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HOMOGENIZATION OF A SPECTRAL EQUATION WITH DRIFT
IN LINEAR TRANSPORT

Guillaume Bal
1

Abstract. This paper deals with the homogenization of a spectral equation posed in a periodic domain
in linear transport theory. The particle density at equilibrium is given by the unique normalized positive
eigenvector of this spectral equation. The corresponding eigenvalue indicates the amount of particle
creation necessary to reach this equilibrium. When the physical parameters satisfy some symmetry
conditions, it is known that the eigenvectors of this equation can be approximated by the product of
two term. The first one solves a local transport spectral equation posed in the periodicity cell and
the second one a homogeneous spectral diffusion equation posed in the entire domain. This paper
addresses the case where these symmetry conditions are not fulfilled. We show that the factorization
remains valid with the diffusion equation replaced by a convection-diffusion equation with large drift.
The asymptotic limit of the leading eigenvalue is also modified. The spectral equation treated in this
paper can model the stability of nuclear reactor cores and describe the distribution of neutrons at
equilibrium. The same techniques can also be applied to the time-dependent linear transport equation
with drift, which appears in radiative transfer theory and which models the propagation of acoustic,
electromagnetic, and elastic waves in heterogeneous media.
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Introduction

The power distribution in a nuclear reactor is determined by solving a linear transport spectral equation for
the neutron density of in the core. This equation expresses the balance between the production of neutrons by
fission and its absorption in the reactor core and leakage at the boundary. The unknowns are the phase-space
neutron density φ(x, v), where x stands for position and v for velocity, and the constant keff , which measures
how much fission is necessary to reach an equilibrium. The couple (keff , φ(x, v)) is the largest eigenvalue and
the corresponding positive eigenvector of the equation

v · ∇φ+ Σ(x, v)φ =
∫
V

f(x, v′, v)φ(x, v′)dv′ +
1
keff

∫
V

σ(x, v′, v)φ(x, v′)dv′,

φ(x, v) = 0 on Γ− = {(x, v) ∈ ∂Ω× V, s.t. v · n(x) < 0},
(1)
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posed in a convex bounded open set Ω ⊂ Rn and with a compact velocity space V ⊂ Rn. This spectral equation
is also called the criticality eigenvalue problem. The vacuum boundary conditions are not very realistic but
are assumed here for simplicity. The core is characterized by the absorption coefficient Σ, the differential
scattering coefficient f and the fission coefficient σ. These coefficients are in practice highly heterogeneous and
accurate numerical solutions of (1) still prohibitive even with modern computers. As a first approximation, these
coefficients can be assumed periodic. The problem lends then itself naturally to the theory of homogenization,
which consists in averaging out the local periodic oscillations and obtaining an equation that only involves the
global scale. The numerical solution of this homogenized equation is then significantly less expensive. The
homogenization of transport problems has been widely addressed in the past both in the physical [7,11,16] and
mathematical [9, 22, 23, 27, 29] literature. We [2, 4, 5] have recently revisited it and obtained new properties of
the spectral equation (1).

The homogenization technique proceeds as follows. The density φ(x, v) is factored as a product of two terms

φ(x, v) = ψ(x, v)u(x). (2)

Here, ψ(x, v) is a periodic solution of the same spectral transport equation (1) but posed in an infinite medium
(or equivalently with periodic boundary conditions at the boundary of the periodicity cell; see (8) below). It
characterizes the local oscillations of the density. The function u(x) is the solution of a homogenized diffusion
equation posed in the domain Ω. This term gives the global behavior of the density.

In the works mentioned above, the physical coefficients are required to satisfy an additional condition. Let us
denote by ψ∗(x, v) the solution of the adjoint transport problem to that defining ψ(x, v) (see Eq. (10) below).
It is assumed that no intrinsic drift takes place on the periodicity cell Y , which is expressed by the relation

J ≡
∫
Y

∫
V

vψ(x, v)ψ∗(x, v)dv dx = 0. (3)

This condition is satisfied in most practical applications. For instance, the current J vanishes when the physical
parameters satisfy a cubic symmetry in Y and the velocity space verifies V = −V . It also vanishes when the
cross sections do not depend on the velocity variables v and v′. We refer to [2] for additional details.

It was shown in [25] however that J does not necessarily vanish when the cell is anisotropic. When (3)
is not fulfilled, the particle density is quite different. In [25], where time-dependent problems are considered,
the drift is compensated by an exponential increase or decrease of the density in time. A comparable result
was formulated in [8] for the heat equation. Here, we would like to compensate for the drift by modifying
the amount of fission. In other words, we would like to obtain the fission coefficient and the corresponding
criticality constant keff that ensures equilibrium. Using an appropriate change of variables, we will show that
the eigenvectors of (1) are asymptotically given as the product of a local transport solution and of a large scale
solution of a homogeneous diffusion problem with fast exponential decay. Moreover, the criticality constant no
longer converges to that of the spectral problem with periodic conditions as in the case with zero drift. Because
of an O(1) leak at the boundary of the domain, more fission is required to reach an equilibrium than in the
symmetric case and the criticality constant is lowered by the presence of a drift.

Another interest of the present theory is that it devises a homogenization procedure suitable for numerical
implementation when the symmetry condition (3) is not satisfied. Most practical calculations of the homogenized
diffusion coefficient rely on a compatibility condition of the form (3). We obtain in this paper the derivation of a
homogeneous spectral diffusion equation with homogenized diffusion coefficient without assuming any symmetry
of the unit cell.

