
ESAIM: Control, Optimisation and Calculus of Variations July 2001, Vol. 6, 517–538

URL: http://www.emath.fr/cocv/

ENHANCED ELECTRICAL IMPEDANCE TOMOGRAPHY
VIA THE MUMFORD–SHAH FUNCTIONAL

Luca Rondi1 and Fadil Santosa2

Abstract. We consider the problem of electrical impedance tomography where conductivity distri-
bution in a domain is to be reconstructed from boundary measurements of voltage and currents. It is
well-known that this problem is highly illposed. In this work, we propose the use of the Mumford–Shah
functional, developed for segmentation and denoising of images, as a regularization. After establishing
existence properties of the resulting variational problem, we proceed by demonstrating the approach in
several numerical examples. Our results indicate that this is an effective approach for overcoming the
illposedness. Moreover, it has the capability of enhancing the reconstruction while at the same time
segmenting the conductivity image.
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1. Introduction and formulation of the problem

The purpose of this work is to demonstrate that the Mumford–Shah functional from image processing can be
used effectively to regularize the classical problem of electrical impedance tomography. In electrical impedance
tomography the objective is to determine the conductivity distribution in a domain from measurements collected
at the boundary. Such a problem is often referred to as the inverse conductivity problem. The underlying
physical phenomena, that of electrostatics, is modeled by an elliptic partial differential equations. The data
available from measurement amounts to (limited) information about the Neumann-to-Dirichlet map.

In this work, we will consider conductivity distribution that is discontinuous. The Mumford–Shah functional,
which is used in image processing as a method for segmentation and denoising, can be shown to regularize this
otherwise illposed inverse problem. Moreover, as we demonstrate in the paper, it allows one not only to obtain
a good image of the conductivity distribution, but also to determine the jump set of the conductivity.

We begin by giving a precise formulation of the inverse conductivity problem. Consider a bounded domain
Ω in R

n, n ≥ 2, with sufficiently smooth boundary, namely we assume ∂Ω to be Lipschitz. Let H1(Ω) = {u ∈
L2(Ω) : ∇u ∈ L2(Ω, Rn)}, where ∇u denotes the gradient in the distribution sense. By H1/2(∂Ω) we denote
the space of traces of H1(Ω) on ∂Ω. We recall that H−1/2(∂Ω) is the dual space to H1/2(∂Ω). With 0H

1/2(∂Ω),
0H

−1/2(∂Ω) and 0L
2(∂Ω) we denote the corresponding subspaces of elements with zero means. We note that

0H
1/2(∂Ω) and 0H

−1/2(∂Ω) are dual to each other, whereas the dual of 0L
2(∂Ω) is the space itself. We recall
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also that if X and Y are two Banach spaces then B(X, Y ) will be the space of all bounded linear operators
from X to Y , with the usual operator norm. If X = Y we set B(X, Y ) = B(X).

Let σ be the conductivity of the medium occupying the region Ω. We make the assumption that σ is a
measurable function on Ω satisfying

0 < λ ≤ σ(z) ≤ λ−1 for a.e. z ∈ Ω (1.1)

where λ is a positive constant less than 1. We let u represent the electrostatic potential in Ω. The potential is
created by a current distribution f on the boundary; we assume f ∈ 0H

−1/2(∂Ω). Then the potential u satisfies
the folllowing Neumann type boundary value problem


div(σ∇u) = 0 in Ω
σ∇u · ν = f on ∂Ω.

u|∂Ω ∈ 0H
1/2(∂Ω)

(1.2)

The boundary value problem (1.2) admits a unique weak solution. That is there exists a unique function
u ∈ H1(Ω) whose trace on ∂Ω has zero mean such that∫

Ω

σ∇u · ∇φ = f [φ|∂Ω] for every φ ∈ H1(Ω). (1.2w)

We note that if f ∈ 0L
2(∂Ω), then f [φ|∂Ω] =

∫
∂Ω fφ for any φ ∈ H1(Ω).

For any σ satisfying (1.1) for some λ, 0 < λ < 1, the so-called Neumann-to-Dirichlet map associated to σ,
Λ(σ, ·) : 0H

−1/2(∂Ω) 7→ 0H
1/2(∂Ω), is defined in the following way

Λ(σ, f) = u|∂Ω for any f ∈ 0H
−1/2(∂Ω)

where u is the weak solution to (1.2). We have that Λ(σ, ·) is a bounded linear operator from 0H
−1/2(∂Ω) to

0H
1/2(∂Ω) whose norm depends upon Ω and λ only. In the sequel we shall often consider Λ(σ, ·) as a bounded

linear operator from 0L
2(∂Ω) into itself. We remark that obviously

‖Λ(σ, ·)‖B(0L2(∂Ω)) ≤ C‖Λ(σ, ·)‖B(0H−1/2(∂Ω),0H1/2(∂Ω))

holds with a constant C > 0 depending on Ω only.
The inverse conductivity problem, which has been formulated for the first time by Calderón in [C], consists

in determining if the conductivity σ is uniquely determined by the associated Neumann-to-Dirichlet map. The
pioneering work of Kohn and Vogelius [Ko-V], and later, the work of Sylvester and Uhlmann [Sy-U], provided
the definitive uniqueness results on this problem. For an overview discussion on uniqueness we refer to a recent
monograph by Isakov [I].

In this paper we shall deal with the reconstruction issue, that is, we are looking for a procedure which allows
us to recover the unknown conductivity σ from the knowledge, possibly partial, of the Neumann-to-Dirichlet
map Λ(σ, ·). We are interested in the case when the unknown conductivity σ may present some discontinuities,
and our aim is, in particular, to recover the set where such discontinuities occur. In fact we shall suppose to
know a priori that σ, besides satisfying (1.1) for a fixed constant λ, either is piecewise H1, that is

σ ∈ PH1(Ω) =
{

σ ∈ L∞(Ω) :
σ ∈ H1(Ω\K)

K closed in Ω, Hn−1(K) < ∞
}

or is piecewise constant, that is

σ ∈ PC(Ω) =
{

σ ∈ L∞(Ω) :
σ ∈ H1(Ω\K), ∇σ = 0 a.e. in Ω\K

K closed in Ω, Hn−1(K) < ∞
}
·
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We recall that Hn−1 denotes the (n−1)-dimensional Hausdorff measure. We remark that, in an equivalent way,
we say that σ belongs to PC(Ω) if it is constant on any connected component of Ω\K, K being a closed set in
Ω with finite (n − 1)-dimensional Hausdorff measure.

Since the inverse conductivity problem is severely illposed, a regularization procedure is needed to stabilize
any reconstruction process. It is known that standard regularization techniques, such as penalizing the H1-norm
stabilizes the problem at the cost of loss of resolution. In this work, we explore the use of techniques from image
processing, which stabilizes and enhances the reconstruction. An earlier work of Dobson and Santosa [D-S]
employed minimal total variation (TV) criterion, which is popular in image processing, to stabilize and enhance
the reconstruction for electrical impedance tomography.

In the present work, we also borrow another idea from the image processing literature, namely the use of the
Mumford–Shah functional, as a regularization procedure. Mumford and Shah [Mu-Sh1, Mu-Sh2] devised the
functional as a way to denoise and segment a black-and-white image. In order to consider the Mumford–Shah
functional in the context of electrical impedance tomography, let F (σ) be the following L2 data-fitting functional

F (σ) = ‖Λ(σ, ·) − G‖2
B(0L2(∂Ω)). (1.3)

The data G being a linear, bounded operator from 0L
2(∂Ω) into itself representing the measurements of the

electrostatic potentials corresponding to any current density belonging to 0L
2(∂Ω) applied to the conductor

Ω. From the point of view of applications, we never have the entire Neumann-to-Dirichlet map but rather N
different measurements gi ∈ 0L

2(∂Ω), corresponding to current densities fi ∈ 0L
2(∂Ω), i = 1, · · · , N , and we

shall substitute the term described in (1.3) with

N∑
i=1

∫
∂Ω

|Λ(σ, fi) − gi|2. (1.4)

The variational problem we consider is

min
(σ,K)

{
α

∫
Ω\K

|∇σ|2 + βHn−1(K) + γF (σ)

}
(1.5)

where K is closed in Ω and σ ∈ H1(Ω\K). Here α, β and γ are positive tuning parameter. Without loss of
generality we can always impose α = 1. The first term of the functional above is a smoothing term implying
that outside the discontinuity set K the image should be smooth. The second is a penalization term on the
length of the discontinuity set K, and therefore prevents the creation of spurious discontinuities due to noise.
The third term, the fitting term, represents the faithfulness of the reconstruction with respect to the input data.

