x3E; X is just the function e | cp , t | = cp ( t ), for
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cp E A [n ] C (An’ X) and t E An . Now if Q is a A-atlas for X , let A be

any generating set for (i. One can show that

( i ) A covers X. That is, given x E X there is cp E A and t 6A
such that cp (t) = x .

(ii) X has the weak topology with respect to the family A .

(iii) A Is compatible o n overlaps. That is, given cp1,cp2 EA and

points t1, t2 such that cp1 (t1) = cp2 (t2)1 there are a1, a2 in A and
a point to such that

commutes, and Aa1 (to) = t1, Aa2(to) = t2. maps cp : An -&#x3E; X satisfyingConversely, given a collection A of maps cp : An -&#x3E; X satisfying

( i ) - ( iii )’ above, X is a A-object with atlas A -&#x3E; s X generated by A.

Thus spaces X for which there exists a family A satisfying ( i ) - ( iii ) are

exactly the A-objects in Top . These include the classical geometric sim-

plicial complexes, but are somewhat more general in that affine identifica-

tions are allowed on the boundaries of simplices.

2 . Manifolds. In order to have a unified treatment of manifolds we

will consider manifolds defined by a pseudogroup of transformations..A

pseudogroup r is a set of homeomorphisms into, g: U -&#x3E; V, where U and

V are open sets in Euclidean space En satisfying the following axioms:

(1) If g1, g2 ET and the composite 9192 is defined, then

RIR2 Er’.

( 2 ) If g E T then g-1 E T (where the domain of g-1 is the image

of g).

( 3 ) If i : U - V is an inclusion, then i E F.

(4) T is local, i.e. if g: U -&#x3E; V is a homeomorphism -into such
that each x E U has a neighborhood Ux such that g I Ux E T, then g E r .

The examples we have in mind for I-’ are :
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a) all homeomorphisms into;

b) orientation preserving homeomorphisms defined on oriented

open sets (where the orientation is induced by choosing an orientation

for En); 

c) diffeomorphisms into g, such that the Jacobian matrix of g lies

in some fixed subgroup G of GL ( n , R ) ;

d) real or complex ( n = 2 m ) analytic isomorphisms into;

e) P L-homeomorphisms into.

A pseudogroup T defines a model category ET in an obvious way:

the objects are all open subsets of En and the morphisms are the elements

of I-’ . Let 1 : ET-&#x3E; Top be the inclusion functor, which we drop from the

notation. As in the previous example, there is a realization r and we can

characterize the £.r -objects in Top in much the same way as before. They
are topological spaces X for which there exists a family A of maps

cp: U -&#x3E; X, where U E ET, such that :

( i ) A covers X as in example 1 ;

( ii ) Each cp E A is open;

( iii ) A is compatible on overlaps (also as in example 1).

We remark that, in order to make this example more like example 1,
we could replace ( ii ) by the equivalent (in the presence of ( i ) and ( iii ) )
condition :

( ii’ ) X has the weak topology with respect to A.

Examples of Ep-objects include ordinary T-manifolds, manifolds
with boundary, manifolds of dimension less than n , etc. Although Ep-
objects are more general than manifolds, they do share some of their pro-

perties. For example, in the differentiable case they have «tangent bundles».

3. Sheaves. Let X be a topological space and denote by X the

category of open sets of X and inclusions. Let ( Top , X) be the category
of spaces over X. Here the objects are morphisms p : .- Y -&#x3E; X and the mor-

phisms are triangles
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Define

where i : U - X is the inclusion. The category (X*, S) is just the cate-

gory of presheaves (of sets) over X. The singular functor is the section

func tOr and the realization r,

is the etale-space functor (the sheafification of a presheaf) . In this example
the X -obj ects are exactly the sheaves in ( To p , X ), i. e. obj ects p : Y - X

where p is a local homeomorphism.

REGULAR M - OBJECTS.
As noted in the examples above, the M -objects often include more

than the classically defined objects one expects. This indicates the need

for some «regularity » condition in order to distinguish the classical objects
from among all M - objects.

