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REMARKS ON WEAK STABILIZATION OF SEMILINEAR WAVE EQUATIONS

Alain Haraux
1

Abstract. If a second order semilinear conservative equation with esssentially oscillatory solutions
such as the wave equation is perturbed by a possibly non monotone damping term which is effective
in a non negligible sub-region for at least one sign of the velocity, all solutions of the perturbed system
converge weakly to 0 as time tends to infinity. We present here a simple and natural method of
proof of this kind of property, implying as a consequence some recent very general results of Judith
Vancostenoble.
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1. Introduction

Following a recent work of Vancostenoble [20], we investigate the weak stabilization to 0 of solutions to the
equations

utt +Au +Q(ut) = 0 on R
+ (1.1)

utt +Au + g(u) +Q(ut) = 0 on R
+ (1.2)

where A is a linear positive selfadjoint operator of elliptic type on H = L2(Ω), Ω is a bounded open domain
of R

N , the term −Q(ut) represents a possibly non monotone feedback dissipation acting on a “non negligible”
part Y of Ω and g(u) stands for the Nemytsckii operator associated to some numerical function g ∈ C1(R).
Concerning (1.1), the original proof from [20] was inspired both by the work of Slemrod [19] and the techniques
of Conrad and Pierre [10]; here we present a new simplified proof relying on almost periodicity of generalized
solutions to

utt +Au = 0 on R

which implies some essential oscillatory behavior of those solutions on R × Y . Weak convergence is proved,
following the philosophy introduced in [11] (cf. also [12,13]) under the hypothesis that the damping is effective
at least for one sign of the velocity (one-sided dissipation). This method is applicable to more complicated
problems of the form (1.2) when solutions of

utt +Au+ g(u) = 0 on R

are known to be oscillatory on R × Y . A typical example is the nonlinear string equation

utt − uxx + g(u) + a(x)q(ut) = 0 on R
+ × Ω
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with homogeneous Dirichlet boundary conditions on ∂Ω with Ω = (0, L) when g is odd nonincreasing, a ≥ 0,
a > 0 on an open subdomain ω and q satisfies:

q ∈ C1, q(v)v ≥ 0 on R, q(v) > 0 for all v > 0.

Here even if q is monotone, compactness of trajectories in the energy space is not known. The consideration of
more general similar examples sheds a new light on the interest of oscillatory behavior of semilinear conservative
systems.

2. Internal damping

In this section, we consider the case of equation (1.1) with internal damping, which means that Y = ω, an
open subset of Ω. In other terms we consider the equation

utt +Au+ a(x)q(ut) = 0 on R
+ (2.1)

where a ∈ L∞(Ω), a ≥ 0 a.e. in Ω and a ≥ η > 0 a.e. in ω. The function q ∈ C(R) satisfies

q(v)v ≥ 0 on R, q(v) > 0 for all v > 0. (2.2)

We consider a Hilbert space V ⊂ H = L2(Ω) with compact and dense imbedding. The linear operator A : V →
V ′ satisfies the following conditions

A ∈ L(V, V ′); ∀v ∈ V,< Av, v >≥ α‖v‖2

where α > 0 and ‖v‖ denotes the norm of v in V . Assume that

W = L∞(Ω) ∩ V is dense in V.

We say that a function u : R
+ → V is a solution of (2.1) if u satisfies the following conditions:

u ∈ C(R+, V ) ∩ C1(R+, H) ∩W 2,1
loc (R+, V ′), a(x)q(u′) ∈ L1

loc(R
+, L1(Ω))

∀ϕ ∈W, < u”(t) +Au(t) + a(x)q(u′(t)), ϕ >= 0 a.e. on R
+.

