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SUMS OF SQUARES AND QUADRATRIC FORMS IN REAL 
ALGEBRAIC GEOMETRY 

Eberhard Becker 
Univeristé de Dortmund 

Introduction 
This note wants to contribute to a description of the rôle of quadratic 

forms in real algebraic geometry. This latter theory is concerned, at least as a 
starting point, with the set of real solutions, i.e. x € IRn, of a System of 
polynomial équations 

F^X) ^0,...,Fr(X)^0 

where F^X),..., Fr(X) e JR[Xv...,Xn]. At a first glance, there seems to be no 
relation between algebraic geometry and quadratic form theory. However, that 
quadratic forms in fact play an important rôle in the study of Systems of 
équations dates back at least to the days of Jacobi, Henni te and Sylvester. Thèse 
great researchers discovered, by refîecting on Sturm's theorem, that in many 
cases the number of the real solutions of the above System can be couuted by the 
signatures of associated quadratic forms. 

Thèse discoveries in the middle of the last century provide the starting 
point for this note. At the end we want to arrive at the modem results about the 
mapping W(A) » C(Sper AJL) where W(A) dénotes the Witt ring of the 
commutative ring A and the mapping goes into the ring of integer-valued 
continuous functions on the real spectrum of A. As to basic questions and 
concepts and seen from a today's point of view, there seems to be a natural road 
from Syvester's and Hermite's investigations to what is being studied at 
présent. However, progress along this road went slow, ant it was only the 
development of the algebraic theory of quadratic forms and, slightly later, the 
foundation of a gênerai real algebraic geometry that provided the necessary 
basis for a gênerai understanding of what has been done more than hundred 
years ago. In this respect, the story of quadratic forms in real algebraic 
geometry represents one further examplc of the highly interesting and 
sometimes curious way mathematics actually evolves. 

This note is not meant as a detailed report, it should rather display the 
gênerai flavor. To see more about notions and resuJts involved one should turn 
to the cited literature. 
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1. The trace formula 

In algebraic geometry one is concerned with sets defîned by finitely 
many polynomial équations. Given polynomials 
Fx(X), . . . ,F r(X) € R [ X , . . . , X J where X =•• (Xx,„., Xn), one defînes an affine 
algebraic variety by setting 

If if is any extension fieïd of R we set 

V(K) = [x e K71 | Fx(x) - F2(x) = ... - Fr(x) = 0 } . 

Real algebraic geometry deals primarily with V(R). However, the "full" set of 
complex point V(C) plays an important rôle even in the study of V(R). In our 
situation we assume that 

V(C)isfinite 
and ask for the 

cardinality of V(R). 

This number #V(R) can be obtained via quadratic forms, a method otften 
referred to as the Hermite-Syivester method. But also Borchardt and Jacobi 
should be mentioned in this context. The question of priority is a délicate one 
and will not be discussed hère. But it seems that it was Hermite who was in the 
possesion of the most gênerai and powerful method. 

The original work of Borchardt, Jacobi, Hermite and Syvester can be 
found in [Bl], [B2], [Hl], [H2], [H3] and [S]. A very comprehensive account of 
the Hermite-Syivester method, understood in a broad sensé, gives the highly 
recommended paper of Krein-Naimark [Kr-N], But one may also consult [G], 
[I] and [Obi Quite recently, our subject found a modem présentation in the 
book of Knebusch-Scheiderer [Kn-S], and it is also mentioned in the book of 
Benedetti-Risler [B-R, p. 17 ff]. 

We hâve to deal with quadratic forms over commutative ring A with 1 
where 2 is invertible. For more gênerai définitions than given hère see [M-H], 
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[Ba] or [B-C-R, Ch. 15]. Qui te basically, a quadratic form over a ring is nothing 
but a homogeneous polynomial of degree 2. For technical purposes we hâve to 
pass to a module theoretic approach. Let M be a free A-module of finite rank. A 
quadratic form <p on M is a map ç : M >A subject to 

(1) <p(a m) = a2ç(m) for ail a e A, m e M, 
(2) the mapping ct( , ) : M x M > A, 

<p(*>y) ==2 (Ç>(̂ +y) ~ 0(*) " Ç>(y))> is A-bilinear. 