Drift effects have also been analyzed in the homogenization of other equations. In the homogenization
of heterogeneous diffusion, parabolic, and transport equations, large drifts are also absent when the physical
media satisfy suitable symmetry conditions [8, 9]. For more general configurations however, large drift effects
may have to be removed first to obtain a limiting homogeneous diffusion equation. Time-dependent and steady-
state diffusion equations with drift have been studied in this context [8,12,13,17,20]. This paper focuses on the
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criticality spectral equation (1). However, drift effects appear in other linear transport equations. In radiative
transfer, the energy density of waves (acoustic, electromagnetic, or seismic waves for instance) propagating in
highly heterogeneous media is modeled by a time dependent linear transport equation [28], which after Laplace
transform in time has the form

v · ∇φ+ Σ(x, v)φ =
∫
V

f(x, v′, v)φ(x, v′, λ)dv′ + λφ,

φ(x, v, λ) = 0 on Γ− = {(x, v) ∈ ∂Ω× V, s.t. v · n(x) < 0}·
(4)

The techniques of this paper can be applied to the analysis of the above spectral equation with asymmetric
differential scattering function f(x, v′, v), for which a drift may be induced. See [6] for an application in seismic
wave propagation in the absence of drift.

Our framework is the following. We assume that the domain Ω is composed of the order of ε−n periodicity
cells εY = (0, ε)n, where the unit periodicity cell is Y = (0, 1)n. Homogenization consists in finding the limit
of the particle density and multiplication factor as the number of cells tends to infinity, or equivalently as ε
tends to 0. Physically, the mean free path, the average distance between two interactions of a particle with
the underlying medium, is independent of the number of cells in a domain. It is therefore of order ε in our
modeling. This implies that the physical parameters f , σ, and Σ, counting a number of interactions by unit
length, are of order ε−1. We refer to [2,15] for additional details on this classical scaling. Introducing λε = k−1

eff ,
the equation (1) is replaced by the following sequence of criticality problems in Ω× V for (λε, φε)

εv · ∇φε + Σε(x, v)φε =
∫
V

fε(x, v′, v)φε(x, v′)dv′ + λε

∫
V

σε(x, v′, v)φε(x, v′)dv′,

φε = 0 on Γ−.
(5)

Here, the physical parameters are periodic functions in Ω given by

Σε(x, v) = Σ
(x
ε
, v
)
, fε(x, v′, v) = f

(x
ε
, v′, v

)
, σε(x, v′, v) = σ

(x
ε
, v′, v

)
, for x ∈ Ω,

where Σ, f , and σ are positive Y -periodic functions of the space variable and are independent of ε. For simplicity,
we consider here a vacuum boundary condition for (5). This means that no particles enter the domain at its
boundary. Physically more relevant reflection operators at the boundary of the domain that are dissipative
(i.e. roughly speaking that enforce that the incoming particle density into the domain is strictly lower than the
outgoing density, independent of ε) would not modify the analysis carried out here.

An outline of this paper is as follows. Section 1 recalls and extends some results on the spectral equation in
finite domain with periodic boundary conditions. Section 2 is devoted to our main results. Using an appropriate
change of variables described in Theorem 2.1, we show how to replace (5) by an equivalent spectral equation
with zero drift. The classical homogenization theory of [2] then applies, yielding Theorem 2.2. The proof of
Theorem 2.1 is based on the properties of exponentially decaying solutions of spectral equations in an infinite
medium, which is given in Section 3.

1. Existence results for the spectral equation

This section states some results of existence and regularity of the solutions of the spectral equation both in finite
and periodic domains. Several basic results, such as Theorems 1.1 and 1.2 and Proposition 1.3, have already
appeared in the literature [2–4, 15]. We recall them here for completeness. Theorem 1.4 seems however to be
new. This important theorem in the sequel gives an optimal estimate for the smallest eigenvalue of the spectral
equation (13) below in terms of the absorption parameter Σ. Our main hypotheses are as follows.



616 G. BAL

(H1) The domain Ω is a convex bounded open subset in Rn.
(H2) The velocity space V is the closure of a bounded open subset in Rn that does not contain 0 with normalized

n-dimensional measure |V | = 1.
(H3) Denote by Y = (0, 1)n the periodicity cell. The functions Σ(y, v), f(y, v′, v), and σ(y, v′, v) are Y -periodic

with respect to the space variable y. They are positive bounded functions of their arguments and there
exists a positive constant C > 0 such that, for a.e. (y, v′, v) ∈ Y × V × V ,

σ(y, v′, v) ≥ C,

Σ(y, v)−
∫
V

f(y, v′, v)dv′ ≥ C,

Σ(y, v)−
∫
V

f(y, v, v′)dv′ ≥ C.

(6)

These assumptions are natural and quite general. They are commented in detail in [2]. We define W p(Ω× V ),
1 ≤ p ≤∞, as the following Banach spaces (see [15])

W p(Ω× V ) = {u ∈ Lp(Ω× V ) s.t. v · ∇u ∈ Lp(Ω× V )} · (7)

An existence result for the spectral problem (5) is then the following [2–4,15].