In addition, we say that u satisfies the energy inequality if

∀T > 0, E(T ) +
∫ T

0

∫
Ω

a(x)q(u′(t, x))u′(t, x)dxdt ≤ E(0)

with
∀t ≥ 0, E(t) :=

1
2
{|u′|2(t)+ < Au(t), u(t) >}·

Finally we say that unique determination of eigenfunctions of A holds in ω if

∀λ > 0, ∀ϕ ∈ V, Aϕ = λϕ and ϕ ≡ 0 in ω =⇒ ϕ ≡ 0 in Ω

The main result of this section is:

Theorem 2.1. Under the above hypotheses, let u be a solution of (2.1) satisfying the energy inequality and
assume that unique determination of eigenfunctions of A holds in ω. Then as t→ ∞:

(u(t), ut(t)) ⇀ (0, 0) inV ×H.
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Proof. Let tn be a sequence of positive real numbers tending to +∞ with n and un(t, x) = u(t+ tn, x) for all
(t, x) ∈ [−tn,+∞) × Ω. Given any τ > 0, the function un(t, x) is well defined a.e. on Ω as an element of V
for all t ∈ [−τ, τ ] =: Jτ as soon as tn ≥ τ . In addition it follows easily from the energy inequality that un

is bounded uniformly in C(Jτ , V ) ∩ C1(Jτ , H) for n ≥ τ . In particular, by Ascoli–Arzela’s theorem, we can
assume that a certain subsequence unk

=: zk converges in C(Jτ , H) for all τ > 0, to a certain limiting function
z ∈ C(R, H). Moreover z is bounded in H and weakly differentiable R → H with bounded derivative. From
the energy inequality it also follows, by using continuity of q at 0, that

∀τ > 0, a(x)q(u′n(t, x)) → 0 in L1(Jτ × Ω) as n→ ∞

for all τ > 0. By using as test functions the eigenfunctions of A, it follows easily that z is in fact a solution of

z ∈ C(R, V ) ∩ C1(R, H) ∩ C2(R, V ′), z” +Az = 0.

In particular, z is a C1 almost periodic vector function: R → H , cf. e.g. [1, 3, 16]. From (2.2) we infer that in
fact

z′ = zt ≤ 0 a.e. on R × ω. (2.3)
Assuming (2.3) the conclusion follows easily. Indeed then the trace of z on ω is a non-increasing function:
R → L2(ω). Classically, such a function has to remain constant with respect to t for almost all x ∈ ω (this can
be checked easily on multiplying by any smooth nonnegative function supported in ω and applying a classical
recurrence property of real-valued almost periodic vector function, cf. e.g. [1, 3] or Cor. 4.2.6, p. 50 of [16], or
even Cor. I.3.1.6 of [15]), therefore if we consider (cf. e.g. [1,18]) the Fourier–Bohr expansion of z given by the
formula

z(t, x) =
∞∑

n=1

[
ϕn(x) cos

(
t
√
λn

)
+ ψn(x) sin

(
t
√
λn

)]

where {λn}n≥1 is the increasing sequence of eigenvalues of A and

ϕn(x) = lim
T→∞

1
T

∫ T

−T

cos(t
√
λn)z(t, x)dx

ψn(x) = lim
T→∞

1
T

∫ T

−T

sin(t
√
λn)z(t, x)dx

the functions ϕn(x) and ψn(x) are eigenfunctions of A which vanish in ω. By the unique determination of
eigenfunctions of A in ω the result follows at once. Now (2.3) will follow as an easy consequence of the following

Lemma 2.2. Let (U, µ) be any finitely measured space and wn ∈ Lp(U, dµ) with p > 1. Assume

wn ⇀ w in Lp(U, dµ) as n→ ∞ (2.4)

µ{wn ≥ 0} → 0 as n→ ∞. (2.5)
Then we have:

µ{w > 0} = 0. (2.6)

Proof of Lemma 2.2. Let yn = inf{wn, 0} = −w−
n ≤ 0. We have

‖yn − wn‖L1(U) ≤ ‖wn‖Lp(U) [µ{wn ≥ 0}]1− 1
p → 0 as n→ ∞. (2.7)

In particular we have
yn ⇀ w in L1(U, dµ) as n→ ∞. (2.8)
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Since by construction, yn ≤ 0, µ.a.e. on U , (2.6) follows immediately.