In the context of image processing, σ would represent a grey-level image, and the third term in (1.5) would
be replaced by ∫

Ω

|σ − g|2

where g is the raw input image. Also the so-called minimal partition problem has been considered

min
(σ,K)

{
βHn−1(K) + γ

∫
Ω

|σ − g|2
}

(1.6)

where K is closed in Ω, σ ∈ H1(Ω\K) and ∇σ = 0 almost everywhere in Ω\K.
The existence of a solution to the Mumford–Shah minimization problem has been obtained in the framework

of free-discontinuity problem by [DG-Ca-L] introducing a relaxed functional in a space of functions of bounded
variation. By the direct method in the Calculus of Variations a minimum of such a relaxed functional does
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exist and, by a regularity theory argument, it produces also a minimum for the original functional. Moreover
they showed that if (σ, K) solves the variational problem, then σ is indeed piecewise C1, that is σ ∈ C1(Ω\K).
In a similar framework in [Co-Ta] the existence of a solution has been proved also for the minimal partition
problem (1.6).

The computational problem associated with these functionals is an active area of research. A main difficulty
is presented by the penalty term involving the Hausdorff measure of the set K. One approach is to approximate
these functionals in the sense of Γ-convergence by functionals defined on spaces of smooth functions. We refer to
the monograph of Braides [Br], for a survey of such results. In this work, we employ the method of Γ-convergence
approximation of the Mumford–Shah functional by elliptic, although non-convex, functionals defined on Sobolev
spaces due to Ambrosio and Tortorelli [A-T1,A-T2].

The plan of the paper is as follows. In Section 2 we shall study the properties of the Neumann-to-Dirichlet
map with respect to the first argument, that is the conductivity. We shall prove continuity and differentiability
with respect to suitable Lp norms trying to keep at a minimum the regularity assumptions of the conductivities
involved, given our interest in the recovery of discontinuous functions. The minimization associated with the
inverse conductivity problem is considered in Section 3. The main result pertaining to this problem is stated in
Theorem 3.7. In addition to the problem stated in (1.5), we also consider the linearized inverse problem, where
the Neumann-to-Dirichlet map is linearized about a given conductivity σ0. Our result for this problem is given
in Theorem 3.8. We also treat a more general linear inverse problem where the fitting term in (1.5) is replaced
by

F (σ) =
∫

Ω

|A[σ] − g|2 (1.7)

where A is a bounded linear operator from Lp(Ω) into itself for any p, 1 ≤ p ≤ ∞. We shall focus our attention
upon the case in which A satisfies some compactness properties, for instance when A is a blurring convolution.
Existence results for this case are stated in Theorem 3.9. Section 3 ends with a review of the Ambrosio and
Tortorelli approximation of the Mumford–Shah functional where we shall note that it may be easily applied
to our problems. In Section 4 some numerical examples will be presented in order to show the potential of
the method. We shall limit ourselves to the linearized inverse conductivity problem and, concerning the other
inverse problems, to the case when the operator A is a convolution. A short discussion section ends the paper.

2. Regularity of the Neumann-to-Dirichlet map

Some regularity results on the Neumann-to-Dirichlet map as a function of the conductivity σ will be needed
in the sequel to establish existence results for the minimization problems stated above. We follow some of the
techniques developed in [D] where it is shown that higher integrability properties of the solutions to problem
(1.2) are decisive for proving differentiability properties of the Neumann-to-Dirichlet map. In order to lower
as much as possible the regularity of the conductivities involved, we shall make use of the following regularity
results for elliptic equations in divergence form.

We look for conditions upon which weak solutions to elliptic equations in divergence form in a domain Ω
belong to H1,q

loc (Ω) with q > 2. Let us consider the following definition.

Definition 2.1. Let Ω be a bounded domain contained in R
n, n ≥ 2, and let σ ∈ L∞(Ω) satisfy (1.1) for a

fixed λ, 0 < λ < 1. We say that σ satisfies the Q-property, 2 < Q ≤ ∞, if for any 2 < q < Q the following holds.
If f ∈ Lq(Ω, Rn), h ∈ Lq(Ω) and u ∈ H1(Ω) is a weak solution to

div(σ∇u) = div(f) + h in Ω
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then u ∈ H1,q
loc (Ω) and for any Ω1 ⊂⊂ Ω the following estimate holds

‖u‖H1,q(Ω1) ≤ C
(‖u‖H1(Ω) + ‖f‖Lq(Ω) + ‖h‖Lq(Ω)

)
(2.1)

where the constant C depends on λ, n, q, Ω1, Ω and σ.

The following result, due to Meyers [M], states that any σ satisfying (1.1) with a constant λ, 0 < λ < 1,
satisfies the Q-property for a constant Q > 2 depending on λ and n only.

Theorem 2.2 (Meyers). Let Ω be a bounded Lipschitz domain contained in R
n, n ≥ 2. Fixed λ, 0 < λ < 1,

there exists a constant Q, 2 < Q < ∞, depending on λ and on n only, Q → 2 as λ → 0 and Q → ∞ as λ → 1,
such that any σ ∈ L∞(Ω) satisfying (1.1) with constant λ satisfies the Q-property.

Moreover the constant C in (2.1) depends on λ, n, q, Ω1 and Ω only.

We note that in the previous theorem no regularity has been assumed on σ. Omitting the dependence upon
n, we shall denote by Q(λ) the number Q defined in Meyers’s theorem. For any σ satisfying (1.1), we shall
denote by Q(σ) the supremum of all the numbers Q so that σ satisfies the Q-property. The previous theorem
ensures that 2 < Q(λ) ≤ Q(σ) ≤ ∞. Some regularity properties of σ may imply that Q(σ) is strictly greater
than Q(λ). In this case the constant in (2.1) will depend upon σ not only through the ellipticity constant λ
but also from these regularity properties. Let us recall the following result ([Tr], Th. 3.7), stating that if σ is
Hölder continuous then Q(σ) = ∞.

Theorem 2.3. Let Ω be a bounded Lipschitz domain contained in R
n, n ≥ 2, and let σ ∈ L∞(Ω) satisfy (1.1)

for a given positive constant λ, 0 < λ < 1. Moreover let us assume that σ ∈ C0,δ(Ω), 0 < δ < 1.
Then σ satisfy the ∞-property and the constant C in (2.1) depends on λ, δ, ‖σ‖C0,δ(Ω), n, q, Ω1 and Ω.

It might be interesting to find a characterization of Q(σ) for σ belonging to the class of functions which
are used in this papers, namely piecewise H1, piecewise constant or SBV functions (which we shall introduce
later on in Sect. 3). In fact these functions have a richer structure than those in L∞ although they might be
discontinuous, thus preventing the application of Theorem 2.3. With a somewhat different motivation, some
studies in this directions have been developed recently in [Bo-V,Li-V].

We recall that, given a bounded and Lipschitz domain Ω, for any σ satisfying (1.1) in Ω for a given positive
constant λ we have defined Λ(σ, ·) : 0H

−1/2(∂Ω) 7→ 0H
1/2(∂Ω) as a bounded linear operator given by

Λ(σ, f) = u|∂Ω

where u is the solution to (1.2) and f is any element of 0H
−1/2(∂Ω). First of all we notice that there exists a

constant C depending on λ and Ω only such that if u solves (1.2) then

‖u‖H1(Ω) ≤ C‖f‖
0H−1/2(∂Ω). (2.2)

Therefore, as we have already noticed in Section 1, the norm of Λ(σ, ·) either in B(0H−1/2(∂Ω),0 H1/2(∂Ω)) or
in B(0L2(∂Ω)) depends on λ and Ω only.