Theorem 1.1. The spectral problem (5) has at most a countable number of eigenvalues and of associated
eigenvectors in W 2(Ω× V ). Furthermore, there exists a real and positive eigenvalue, of smallest modulus, with
multiplicity one, such that its associated eigenvector is the unique normalized positive eigenvector of (5).

The positive solution of the spectral eigenvalue problem posed in an infinite medium governs the fast scale
behavior of the solution in finite domain. We denote by λ∞ and ψ the first eigenvalue and eigenvector of the
following spectral equations

Tψ = Kψ + λ∞Fψ

y 7→ ψ(y, v) is Y − periodic,
(8)

where we have defined

Tφ(y, v) = v · ∇yφ(y, v) + Σ(y, v)φ(y, v)

Kφ(y, v) =
∫
V

f(y, v′, v)φ(y, v′)dv′

Fφ(y, v) =
∫
V

σ(y, v′, v)φ(y, v′)dv′.

(9)

Introducing the adjoint functions f∗(y, v′, v) = f(y, v, v′) and σ∗(y, v′, v) = σ(y, v, v′), an adjoint problem to (8)
is defined as

T ∗ψ∗ = K∗ψ∗ + λ∞F ∗ψ∗,

y 7→ ψ∗(y, v) is Y − periodic,
(10)
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where the adjoint operators are defined as

T ∗φ(y, v) = −v · ∇yφ(y, v) + Σ(y, v)φ(y, v)

K∗φ(y, v) =
∫
V

f∗(y, v′, v)φ(y, v′)dv′

F ∗φ(y, v) =
∫
V

σ∗(y, v′, v)φ(y, v′)dv′.

(11)

An existence result for these problems is as follows [2–4].

Theorem 1.2. There exists an eigenvalue λ∞ common to both problems (8) and (10), which is real, positive,
of smallest modulus, and with multiplicity one. Its associated eigenvectors ψ and ψ∗ are positive elements of
W 2(Y × V ). Up to renormalization, ψ and ψ∗ are the unique positive solutions to (8) and (10), respectively.
Furthermore, there exist two positive constants C′ ≥ C > 0 such that

0 < C ≤ ψ(y, v) ≤ C′ and 0 < C ≤ ψ∗(y, v) ≤ C′ a.e. in Y × V.

More generally every eigenvector of (8) or (10) in L2(Y × V ) is also an element of L∞(Y × V ).

We also have the Fredholm alternative:

Proposition 1.3. Let λ∞ and ψ be the first eigenvalue and eigenvector of (8). Let S(y, v) be a source term in
L2(Y × V ). There exists a solution ϕ(y, v) ∈W 2(Y × V ) of

Tϕ = Kϕ+ λ∞Fϕ+ S
y 7→ ϕ(y, v) is Y − periodic (12)

if and only if S is orthogonal to the first eigenvector ψ∗ of (10), i.e. S satisfies the compatibility condition∫
Y

∫
V

S(y, v)ψ∗(y, v)dy dv = 0.

Furthermore, if it exists, the solution ϕ is unique up to the addition of a multiple of ψ.

The last two inequalities in (H3) imply that absorption is uniformly greater than scattering; hence multi-
plication (fission) is necessary to ensure that an equilibrium is reached. This hypothesis on the absorption
function is not optimal and we need a more general result. In the analysis of (8), we will need some results on
the following similar problem

Tϕ = µ̃K̃ϕ
y 7→ ϕ(y, v) is Y − periodic.

(13)

That the analysis of (13) suffices for that of (8) will appear clearly in (49). The operator K̃ is defined as
K̃φ(x, v) =

∫
V
f̃(x, v′, v)φ(x, v′)dv′. We seek optimal conditions on the absorption function Σ that ensure

the well-posedness of this spectral equation and will obtain an estimate for the smallest eigenvalue µ̃. Let us
introduce some notation. For every (y, v, s) ∈ Y × V × R we define the optical length α(y, y − sv) as

α(y, y − sv) =
∫ s

0

Σ(y − tv, v)dt,

and the following line integrals

Π(Σ)(y, v) =
∫ ∞

0

exp(−α(y, y − sv))ds. (14)
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We easily check that Π(Σ) is Y -periodic in the variable y. We denote by Lp#(Y × V ), 1 ≤ p ≤ ∞, the spaces
of periodic functions in Rn × V whose restrictions to Y × V are elements of Lp(Y × V ). Hypothesis (H3) is
replaced by:

(H3’) The functions Σ(y, v) and f̃(y, v′, v) are Y -periodic with respect to the space variable y. They are bounded
functions of their arguments and there exists a positive constant f0 > 0 such that, for a.e. (y, v′, v) ∈
Y × V × V ,

f̃(y, v′, v) ≥ f0.

(H4) We assume that

sup
(y,v)∈Y×V

Π(Σ)(y, v) < ∞.

The major advantage of (H3′) − (H4) over (H3) is that Σ no longer needs to be positive. It only needs to be
positive in some averaged sense.

Theorem 1.4. Assume that (H1), (H2), (H3’), and (H4) hold. Then problem (13) admits a unique posi-
tive eigenvector up to renormalization, associated with the smallest eigenvalue µ̃, which is real and positive.
Moreover, we have the following estimate

0 < µ̃ ≤ C

f0‖Π(Σ)‖1/2
L1

#(Y×V )

, (15)

where C is independent of Σ and f0.