If ç admits an orthogonal basis uv...,vn, i.e. an A-basis of M with 
ç(vi%Vj) = 0 whenever i *j9 we set ç - <av ...,«„> where a- = ¢(^., y;) - <p(u-). 

In the case of A = R, any quadratic form ç> has an orthogonal basis : 
ç = <a1,...,an> . This allows to définie the signature 

n 
sgn(ç>) = ^sgn(a-) e X 

1 

where sgn(ç>) = 1, - 1 or 0 according to whether a > 0, a < 0 or a = 0. That sgn(<p) 
is indépendant of the chosen orthogonal basis is exactly the content of 
Sylvesters law of inertia of 1853 [S]. 

Following the principle of the ideas of Hermite and Sylvester we will now 
attach a quadratic form p over R to the above System of équations resulting in 
the desired equality 

#V(R) = s g n p . 

To this end, certain algebraic tools for treating gênerai affine varieties - not 
assuming the above hypothesis on V(C) - hâve to be introduced. Let 
a= (Fv..., Fr) be the idéal of ïïl[Xv ..., Xn] generated by the given polynomials. 
Then form the ring R[V] = R[XX,..,, X J I a, the coordinate ring of V. The 
éléments of R[V] hâve a natural représentation as functions on VYR) : an 
élément f+a gives rise to the function 

/ = V ( R ) >R, xi—>f{x). 

In the sequel, we will wri te/ instead of/+ a and/(x) instead of/(jc). 

Let ç = <fi>—,fn> be a quadratic form (with orthogonal basis) over 

A = R[V], For each x e V(R) we get the quadratic form 

0* = </!(*)»•••»/„(*)> o v e r R . 
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Each of thèse forms has a signature sgn <px a 7L. Putting ail thèse signatures 
together we hâve constructed the total signature map 

f QF(1R[ V]) > Map( V(R),Z) 

1 9 •—> (*•—»sgn(ç>x)) 

where QF(A) dénotes the collection of ail diagonalized quadratic forms over A, 
for any ring A. 

We next turn to our spécial situation where V(C) is finite, a fortiori : V(R) 
fimte. In this situation we hâve a further map 

X : Map(V(R),Z) > Z, g •—> ^ gix) which yields an incomplète diagram 
xeV(m 

QFORIV]) - ^ Î U Map(V(R),Z) 

* ? i l 

It has really started with the investigation of Hermite and Sylvester that one 
knows how to remove the question mark and defîne a map 
tr* : QF(1R[V]) » QF(R), the transfer or trace map, that renders the above 
diagram commutative. We record this as the main resuit in this section : 

Theorem (trace formula). There exisis a transfer, ç •—» tr*ç>, of quadratic 
forms over R[V] to forms over R such the following formula holds : 

sgn(tr*ç>) = ]T sgn(<px). 
*eV(lR) 

Before entering the construction of the transfer and the sketch of the 
proof of the above resuit we want to list up some applications. 

I) sgn(tr*<l>) = #V(R). 
This is obvions as <1>X ~ <1> for each x e V(R). 

II) sgn tr*</> = #{* € V(R) | f(x) > 0} - #{x e V(R) | JKx) < 0} . 
To see this note <f>x = <flx)> . 

n e. 
m)Far£1,...t£vl€R[V] set 9 = «gl9...,gn» = <...$[ V ' - V ^ ^ r 
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This form is usually referred to as the n-fold Pfister form of dimension 2n. If 
n 

x € V(R) then sgn © = n (1 + sgn g-(x)) whence 

sgn t r*«« l f ...t gn» = 2*. #{x e V(R) | gx(x) > 0,..., gn(x) > 0} 

provided gt(x) * 0 for ail i = 1,... nyxe V^R). 

We will improve on this in the next section. 
To define the transfer we first note that, on the hypothesis of "V(C) fimte", R[V1 
turns out to be a fînite dimensional R-algebra. We therefore hâve the R-linear 

trace map 
tr : R[V] — * R, a •—> trace of Ha) 

where L(a) is the left multiplication in R[V] : L(a)(b) ~ ab. Now, given any 
quadratic form ç on a free R[V>module M of fînite rank we first consider M as 
a R-vectorspace Af ^ , in fact of fînite dimension, and then define 
tr*(p) tr*<p : MR -» R as the transfer of ç. It is readily verified that tr*(<p)is a 

quadratic form over R. 