Let us consider the regularity properties of Λ with respect to σ on the following set of admissible conductiv-
ities. We shall fix a constant λ > 0 and set

D = {σ ∈ L∞(Ω) : σ satisfies (1.1) and supp(σ − τ0) ⊂ Ω′} (2.3)

where Ω′ is a smooth subset compactly contained in Ω and τ0 is a given conductivity satisfying (1.1) as well.
We shall endow D with an Lp-norm, 1 ≤ p ≤ ∞, usually with p = 2.

Let us call F : D 7→ B(0L2(∂Ω)) the function so defined

F(σ) = Λ(σ, ·) for every σ ∈ D.
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First of all we show the uniform continuity of F in D with respect to the Lp-norm, for any 1 ≤ p ≤ ∞.
In fact let σ0 and σ1 be two conductivities belonging to D. Let us fix f ∈ 0L

2(∂Ω) and let u0 and u1 be the
weak solutions to (1.2) where σ is replaced by σ0 and σ1 respectively. By the weak formulation of (1.2) we infer
that for any φ ∈ H1(Ω) ∫

Ω

σ0∇u0 · ∇φ =
∫

Ω

σ1∇u1 · ∇φ

and so we have that, still for any φ ∈ H1(Ω),

∫
Ω

σ0∇(u0 − u1) · ∇φ =
∫

Ω

(σ1 − σ0)∇u1 · ∇φ.

If w ∈ H1(Ω) is the weak solution to




div(σ0∇w) = 0 in Ω
σ0∇w · ν = (u0 − u1)|∂Ω on ∂Ω
w|∂Ω ∈ 0H

1/2(∂Ω)
(2.4)

we have that ∫
∂Ω

|u0 − u1|2 =
∫

Ω

σ0∇w · ∇(u0 − u1) =
∫

Ω

(σ1 − σ0)∇u1 · ∇w.

We take q so that 2 < q < Q(λ) and p = q/(q − 2). Then by Hölder’s inequality and by the definition of D

‖u0 − u1‖2
L2(∂Ω) ≤ ‖σ1 − σ0‖Lp(Ω′)‖∇u1‖Lq(Ω′)‖∇w‖Lq(Ω′).

By Meyers’s theorem and (2.2) there exist constants C and C1 depending on λ, n, q, Ω′ and Ω only such that

‖∇u1‖Lq(Ω′) ≤ C‖u1‖H1(Ω) ≤ C1‖f‖L2(∂Ω).

By the same reasoning we obtain that

‖∇w‖Lq(Ω′) ≤ C1‖u0 − u1‖L2(∂Ω).

By collecting these last equations we immediately obtain the following proposition:

Proposition 2.4. Let F : D 7→ B(0L2(∂Ω)) be defined as

F(σ) = Λ(σ, ·) for every σ ∈ D

and let D be as in (2.3). Then for any p, Q(λ)/(Q(λ) − 2) < p ≤ ∞, and any σ0, σ1 in D we have

‖F(σ0) −F(σ1)‖B(0L2(∂Ω)) ≤ C‖σ1 − σ0‖Lp(Ω′)

where C depends on λ, n, p, Ω′ and Ω only. Therefore F is Lipschitz continuous in D with respect to the
Lp-norm, Q(λ)/(Q(λ) − 2) < p ≤ ∞, with a Lipschitz constant depending on λ, n, p, Ω′ and Ω only.

Since we have ‖σ1 − σ0‖L∞(Ω) ≤ λ−1, by interpolation we deduce immediately as a corollary to the previous
proposition that for any p, 1 ≤ p ≤ Q(λ)/(Q(λ)− 2), F is Hölder continuous in D with respect to the Lp-norm
with constants depending on λ, n, p, Ω′ and Ω only.

Let us proceed now to the differentiability properties of F . We fix σ ∈ D. For any f ∈ 0L
2(∂Ω) we call u

the solution to (1.2). Let δσ be a perturbation to σ belonging to L∞(Ω′) and extended to zero outside Ω′. We
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define δu ∈ H1(Ω) as the weak solution to the following linearized problem




div(σ∇δu) = −div(δσ∇u) in Ω
σ∇δu · ν = 0 on ∂Ω
δu|∂Ω ∈ 0H

1/2(∂Ω)
(2.5)

and we shall call DF(σ) : L∞(Ω′) 7→ B(0L2(∂Ω)) the map so defined

DF(σ)[δσ][f ] = δu|∂Ω

for any δσ ∈ L∞(Ω′) where f ∈ 0L
2(∂Ω) and δu solves (2.5). It is immediate to show that, for each δσ ∈ L∞(Ω′),

DF(σ)[δσ] is a well defined bounded linear operator from 0L
2(∂Ω) into itself and that the following estimate

holds

‖DF(σ)[δσ]‖B(0L2(∂Ω)) ≤ C‖δσ‖L∞(Ω′)

where the constant C depends on λ and Ω only. Since it is clear from the definition that DF(σ) is linear with
respect to δσ we immediately infer that DF(σ) is a bounded linear operator from L∞(Ω′) in B(0L2(∂Ω)) with
norm depending on λ and Ω only.

We claim that for any p, Q(σ)/(Q(σ) − 2) < p < ∞, we may extend DF(σ) to a bounded linear operator
from Lp(Ω′) in B(0L2(∂Ω)). We shall still denote this operator by DF(σ).

We fix δσ ∈ L∞(Ω′) and f ∈ 0L
2(∂Ω). Let δu = DF(σ)[δσ][f ]. As before we introduce w ∈ H1(Ω) as the

weak solution to 


div(σ∇w) = 0 in Ω
σ∇w · ν = δu|∂Ω on ∂Ω
w|∂Ω ∈ 0H

1/2(∂Ω)
(2.6)

and we observe that ∫
∂Ω

|δu|2 =
∫

Ω

σ∇w · ∇δu = −
∫

Ω

δσ∇u · ∇w.

Take q so that 2 < q < Q(σ) and p = q/(q − 2). Then by Hölder’s inequality

‖δu‖2
L2(∂Ω) ≤ ‖δσ‖Lp(Ω′)‖∇u‖Lq(Ω′)‖∇w‖Lq(Ω′).

Then since σ satisfies the Q(σ)-property we have a constant C depending on λ, n, p, Ω′, Ω and σ such that

‖DF(σ)[δσ][f ]‖L2(∂Ω) ≤ C‖δσ‖Lp(Ω′)‖f‖L2(∂Ω)

for any δσ ∈ L∞(Ω′) and f ∈ 0L
2(∂Ω). So the following proposition holds true.

Proposition 2.5. The linear operator DF(σ) : Lp(Ω′) 7→ B(0L2(∂Ω)), such that DF(σ)[δσ][f ] = δu|∂Ω for
any δσ ∈ L∞(Ω′) and any f ∈ 0L

2(∂Ω), δu solving (2.5), is bounded for any p, Q(σ)/(Q(σ)− 2) < p ≤ ∞, and
its norm depends on λ, n, p, Ω′, Ω and σ.

The linear operator DF(σ) represents the differential of F at the point σ in the sense of the following def-
inition. Let a and b be two constants, −∞ < a < b < +∞, and an open set Ω we denote by Xb

a(Ω) the
set of measurable functions σ on Ω such that a ≤ σ ≤ b almost everywhere in Ω. We say that a functional
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F : Xb
a(Ω) 7→ X , X being a Banach space, is differentiable in Xb

a(Ω) at the point σ0 ∈ Xb
a(Ω) with respect to

the Lp-norm, 1 ≤ p ≤ ∞, if there exists a linear and bounded operator DF (σ0) : Lp(Ω) 7→ X so that

‖F (σ) − F (σ0) − DF (σ0)[σ − σ0]‖X

‖σ − σ0‖Lp(Ω)
→ 0

uniformly as σ ∈ Xb
a(Ω) converges to σ0 in Lp(Ω).