Proof. The functions defined in Y × V are extended to Rn × V by Y−periodicity. We obtain that

T−1(φ) =
∫ ∞

0

exp(−α(y, y − sv))φ(y − sv, v)ds.

Therefore T−1 is positive and bounded in L∞# (Y × V ) since (H4) is satisfied. The same results hold for the
adjoint operator T ∗ and therefore T−1 is bounded in L1

#(Y × V ) and by interpolation [10] in any Lp#(Y × V )
for 1 ≤ p ≤ ∞. The operator K̃ is also bounded and positive, and it is a classical result that T−1K̃ is then
compact (see [18,26]). This is sufficient to obtain the same results as in Theorem 1.2 (see [2–4]).

Let ϕ be the positive solution of T−1K̃ϕ = µ̃−1ϕ. We obviously have (T−1K̃)2ϕ = µ̃−2ϕ. By assumption (H2)
the interior of V is non-empty. In particular, there exists a velocity v0 and a parameter δ > 0 such that the
following angular sector S is included in V

S =
{
v ∈ RN s.t. 1− δ ≤ |v||v0|

≤ 1 + δ,
v

|v| .
v0

|v0|
≥ 1− δ

}
⊂ V.

For y ∈ Rn, we define the infinite cone of origin y as {y+ sv s.t. s ∈ R+, v ∈ S}. By virtue of hypotheses (H2)
and (H3’), we denote by Σmax and vmax the maximum of |Σ(x, v)| on Ω × V and |v| on V , respectively. We
then obtain that

K̃T−1K̃(ϕ)(y) ≥ f2
0

∫
V

dv
∫ ∞

0

ds exp(−α(y, y − sv))
∫
V

dv′ϕ(y − sv, v′)

≥ C

∫
CS

dz
exp (−Σmax

vmax
|z − y|)

|z − y|n−1

∫
V

dv′ϕ(z, v′),
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owing to the change of variables z = y − sv from polar to Cartesian coordinates. Clearly the cone CS contains
at least one periodicity cell Y and therefore

K̃T−1K̃(ϕ)(y) ≥ C

∫
Y

∫
V

ϕ(z, v′)dv′ dz = C‖ϕ‖L1(Y×V ),

since ϕ is positive. Finally we obtain that

µ̃−2‖ϕ‖L1(Y×V ) = ‖T−1K̃T−1K̃(ϕ)‖L1(Y×V ) ≥ C‖ϕ‖L1(Y×V )‖T−1(1)‖L1(Y×V )

≥ C‖ϕ‖L1(Y×V )‖Π(Σ)‖L1(Y×V ).

This concludes the proof of the estimate. �
The estimate for µ̃ given in the theorem may not be optimal (the exponent 1/2 may not be optimal). However,

we obtain that µ̃ tends to 0 as Π(Σ)(y, v) goes to infinity on a fixed set of positive measure. This proves that
hypothesis (H4) is optimal in this sense since the smallest eigenvalue of (13) cannot be positive when (H4) is
violated.

2. Homogenization of the spectral equation with drift

This section states our main results in Theorems 2.1 and 2.2 below. We begin with a formal derivation of the
diffusion equation that yields the correct result in the absence of drift, that is to say when the physical parameters
satisfy enough symmetry constraints. It is based on the classical two-scale expansion, which has often been used
to obtain the asymptotic limit of heterogeneous transport equations with periodic coefficients [2,4,7,9,15,22–24].

The homogenization of the transport equation without drift proceeds as follows. We define

ψε(x, v) = ψ
(x
ε
, v
)
, (16)

where ψ is the positive solution of the local spectral equation (8). Since the medium is periodic, we can expect
that the solutions of (5) and (8) share the same fast-scale oscillations. Since ψε is a positive function, we
introduce the factored density uε

uε(x, v) =
φε(x, v)
ψε(x, v)

, (17)

where φε is an eigenvector of (5). After some algebra, the equation for uε is found to be

1
ε
v · ∇uε +

1
ε2

∫
V

σε∞(x, v′, v)
ψε(x, v′)
ψε(x, v)

[uε(x, v) − uε(x, v′)]dv′

=
λε − λ∞

ε2

∫
V

σε(x, v′, v)
ψε(x, v′)
ψε(x, v)

uε(x, v′)dv′,
(18)

where σε∞ = fε + λ∞σε. The two-scale method consists then in assuming the following expansion,

uε(x, v) = u0

(
x,
x

ε
, v
)

+ εu1

(
x,
x

ε
, v
)

+ ε2u2

(
x,
x

ε
, v
)

+ . . .

λε = λ0 + ελ1 + ε2λ2 + . . . ,
(19)
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where the functions y 7→ uk(x, y, v) are Y−periodic for k = 0, . . . , 2. Here, the variable x corresponds to the
global scale whereas y = x

ε describes the local fluctuations of the particle density. Plugging this expansion (19)
into the transport equation (18) and equating like powers of ε yields the following three equations

v · ∇yu0 +Q(u0) = (λ0 − λ∞)F̃ (u0) (20)

v · ∇yu1 +Q(u1) = −v · ∇xu0 + λ1F̃ (u0) (21)

v · ∇yu2 +Q(u2) = −v · ∇xu1 + λ1F̃ (u1) + λ2F̃ (u0). (22)

The scattering operator Q and fission operator F̃ are defined as

Q(u)(y, v) =
∫
V

σ∞(y, v′, v)
ψ(y, v′)
ψ(y, v)

[u(y, v)− u(y, v′)]dv′

F̃ (u)(y, v) =
∫
V

σ(y, v′, v)
ψ(y, v′)
ψ(y, v)

u(y, v′)dv′,
(23)

where σ∞ = f + λ∞σ. We now want to solve the three equations (20, 21), and (22) in turn. When one of these
equations does not admit any solution, this is an indication that the expansion (19) does not hold or becomes
trivial. This is precisely what will happen when a drift is present.

