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Sets of Uniqueness 

Thomas W. Kônier 

Cambridge University (U. K.) 

When I first started research my supervisor, Nick Varopoulos, told me to buy 
two essential works—Zygmund's Trigonométrie Séries [27] and Kahane and Salem's 
Ensembles parfaits et séries trigonométriques [8]. It was easy to buy the Zygmund 
but Kahane and Salem had just sold out. A request to the publishers produced the 
last copy in their warehouse. That well thumbed copy lies before me as I write, but 
I hardly need to refer to it to recall an introduction which so struck me when I first 
read it. 

The authors first quote Queneau. 

Ce n'est pas à l'architecture, à la maçonnerie, qu'il faut comparer 
a la géométrie ou l'analyse, mais à la botanique, à la géographie, aux 
sciences physiques même. Il s'agit de décrire un monde, de le découvrir 
et non de le construire ou de l'inventer, car il existe en dehors de l'esprit 
humain et indépendant de lui. 

They go on to say. 

Il y a quelques dizaines d'années, ce livre put se passer de cette 
préface, qui est écrite en guise d'apologie. Aujourd'hui, venant à un mo­
ment où la plupart des mathématiciens—et les meilleurs—s'intéressent 
surtout aux questions de structure, il peut paraître suranné et ressembler 
en quelque sorte à un herbier. Les auteurs se doivent donc d'expliquer 
que leur propos n'est en acune façon réactionaire. Il savent la beauté 
des grandes théories modernes, et que leur puissance est irremplaçable, 
car sans elles on serait souvent condamné (comme l'a dit Lebesgue) à 
renoncer à la solution de bien des problèmes à énoncés simples posés 
depuis fort longtemps. Mais ils pensent que, sans ignorer l'architecture 
qui domine les êtres mathématiques, il est permis de s'intéresser à ces 
êtres eux-mêmes qui, pour isolés qu'ils puissent paraître, cachent sou­
vent en eux des propriétés, qui, considérées avec attention, posent des 
problèmes passionants. Plusieurs de nos amis appellent cela: faire des 
mathématiques 'fines', et les auteurs se sont souvent demandé si dans 
leur bouche ce terme était d'appréciation ou de mépris... 
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The book of Kahane and Salem deals with the subject of 'thin sets' which arose 
out of the attempt to understand the structure of the 'sets of uniqueness' introduced 
by Cantor. 

Since the time of Fourier mathematicians hâve been interested in the relation 
between a function / : T —• C and its Fourier coefficients 

f(n) = / f(t)exp(-int)dt. 

(Hère T = R/2TTZ, and, as elsewhere, we hope that the anachronisms forced on us 
by the nature of a one hour talk will not distort our view too much.) Fourier showed 
how useful relations of the form 

£ /(n)exp(inO->/(<) (1) 

could be and Dirichlet showed rigorously in 1829 [6] that équation 1 was true for ail 
t for a wide range of continuous functions. For the next 45 years it was generally 
believed that the équation was true for ail t for ail continuous functions but no proof 
was found. (In 1873 Du Bois-Reymond [7] constructed a continuous function / such 
that 

nsxJV 

and so équation 1 fails at t = 0.) 
In his Habilitatsionschrift [22] of 1854, Riemann adopted the différent approach 

of studying 

y^ anexp(int) = lim ^ anexp(m<) 

when it exists. (Note that, if the sum is to converge anywhere, we must hâve \an\ 
bounded.) Apart from the question of convergence, the other natural question to 
ask is that of uniqueness. If J2nZ-oo a* exp(m<) and En=!°oo bn exp(int) converge 
everywhere to the same sum, is it necessarily true that an = bn for ail n? By 
subtraction we see that this reduces to the question whether, if 

n=JV 

y^ ançxp(int) —• 0, 

for ail t then, automatically, an = 0. 
Even if we were to assume (which we do not) that the sum £n=̂ <x> <*>n exp(int) 

converges everywhere the résultant function could be very badly behaved. In order 
to produce a better function Riemann intégrâtes twice term by term to obtain the 
formally twice integrated function 