Let σ and σ + δσ belong to D. If f ∈ 0L
2(∂Ω) and δu = DF(σ)[δσ][f ] we denote by R the weak solution to




div((σ + δσ)∇R) = −div(δσ∇δu) in Ω
(σ + δσ)∇R · ν = 0 on ∂Ω
R|∂Ω ∈ 0H

1/2(∂Ω)

then, by taking linear combinations, we notice that

R|∂Ω = F(σ + δσ)[f ] −F(σ)[f ] − DF(σ)[δσ][f ].

In order to evaluate ‖R‖L2(∂Ω) we introduce, as usual, the auxiliary function w, weak solution to




div((σ + δσ)∇w) = 0 in Ω
(σ + δσ)∇w · ν = R|∂Ω on ∂Ω
w|∂Ω ∈ 0H

1/2(∂Ω)

and we infer that ∫
∂Ω

|R|2 =
∫

Ω

(σ + δσ)∇w · ∇R = −
∫

Ω

δσ∇δu · ∇w.

We take p, q and r so that 2 < r < Q(λ), 2 < q < Q(σ) and p−1 + q−1 + r−1 = 1. Again by Hölder’s inequality

‖R‖2
L2(∂Ω) ≤ ‖δσ‖Lp(Ω′)‖∇δu‖Lq(Ω′)‖∇w‖Lr(Ω′).

First of all, by Meyers’s theorem, we notice that there exists a constant C depending on λ, n, r, Ω′ and Ω such
that

‖∇w‖Lr(Ω′) ≤ C‖R‖L2(∂Ω).

By the Q(σ)-property of σ and since δσ is zero outside Ω′, we obtain, for a constant C1 depending on λ, n, q,
Ω′, Ω and σ,

‖∇δu‖Lq(Ω′) ≤ C1‖δσ∇u‖Lq(Ω′).

We choose ε > 0 such that q + ε < Q(σ) and we have, again by the Q-property,

‖δσ∇u‖Lq(Ω′) ≤ C2‖δσ‖Lq(q+ε)/ε(Ω′)‖f‖L2(∂Ω)

where C2 depends on λ, n, q, ε, Ω′, Ω and σ.
Collecting all these estimates and by recalling that σ + δσ ∈ D and hence ‖δσ‖L∞(Ω′) ≤ λ−1, we deduce the

following differentiability properties of F .

Proposition 2.6. Let F : D 7→ B(0L2(∂Ω)) be defined as

F(σ) = Λ(σ, ·) for every σ ∈ D,

let D be as in (2.3) and let σ belong to D. Then for every p such that p > Q(λ)Q(σ)
Q(λ)Q(σ)−Q(σ)−Q(λ) we may find s,

0 < s ≤ 1, depending on p, Q(σ) and Q(λ) only and a constant C depending on λ, n, Ω′, Ω and σ only such
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that

‖F(σ + δσ) −F(σ) − DF(σ)[δσ]‖B(0L2(∂Ω)) ≤ C‖δσ‖1+s
Lp(Ω′) (2.7)

for any σ + δσ belonging to D.
Therefore F is differentiable in Xλ(Ω) = Xλ−1

λ (Ω) at the point σ ∈ Xλ(Ω) with respect to the Lp-norm for
any p > Q(λ)Q(σ)

Q(λ)Q(σ)−Q(σ)−Q(λ) .

We remark also that, since Q(λ) ≤ Q(σ) we have Q(λ)Q(σ)
Q(λ)Q(σ)−Q(σ)−Q(λ) ≥ Q(σ)/(Q(σ) − 2).

3. Existence results and Γ-convergence approximation

In this section we shall prove existence results for the solution of the minimization problems we have outlined
in Section 1. We shall introduce a relaxed functional defined on a suitable space of functions of bounded
variation. We shall show the existence of a minimum for the relaxed functional and, through a regularity
argument, that such a minimum provides also a minimum for the original problem.

At the end of the section we shall recall an approximation, in the sense of Γ-convergence, of the relaxed
functional by elliptic, even if not convex, functionals defined on spaces of smooth functions, for instance Sobolev
spaces. We have used such an approximation, which has been developed by Ambrosio and Tortorelli in [A-T2],
to perform some numerical simulations whose results will be the content of the next section.

We begin by briefly recalling some basic notations and properties of functions of bounded variation. For a
more comprehensive treatment of the subject see, for instance [A-F-P,E-G] and [Gi].

Given a Borel function σ : Ω 7→ R, Ω being an open and bounded subset of R
n, n ≥ 2, and a point x ∈ Ω we

define σ+(x), the approximate upper limit of σ at x, as follows

σ+(x) = ap-lim sup
y→x

σ(y) = inf
{

t ∈ R : lim
ρ→0+

|{y ∈ Bρ ∩ Ω : σ(y) > t}|
ρn

= 0
}
·

In the same fashion we define σ−(x), the approximate lower limit of σ at x, as

σ−(x) = ap-lim inf
y→x

σ(y) = sup
{

t ∈ R : lim
ρ→0+

|{y ∈ Bρ ∩ Ω : σ(y) < t}|
ρn

= 0
}
·

If σ+(x) = σ−(x) then the common value will be called the approximate limit of σ at x and will be denoted by
σ̃(x) = ap-limy→x σ(y). If the approximate limit of σ at x does exist we say that σ is approximately continuous
at x. We define the jump set of σ as the subset of Ω where the approximate limit of σ does not exist. We
denote the jump set of σ by Sσ and we notice that Sσ is a Borel set whose Lebesque measure is zero.

Given an open bounded set Ω ⊂ R
n, n ≥ 2, we denote by BV (Ω) the Banach space of functions of bounded

variation. We recall that σ ∈ BV (Ω) if and only if σ ∈ L1(Ω) and its distributional derivative Dσ is a bounded
vector measure. We endow BV (Ω) with the standard norm as follows. Given σ ∈ BV (Ω), we denote by |Dσ|
the total variation of its distributional derivative and we set ‖σ‖BV (Ω) = ‖σ‖L1(Ω) + |Dσ|(Ω).

For any σ ∈ BV (Ω), by the Lebesque decomposition, we have Dσ = Daσ + Dsσ where Daσ is absolutely
continuous with respect to the Lebesque measure whereas Dsσ is singular with respect to the Lebesque measure.

We characterize the absolutely continuous part of Dσ as follows. We denote by ∇σ the density of Daσ
with respect to the Lebesque measure and we recall that, for almost every x ∈ Ω, ∇σ(x) coincides with the
approximate gradient of σ at x, that is we have

ap- lim
y→x

σ(y) − σ̃(x) −∇σ · (y − x)
|y − x| = 0.



526 L. RONDI AND F. SANTOSA

If σ ∈ BV (Ω) then Sσ is countably (Hn−1, n − 1)-rectifiable that is there exists a countable family {Γi}∞i=1 of
compact sets each of them contained in a C1 hypersurface so that Hn−1(Sσ\ ∪∞

i=1 Γi) = 0. We characterize the
singular part of Dσ as follows. The restriction of Dsσ to Sσ will be called the jump part of Dσ and will be
denoted by Djσ. The remaining part of Dsσ, that is the restriction of Dsσ to Ω\Sσ, will be called the Cantor
part of Dσ and will be denoted by Dcσ. Summing up we have that Dσ = Daσ + Dsσ = Daσ + Djσ + Dcσ
where Daσ is absolutely continuous with respect to the Lebesque measure, Dsσ, Djσ and Dcσ are singular
with respect to the Lebesque measure and Djσ is concentrated on Sσ whereas Dcσ is concentrated on Ω\Sσ.

We may characterize the jump part as follows

Djσ = (σ+ − σ−)νσHn−1|Sσ

where σ+ and σ− are the approximate upper and lower limit of σ respectively and νσ is given by Djσ = νσ|Djσ|,
therefore Dsσ restricted to Sσ is absolutely continuous with respect to the (n−1)-dimensional Hausdorff measure.