We first deduce from (20), Theorem 1.2, and Proposition 1.3 that λ0 = λ∞ and u0 ≡ u0(x). As expected, the
fast oscillations of φε are captured by the local eigenfunction ψε and uε converges (strongly) to a function that
does not depend on the fast scale. We obtain from the second equation (21) and the same Fredholm alternative
in Proposition 1.3 that ∫

Y

∫
V

(−v · ∇xu0 + λ1F̃ (u0))ψ(y, v)ψ∗(y, v)dy dv = 0.

Since u0 in independent of y and v, the latter is equivalent to

J · ∇u0 = λ1 σ̃ u0, (24)

where σ̃ =
∫
Y

∫
V
F̃ (1)ψ(y, v)ψ∗(y, v)dy dv is a positive constant and

J =
∫
Y

∫
V

vψ(y, v)ψ∗(y, v)dy dv.

When J = 0, we obtain that λ1 = 0. Then solving (21) for u1 and plugging its expression into (22) gives a
compatibility condition which is a spectral diffusion equation for u0. This equation is similar to (29) below.
Although only formal here, this procedure can be justified rigorously [4, 15] provided the domain is sufficiently
regular. The regularity constraint can be circumvented by using the method of two-scale convergence [1,2]. The
final result can be read off from Theorem 2.2 by setting ν = 0.

When J 6= 0, we obtain that u0 is exponentially increasing or decreasing in the direction J . However the
boundary conditions impose that u0 = 0 at the boundary. Therefore u0 ≡ 0 and the asymptotic expansion
fails to give the right answer. It is proved in [2] that the solution uε of an associated source problem indeed
converges strongly to 0 when J 6= 0.

We deduce from the previous asymptotic expansion that ψ(y, v) does not reproduce the local behavior of the
solution φε since the expansion for uε yields a trivial result. Also, the expression in (24) shows that the leading
term “wants” to decay exponentially. These observations lead us to the following modifications. We want to
impose an exponential decay of the solution by introducing the following change of variables

ϕε,ν = exp
(ν · x

ε

)
φε, (25)
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where ν is a vector in Rn. We readily verify that the equation for ϕε,ν is still (5), where Σε has been replaced
by Σε − v · ν. The objective is to find a vector ν that allows us to use the known results for vanishing drift.
Let us introduce λ∞,ν , ψν , and ψ∗ν , the smallest eigenvalue and corresponding positive eigenvectors of the two
following spectral equations

Tψν − v · ν ψν = Kψν + λ∞,νFψν
y 7→ ψν(y, v) is Y − periodic (26)

and

T ∗ψ∗ν − v · ν ψ∗ν = K∗ψ∗ν + λ∞,νF ∗ψ∗ν
y 7→ ψ∗ν(y, v) is Y − periodic. (27)

We want to find ν such that

Jν =
∫
Y

∫
V

v ψν(y, v)ψ∗ν(y, v)dy dv = 0. (28)

Notice that similar techniques have been used for parabolic problems [8,21] or in the homogenization of hetero-
geneous elliptic spectral equations [12,13]. That such a vector ν exists is stated in our main result:

Theorem 2.1. There exists a unique vector ν ∈ Rn such that the spectral equations (26) and (27) are well-posed
(in the sense that the conclusions of Th. 1.2 apply), such that (28) holds, and such that λ∞,ν ≥ 0. Moreover,
if J 6= 0, the leading eigenvalue λ∞,ν satisfies

λ∞,ν > λ∞ = λ∞,0.

This theorem is proved in Section 3. Thanks to this theorem, we have the right change of variables (25) that
allows us to replace a problem with large drift by a problem with vanishing drift. We can then apply known
results on the homogenization of the spectral transport equation without drift. Let us define the εY -periodic
function ψε,ν as

ψε,ν(x, v) = ψν
(x
ε
, v
)
,

where ψν is the positive eigenvector of (26). In our context, Theorem 3.1 in [2] now reads:

Theorem 2.2. Let the vector ν be given as in Theorem 2.1. Let λkε be the kth eigenvalue of (5) and let φkε be
a normalized associated eigenvector. Then

lim
ε→0

λkε − λ∞,ν
ε2

= ρk,

where λ∞,ν is the first eigenvalue of (26) and ρk is the kth eigenvalue of the homogenized diffusion problem

−∇ ·D∇uk(x) = ρkσuk(x) in Ω
uk(x) = 0 on ∂Ω. (29)

Furthermore, up to a subsequence,

φkε(x, v) exp
(ν · x

ε

)
ψε,ν(x, v)

→ uk(x) strongly in L2(Ω× V ),
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where uk is an eigenvector associated with the eigenvalue ρk. The homogenized fission cross section is given by