The proof of the trace formula can be sketched as follows. We first pass to the 
reduced algebra R [ V ] r e d :« R[V]/Nilradical. As the trace vanishes on the 

Nilradical the left hand side of the trace formula does not change if one passe 
to R[V] red . In the next step one observes 

Rmred ~( n m*cB 

xeV{1R) 

which essentialiy yields the proof, cf. also [Kn-S]. 

2. Remarks on computations 

It is the purpose of this section to show that the trace formula can be in 
fact used for computations. For each of the following computational tasks there 
exist implemented algorithms so that calculations can be carried out in 
practice, of course limited by the capacity of the computers used. We will 
refrain from discussing the efficiency of the methods ; those readers who are 
interested in complexity issues may consult the cited références. 

Given the System of polynomial équations 

7 : ^ = 0,...,1^ = 0 

with FieVl[Xv...9Xn\ and V(€) fînite we passed in the last section to the 

R-algebra R[V] - R[XX,..., Xn] I a . The signature of any form tr*(<p) only 
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dépends on tr*(ç>) where p dénotes the induced form over 
R[V]red = R[XX Xn] / Va, Va = the radical of a, and the transfer is defîned by 
the trace map 3R[V]red » 1R. The first task is therefore to perform the 

calculation of the radical Via . 

There exists an implementation of an algorithm based on Grôbner bases-
techniques and using ideas of [GitrZ]. It works for arbitrary ideals in 
R[Xj,..., Xn]. Basic informations about Grôbner bases can be obtained e.g. from 

[Bu]. 

The assumption "V(C) finite" is équivalent to the fact that 

a n R P g =<%Xf)) * 0 for every i = 1,.... n. 

Set̂ CXj) =fi/gcd(Ji,fi). According to Seidenberg [Se] one has 

Jâ = (a,fv..., fn). 

The polynomial ft can be derived either by Grôbner base techniques or by 

Linera Algebra using bounds from an effective Nullstellensatz [CaGaHe]. 

Now, having the radical presented by some set of generators, one next 
proceeds to a distinguished one. This is the subject of the following lemma 
often referred to as the Shape Lemma, cf. [GiTrZ] : 
The radical Va can be generated by polynomial of the type 

^ 1 ¾ ) . XïrgdXJi.-X^j-g^iXJ, fiXn) 

(possibly, only after a linear change of coordinates). 

This set of generators is a Grôbner basis relative to a certain term 
ordering [GiTrZ]. 
Using the Shape Lemma we arrive at the following description of !R[Vlred : 

KtVTred ~ WT11 (XT)). 
r 

It is now much easier to compute the transfer from tr*(<p) = JLtr*<£->if 

q> = <gx,..., gr>. Given g € R[V]red, tr*<g> is a deg/-dimensional form over R. 

Relative to the basis 1, T,,.., T*"1, where n = deg/, tr*<#> is described by the 
following symmetric matrix : 

tr*<#><-» (ai+/_2>.\M.-»-
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As one of various possibilités, the entries ak can be obtained from the formai 

power séries expansion 

1 f{T) ~ L <V • 

To détermine sgn tr*<g> one may use the above symmctric matrix, a socalled 

Hankel matrix [G], [I], [Kn-S]. Symmetric matrices of this type allow a more 

efficient way of calcul ating their signatures, e.g. by means of the theorem of 

Frobenius [ 1. cit.]. 

So far, it has been described how to calculate 

tr*<g> = #U e V(R) j g(x) > 0} - Hx G V(R) | g(x) < 0} 

by an efficient algorithm. However, if one turns to the third computational 

problem of § 1, i.e. the détermination of 

#{* e V(R) | gl(x) > 0,.... gn(x) > 0} = c(V, gv.... gn), 

the above procédure would force us to deal with a symmetrix matrix with at 
least 2 n JV(R) rows. Even for n not too large, matrices of this size can hardly be 
handled. However, starting with the System (*), defining V, and the given 
£i>-~>8n o n e c a n algorithmically produce a polynomial h e R[Jf1,.,.,Xn] such 
that 

dV9gv...9gn) = c(Vfh). 