End of proof of Theorem 2.1. From (2.2) we finally deduce (2.3) as follows. Let τ > 0 be fixed and set
U = Jτ × ω and denote by µ the Lebesgue measure on U in R

N+1. We establish that w = z′ ≤ 0, a.e. on U .
In order to do that it is sufficient to establish, for any given ε > 0, the inequality w = z′ ≤ ε, µ – a.e. on U .
First, given any δ > 0 we select M = M(δ) such that

∀n ≥ τ, µ{(t, x) ∈ U, z′n(t, x) ≥M} ≤ δ.

This is made possible by boundedness of u′ in L2(Ω). In particular we have

∀n ≥ τ, µ{(t, x) ∈ U, z′n(t, x) ≥ ε} ≤ δ + µ{(t, x) ∈ U, ε ≤ z′n(t, x) ≤M}·

As a consequence of (2.2) and by compactness of [ε,M ] it now follows easily from the properties a ≥ η > 0
a.e. in ω and a(x)q(u′n(t, x)) → 0 inL1(U) as n→ ∞, that

lim
n→∞µ{(t, x) ∈ U, ε ≤ z′n(t, x) ≤M} = 0.

Therefore
lim sup

n→∞
µ{(t, x) ∈ U, z′n(t, x) ≥ ε } ≤ δ.

Since δ > 0 is arbitrary, this means

lim
n→∞µ{(t, x) ∈ U, z′n(t, x) ≥ ε } = 0.

By Lemma 2.2 applied with wn = z′n − ε we deduce z′ ≤ ε, µ – a.e. on U . The proof is now complete. �

3. The general case

In this section, we consider the case of equation (1.1) with a damping possibly distributed on a lower
dimensional subset. For instance Y can be a relatively open subset of ∂Ω, in which case (1.1) can take the form
of a wave equation with boundary dissipation

utt − ∆u = 0 on R
+ × Ω;

∂u(t, x)
∂ν

+ a(x)q(ut) = 0 on R
+ × ∂Ω (3.1)

considered in [21] by Vancostenoble.

In the general case we consider a function q ∈ C(R) satisfying (2.2) and the stronger condition

∀ε > 0, inf
s≥ε

q(s) > 0. (3.2)

We consider a Hilbert space V ⊂ H = L2(Ω) with compact and dense imbedding. The linear operator A : V →
V ′ satisfies the following conditions

A ∈ L(V, V ′); ∀v ∈ V,< Av, v >≥ α‖v‖2

where α > 0 and ‖v‖ denotes the norm of v in V . Assume that

W = C(Ω) ∩ V is dense in V.



REMARKS ON WEAK STABILIZATION OF SEMILINEAR WAVE EQUATIONS 557

In addition we consider a compact subset Y of Ω and a nonegative bounded measure µ ∈MB(Y ). We say that
a function u : R

+ → V is a solution of (1.1) if u satisfies the following conditions:

u ∈ C(R+, V ) ∩C1(R+, H) ∩W 2,1
loc (R+, V ′)

a(y)q(u′(t, y)) ∈ L1
loc(R

+, L1(Y, dµ))

∀ϕ ∈ W, 〈u”(t) +Au(t), ϕ〉 +
∫

Y

a(y)q(u′(t, y))ϕ(y)dµ(y) = 0 a.e. on R
+.

In addition, we say that u satisfies the energy inequality if

∀T > 0, E(T ) +
∫ T

0

∫
Y

a(y)q(u′(t, y))u′(t, y)dµ(y)dt ≤ E(0)

with
∀t ≥ 0, E(t) :=

1
2
{|u′|2(t) + 〈Au(t), u(t)〉}·

Finally we say that unique determination of eigenfunctions of A holds in ω ⊂ Y if

∀λ > 0, ∀ϕ ∈ V, Aϕ = λϕ and ϕ ≡ 0 µ− a.e. in ω =⇒ ϕ ≡ 0 in Ω.