σ =
∫
Y

∫
V

∫
V

σ(y, v′, v)ψ∗ν(y, v′)ψν(y, v)dy dv dv′, (30)

while the homogenized diffusion tensor D = (Dij)1≤i,j≤N in (29) is defined by

Dij = −
∫
Y

∫
V

vjψν(y, v)ψ∗ν(y, v)θiν(y, v)dv dy, (31)

and the functions (θiν)1≤i≤N are the solutions of the cell problems

v · ∇yθiν + Qν(θiν) = −vi in Y × V
y 7→ θiν(y, v) is Y − periodic,

(32)

where the local scattering operator Qν is defined by

Qν(θ) =
∫
V

ψν(y, v′)
ψν(y, v)

σ∞,ν(y, v′, v)[θ(y, v)− θ(y, v′)]dv′

with the notation σ∞,ν(y, v′, v) = f(y, v′, v) + λ∞,νσ(y, v′, v).

The labeling of the eigenvalues of (5) are made by increasing order of their real part. These eigenvalues may
be complex; however in the limit of small mean free path, they are all real. The eigenvalues of the diffusion
equation (29) are real and labeled by increasing order.

We can recover the separation of scales (2) given in the introduction. Indeed, as a corollary of the previous
theorem, we easily show that

φkε(x, v) = ψε,ν(x, v)ukε(x) + lower order terms (33)

where ukε(x) = exp(−ε−1ν · x)uk(x) is a solution of the following convection-diffusion spectral equation

−∇ ·D∇ukε(x)− 2
ε
ν ·D∇ukε(x) − ν ·Dν

ε2
ukε(x) = ρkσukε(x) in Ω

ukε(x) = 0 on ∂Ω.
(34)

Therefore in a certain sense, there is still separation of scales. The solution of the transport equation is approx-
imated by the product of a fast oscillating function and of a smooth function, which now decays exponentially
in the fast scale. Notice that the local behavior of the particle density is governed by ψε,ν(x, v), and no longer
by ψε,0(x, v) as in the case of vanishing drift. Therefore, the expansion for uε defined in (18) cannot lead to the
right answer.

Let us also give a qualitative remark concerning the density at the boundary of the domain. Notice that
the outgoing density at the boundary of the domain Ω has not been estimated. The Dirichlet condition for the
convection-diffusion approximation and the relation (33) yield a vanishing exiting flux which is not physical.
The size of the exiting flux is known in the case of a similar source problem [4] with vanishing drift. In this
case, the exiting flux is shown to be of order ε when the L2 norm of the solution of the transport equation
is of order 1. Up to the addition of a boundary layer that we do not consider here, the transport solution is
approximated by a diffusion term wε satisfying an equation in Ω similar to (29) with Robin boundary condition

wε + εL
∂wε
∂n

= 0,
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where the extrapolation length L is positive. Hence, the diffusion term is of order ε at the boundary of the
domain. The solution of the transport equation is given by

φε(x, v) = ψε,ν(x, v) exp
(ν · x

ε

)
wε(x) + boundary layer + lower order terms.

Assume that Ω = (0, 1)n and to simplify that the components of ν are non-positive, νi < 0 for 1 ≤ i ≤ n. Then
the drift directs the particles towards the sides of Ω where xi = 0. In order to have a normalized solution φε of
norm 1 in L2(Ω× V ), the L2 norm of wε must be O(ε−1). Therefore we obtain that the exiting distribution of
particles φε(x, v) is of order 1 on the sides xi = 0 instead of being of order ε when the drift vanishes.

As a consequence, the condition of vanishing incoming flux of particles implies that a boundary layer of O(1)
is unavoidable. Indeed, the transport solution is very anisotropic at the vicinity of the boundary. It is of order
one on the sides xi = 0 for the exiting directions, and vanishing for the incoming directions. Therefore the
computation of the boundary layer derived in [4] is necessary to accurately describe the exiting density. Notice
also that the leakage of particles at the boundary of the domain is of O(1) because the exiting flux is of O(1).
This is consistent with λ∞,ν > λ∞. More fission is needed to compensate for leakage. The criticality constant
keff in (1) is therefore lowered when some drift is generated by the anisotropy of the physical coefficients.

3. Exponentially decaying solutions in infinite medium

This section is devoted to the proof of Theorem 2.1. Our objective is to derive exponentially decaying solutions
of the spectral equation in the infinite periodic domain for which the drift term (28) vanishes. The parameter at
our disposal is the vector ν pointing in the direction in which the solution decays. We are therefore seeking the
smallest eigenvalue and the associated positive eigenvector of the following sequence of problems parameterized
by ν:

Tφν = Kφν + λ∞,νFφν

y 7→ exp(ν · y)φν(y, v) is Y − periodic.
(35)

Notice that this family of periodic problems is similar to the one defined in [8] (Sect. 4.5.8), where the heat
equation is analyzed. Unlike the results of this reference, we have not been able to show that the function
ν 7→ −λ∞,ν is strictly convex (and this may actually not be true). This is consistent with the results in [13].
However, this convexity property is not necessary to ensure uniqueness of the vector ν such that the eigenvalue
λ∞,ν is positive and the drift term (28) vanishes. Introducing the change of variables ψν(y, v) = exp(ν·y)φν(y, v),
we recast (35) as

Tψν − v · νψν = Kψν + λ∞,νψν
y 7→ ψν(y, v) is Y − periodic. (36)

Before analyzing (36), we consider an auxiliary simpler problem where scattering is absent. Introduce the
following sequence of eigenvalue problems

Tϕν − v · νϕν = µ̃νK̃ϕν
y 7→ ϕν(y, v) is Y − periodic.