*W = Y' 2- E %eMint)*f + A + Bt. (2) 
A n=-oo,n/0 U * 
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Since the séquence \an\ is bounded, the sum En=-oofn#o S* exp(int) i s uniformly 
absolutely convergent and everything is well behaved. We can not, of course recover 
our original sum £n~-oo an exp(mi) by twice differentiating, but Riemann shows 
that, if En=-ooanexp(inO -+ s as n -> oo, then 

F{t + h)-2F{t) + F(t-h) 

2h* ~*S 

as h ->0. (Thus we hâve an early example of a summation method.) 
Riemann also proves his justly farnous localisation principle which states that, 

provided that an -> 0, the convergence of En=«oo anexp(int) dépends only on the 
behaviour of F(x) for x close to t. (Combined with Riemann's Lemma which states 
that, if / is Riemann integrable, then f(n) -> 0 as \n\ - • oo this shows that the 
convergence of the Fourier sums YZZ-N f(n)exP(int) M N "* °° dépends only on 
the behaviour of f(x) for x close to t.) 

The question of uniqueness was tackled by Cantor. In response to his enquiry, 
Schwartz proved that if F : [a, b] - • R satisfies 

F(t + h)-2F(t) + F{t-h) 
_ > 0 , 

as /i —• 0 then F is linear. (The proof is readily extended to higher dimensions, to 
show that a harmonie function can not hâve strict local maxima.) We thus obtain 
the theorem. 

Theorem 1 IfaneC for ail n € Z and 

]P nexp(int) —» 0 

as N —> oo for ail t e l , then an = 0 /or a// n € Z. 

What can we say if we only know that the sum converges to zéro on some subset 
of the circle? Let us say that E is a set of uniqueness if whenever 

nzzN 

y^ anexp(mt) —* 0 
n=-JV 

as N -» oo for ail i € T \ £ , then <zn = 0 for ail n € Z. (Thus Theorem 1 says that 0 is 
a set of uniqueness.) Cantor's key observation hère is that if YZZ-N

 n exp(înt) —> 0 
as N -+ oo on an interval, then an —» 0 as |n| —• oo and Riemann's localising 
argument gives the following version of Theorem 1. 

Theorem 2 Let 0 < 6 < a < 2TT. / / 

y^ anexp(înf) —• 0 
n=-Ar 

as N —> oo /or a//1 € [a, 6], and F(t) is defined as in Equation 2 then F is linear 
on [a, 6]. 
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In a séries of papers (written at the begining of the 1870's and reprinted in his 
Collected Works [4]) Cantor used this to show first that every finite set is a set of 
uniqueness, then that every set with a finite set of limit points is of uniqueness, 
then that every set whose set of limit points has only a finite set of limit points is of 
uniqueness.... We see hère the begining of Cantor's theory of ordinals and, indeed, 
the genesis of set theory and point set topology. 

Cantor's methods show that any closed countable set is of uniqueness1 but it was 
left to Young [26] to show in 1909 that every countable set is of uniqueness. By this 
time Lebesgue had introduced his theory of measure and applied it with notable 
success to the theory of Fourier séries (see e.g. [13]). In this context we note that 
two results mentioned earlier find natural généralisations as the Riemann-Lebesgue 
Lemma (if / € Ll then /(n) —• 0 as \n\ —• oo) and the Cantor-Lebesgue Lemma 
(if J2ïï*// «n exp(int) —• 0 as N —* oo on a set of non zéro Lebesgue meaure then 
an -+ 0 as \n\ —> oo). 