We denote by SBV (Ω) the space of special functions of bounded variation that is the space of functions
σ ∈ BV (Ω) whose singular part of Dσ is concentrated on Sσ, Sσ being the jump set of σ. Equivalently we say
that σ ∈ BV belongs to SBV (Ω) if and only if the Cantor part of Dσ is zero.

The special functions of bounded variation satisfy the following compactness and semicontinuity theorem due
to Ambrosio [A1,A2].

Theorem 3.1 (SBV Compactness and Semicontinuity). Letting p > 1, if {σh}∞h=1 is a sequence of functions
belonging to SBV (Ω) satisfying for a given constant C > 0

‖σh‖BV (Ω) ≤ C for any h

and ∫
Ω

|∇σh|p + Hn−1(Sσh
) ≤ C for any h

then we may extract a subsequence, which we relabel {σk}∞k=1, such that σk converges in L1(Ω) to a function
σ ∈ SBV (Ω) and the following lower semicontinuity properties holds

Hn−1(Sσ) ≤ lim inf
k

Hn−1(Sσk
);

∫
Ω

|∇σ|p ≤ lim inf
k

∫
Ω

|∇σk|p.

The following remarks will be useful. Let σ ∈ BV (Ω). If a, b are two real numbers so that a < b and we denote
τ = (σ ∧ b) ∨ a then τ ∈ BV and

|∇τ | ≤ |∇σ| a.e. in Ω; Hn−1(Sτ\Sσ) = 0; |Dτ |(Ω) ≤ |Dσ|(Ω).

Note that if σ ∈ SBV (Ω) then also τ ∈ SBV (Ω).
We notice also that if σ ∈ PH1(Ω), that is σ ∈ L∞(Ω) so that σ ∈ H1(Ω\K) for some K closed in Ω,

Hn−1(K) < ∞, then σ ∈ SBV (Ω) and Hn−1(Sσ\K) = 0, see [DG-Ca-L].
On the other hand we shall need some conditions in order to ensure that an SBV (Ω) function belongs to

PH1(Ω). For any σ ∈ SBV (Ω), any A ⊂ Ω and any constant β > 0 we define

MS(σ, β, A) =
∫

A

|∇σ|2 + βHn−1(Sσ ∩ A).

If A = Ω we shall simply write MS(σ, β, Ω) = MS(σ, β). Also the dependence upon the constant β will be
suppressed when its role is clear from the context.

Let us assume that σ ∈ SBV (Ω) ∩ L∞(Ω). Moreover let a, b be such that a ≤ σ ≤ b almost everywhere
in Ω. We also assume that MS(σ, β, Ω) is finite. In order to ensure that σ ∈ PH1(Ω) we only need Sσ to be
essentially closed, that is Hn−1((Sσ ∩Ω)\Sσ) = 0. In this case, setting K = Sσ ∩Ω, we have that σ ∈ PH1(Ω).

We have the following result which is an immediate consequence of Proposition 4.12 in [DG-Ca-L].
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Proposition 3.2. Let σ ∈ SBV (Ω) be such that a ≤ σ ≤ b almost everywhere in Ω, where a, b are two real
numbers so that a < b. We assume that, for a constant β > 0, MS(σ, β, Ω) is finite.

If for every compact set A ⊂ Ω we have a constant C > 0 and a constant p, 1 ≤ p < n/(n − 1), so that

MS(σ, β, A) ≤ MS(τ, β, A) + C‖σ − τ‖Lp(A)

for any τ ∈ SBV (Ω) satisfying a ≤ τ ≤ b almost everywhere in Ω and such that τ = σ outside A, then Sσ is
essentially closed.

Let us now consider the case of piecewise constant functions. Clearly a piecewise constant function σ, that
is a function σ ∈ L∞(Ω) such that σ ∈ H1(Ω\K) with ∇σ = 0 almost everywhere in Ω\K, K being closed in
Ω, Hn−1(K) < ∞, is an SBV (Ω) function such that Hn−1(Sσ\K) = 0 and ∇σ = 0 almost everywhere in Ω.

Let us look at some properties of SBV (Ω) functions whose approximate gradient ∇σ is zero almost every-
where. If σ satisfies these assumptions and we have also that Hn−1(Sσ) < ∞ then, see ([Co-Ta], Lem. 1.11),
there exists a Borel partition {Ui}∞i=1 of Ω and a sequence {ti}∞i=1 in R with ti 6= tj if i 6= j so that

σ =
∞∑

i=1

tiχUi a.e. in Ω

and ∞∑
i=1

P (Ui, Ω) < ∞

where with P (Ui, Ω) we denote the perimeter of Ui in Ω that is |DχUi |(Ω).
Again if σ ∈ SBV (Ω) ∩ L∞(Ω) is such that ∇σ = 0 almost everywhere in Ω and Hn−1(Sσ) < ∞ we have

that σ is piecewise constant if Sσ is essentially closed. In fact in this case, by taking K = Sσ ∩ Ω we have that
u satisfies the definition of piecewise constant functions.

A result analogous to Proposition 3.2 may be obtained also for this case. Here we refer to ([Co-Ta], Th. 2.4).

Proposition 3.3. Let σ ∈ SBV (Ω) be such that a ≤ σ ≤ b almost everywhere in Ω, where a, b are two real
numbers so that a < b. Let us assume that ∇σ is zero almost everywhere in Ω and let T be a countable subset
of [a, b] so that σ(x) ∈ T for almost every x ∈ Ω. We also assume that Hn−1(Sσ) < ∞.

If for every compact set A ⊂ Ω we have a constant C > 0 and a constant p, 1 ≤ p < n/(n − 1), so that

Hn−1(Sσ ∩ A) ≤ Hn−1(Sτ ∩ A) + C‖σ − τ‖Lp(A)

for any τ ∈ SBV (Ω) such that τ(x) ∈ T almost everywhere in Ω and such that τ = σ outside A, then Sσ is
essentially closed.

With these results we can prove the existence of a solution to the following kinds of minimization problems.
First we consider

min
(σ,K)

{
G(σ, K) =

∫
Ω\K |∇σ|2 + βHn−1(K) + γF (σ)

K closed in Ω; σ ∈ H1(Ω\K); a ≤ σ ≤ b a.e. in Ω\K
}

(3.1)

then we consider also the minimal partition version

min
(σ,K)




G1(σ, K) = βHn−1(K) + γF (σ)
K closed in Ω; σ ∈ H1(Ω\K)

∇σ = 0 a.e. in Ω\K; a ≤ σ ≤ b a.e. in Ω\K


 · (3.2)

Here β and γ are positive parameters whereas a and b satisfy −∞ < a < b < +∞. We remark that we may
impose,without loss of generality, Hn−1(K) < ∞, therefore σ will be defined almost everywhere in Ω.
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The following theorem may be proved:

Theorem 3.4. If the faithfulness term F (σ) is Lipschitz continuous from Lp(Ω) in R for some p, 1 ≤ p <
n/(n − 1), then the minimization problems (3.1) and (3.2) admit a solution.

Proof. We begin by proving the existence of a solution to problem (3.1). For any σ ∈ SBV (Ω) such that
a ≤ σ ≤ b almost everywhere in Ω we define the following relaxed functional

G̃(σ) =
∫

Ω

|∇σ|2 + βHn−1(Sσ) + γF (σ).

We notice that on Xb
a(Ω), the set of measurable functions σ on Ω satisfying a ≤ σ ≤ b almost everywhere in Ω,

the faithfulness functional F is continuous with respect to the L1(Ω) norm (indeed with respect to any Lq(Ω)
norm, 1 ≤ q ≤ ∞).