A set A of morphisms cp: 1 M -+ A ( A fixed) is called regular if

given any cp1, cp2 E A there exists a pullback diagram in A of the form

where a 1 ’ a2 are in M . An M -object A is called regular if its defining
atlas Q is generated by a regular set A .

Using the notion of regularity one can show, for example, that the

regular 0-objects are the simplicial complexes and the regular ET-objects 
are precisely the T-manifolds. Although successful in examples such as

the above, this notion of regularity is too simple and ad hoc to cover all

cases (see the example of G -bundles in [ 1]) and so should be considered

a temporary definition.

MODEL IND UCED COTRIPLES.

We would like to discuss now the connection between M-objects
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and cotriples. First we recall some standard facts about cotriples [ 2 ] .
A cotriple G = (C;, 8, 8) in a category A consists of a functor

G : A -&#x3E; A and natural transformations e: G -&#x3E;A, 6: G -&#x3E;G2 such that

commute. An adjoint pair

generates the cotriple G = ( F U, 8, F n U) in A. Conversely, any cotriple
G in A is generated by an adjoint pair where AG is the

category of G - coalgebras. The obj ects of A G are pairs ( A , 0 ),where
A E A and e : A -&#x3E; G A satisfies

A morphism f : (A,8) -&#x3E; (A’,8’) in A G is a morphism f : A -&#x3E; A’ in A

such th at

commutes. The functors L and . R are given by

One checks easily that L - R and that this adjointness generates G.



40

Now let I : M - A be a category with models, where A has .small

colimits. The adjoint pair

generates the model induced cotriple _

The realization r factors (since (E,n): r -l S generates G )

through the coalgebras as

where the l i f ted real ization r is given by

The basic functor 1 : M -+ A also factors through the coalgebras,

by defining !( M) = (IM, 8M), where OM 1 M - G I M is the canonical

morphism i ( M , I M ) . Using I we obtain the lifted singular functor

exactly as we obtained s from I.

For each (A ,8) e A G there is a natural inclusion

and using the easily proven fact that

is an equalizer diagram, one can prove that r -l s . In fact, the counit

is just the composite
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and the unit n F : F -+ s r F is determined from the above equalizer dia-

gram with (A,8) = r F.
--- 

Let A be an M -obj ect with atlas i A-&#x3E; s A. There is a uniquely
determined coalgebra structure 8 : A 4 G A , depending only on j and A,

such that e : r A-&#x3E; ( A , e ) is an isomorphism of coalgebras. Looking at
"I

the diagram

(where the right hand square is not commutative) and using the identity

G 8 A . 8 A = G A plus the fact that e = e A . rj is an isomorphism, we

obtain 8 = r i e -1. Furthermore, 0 is such that j always factors through
the lifted singular functor,

Given any coalgebra ( A , e) we can prove that

is an isomorphism if, and only if,

is an equalizer diagram in A . If A is an M -object with atlas (t 4 s A and

coalgebra structure e determined as above, then the diagram 
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proves that the bottom line is an equalizer diagram if rj (A , e ) is a mono-

morphism. Assuming then that r j is a monomorphism for all inclusions of

the type /’ A -&#x3E; s A , we get the result that e (A , e ) is an isomorphism
for all coalgebras arising in the above way from M -obj ects A . The con-

verse is of course true. If (A, 8) is a coalgebra such that e(A ,8) is

an isomorphism, then A is an M -object with atlas

If e(A, 8) is an isomorphism for all coalgebras (A,8), then

th e M -objects of A are exactly the objects of A that admit a G -coalgebra
structure. Note that 6 : r s - A G is an interesting condition not only
because it gives a convenient interpretation of M -objects, but also because

it makes AG a co-reflective subcategory of the functor category (M* , S).
In particular then A G has all small limits and colimits. In the case that

A is equipped with a good underlying set functor U : A -&#x3E; S, we can give
a simple criterion for r j (A, 8) to be a monomorphism that depends only
on I : M -&#x3E; A (and U : A -&#x3E; S).