Since much of the thrust of Lebesgue's theory was to suggest that sets of measure 
zéro were irrelevant to the processes of analysis, it was natural to suppose that ail sets 
of Lebesgue measure zéro would (like countable sets) turn out to be of uniqueness. 
It was thus rather a shock when, in 1916, Mensôv [18] produced a closed set of zéro 
Lebesgue measure which was not of uniqueness. To see how he could hâve arrived 
at his discovery we look once more at the function 

W - S - E %*xp(int) + A + Bt 

introduced by Riemann. Suppose that En=^oo,n^o an exp(in^) converges to zéro 
outside a closed set of Lebesgue measure zéro. If \an\ —• 0 then localisation shows 
that F is linear on each interval (a, 6) lying wholly outside E. Thus if we try to 
differentiate F we obtain a function which is constant on each interval (a, b) lying 
wholly outside E (but which may not even be defined on E). This reminds us of 
the famous devil's staircase function H of Cantor which is constant on each interval 
outside the Cantor middle third set and suggests looking at the Lebesgue-Stieltjes 
intégral of séries like 

Cn = / exp(—int)dH{t). 

Mensov observed that, if G is a function of bounded variation and 
r2* 

bn = / exp(~int)dG(t) 
Jo 

then, if G is constant on an interval (a, b)} and if 6n —• 0 as \n\ —• oo, the standard 
localisation argument shows that 

5^ bnexp(int) —> 0 
n=-JV 

1Cantor never published the full transfinite induction argument but [5] (pp 43-45) shows that 
he was already on his way to it when his interests shifted from the spécifie problem of uniqueness 
to the more gênerai problems of set theory. 



55 

as N —• oo. If G is increasing on [0,2ir] and non-constant 

/2 i r 

dG(t) = G(2TT) - G(0) 7̂  0, 

and it can be shown, in gênerai, that bn = 0 for ail n only if G is constant. Thus to 
show that a closed set E is not of uniqueness we need only produce a non constant 
function G of bounded variation which is constant on intervais which do not intersect 
E and which satisfies the condition 

L exp(—int)dG(t) —• 0 as n —» 0. 
o 

This Mensov did for a clever modification of the Cantor set (removing only a de-
creasing part of the intervais remaining at each step, but enough to make the set E 
of Lebesgue measure zéro) and the associated staircase function. 

Nowadays we would write Mensôv's argument as follows. 

Theorem 3 If n is a non zéro measure on T, such that /i(n) —* 0 as \n\ —+ oo, then 

Y] jj,(n) exp(int) —* 0 

as N —» oo for ail t $ supp/i. In particular, no set containing supp// can be of 
uniqueness. 

(Hère measure means Borel measure, supp/t is the (closed) support of /i and /i(n) = 
/T exp(—int)d/i(t).) Since the old and the modem versions are mathematically iden-
tical (/i(a,6] = G(b) — G(a)) the choice between them must dépend on other criteria. 
The classic summaries of Zygmund [27] published in 1959 and Bari [3] published in 
1961 use functions of bounded variation whilst the book of Kahane and Salem [8] 
published in 1963 uses measures. Since the study of Riemann's F leads more natu-
rally to functions rather than measures we should not be surprised that change took 
so long in coming. I would speculate that the influence of distribution theory was 
décisive but that the use of gênerai measures in probability theory and Haar measure 
in Fourier analysis on groups also played a rôle. (The corresponding changes in the 
university first courses in measure theory would also prédispose research students in 
favour of Borel measures and against functions of bounded variation.) As a child of 
my time, I will, anhistorically, use measures from now on. 

It could now be conjectured that no uncountable set is of uniqueness but in 
1922 and 1923 Rajchman [21] and Bari [1] and independently constructed uncount­
able closed sets which were of uniqueness. It now became an open problem to 
classify closed sets of Lebesgue measure zéro into sets of uniqueness and sets of 
non-uniqueness (which we call sets of multiplicity). To see why we need only con-
sider sets of Lebesgue measure zéro, recall that if A is a set of positive Lebesgue 
measure then A has a closed subset fî, say, of positive Lebesgue measure. If Is is 
the indicator function of B (i.e. / B ( Z ) = 1 when x € B, IB(X) = 0 otherwise) then, 
writing dfi(x) = Is(x)dx, the Riemann-Lebesgue Lemma tells us that fi(n) —• 0 as 
\n\ —* oo, and Theorem 3 tells us that A is of multiplicity. 
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The restriction to closed sets is intended mainly to give this essay a reasonably 
sharp focus and the reader who requires some indications of the work done on non-
closed sets will find them in Bari's book [3]. However the reader should observe that 
localisation results of the type given in Theorem 3 cease to give useful information 
so that one of our main tools fails for the more gênerai problem. Purther, we note 
that if /o, / i , / 2 , . . . are continuous functions on T then 