The main result of this section is:

Theorem 3.1. Under the above hypotheses, assume that unique determination of eigenfunctions of A holds
in ω with infy∈ω a(y) > 0. In addition assume that the trace z −→ z|Y is well defined and continuous:
V −→ L1(Y, dµ) . Let u be a solution of (1.1) satisfying the energy inequality. Then as t→ ∞:

(u(t), ut(t)) ⇀ (0, 0) inV ×H.

Proof of Theorem 3.1. Let tn be a sequence of positive real numbers tending to +∞ with n and un(t, x) =
u(t + tn, x) for all (t, x) ∈ [−tn,+∞) × Ω. Keeping the notation of Section 2, by Ascoli–Arzela’s theorem, we
can assume that a certain subsequence unk

=: zk converges in C(Jτ , H) for all τ > 0, to a limiting function
z ∈ C(R, H). Moreover z is bounded in H and weakly differentiable R → H with bounded derivative. From
the energy inequality it also follows, by using continuity of q at 0, that

∀τ > 0, a(y)q(u′n(t, y)) → 0 in L1(Jτ × Y ) as n→ ∞.

By using as test functions the eigenfunctions of A, it follows easily that z is in fact a solution of

z ∈ C(R, V ) ∩ C1(R, H) ∩ C2(R, V ′), z” +Az = 0.

In particular, z is a C1 almost periodic vector function: R → H . However in the general case the analog of (2.3)
is more delicate to establish and in fact, in order to use the trace operator: V −→ L1(Y, dµ) we shall rely on a
smoothing procedure replacing unk

=: zk by some auxiliary functions which have bounded time-derivatives in
V . For any δ > 0, we consider

uδ(t) :=
∫ t+δ

t

u(s)ds

and we define accordingly uδ,n(t) and zδ(t). From (2.2) and (3.2) we infer that in fact

z′δ(t, y) ≤ 0 µ – a.e. on R × ω. (3.3)
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In order to establish (3.3), first of all from the energy inequality we deduce
∫ τ

−τ

∫
ω

(u′n − ε)+(t, y)dµ(y)dt → 0

valid for all ε > 0. On the other hand we have for each δ ∈ (0, τ)

u′δ,n(t, y) − δε ≤
∫ t+δ

t

(u′n − ε)+(t, y)ds

almost-everywhere on Ω and in particular for any nonnegative function ζ ∈ L∞(ω, dµ) we find, since ε is
arbitrarily small

∀t ∈ R, lim sup
n→∞

∫
ω

(u′δ,n(t, y)ζ(y)dµ(y)dt ≤ 0.

Now since u′δ,n(t, x) = un(t + δ, x) − un(t, x), the convergence of to z(t, .) in V weak implies the convergence
pointwise in t of u′δ,n(t, .) to z′δ(t, .) in V weak. Since V is a Hilbert space, there is, for each given t, a convex
combination of the functions u′δ,n(t, .) which converges in fact to z′δ(t, .) in V strong. By continuity of the trace:
V → L1(Y, dµ) we obtain (3.3), more precisely we find

∀t ∈ R, ∀ζ ∈ L∞
+ (ω, dµ),

∫
ω

z′δ(t, y)ζ(y)dµ(y)dt ≤ 0.

Now the conclusion follows easily. Indeed then the trace of zδ on ω is a non-increasing almost periodic function:
R → L1(ω, dµ) which is also the trace of a solution of the linear equation. Classically, such a function has to
remain constant, and by the unique determination of eigenfunctions of A in ω, reasoning as in the proof of
Theorem 2.1, we find that zδ = 0 for all δ > 0. By letting δ → 0 we obtain z = 0. Since the result is valid for
any convergent subsequence of (un, u

′
n) we conclude easily.