We remark also that for any admissible couple (σ, K) in (3.1) we have that σ ∈ SBV (Ω) and

G(σ, K) = G̃(σ). (3.3)

Then we prove existence of a solution for the following minimization problem

min{G̃(σ) : σ ∈ SBV (Ω) and a ≤ σ ≤ b} · (3.4)

The SBV Compactness and Semicontinuity Theorem 3.1 and the direct method in the Calculus of Variations
allow us to prove immediately that such a minimization problem admits a solution, which we denote by σ.

Then for any admissible τ ∈ SBV (Ω) we infer

MS(σ) + γF (σ) ≤ MS(τ) + γF (τ)

and then
MS(σ) ≤ MS(τ) + γ(F (τ) − F (σ)) ≤ MS(τ) + C‖τ − σ‖Lp(Ω).

So, by applying Proposition 3.2, we obtain that Sσ is essentially closed and this in turn implies that (σ, Sσ ∩Ω)
is an admissible couple in (3.1). By (3.3) we also immediately deduce that (σ, Sσ ∩ Ω) solves (3.1).

With a completely analogous reasoning also the existence of a solution to (3.2) may be proved. We introduce
the relaxed functional

G̃1(σ) = βHn−1(Sσ) + γF (σ)

for any σ ∈ SBV (Ω) such that a ≤ σ ≤ b and ∇σ = 0 almost everywhere in Ω. We minimize G̃1 on this class
of functions. The SBV Compactness and Semicontinuity Theorem 3.1 ensures that any minimizing sequence
converges in L1 to a function of the same class which is therefore a minimum for G̃1. The same regularity
argument, using this time Proposition 3.3, shows the existence of a couple which solves (3.2).

Remark 3.5. In the classical formulation of the Mumford–Shah problem, that is when F (σ) =
∫
Ω |σ−g|2 with

g ∈ L∞(Ω), we a priori know that a minimum σ of the relaxed functional G̃ (or G̃1 respectively) has to satisfy
‖σ‖L∞(Ω) ≤ ‖g‖L∞(Ω). Therefore, in that case, no a priori bound on the ess-infΩ σ and on the ess-supΩ σ is
required.

Here, however, we have replaced the usual faithfulness term of the Mumford–Shah with a more general
functional F which may have some compactness properties which produce a lack of coercivity for the functionals
G̃ and G̃1. Then we have enforced an a priori lower and upper bound on the values of the admissible functions.
This allows us to have coercivity and hence the existence results. Moreover we would like to apply this method to
develop reconstruction procedures in inverse problems. Usually these inverse problems are illposed and a priori
bounds on the admissible solutions are needed in order to ensure stability. We may see our bounds on the L∞

norm of the admissible functions σ as such a kind of a priori bound.
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Such bounds arise in a natural way when we deal with digitized images, since we have natural bounds on
the grey levels of the picture used, and also in the inverse conductivity problem where we have to ensure that
σ satisfies (1.1) for a positive constant λ so that the Neumann-to-Dirichlet map is well defined.

We may also impose further regularity conditions on the faithfulness term F so that the solution σ to (3.1)
outside K = Sσ ∩Ω is more regular than simply belonging to H1, for instance it is C1. For example, this is the
case for the classical formulation of the Mumford–Shah problem, see [DG-Ca-L]. This result would allow us to
formulate our minimization problems in a class of more regular functions, for instance piecewise C1 functions,
and, nevertheless, to obtain existence results.

Proposition 3.6. Assume that the hypotheses of Theorem 3.4 are satisfied. We also assume that for any
σ0 ∈ Xb

a(Ω) there exists p, 1 ≤ p < n/(n−1), such that F is differentiable in Xb
a(Ω) at the point σ0 with respect

to the Lp-norm.
Then if (σ, K) is a solution to the minimization problem (3.1), we have that σ ∈ C1(Ω\K).

Proof. We already know that there exists a solution (σ0, K) to (3.1). We consider a point x0 ∈ Ω\K and we
want to prove that locally in a neighbourhood of x0 the function σ0 is C1. First of all we consider DF (σ0). We
may identify it with an Lq(Ω) function f , with q > n.

Our argument is based on regularity theory for variational inequalities and obstacle problems. We refer
to [K-St].

We introduce the following notation. If σ ∈ H1(Ω), Ω being an open set, we say that σ(x) > 0 at x ∈ Ω (in
the sense of H1(Ω)) if there exist Br(x) and φ ∈ H1,∞

0 (Br(x)), φ ≥ 0, φ(x) > 0, so that u − φ ≥ 0 on Br(x)
(in H1). Remark that the set {x ∈ Ω : σ(x) > 0} is open.

Let us assume that x0 is such that a < σ0(x0) < b. Then we have that locally σ0 solves the following equation

∆σ0 = f in Br(x0).

Then, since f ∈ Lq with q > n, standard regularity arguments shows that σ0 is C1 in a neighbourhood of x0.
Some care is needed in treating the case when σ0(x0) is either equal to a or to b. We consider only the first

case since the second one may be treated in a completely analogous way.
Without loss of generality we may assume that x0 = 0, that Br = Br(0) is contained in Ω and that

σ0 < (a + b)/2 in Br. We fix

K = {τ ∈ H1(Br) : τ = σ0 on ∂Br and τ ≥ a in Br}

and we notice that if we denote by τ0 the solution to

min
τ∈K

1
2

∫
Br

|∇τ |2 +
∫

Br

fτ

we have that τ0 ∈ C1(Br), see [K-St].
Therefore it will be enough to prove that σ0 = τ0 to obtain our result. This may be achieved through the

following procedure. First of all we notice that, since σ0 in Br is a supersolution in the following sense
∫

Br

∇σ0 · ∇φ ≥ −
∫

Br

fφ for any φ ∈ H1
0 (Br), φ ≥ 0

and clearly belongs to K we have that τ0 ≤ σ0 in Br. We assume, by contradiction, that the open set
D = {x ∈ Br : σ0(x) > τ0(x)} is not empty. We notice the following facts. Since we have that σ0 = τ0 on
∂Br we infer that σ0 = τ0 on ∂D. Furthermore we have that ∆σ0 = f in D and this, in turn, implies that σ0

coincides with τ0 on D. This contradiction allows us to conclude the proof.
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We apply the previously stated results to the inverse conductivity problem, and to other inverse problems as
well, in the following way.

For the inverse conductivity problem we consider the following procedure. Let Ω be a bounded and Lipschitz
domain contained in R

n. We fix a constant λ, 0 < λ < 1, a smooth domain Ω′ compactly contained in Ω and a
measurable function σ0 which satisfies (1.1) in Ω with constant λ.

We shall try to force the minimum to be equal to σ0 outside Ω′ and to this aim for any σ belonging to
Xλ(Ω) = Xλ−1

λ (Ω) (or, equivalently, satisfying (1.1) with constant λ) we set

σ̂ =
{

σ in Ω′

σ0 otherwise

and we shall penalize, in a suitable norm, the term σ − σ0 on Ω\Ω′.
We shall consider the following cases. In the first one we assume knowledge of the complete Neumann-to-

Dirichlet map, that is we have a linear, bounded operator G from 0L
2(∂Ω) into itself which corresponds to the

measurements on the boundary of the electrostatic potentials determined by applying any current density to
the conductor Ω. In this case we write the faithfulness term as follows

F (σ) = ‖Λ(σ̂, ·) − G‖2
B(0L2(∂Ω)) + ‖σ − σ0‖q

Lp(Ω\Ω′) (3.5)

for any σ ∈ Xλ(Ω). Here p and q are two real numbers greater than or equal to 1.
On the other hand, in view of applications, we consider N different current densities fi ∈ 0L

2(∂Ω), we
measure gi ∈ 0L

2(∂Ω), i = 1, . . . , N , the corresponding potentials on the boundary, and we set

F (σ) =
N∑

i=1

∫
∂Ω

|Λ(σ̂, fi) − gi|2 + ‖σ − σ0‖q
Lp(Ω\Ω′) (3.6)

for any σ ∈ Xλ(Ω).
Then we may state the main result.