{t: / * ( < ) - 0 as tf - 00} « ^ U H { * : l/r(*)l < m"1}, 
m = l n = l rtzn 

and so {t : //v(<) —• 0 as N —* 00} must be of a rather simple topological type 
(a G se set). This means that the study of gênerai sets of uniqueness must involve 
disentangling topological and analytic considérations. (Bari's example [1] of two 
sets of uniqueness whose union is the whole circle is an example of the kind of thing 
that can arise for sufficiently wild, in this case, necessarally non-measurable, sets.) 
Finally, if we can not even classify closed sets, we can hardly expect greater success 
in the gênerai case. 

An early success was recorded by Bari in her 1923 paper [1], 

Theorem 4 The countable union of closed sets of uniqueness is a set of uniqueness. 

Further success was achieved in the study of the symmetric sets of constant ratio £ 
given by 

£< = { 2 ; r ( l - 0 i > f : <r € {0,1} [1 < rj}. 
r = l 

(Observe that if £ = 1/3 we recover the classical Cantor middle third set; 2¾ is a 
middle 1 — £ set.) Rajchman's proof in [21] of the existence of uncountable closed 
sets of uniqueness is based on the concept of an H-set. 

Définition 5 A closed set E is called an H-set if we can find real numbers a and 6 
with 0 < 6 < 2, and a séquence n* of integers with n* —• oo as k —• oo such that 

|exp(t'n*z) — exp(ia)| < 6 

for ail x € E and allk>\. 

Thus, for example, Cantor's middle third set E\/z is an H-set (Since ZkE\/z = E1/3 
and 

sup{|exp(iar) — 1| : x 6 E} < 2 

so we can take a = 0, n* = 3*.) Rajchman proved the following theorem. 

Theorem 6 Every closed H-set is a set of uniqueness. 

In particular, therefore, Cantor's middle third set is of uniqueness and, if F is the 
associated staircase, Theorem 3 tells us that 

/ . 

2* 

exp(—int)df(t) Â 0 as n —> 0). 
/o 

In 1937 Bari [2] carried this much further 
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Theorem 7 / /£ is rational, then Eç is of uniqueness if and only if£~l is an integer. 

In 1943 Salem [23] extended this as follows. 

Définition 8 Suppose ^ , 02>"-i#Ar are the roots of the équation 

J V - l 

wfeere tàe coefficients a l5 a 2 , . . . , a^-i a r^ integers. If \ôj\ < 1 /or cacA 1 < j < 
N — 1 6t*f |0//| > 1 then 6 s is called a Pisot number. 

Theorem 9 If£~l is not a Pisot number, then Eç is of multiplicity. 

There are two points of interest hère. The first is that the Pisot numbers were first 
investigated in number theory in connection with problerns of uniform distribution. 
The second is that Salem shows that the most obvious candidate for a measure fi 
with supp/x Ç E$ and jx(n) —• 0 as \n\ —• oo actually works. If F^ is the standard 
staircase function then 

L 
2* 

exp(—int)dFç(t) —> 0 as n —» 0. 

Finally in 1955, by using a généralisation of Rajchman's Theorem 6 due to Piatetski-
Shapiro, Salem and Zygmund [24] completed the classification of the symmetric sets 
of constant ratio by proving the converse of Theorem 9. 

Theorem 10 If £~l is a Pisot numberf then Eç is of uniqueness. 

It can be shown that as ¢-1 increases from 0 to 1, the Hausdorff dimension of 2¾ 
increases continuously from 0 to 1. It can also be shown that the set of Pisot numbers 
and its complément are dense in (l,oo). The results of the previous paragraph thus 
showed that it was unlikely that any metric characterisation of sets of uniqueness 
could be found. This was confirmed by a theorem obtained by Ivasev-Musatov in 
1952 [19]. (I state it without assuming prior knowledge of Hausdorff measure on the 
part of the reader.) 