Hence, one has to deal only with the transfer of the 2-dimensionaî form <l,h> 
instead of «gv.-.,gn» which has dimension 2n . 

In concluding this section, one has to mention that there are other 
methods to détermine the value of c(V, gv„., gn)f a number very important for 

many algorithms in real algebraic geometry. The paper [GLRR], especially 
section 4, contains o lot of informations, 

3L Hi^her dimensional varieties 

In this section we drop the hypothesis that V(C) is fînite but still want to 
study the total signature map sgn : QF(R[V]) > Map(V(R),Z). Recall that 
(sgn<p)(x) = X sgn g^x) if ç> = <glt.„9gn> . In the sequel we will assume that the 

coefficient functions gi hâve no zéros on V(C). Two forms <p = <£},.,., gn> and 

y/- <hv...9 hn> are said to be isometric, written <p « y, if there is an invertible 

matrix A € GL(/i,R[V]) such that 
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( Si 0 \ / /4 0 x 
4 *. A' = , \ 

l 0 > J l 0 hn ) 
holds. Hyperbolic forms are forms of the type 
q> ** r x <1,-1> = <1 ,-1,1,-1, . . . , 1,-1>. The following properties are readiiy 

checked : 
1) <p » y > sgn(ç) = sgn(y) 
2) sgn(ç)1 hyperbolic form) = sgn(<p), 
3) sgn(p) is locally constant, continuous on V(R) c R r . 

Thèse properties allow tow define the total signature on the level of the 
Witt ring û)(R[V]) of R[V]. To do it properly one should consult the cited 
literature, e.g. [B-C-R, Chap. 15] is a good référence for this and the subséquent 
section. However, basically one proceeds as folloxs. Two forms ç and v'. not 
necessarily of the same dimension, are called équivalent if there are hyperlolic 
i, a such that <pxT « ^o. The équivalence classe [<p] form a ring, theWitt ring, 
with compositions induced by the formation of the orthogonal sum and the 
tensor product. (This is okay for fields of characteristic not 2, for gênerai rings 
this gives only the idea). From the above we therefore get an induced ring 
homomorphi sm 

sgn : W(R[V]) > C(V(R),Z). 

Clearly, sgn([<p]) is also a locally constant continuous function and therefore 
constant on each of the connected components of V(R). It is a gênerai resuit of 
Withney, cf. [B-C-R, Ch. 2], that V(R) décomposes in only finitely many 
connected components of V(1R). Denoting by /r0(V(R)) the set of the connected 
components of V(R), we find that in fact sgn(<p) € C(w0( V(R)),Z) c C(V(R),Z). 
Note that we hâve C(TT 0 (V(R)) ,Z) = Map(*0(V(R)),Z). It was Mahé who proved 
in 1982, cf. [Mal], the following important theorem. 

Theorem. The map W(R[V])-5S^C(*0(V(R)),Z) has a 2-iorsion cokernet. 

This resuit tell that the connected components of V(R) can be separated 
by the signatures of quadratic forms, Namely, if C is one component we 
consider the characteristic function # c , i.e. ^ c(x) = 1 or 0 according to whether x 
€ C or not. By Mahé's theorem there is some power 2* such that 2*#c-sgn(<p). 
Obviously, sgn(<px) - 2k if x e C and sgn(<px) = 0 otherwise. 

This theorem and its companion [H-M] for projective varieties set the 
endpoint to a séries of attempts to show that components can be separated by 
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the signature of quadratic forms ; it is very instructive to turn to the "note 
bibliographique" in [B-C-R, p. 347] for further informations. Also, a further 
paper of Mahé [Ma2] is recommended for a doser study of the above torsion 
exponents 2k . For further study see [Schw]. 

The question may arise why, instead of using functions, one passes to 
quadratic forms to separate components. The answer is as easy as possible : in 
gênerai, components cannot be separated by functions (which is however true 
for curves). The following example is taken from [B-C-R, p. 335 fFJ> 

Let V be the complément in R 2 of the elliptic curve F : y2 = xs-x. It is an 
irreducible affine variety of dimension 2» 

y 2 ~x 3 fx we get V consists of three components and setting g 
R[V] = {f.g~k \feU[XXl k e IN}. Jffgk < 0 on Sx but > 0 on S2 u S3 one shows 

t h a t / = 0 on r whence g\f which fînally yields the stetement that in this case 
the components cannot be separated by a function. 