(37)

The usual sequence of adjoint eigenvalue problems is given by

T ∗ϕ∗ν − v · νϕ∗ν = µ̃νK̃
∗ϕ∗ν

y 7→ ϕ∗ν(y, v) is Y − periodic.
(38)
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The set of admissible values of ν is such that the absorption Σ− v · ν remains positive on average (in the sense
of (H4)) since we are interested only in positive values of µ̃ν . We consequently define the set

Λ = {ν ∈ Rn, s.t. (Σ− v · ν)(y, v) satisfies (H4)} · (39)

We now state the main result on the function µ̃ν .

Proposition 3.1. Assume that hypotheses (H1), (H2), and (H3’) hold. We define the function ν 7→ µ̃ν with
domain of definition Λ as the smallest eigenvalue of (37). We denote by ϕν and ϕ∗ν the corresponding positive
normalized eigenvectors of (37) and (38), respectively.

Then, we have that ν 7→ µ̃ν is twice continuously differentiable and attains its maximal value at a unique
point ν0. We further have that

∂µ̃ν
∂ν

(ν0) = 0 and − ∂2µ̃ν
∂νi∂νj

(ν0) is a positive definite n× n matrix.

Moreover, the drift term vanishes

J̃ν0 =
∫
Y

∫
V

v ϕν0(y, v)ϕ∗ν0
(y, v)dy dv = 0.

Proof. The first step is to show some regularity properties of the function ν 7→ (µ̃ν , ϕν). The general theory
of [14, 19] can be utilized to obtain most of the results of regularity presented here. Since the proof of local
convexity requires the same calculations, we present them in detail now. Notice that analogous results have
been obtained in [8] in the framework of second-order elliptic equations.

We first deduce from Theorem 1.4 the existence of (µ̃ν , ϕν) for ν ∈ Λ. Let now ν ∈ Λ and δν ∈ Rn such that
ν + δν ∈ Λ. For a sequence of functions θν , we define δθν = θν+δν − θν . We deduce from (37) that

(T − v · ν − µ̃νK̃)δϕν = v · δνϕν+δν + δµ̃νK̃ϕν+δν . (40)

From the Fredholm alternative of Proposition 1.3, we have

δµ̃ν(K̃ϕν+δν , ϕ
∗
ν) = −δν · (vϕν+δν , ϕ

∗
ν). (41)

Here (·, ·) is the usual scalar product in L2(Y × V ). Since both ϕν+δν and ϕ∗ν are positive functions, we deduce
that

|µ̃ν+δν − µ̃ν | ≤ C|δν|,

where C is independent of δν; hence the continuity of ν 7→ µ̃ν . We then deduce from equation (40) and
Proposition 1.3 that

δϕν = Cϕν +O(δν).

Since ϕν and ϕν+δν are normalized, we deduce that C = O(δν) and the continuity of ν 7→ ϕν . Again owing
to (41, 40), and the continuity of ν 7→ (µ̃ν , ϕν), we obtain that this map also differentiable. The equation for
∂
∂νϕν is defined up to a constant. Upon differentiating the normalization equation

∫
Y

∫
V

(ϕν)2dy dv = 1, we
easily deduce that this constant vanishes. We thus obtain that

∇ν µ̃ν = −σ̄−1
ν J̃ν ,
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where σ̄ν =
∫
Y

∫
V
K(ϕν)ϕ∗νdy dv > 0 and the drift current J̃ν is defined as

J̃ν =
∫
Y

∫
V

vϕν(y, v)ϕ∗ν(y, v)dy dv.

We define

ϕν,νi =
∂

∂νi
ϕν and µ̃ν,νi =

∂

∂νi
µ̃ν .

We deduce from (40) that

(T − v · ν − µ̃νK̃)∇νϕν = vϕν +∇ν µ̃νK̃ϕν . (42)

Therefore, we have

(T − v · ν − µ̃νK̃)(δ∇νϕν) = v · δν ϕν+δν,νi + viδϕν + K̃(ϕν+δν,νi δµ̃ν + µ̃ν,νi δϕν + ϕν δµ̃ν,νi). (43)

Using the same Fredholm alternative as above, we deduce that δµ̃ν,νi , and then δφν,νi are of order O(dν).
Therefore, µ̃ν is twice differentiable and

σ̄ν
∂2

∂νj∂νi
µ̃ν = −

(
viζϕν,νj + vjϕν,νi + K̃(µ̃ν,νjϕν,νi + µ̃ν,νiϕν,νj ), ϕ

∗
ν

)
. (44)

Let us now define

Dij(ν) = − ∂2µ̃ν
∂νi∂νj

· (45)

This tensor is clearly symmetric. Iterating the above technique one more time, we also show that it depends
continuously on ν ∈ Λ.