4. Additional results and remarks

The method of proof of Theorems 2.1 and 3.1 is applicable to more complicated problems of the form (1.2)
when solutions of

utt +Au+ g(u) = 0 on R

are known to be oscillatory on R × Y . As a typical example we consider the nonlinear string equation

utt − uxx + g(u) + a(x)q(ut) = 0 on R
+ × (0, L); u(t, 0) = u(t, L) on R

+ (4.1)

when g is odd nonincreasing, a ∈ L∞(0, L), a ≥ 0, a(x) ≥ α > 0 on some open subdomain ω and q satisfies:

q ∈ C1, q(v)v ≥ 0 on R, q(v) > 0 for all v > 0.

Here we obtain:

Theorem 4.1. Under the above hypotheses, let u be a solution of (4.1) satisfying the energy inequality

∀T > 0, E(T ) +
∫ T

0

∫ L

0

a(x)q(ut(t, x))ut(t, x)dxdt ≤ E(0)

with

∀t ≥ 0, E(t) :=
1
2

∫ L

0

{u2
t (t, x) + u2

x(t, x)}dx+
∫ L

0

G(u(t, x)dx
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where

G(r) :=
∫ r

0

g(s)ds

Then as t→ ∞:
(u(t), ut(t)) ⇀ (0, 0) inV ×H

with
V = H1

0 (0, L) and H = L2(0, L).

Proof of Theorem 4.1. Let Ω = (0, L), let tn be a sequence of positive real numbers tending to +∞ with n and
un(t, x) = u(t+ tn, x) for all (t, x) ∈ [−tn,+∞)×Ω. Keeping the notation of Section 2, we obtain that a certain
subsequence unk

=: zk converges in C(Jτ , H) for all τ > 0, to a certain limiting function z ∈ C(R, H). From
the energy inequality it also follows, by using continuity of q at 0, that

∀τ > 0, a(x)q(u′n(t, x)) → 0 in L1(Jτ × Ω) as n→ ∞.

It follows easily that z is in fact a solution of

z ∈ C(R, V ) ∩ C1(R, H) ∩ C2(R, V ′),

ztt − zxx + g(z) = 0 on R × (0, L)
with in addition

z′ = zt ≤ 0 a.e. on R × ω.

As a consequence of [2, 3], it follows that z = 0. The conclusion then follows easily from the fact that any
sequence (u(tn), u′(tn)) has a subsequence converging weakly to (0, 0).

Remark 4.2. Here even if q is monotone, compactness of trajectories in the energy space is not known.

Remark 4.3. When q(s) = cs for some c > 0, compactness of positive trajectories in the energy space is
satisfied as a special case of the classical theorem of Webb [22]. Indeed then the equation

utt − uxx + ca(x)(ut) = 0 on R
+ × (0, L); u(t, 0) = u(t, L) on R

+

generates an exponentially damped linear semi-group in V ×H and the Nemytskii operator u→ g(u) is compact
V → H .

Remark 4.4. The method of proof of Theorems 2.1 and 2.2 applies also to the more qeneral case of the equation

utt +Au+Q(t, ut) = 0 on R
+ (4.2)

where Q(t, ut) is realized in the form
a(t, y)q(t, y, ut)

with
inf

y∈ω,t≥0
a(t, y) > 0

when q satisfies the uniform conditions

∀ε > 0, inf
s≥ε,y∈ω,t≥0

q(t, y, s) > 0

and
lim
ε→0

sup
|s|≤ε,y∈ω,t≥0

|q(t, y, s)| = 0.
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This is in particular applicable to the problems

utt − ∆u + a(x)q̃(x,∇u, ut) = 0 on R
+ × Ω; u(t, x) = 0 on R

+ × ∂Ω

and

utt − ∆u = 0 on R
+ × Ω;

∂u(t, x)
∂ν

+ a(x)q̃(x,∇u, ut) = 0 on R
+ × ∂Ω

with
q̃(x,∇u, ut) = q̃(y,∇u(t, y), ut(t, y)) =: q(t, y, ut).

In this case we recover some recent results of Vancostenoble [21] which generalize Slemrod [19].

The author is grateful to the referees for their remarks which led to a useful reorganization of this paper.
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