Theorem 11 Let h : [0,1] —* R be any strictly increasing continuous function with 
h(Q) = 0. Then we can find a closed set E and a x positive measure fi with the 
following properties. 

(i) E D suppfi, \\fi\\ = 1 and fi(n) -> 0 as \n\ ~> oo, and so E is of multiplicity. 
(ii) Given any e > 0 we can find closed intervais Iï} l2,...of lengths \Ii\, 

|J2 | ,.. .such that 

\Jh2E, but f>(|/r|)<e. 
r = l r = l 

file:///Jh2E
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Thus, however sharply cusped we make h at zéro, in an attempt to make E 'thin' 
it can remain sufficiently 'thick' to support a measure whose Fourier coefficients 
die away towards infinity. (There are very interesting relations between the metric 
thinness of the support of a measure and the rate of decay of its Fourier coefficients; 
the book of Kahane and Salem [8] gives a clear account of the discoveries of Salem 
and others in this direction. However the possibility of decay seems to be a différent 
matter.) 

The nature of the results obtained so far gave rise to a strong suspicion which 
the reader will find explicitly stated in the treatises of both Zygmund ([27], Préface) 
and Bari ([3], Chapter XIV §23) that the arithmetic structure of a closed set would 
détermine whether it was of uniqueness or not. This hope was dealt a severe blow 
by Rudin [25] when, in 1960, he constructed a set which was 'arithmetically very 
thin' but still sufficiently 'thick' to support a measure whose Fourier coefficients died 
away towards infinity. 

Theorem 12 We can find a closed set E Ç T and a positive measure fi with the 
following properties. 

(i) E D supp/i, \\fi\\ = 1 and fï(n) -> 0 as \n\ -> oo, and so E is of multiplicity. 
(H) Ifex, e2t.-> CM, a™ distinct points of E then the only solution of 

M 

£ nmem = 0 

with ni, n2r -., n\f integers, is the trival one with nx = n2 = . . . = n\f = 0 

There is another interesting point which appears when we inspect the examples 
of sets of multiplicity given above. They are ail obtained using measures. Let us 
cal! a closed set E a set of strong multiplicity if we can find a non-zero measure 
fi with support contained in E such that fi{n) -> 0 as \n\ -+ oo. Are ail sets of 
multiplicity of strong multiplicity? This question can be posed rather naturally in 
terms of distributions. Recall that every distribution T on T (more formally every 
T e V(T)) has a Fourier séries f{n) = (T,x_n) (where Xn(0 = exp(in*)) which 
increases no faster than polynomially as \n\ -> oo. Further 

T = £ T(n)Xn, 
- o o 

where the convergence is in the distributional sensé. Conversely if an increases no 
faster than polynomially as \n\ -+ oo then 

ce 

defines a distribution T with f(n) = an. The Riemann localisation principle now 
gives the following distributional theorem. 

Theorem 13 A closed set E is of multiplicity if and only if there exists a non-zero 
distribution T with support contained in E and T{n) -* 0 as \n\ -» oo. 
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We call a distribution T with sup |T(n)| < oo a pseudomeasure and a distribution 
T with T(n) —* 0 as \n\ —> oo a pseudofunction. 

The problem of the last paragraph can thus be stated as the question 'Does there 
exist a closed set which supports a non-zero pseudofunction but does not support a 
non-zero measure which is also a pseudofunction'. Stated in this way it appears to 
hâve links with the problem of synthesis. 

Définition 14 A closed set E is called a set of synthesis if the distributional closure 
of the set of measures with support contained in E is the set of ail pseudomeasures 
with support contained in E. 

It was unknown for a long time whether there were any closed sets which were not of 
synthesis. However the problem of the existence of the two kinds of sets mentioned 
were solved seperately and by différent methods. In 1954 Piatetski-Shapiro [20] 
constructed a set of multiplicity which was not of strong multiplicity and in 1959 
Malliavin [14] constructed a set which was not of synthesis. 