The above séparation of components by quadratic forms is based on the 
distinction of the three cases "fU) > 0", "ttx) < 0" or "{(x) - 0" iffe R[V]f xeV(JR) 

are given. Functions, everywhere non-negative on V(R), can not be used for 
séparation purposes. One is therefore led to study the following problem : 

Characterize the function fe R[V] satisfying 

f(x)>0 for ail *eV(R). 

This is the well known 17th problem of Hilbert (at least a variant of it) 
posed in 1899, cf. e.g. [Bel]. It was Artin who provided in 1927 the solution 
([A], [P]) : 
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if Vis a irreducible affine variety ofl&andfe R[V] then : 
ftx) £ 0 for ail regular points xe V(R) ifffa sum of squares 
of rational functions. 

The above applies to Rn and yields for any polynomial f<~ JR[Xl9.,.9Xn] 
N h 2 

ftxv...,xn)>Qfora]l(x1,....,xn)eRn <=>/= £ (-1) 
M * 

where Aif ^ G R[X X , ..., X J , g. * 0. 

The chapter 6 of [B-C-R] contains a proof as well as many informations 
concerning generalizations to other rings of functions and also Pfisters resuit 
about the boun N < 2n , valid for ail / e R[Xp..., Xn] . 

Artin's resuit can be read in two directions : it either présents a 
présentation of nowhere négative functions or it can be understood as a 
géométrie characterization of sums of squares of rational functions. It is this 
second interprétation that motivated a corresponding study of sums of powers 
of rational functions with arbitra ry even exponent, cf. the fortheoming paper 
[B-B-D-G]. Additionally, Pfister s bound has been extended to sums of 2n-th 
powers [Be2]. 

4 The rôle of the real spectrum 

The notion of the real spectrum of a ring is fundamental to real algebraic 
geometry. Clearly, the book [B-C-R] is the main référence. However other 
introductory papers on this subjects, providing spécial points of view, are also 
recommended, cf. e.g. [Kn], [L], [Be3]. 

Interpreting Artin's proof in the light of the real spectrum may help to 
find a conceptual understanding. In the case of a positive function / on R n one 
has to show that / is contained in every order P of the rational function field 
RCX'p ..MXn) since, by Artin, the intersection of ail orders of a field is just the set 

of ail sums of squares in this field. Thus we hâve to link points x s R n to orders 
P in R(XX,..., Xn), It is exactly the real spectrum of R[XV..., Xn] which provides a 

compact topological space comprising points as well as orders. 
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Quite generally, if A is any comrnutative ring we set 

Sper A = {(pJP) j p a prime idéal, P an order of quot(A/p)}. 

On Sper A we impose a topology by taking the sets 
D(a) = {(pJP) e Sper A J a+/> >p 0}, a e AT, as a subbasis. Sper A, endowed with 

this topology, is called the real spectrum of A. Note, there are other notations 
used : Specr A, #-Spec A,.... 

Our case of Sper R[Xp . . . , Xn] may be visualized as follows : 

Sper R[X . -,.,X ] 
1 n 

Sper R(X , . . . , X ) 
1 n 

Hère, R" is identified with the set {(mx, R+) | x e Rn}, 

mx = {/ e RPq, . . . , À'J | f(x) = 0} and Sper R(XV..., X„) = set of ail orders on 
mXv..., Xn) with {(0,P) | P order on RCXp..., Xn)\. 

In contrast to the above graphical présentation, the sets R n and 
Sper Wl(X1,..., Xn) are dense subspaees of the topological space Sper 
mXv...,Xnl More precisely. given fv...,fn € R[Z 1 , . . . ,XJ \ {0} we form the 
set 1 ) ( ^ / r ) := n Sper R[-X"1}..., Xn] and consider the intersections 

and 

S ( / i / r ) := -D(/i / r ) := n R" = {* e R a | fx(x) > 0 /r(jc) > 0) 

H(fv-..,fr):*IKfi,'..,fr)r> SperR(X1,...,Xn) = { P | / 1 ? . . . , / r € P } . 
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It is the fondamental Artin-Lang theorem that states that 

S(Jv...,fr)*<l> «• H(fv...,fr)+ + . 