Theorem 3.7. Under the previously stated assumptions if we have that Q(λ) > 2n and nq
(n−1)p ≥ 1 we obtain

that (3.1) and (3.2) admit a solution if we take as F the functional defined either in (3.5) or in (3.6) and we
fix a = λ and b = λ−1.

With the same notation as before, as an easy application of Proposition 3.6 and of the regularity results of
Section 2, we obtain that the solution to problem (3.1) with F as in (3.6) is piecewise C1 if, for instance, the
conditions Q(λ) > 2n and p = q = 2 hold.

In order to avoid the somehow restrictive hypothesis that Q(λ) > 2n, we shall consider the following linearized
version of the problem. We shall substitute, either in (3.5) or (3.6) the operator Λ(σ̂, ·) with its differential
DF(σ0)[σ̂ − σ0](·) around the reference conductivity σ0 and the measurements gi with the perturbation of the
reference data related to the reference conductivity, namely gi −Λ(σ0, fi). If σ0 is regular enough we may relax
the condition on Q(λ) and still obtain a similar existence result.

Theorem 3.8. For any λ, 0 < λ < 1, assume Q(σ0) > 2n and nq
(n−1)p ≥ 1. Then if we define as F the

functional obtained by replacing either in (3.5) or in (3.6) the operator Λ(σ̂, ·) by DF(σ0)[σ̂ − σ0](·) and the
measurements gi by gi − Λ(σ0, fi) and we fix, as before, a = λ and b = λ−1 we have that (3.1) and (3.2) admit
a solution.

It is clear that, if we consider F as in (3.6), Q(σ0) > 2n and p = q = 2 we have that the solution whose
existence is proved in Theorem 3.8 is piecewise C1.

In order to complete this survey of results and applications to inverse problems of Theorem 3.4 and
Proposition 3.6 we consider the case stated in (1.7).
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Theorem 3.9. Let A be a linear bounded operator from Lp(Ω) into itself for any p, 1 ≤ p ≤ ∞, and let
F (σ) =

∫
Ω |A[σ] − g|2 where g is an L∞(Ω) function corresponding to the additional measurement.

Then, for any constants a, b, −∞ < a < b < +∞, problems (3.1) and (3.2) admit a solution. Furthermore,
for what concerns (3.1), such solution is piecewise C1.

With the existence of the solutions and their regularity properties established for problems (3.1, 3.2), we will
use an approximation procedure to construct the solutions. We recall here just the definition and some basic
properties of Γ-convergence. For a more detailed introduction we refer to [DM].

Let (X, d) be a metric space. Then a sequence Fk : X 7→ [−∞, +∞] Γ-converges as k → ∞ to a function
F : X 7→ [−∞, +∞] if for every x ∈ X we have

(i) for every xk converging to x we have

F (x) ≤ lim inf
k

Fk(xk); (3.7)

(ii) there exists a sequence xk converging to x so that

F (x) = lim
k

Fk(xk). (3.8)

The function F will be called the Γ-limit of Fk as k → ∞ with respect to the metric d and we denote it by
F = Γ-limk Fk.

The following theorem, usually known as the Fundamental theorem of Γ-convergence, illustrates the motiva-
tions for the definition of such a kind of convergence.

Theorem 3.10. Let (X, d) be a metric space and let Fk : X 7→ [−∞, +∞] be a sequence of functions defined
on X. If there exists a compact set K such that infK Fk = infX Fk for any k and F = Γ-limk Fk then F admits
a minimum over X and we have

min
X

F = lim
k

inf
X

Fk.

Furthermore if xk is a sequence of points in X which converges to a point x ∈ X and satisfies limk Fk(xk) =
limk infX Fk then x is a minimum point for F .

We simply recall the following property of Γ-convergence which will be used in the sequel. If F = Γ-limk Fk

and G is a continuous function on X (with respect to the metric d) then

F + G = Γ-lim
k

(Fk + G).

The definition of Γ-convergence may be extended in a natural way for families depending on a continuous
parameter. For instance we say that the family of functions Fε, defined for every ε > 0, Γ-converges to a
function F as ε → 0+ if for every sequence of positive εk converging to 0 we have F = Γ-limk Fεk

.
The following Γ-convergence results have been proved by Ambrosio and Tortorelli in [A-T2], see also [A-T1]

and [Br].
We introduce the functional MSε on L1(Ω) × L1(Ω) as follows. We define

MSε(σ, s) =
∫

Ω

(s2 + oε)|∇σ|2 + βε|∇s|2 + β
(s − 1)2

4ε
(3.9)

if σ ∈ H1(Ω) ∩ Xb
a(Ω) and s ∈ H1(Ω) ∩ X1

0 (Ω) and we set MSε(σ, s) = ∞ otherwise.
Then we formally add a second variable to the functional MS in the following way

MS(σ, s) =




∫
Ω |∇σ|2 + βHn−1(Sσ) if

{
σ ∈ SBV (Ω) ∩ Xb

a(Ω)
s ≡ 1

+∞ otherwise.
(3.10)
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Let F be any functional on Xb
a(Ω) continuous with respect to the L1-norm. We extend the functional F onto

L1(Ω) by setting its value to ∞ outside Xb
a(Ω).

Theorem 3.11. If oε is a nonnegative infinitesimal of higher order than ε, then G̃ε = MSε + F Γ-converges
(as ε → 0+) in L1(Ω) × L1(Ω) to G̃ = MS + F .

Moreover if (σε, sε) minimizes G̃ε, then σε is compact in L1(Ω) and any limit point of σε as ε → 0+

determines a pair (σ, 1) so that σ minimizes G̃.

For a proof see [A-T2]. In the same paper an analogous approximation has been developed for the partition
problem by taking the following approximating family. We modify the previous approximation by multiplying
by a constant Mε the term s2|∇σ|2 and we let Mε go to ∞ as ε goes to 0, so that the Γ-limit is going to be
finite only on piecewise constant functions. Namely we define a functional (MS1)ε on L1(Ω)×L1(Ω) as follows

(MS1)ε(σ, s) =
∫

Ω

(Mεs
2 + oε)|∇σ|2 + βε|∇s|2 + β

(s − 1)2

4ε
(3.11)

if σ ∈ H1(Ω) ∩ Xb
a(Ω) and s ∈ H1(Ω) ∩ X1

0 (Ω). As usual we set (MS1)ε(σ, s) = ∞ otherwise.
We take a functional F continuous on Xb

a(Ω) endowed with the L1-norm. For any σ ∈ L1(Ω)\Xb
a(Ω) we set

F (σ) = ∞. We define the functional G̃1 on L1(Ω) × L1(Ω) as

G̃1(σ, s) =


 βHn−1(Sσ) + F (σ) if

{
σ ∈ SBV (Ω); ∇σ = 0 a.e.
σ ∈ Xb

a(Ω); s ≡ 1
+∞ otherwise.

(3.12)

Then we have the following result, whose proof is contained in [A-T2].

Theorem 3.12. If oε is a nonnegative infinitesimal of higher order than ε and Mε → ∞ as ε → 0+, then
(G̃1)ε = (MS1)ε + F Γ-converges (as ε → 0+) in L1(Ω) × L1(Ω) to G̃1.

Moreover if (σε, sε) minimizes (G̃1)ε, then σε is compact in L1(Ω) and any limit point of σε as ε → 0+

determines a pair (σ, 1) so that σ minimizes G̃1.

It is evident that for any of the cases treated in Theorems 3.7, 3.8 and 3.9, the Γ-convergence results stated
above hold true.

4. Numerical results

In this section we present some results from a numerical implementation of the method described at the end
of the previous section. We begin by showing some examples of reconstructing conductivity in the linearized
inverse conductivity problem. Finally we present also an example where the direct problem is described by
a linear operator. In our example, we choose A to be a blurring convolution operator; therefore the inverse
problem can be viewed as one of deblurring and segmentation.

For the inverse conductivity problem we shall consider the following framework. We shall limit ourselves to
the linearized case. However, we will be inverting nonlinear data since the data will be generated by solving the
true direct problem, not a linearized one. Moreover, a small amount of noise will be added to the data.