None the less the two problems are linked (for example, in 1962 Malliavin [15] 
showed that if every closed subset of a closed set E is of synthesis then E is of 
uniqueness). A very close link is provided by the study of Helson sets. 

Définition 15 A closed set E is called a Helson-K set if given any e > 0 and any 
continuous function f : E —> C with \f(t)\ < 1 for ail t e E, we can find ar € C 
with _ 

oo oo 

JT arexp(irt) = f(t) for ail t € E, and ]T \aT\ < K + c. 

It is easy to check that, if E is a Helson set, then the distributional closure of the set 
of measures with support contained in E can not contain a non-zero pseudofunction. 
Thus any Helson set which supports a non-zero pseudofunction is both a set of non-
synthesis and a set of multiplicity but not of strong multiplicity. In 1973 [12] I 
constructed such a set. Almost immediately Kaufman [9] produced a much simpler 
proof of an improved resuit. 

Theorem 16 Suppose that S is a non-zero pseudofunction. Then we can find a 
non-zero pseudofunction T with suppT Ç suppS and suppT a Helson-1 set. 

(In other words any closed set of multiplicity contains a Helson-1 set of mutiplicity. 
This set is automatically not of strong multiplicity and not of synthesis.) 

Remark 1 Narative history and mathematical logic may impose patterns where 
none exist. When I worked on the construction of a pseudofunction on a Helson set 
it was as a problem on synthesis and I was, at most, dimly aware of the connection 
with problems on multiplicity (which graduate students know the full background 
of the problems they work on?). In retrospect (see the introductory paragraph of [9] 
and the last two paragraphs of page 239 of [12]) it is clear that Piatetski-Shapiro's 
1954 example is very closely related to the later Helson set results. In particular 
a fairly simple distributional perturbation transforms Piatetski-Shapiro's example 
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into a Helson-K set (with very large K) supporting a non-zero pseudofunction whilst 
Kaufman explicitly présents his proof as an adaptation of that of Piatetski-Shapiro. 

Remark 2 The cynical reader may hâve remarked, correctly, that Theorem 13 is 
just a 19th century theorem in modem garb. But if the distributional approach has 
produced little in the way of gênerai theorems it has, in my view, been invaluable in 
the construction of the intricate examples above. In his proof of Theorem 16 Kauf­
man starts with the pseudofunction 50 = S and constructs inductively a séquence 
5 n + 1 = hnSn obtained by multiplying Sn by a C°° function hn. The distributional 
limit of the Sn gives the required new pseudofunction T. Of course, the procé­
dure can be followed using only formai trigonométrie sums, but it seems unlikely 
to me that such a construction could be discovered by someone who viewed the 
objects involved as formai constructs with no real existence. The failure to follow 
up Piatetski-Shapiro's work sooner gives some évidence for my view 

Ail thèse négative results suggest that the classification problem for sets of 
uniqueness is probably impossible and we might expect matters to stop hère. How­
ever, our story now takes a typically 20th century twist with the discovery that what 
we vaguely feel to be impossible is, in fact, provably impossible! To get an idea of 
what is involved, consider first the space C([0,1]) of continuous functions on [0,1] 
with metric the uniform norm 

d(f>g)= sup \f(t)-g(t)\. 
*€[0,1J 

It is easy to see that the set C1 of continuously difFerentiable functions is neither open 
nor closed in C([0,1]) with this metric and Mazurkiewicz [17] has shown that it is not 
Borel. (The set of Borel sets is the smallest collection of sets which contains every 
open set and which is closed under the set opérations of countable union, countable 
intersection and complémentation. Borel sets can hâve much a much more complex 
structure than a naive student might think, but there are sets whose structure is 
so complex that they can not be Borel.) It follows that we can not characterise 
C1 as a subset of C([0,1]) in any reasonable way using only the uniform norm. 
Around the end of 1983 Solovay (unpublished, for détails see [11]) and Kaufman 
[10] independently showed, using Theorem 16, that, if we put a certain natural 
metric on the space of closed subsets of T, the collection of closed sets of uniqueness 
is not Borel. Thus it is impossible to characterise closed sets of uniqueness using 
the type of arithmetical and metric conditions investigated up to now. (Of course, 
although the set C1 is not Borel in C([0,1]), most mathematicians feel that they 
understand it from other points of view. It is thus conceivable that there is some 
other way of looking at sets of uniqueness which would show them as understandable 
objects.) 