To complete the picture one can prove that, when 8 is an isomor-

phism, then n is an isomorphism if, and only if, r reflects isomorphisms,
or equivalently, r is faithful. In examples 1 , 2 , and 3 above, we have 6

an isomorphism, and in example 1 we have the full equivalence.

2. Model induced adjoints.

As an illustration of the usefulness of the cotriple point of view,
we shall prove a result on the existence of certain adjoint functors, which

we can then apply to the example of manifolds.

So let A be a category with models in two ways connected by a

functor, i.e. suppose we are given a diagram
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where M 1 and M 2 are small. Then we obtain two diagrams

for v = 1,2 . Also, J*: M*1-&#x3E;M*2 induces a functor J.:
defined by J.F = F.J*. Moreover, J induces a natural transformation

j : G 1 -+ G 2 defined by requiring for each 1 -morphism cp: I1M-&#x3E; A , with
M E M 1 and A E 1, that the diagram

commutes. i is obviously natural, and it is easy to see in fact that it is

a morphism of cotriples j : G1-&#x3E; G2, meaning that the diagrams

commute. Because of this, j induces a functor given by

where (A, 81) and f are in AG . Here one needs only check that, if

e : A-&#x3E; G A is a G -coalgebra tructure for A , then A -&#x3E;G1-&#x3E;jA G A
is a G 2 -coalgebra structure, and this follows immediately from the above
two diagrams.
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Assuming that, in the adjoint pair

we have 61:ri s1-&#x3E; AG, we indicate now how to construct an adjoint
j - A- -4A for J - in rhis context there are several ways to do this.
2 -G 1

However, to highlight the cotriple methods, we use a technique due origi-

nally to Jon Beck, which applies to any functor between categories of

coalgebras induced by a morphism of cotriples. A somewhat different proof

may also be found in Linton [4] .’In what follows we will often confuse a

coalgebra with its underlying A -object, omitting the G-structure to simplify
notation.

Since we have assumed that E1: r1 s1 -&#x3E; AG I it follows that the

category At G has all small limits and colimits (see Mitchell [ 6 ]). Define

j by requiring, for ( A , 82) E AG , that the diagram
2

be an equalizer in the category A G . (In the general case it must be assu-
1 

med that this equalizer exists) . The behavior of j on G 2 -coalgebra mor-
phisms is clear.

The unit and counit

are defined by the diagrams

and
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(In defining j3 one must check that the bottom line is an equalizer in A G ,
2

and that
A

is a morphism of G2 -coalgebras from J J (A,82) to G 2 A . But the first
statement is a standard fact about coalgebras, and the second is easy, so

we leave it to the reader) .

To show (B, a) : j ..... Î, we verify that both composites

are the respective identities. For the first, we have, by definition,

and, since i A. 01 is monic, we are done. For the second, let us denote

by v : J(A, 82)-&#x3E; G1A the unnamed map in the definition of Î, and by

the G 1-coalgebra structure on j (A, 82). Then, again by definition, we
have the diagram



16

and we are done if we show that v = 6- /3 ( A , 82), 81. For this, consider
the diagram

The top square commutes since v is a morphism of G 1-coalgebras, and
the bottom square by definition of B. Since G1jA.61A.v=G182 ,v
we obtain

and composing on the left with G1 eA gives the result.