In particular, if f{x) > 0 on R n then S(~f) - $ implying that for ail orders P, 
- / « P, i.e. for ail such P's, / e P, yielding that / i s a sum of squares. 

Mahé's resuit finds a natural interprétation in terms of the real 
spectrum for any commutative ring A. If a - (pj>) e Sper A and a quadratic 
form q> over A are given we set 

sgna(ç>) = sgnP(<p ®A A/p) 

to get, as in the previous case, a ring homomorphism 

(W(A) >C(SperA,Z) 

([<p] «—» {oc—-»sgna<p} 

We then hâve the 

Theorem (of Mahé in the gênerai form) 

The cokernel of sgn : W(A) > C(Sper A, Z) is a 2-primary torsion 
group. 
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G. Brumfïel [Brl, Br2] has found a iT-theoi-etic refinement of Mahé's 
resuit by defining a j f -group KO(Sper A) and a na tura l map 
W(A) > KCKSper A) which together with the dimension map 

KCKSper A) > CCSper A, Z) gives a factorization : 

sgn : W(A) —-> KCKSper A) > C(Sper A, Z ) . 

The above map W{A) » KCKSper A) is known from topology where one 
has the isomorphism W(C(X,R)) » KO(X) if X is any compact Haudsorff space, 

cf. e.g. [M-H,V]. The chapter 15 of [B-C-Rl contains a very readable account of 

the relation between Witt rings and If-theory, not in the most gênerai form as 

indicated above rather than concentrating on the concrète géométrie situation 

A - R[V] and replacing Sper A by V(R). 

At the end of § 1 it was mentioned that in the case of "V(C) fînite", i.e. 
dim V= 0, the number cfV;^,,..., gn) can be computed by finding h such that 
c(V;gv..., gn) = c(V;h). This is a conséquence of a much more gênerai and 
surprising resuit. To formulate it let V be any affine variety over R of dim V= n. 

S e t S ( / l f . . . , / r ) = {*€ V(R) | fx(x) > 0 , . . . , / r<*)>0} where fv...,fr e R[V]. 
Assume further that RiV] is an intégral domain with quotient field R(V). 
Under this hypothesis one has the following theorem of Brôcker and 
Scheiderer : 

Theorem ([S]). Given any number of regular function fv ...,fr € R[V] one can 

findgv...,g- e R[V], n - max{l,n), such that 

Thisis an amazing theorem which at the moment resists any direct 
proof. It also seems to contradict our intuition in as much as even in simple 
cases one does not see how to construct the function gl9..., g- . In particular, 

consider this figure in the plane : 
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Clearly, S = S(Llf..., L7) where the L/s are suitably closen linear forms. By the 

above theorem one should be able to find polynomials gvg2^ ^RIX,Y] satisfying 

S = S(glfg2). But how can this be done pratically ? 

The proof of the theorem is an interesting blend of the theory of the real 

spectrum, quadratic form theory and gênerai real algebraic geometry cf. also 

[A-Bl, [Brô]. It was exactly the notion of the real spectrum that tied together 

seemingly disparate methods and results. Consider the diagramm (associated 

to the real affine n-space Rn, X- (Xv ...>Xn)) : 

Sper U[X] 

R* SperiR(X) 

and S = S(fv..., f r ) . This latter set induces the characteristic function 

Xs : R n > Z. Setting as above D := D(jv...tfr) c Sper R[X] we see that 

Xs
 : Sper R[X] » Z extends Xs- Neither x$ n o r XD a r e continuous in gênerai. 

However the function XD|SperR(X) ~ %H> w ^ e r e H(fv—>fr)
 a ^ above, is in 

C(Sper R(X), Z), This ring is accessible by quadratic form theory, since, as a 

very spécial case of Mahé's theorem the natural map 

W(R(X))~^^C(Sper ROO, Z) 

has a 2-primary cokemeî, in fact of exponent 2n , as can be proved by additional 

arguments. One dérives from this that H(fv...t fr) = H(gv,.., gn) holds for some 

g1,..*>gne R[JT19..., Xn]. It is now the task of the proof to transfer this 

information from Sper R(X) via Sper R[X] fmaîly back to R* to prove the 

theorem. 
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