Since 0 ∈ Λ and µ̃0 > 0, and since µ̃ν tends to 0 as ν approaches the boundary of Λ thanks to Theorem 1.4,
we deduce that the continuous function ν → µ̃ν reaches its maximum in the interior of Λ, say at ν0. We do not
have uniqueness of the point ν0 yet. However, we have that µ̃ν0,ξ = 0. Let us show that this implies the positive
definiteness of Dij(ν0). Upon multiplying (42) by ϕν,ξϕ∗ν(ϕν)−1at ν = ν0, we deduce from (44) and (45) that

σ̄ν0D(ν0)ξ · ξ = 2
∫
Y×V

(Tϕν0,ξ − v · ν0ϕν0,ξ − µ̃ν0K̃ϕν0,ξ)
ϕν0,ξ

ϕν0

ϕ∗ν0
dy dv. (46)

Notice that this equality holds at every point ν such that µ̃ν,ξ = 0. Keeping this in mind, we drop the index 0
and define θ = ϕν,ξ

ϕν
. Since ϕν is a positive solution of (37), we obtain that

σ̄νD(ν)ξ · ξ = 2
∫
Y×V

(
v · ∇yθ + µ̃ν

[
θ

ϕν
K̃(ϕν)− 1

ϕν
K̃(ϕνθ)

])
θϕνϕ

∗
νdy dv. (47)

We deduce from (37) and its adjoint equation that

v · ∇(ϕνϕ∗ν) = µ̃ν(ϕ∗νK̃(ϕν)− ϕνK̃∗(ϕ∗ν)).

Integrating (47) by parts using the above relation yields after some algebra that

σ̄νD(ν)ξ · ξ =
∫
Y×V

∫
Y

f(y, v′, v)ϕ∗ν(y, v)ϕν(y, v′)|θ(y, v′)− θ(y, v)|2dv′ dy dv. (48)
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The same techniques are used in [2,4] to obtain crucial a priori estimates that are used to deal with the spectral
transport equation in the absence of drift. Therefore, D(ν) is positive. Assume now that Dξ · ξ = 0. Then
from (48), θ is independent of v. We deduce then from (42) that

v · ∇yθ = v · ξ.

Upon integrating this equality over the cell Y , we get that ξ · v = 0 for every v ∈ V , which, owing to hypothesis
(H2), yields ξ = 0. Therefore, D(ν) is positive definite at every point ν such that µ̃ν,ξ = 0. By continuity,
we obtain the local convexity of the function ν → −µ̃ν in the vicinity of such points. This actually implies
the uniqueness of the point ν0 such that µ̃ν,ξ = 0. Indeed, the domain Λ is clearly connected and star-like by
construction. Assume now that ν → µ̃ν has two local maxima. Since µ̃ν is a C2 function that vanishes at the
boundary of Λ, there exists at least one point where its gradient vanishes and its Hessian matrix cannot be
negative definite (for the existence of a saddle point, see [30], Chap. II, Th. I.1). However, µ̃νm,ξ = 0 and then
D(νm) is positive definite, which is a contradiction. We deduce that there exists a unique point ν0 such that
µ̃ν0,ξ = 0 and equivalently such that J̃ν0 = 0. This concludes the proof of this proposition. �

We are now in a position to prove Theorem 2.1. To use the results of the above proposition, we introduce
the following two-parameter family of eigenvalue problems

Tψ(λ, ν)− v · νψ(λ, ν) = µ(λ, ν)(K + λF )ψ(λ, ν)

y 7→ ψ(λ, ν)(y, v) is Y − periodic.
(49)

The smallest (positive) eigenvalue µ(λ, ν) exists for (λ, µ) ∈ R+×Λ and we can associate the positive eigenvector
ψ(λ, ν). We proceed as in the proof of Proposition 3.1 to show that µ(λ, ν) and ψ(λ, ν) are twice continuously
differentiable. Moreover the partial derivative ∂λµ(λ, ν) < 0. Indeed, differentiating (49) with respect to λ,
multiplying by the adjoint function ψ∗(λ, ν) and integrating over Y × V yields

∂λµ(λ, ν) = − µ(λ, ν)(Fψ(λ, ν), ψ∗(λ, ν))
((K + λF )ψ(λ, ν), ψ∗(λ, ν))

,

which is clearly negative as the functions ψ and ψ∗ are positive. Define now the function µ̄(λ) = µ(λµ, ν0(λ)),
where ν0 is the unique point obtained in Proposition 3.1 with K̃ = K + λF . We have that µ̄(λ) is decreasing.
Indeed, for δλ > 0 sufficiently small,

µ̄(λ+ δλ) = µ(λ+ δλ, ν0(λ+ δλ)) ≤ µ(λ+ δλ, ν0(λ)),

since ν0(λ+δλ) is a maximum for ν0 7→ µ(λ+δλ, ν0) at λ+δλ fixed. Since ∂λµ < 0, we also have µ(λ+δλ, ν0(λ))
< µ(λ, ν0(λ)) = µ̄(λ). Thus, ∂λµ̄(λ) < 0. Now from hypothesis (H3), µ̄(0) > 1 since total absorption is greater
than scattering. Furthermore, µ̄(λ) → 0 as λ → ∞ thanks to Theorem 1.4 with K̃ = K + λF . By continuity,
there exists a unique value of λ0 such that µ̄(λ0) = 1. We denote by λ∞,ν this value, where ν = ν0(λ0).
Clearly, equations (26) and (27) are satisfied and Jν = J̃ν = 0 in (28). When J = J0 6= 0, we deduce from the
extremality of ν that λ∞,ν > λ∞,0. This concludes the proof of Theorem 2.1.
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