Having shown that J exists, we now derive a formula for it as

follows. First notice that

commutes, since clearly
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does for each M E M i . Now let (A, 02 ) E AG2. Then

and thus s1 J = J.s2, since the equivalence above is obviously natural
in both M and (A, 82). Applying r1, and using the natural equivalence

E1 : ;-1 s1-&#x3E; A G , we obtain the formula : J= r1J.s2. Alternatively, it
is possible to show that r1J.s2 ( A , e 2) is an equalizer for the diagram

defining J (A, 82), for each ( A , e2 ) E A G , or one can simply verify

directly that r1J.s2 is adjoint to J . In any case, it is useful to have
.

the formula, since it gives an idea of how J works. Namely, take an M 2 -
object A . If we assume also 62 r2 s2 -&#x3E; AG, then there is a canonical

G 2 -coalgebra structure e2 : A - G 2 A associated to A , and s 2 ( A , 02
is a maximal M 2 -atlas for A (see [1]). Then to construct J (A,82),
the formula says to reglue those overlaps coming from M1, and « stack»

the rest. (To make sense of this remark, the reader should derive a formu-

la for 3 using r1J.s2 as J) .
To complete the above, recall that J.:(M*2,S)-&#x3E;(M*1,S) has a

coadjoint J 8 : ( M*1,S)-&#x3E; ( M*2, S), and consider the diagram

Now , so by the uniqueness of adjoints it follows that

Hence, considering A G 
1 
and A G 

2 

as coreflective subcategories of (M*1,S)
and (M*2,S) respectively, one sees that the adjoint pair J -, J is deter-

mined by the Kan adjointness J.-, 10. 
An important property of the functor J is its cotripleability. That



is, let J = (T J, 1. -0, j a Î) be the cotriple on £1G 
2 

generated by the ad-
~ 

- A 2 ’

joint pair (,8, a) : 1 -4 j . In the diagram
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The outside triangles commute by definition of a, the top square by the

previous diagram, and the bottom since f:J(A,81)-&#x3E;J(A’,8’1) is a

morphism of G 2 -coalgebras. Hence f is a morphism of G 1 -coalgebras and

cp is full. Let

is a J-coalgebra structure on ( A , 82), and define 81; " A -* G I A to be the

composite

From the diagram

we obtain 81 A . 81 = A , and from

we see that

Omitting the triangle involving 81 and 82 from the first diagram shows

that J (A, 81) =(A, 82), and considering only the top two squares of the
second diagram gives the result that r is a morphism of G 1-coalgebras
(with respect to the G1-structure e 1 on A). But now a(A, 81) is deter-

mined as a morphism of G 1-coalgebras (since v is an equalizer) by requi-

ring that
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commutes. On the other hand, T is also a morphism of G i-coalgebras that
makes this diagram commute. Hence a(A, 81) = T and

making cp an equivalence.
The reader will be able to supply many examples of such adjoint

pairs, but we shall consider only one here. Namely, let us consider the

case of manifolds. If r 1 C I-2is a pair of pseudogroups, then the inclu-
sion induces the obvious diagram

and thus, since both 8 1 and 8 2 are equivalences, we have an adjoint pair

J 
One verifies immediately that J is the forgetful functor from Ep -obj ects
to Er -objects, and that J takes genuine F -manifolds into genuine

2

T 1-manifolds, although it will in general destroy the property of being
Hausdorff.

A well-known example of this adjoint pair arises by choosing an

orientation for En and giving all open subsets the induced orientation.

Then take

r 1 = orientation preserving homeomorphisms into},

T2 all homeomorphisms into}.
In this case, if X is a genuine topological manifold, then J X is the orien-

tation cover of X. This follows by uniqueness of adjoints, since it is not

hard to verify that the orientation cover is adjoint to the forgetful functor
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from oriented manifolds. Here one can see that the morphisms of T -mani-

folds that arise as coalgebra morphisms (these are continuous maps that

are locally like elements of r) are useful for some purposes. Namely,
the class of local homeomorphisms seems to be about the largest natural

class of maps on which the orientation cover is even a functor.

Cotripleability of j says that, to put a I-’ 1-structure on a r 2 -
manifold, it is necessary and sufficient that there exists a section

to BX : J J X -&#x3E; X which is co-associative - i. e. is such that

commutes. This is well-known for the orientation cover, where the coasso-

ciativity condition is vacuous. In the future we hope to develop an obstruc-

tion theory, expressible in cotriple terms, for the existence of such sections.
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