For simplicity we choose the domain Ω to be a rectangle of sides L1, L2. We shall assume that the unknown
conductivity σ to be determined is a perturbation of a contrast conductivity, which we assume to be smooth
(at least Hölder continuous). In the numerical tests we actually choose σ0 ≡ 1 in Ω. In practice we shall assume
also that σ is equal to σ0 outside a rectangle slightly smaller than Ω.

We fix a number n and m of equally spaced points on each vertical and horizontal side of Ω respectively.
We have 2(n + m) points and we order them in an anticlockwise order. We identify the 2(n + m) + 1 point
with the first one. These points will constitute the electrode locations and also where the measurements of the
potential are collected. We assume that the current densities used are given by putting a positive electrode
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and a negative electrode, both of intensity one, on two adjacent locations. This will give us 2(n + m) different
current patterns, which we shall denote by f1, . . . , f2(n+m). For each fi we shall measure the corresponding
potential ui on the boundary. The potential ui is measuread on all the possible electrode sites as a voltage drop
between two adjacent electrode locations. Thus we have 2(n + m) data for each measurement making a total
of (2(n + m))2 data. Since we are in the linearized case, we consider only the perturbation with respect to the
potentials corresponding to σ0. So if ui

j, j = 1, . . . , 2(n + m) and U i
j are the values on the electrode sites of the

potentials corresponding to the current density fi, respectively with conductivities σ and σ0, the data will be
given by gi

j = ui
j+1 − ui

j − (U i
j+1 −U i

j), i, j = 1, . . . , 2(n + m). Globally such data will be denoted by the vector
G.

We shall divide Ω into a uniform grid of mesh h. Therefore the unknown conductivity will be discretized
onto the nodes of this uniform mesh. Let N , M be the number of nodes for the vertical and horizontal side
respectively (that is N = L1/h and M = L2/h).

For each measurement fi we compute, by a finite differences scheme, the discretization of the forward (lin-
earized) map DF(σ0)[· − σ0](fi) and we shall denote it by DF i which will be a linear map from the space of
N × M matrices onto the 2(n + m) vector which represents the measured potentials on the electrode sites.

Globally our operator A = DF will be given by a matrix mapping N × M onto (2(n + m))2, which is the
number of total measured data. The scaled discretized penalization term will be then given by

h′ ∑(DF (σ) − G)2

where h′ is the gap between the electrode sites.
The data, for the reference conductivity and the unknown one, have been computed by using a discretization

of the (full) operator F(σ0)[·] and F(σ)[·] over the same mesh and a finite difference scheme. Some noise have
been then added to the vector data G.

In our experiments we have used the following values. The domain Ω is a square of size 2, we chose h = 0.05,
thus making N = M = 40. We took 5 electrode locations per side, thus making 20 total measueremnts and
400 data points. We added about 1 percent noise.

We consider the Γ-convergence procedure described above. We fix accordingly the functional parameter and
the Γ-convergence parameter ε. We discretize the other parts of the functional over the same mesh and we solve
the minimization problem by a conjugate gradient method, using again finite differences. It should be pointed
out that the functional to be minimized is not convex and therefore the minimum might be not unique.

To test the method we shall compare the results with the pseudoinverse solution which is obtained through
an SVD-regularization of DF and by computing as first guess M †G where M † is the pseudoinverse. We shall
not use the pseudoinverse as a starting point for our minimization procedure. We shall use σ0 instead. This
because the method depends on two variables (σ, s) and we have no way to compute an s which might be
consistent with the pseudoinverse. We shall therefore assume as initial values σ = σ0 and s ≡ 1, that is no
jumps.

A careful choice of the coefficients has to be made. For the usual Mumford–Shah functional a detailed study
of the meaning of the coefficients, and how to choose them, has been carried over, see for instance [B-Z]. Such
a study has never been done for our model problem. The choice of the parameter is not easy, given also the
great number of them involved. However this fact may be exploited to recover particular kinds of features of
the unknown conductivity. See for instance the three different reconstruction of Example 2.

Example 1. The true conductivity distribution, along with its grey level values, are given in Figure 1a. The
reconstruction by the SVD-regularization is given in Figure 1b. Note that a large amount of blurring has taken
place. The reconstruction using the approximate Mumford-Shah variational is given in Figure 1c, where we
have used ε = 0.008, α = 0.02, β = 0.002 and γ = 2 × 106. These values were arrived at by experimentation.
Clearly, this is a weakness of this approach. However, we emphasize that when good values of these parameters
are used, the reconstruction is highly effective. The convergence of the conjugate gradient method is also quite
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ductivity distribution.
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Figure 1-b. SVD-regularized
reconstruction.
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Figure 1-c. Reconstruction
using variational approach.

Figure 1-d. Segmentation
of the reconstructed conduc-
tivity distribution.

slow; 12 000 iterations were needed to obtain the result shown. The auxilliary function s, when thresholded to
0.2, gives the segmentation given in Figure 1d.

Example 2. In this example, we illustrate the behavior of the reconstruction when the parameters are altered.
First we display the true conductivity distribution and its reconstruction using the SVD regularization in
Figures 2a and 2b. In the subsequent three pairs of figures, we display the reconstruction and its segmentation
by the variational method for three different choices of ε and β as indicated. The other parameters are set at
γ = 2×106 and α = 0.1. We display the results at the end of 6 000 iterations of the conjugate gradient method.

Example 3. In Examples 1 and 2, we have made no assumptions on the blocky character of the unknown
conductivities. We now present a case where the true conductivity consists of a blocky part and a “ramp”
part. In principle this method deals with a much wider class of admissible conductivities. On the other hand
the reconstruction of blocky conductivities might be less precise than with BV regularization as in [D-S]. The
calculations were carried out with ε = 0.025, α = 0.1, β = 0.021 and γ = 2 × 106. Again, 6 000 conjugate
gradient iterations were performed to get the results shown in Figure 3. Note that the segmentation is able
to make out the larger jump towards the top of the ramp, but misses the jump towards the bottom. The
reconstruction faithfully images the jump near the top.

Example 4. We consider now the case where the forward map is a blurring operator. The point spread
function, which is assumed to be known, is in the form of a pyramid as displayed in Figure 4a. The true image
is shown in Figure 4b, while the blurred and noisy version (5% noise) is shown in Figure 4c. We show two
calculations. In the first, ε = 0.002 and α = 0.05, whereas in the second, ε = 0.001 and α = 0.01. In both cases,
β = 0.005 and γ = 104, and 1 000 conjugate gradient iterations were taken.

What is remarkable about the calculations is that, in both cases, we are able to reconstruct the unknown
image rather well. However, in the first case, we were able to find a segmentation, while in the second, no
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with ε = 0.019 and β =
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Figure 2-d. Segmentation.
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with ε = 0.02 and β = 0.025. Figure 2-f. Segmentation.
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ductivity distribution.
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Figure 3-c. Reconstruction
using variational approach.

Figure 3-d. Segmentation
of the reconstructed conduc-
tivity distribution.

segmentation was found. This demonstration illustrates the sensitivity of the segmentation process to the
parameters. It can be seen that the reconstruction is visibly better when a segmentation is found.

5. Discussion

We have considered an approach for stabilizing and enhancing the reconstruction of conductivity distribution
in electrical impedance tomography. The approach uses the Mumford-Shah functional which has been introduced
as a method to denoise and segment grey-level images. We have shown that the resulting variational problem
admits a solution. The efficacy of the method is studied in several numerical experiments. We found the
approach to be quite promising. It has the capability to resolve conductivity distributions with jumps with good
accuracy even in the presence of small amount of data noise, and by only considering the linearized problem.
However, we also found that aside from the computational complexity involved, the method requires tuning
of several parameters, some of which can be very sensitive. Further work to understand how the parameters
should be set and how to accelerate the computation is needed. Nevertheless, we believe the results we have
obtain are encouraging and warrant further research.
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Figure 4-a. The point spread function of the blurring operator.
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