The Solovay Kaufman theorem belongs to the subject of 'Descriptive Set Theory'. 
The relevant parts of harmonie analysis and descriptive set theory together with a 
proof of the theorem and many interesting further results that hâve been discovered 
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in the subséquent spate of activity are collected in an excellent book [11] by Kechris 
and Louveau. 

History studies men and women and their relation to society. It thus includes the 
study of the development of ideas and of technologies. The history of mathematics 
qualifies as important under both heads. (Whitehead says that the history of ideas 
without mathematics would be, not like Hamlet without the prince, but like Hamlet 
without Ophelia. Like Ophelia, mathematics is charming, essential to the plot, and 
a little mad.) The historian thus requires no further justification for the study of 
the history of mathematics—but why should mathematicians support it? 

There are at least three possible reasons. The first is to supply anecdotes to 
lighten and add human interest to our courses. This reason is not to be lightly 
dismissed. Whatever its failings as history, E.T.Bell's Men of Mathematics has been 
an inspiration to many young mathematicians. However the répétition of amusing 
and instructive stories hardly qualifies as an académie discipline deserving our strong 
support. 

The second reason is, for me, the strongest. If we forget our predecessors then 
our successors will forget us. The love of famé is a powerful driving force for many, 
perhaps for almost ail, mathematicians. Without historians to record and celebrate 
our achievements the prize of famé will be an illusion. For this reason alone we 
should cherish our historians. 

The third reason is the désire to learn from history. We know that some lines of 
mathematical research prove immensely fruitful whilst others just peter out. Might 
it not be possible, by studying programs of research which hâve been successful in 
the past, to predict those which are likely to be successful in the future? The history 
of sets of uniqueness shows that, even if history does provide such hints, they are 
unlikely to be easy to decypher. The problem of sets of uniqueness fails to satisfy 
several of the standard criteria for a good problem. 

1. At no stage during the history of the problem would even the most favourable 
outeome hâve produced a theorem useful in other parts of mathematics. 

2. The problem fails to généralise naturally to higher dimensions. In two dimen­
sions we must décide whether to consider 

lim Y* antmexp(inx + imy), lim Y] an,m exp(inx + imy), 

or some other mode of convergence. Whichever we choose, the key idea of 
Riemann is essentially one dimensional in character. 

3. The problem appears to be devoid of any computational character. 

4. There exist clean and simple results on L2 convergence and uniform density 
(Féjer's Theorem) which cover our practical needs in most of pure and applied 
mathematics. Pointwise convergence is just a sideshow. 

In spite of thèse interlinked, but powerful, objections we hâve seen that the prob­
lem formed the seed from which Cantorian set theory grew. The problem (together 
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with other related 'thin set' problems) provided a testing ground for three more ma­
jor théories—measure theory, distribution theory and descriptive set theory—giving 
rise to new techniques and speeding gênerai acceptance of the utility of the théories 
themselves. It promoted interesting (though not earth shattering) work in number 
theory and provided many of the earliest examples of probabilistic constructions in 
analysis (both developments being particularly associated with the name of Salem). 
Finally, to end on a fashionable note, the book of Kahane and Salem [8] from which 
I took my opening quotation is a véritable bestiary of what would now be called 
1 dimensional fractals. (Mandelbrot acknowledges his debt to our subject in several 
places in his book The Fractal Geometry of Nature [16]). 

The history of sets of uniqueness shows how hard it is to 

. . . look into the seeds of time, 
and say which grain will grow and which will not. 
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