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3D-2D ASYMPTOTIC ANALYSIS FOR MICROMAGNETIC THIN FILMS
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Abstract. Γ-convergence techniques and relaxation results of constrained energy functionals are used
to identify the limiting energy as the thickness ε approaches zero of a ferromagnetic thin structure
Ωε = ω × (−ε, ε), ω ⊂ R2 , whose energy is given by

Eε(m) =
1

ε

Z
Ωε

�
W (m,∇m) +

1

2
∇u ·m

�
dx

subject to
div(−∇u+mχΩε) = 0 on R3 ,

and to the constraint
|m| = 1 on Ωε,

where W is any continuous function satisfying p-growth assumptions with p > 1. Partial results are
also obtained in the case p = 1, under an additional assumption on W .
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1. Introduction

In recent years the understanding of thin film behavior has been helped by the mathematical asymptotic anal-
ysis of energies defined on three-dimensional domains of vanishing thickness, through the use of Γ-convergence
techniques (see [2,3,9,10,12]). The method consists in rescaling the ε-thin domain into a reference body of unit
thickness, so that the resulting energy will be defined on a fixed domain, while the dependence on ε turns out
to be explicit in the transversal derivatives which appear in the energy. The second step is then to determine
the Γ-limit of the rescaled energy as the thickness ε tends to 0.

In this paper and within the framework of micromagnetics, we perform the analysis described above for the
energy of a ferromagnetic thin film Ωε = ω × (−ε, ε), ω ⊂ R2, of the type

Eε(m) =
1
ε

∫
Ωε

(
W (m,∇m) +

1
2
∇u ·m

)
dx (1.1)
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subject to

div(−∇u+mχΩε) = 0 on R3, (1.2)

and to the constraint

|m| = 1 on Ωε,

where W is any continuous function satisfying p-growth assumptions, with p ≥ 1 (see Sect. 4). Herem : Ωε → R3

represents the magnetization and u is a scalar potential for the magnetic field H = −∇u. Our study generalizes
the case studied by Gioia and James in [12] (see Rem. 4.7), where

W (m,∇m) = γ|∇m|2 + ϕ(m),

and Eε represents the standard micromagnetic energy (see [4] and [12] for a detailed explanation of the model).
In our analysis a fundamental role is played by the characterization of the relaxation of integral functionals

where the admissible fields are constrained to remain on the unit sphere. This problem has been faced in [7],
where the notion of tangential quasiconvexification QT f of a function f has been introduced (see Def. 3.1). For
p > 1 we show that the limit energy is

E(m) =
∫
ω

2QT Ŵ (m,∇m) +m2
3 dx1 dx2 on W 1,p(ω) ∩ {|m| = 1}, (1.3)

where Ŵ is obtained by W through a minimization with respect to the transversal derivatives of m (see
formula (4.11)). Thus in the limit the admissible fields do not depend on the direction normal to the thin
film, and the term

∫
ω |m3|2 is the limit of the rescaled version of the magnetostatic energy 1

ε

∫
Ωε

1
2∇u ·m (see

Prop. 4.1).
So in the superlinear case (p > 1) we completely characterize the Γ-limit of the rescaled version of (1.1) and

we derive a convergence result of minimum problems.
In the case p = 1, the characterization of the Γ-limit is not completely obtained, since it relies on the still

open problem of finding an integral representation of relaxed functionals of the type

F(u) = inf
{

lim inf
n

∫
Ω

f(un,∇un) dx, un → u in L1(Ω), ‖∇un‖1 ≤ c, un ∈W 1,1(Ω), |un| = 1
}
,

when f is a continuous function with linear growth. In this case, the natural space where to set the problem is
BV (Ω,S2), the functions of bounded variation with values on the unit sphere S2. An integral representation of
F(u), depending also on the singular part of Du with respect to the Lebesgue measure, is a problem on which
the authors are working. As a partial result, in this paper, we characterize F on W 1,1(Ω,S2) (see Th. 3.4).
This allows us to show that, in the case p = 1, E(m) still has the same expression (1.3) on W 1,1(ω)∩{|m| = 1}.

The outline of the paper is the following. In Section 2 we recall the definitions and the main properties
of relaxation and Γ-convergence. In Section 3 we state the main result concerning relaxation of constrained
integral functionals obtained in [7], and in Theorem 3.4 we prove some extensions of this result to the linear
case. Finally, Section 4 is devoted to the characterization of the Γ-limit of the rescaled version of (1.1) both in
the superlinear and in the linear case (see Ths. 4.2 and 4.8).
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2. Relaxation and Γ-convergence

We first recall the notion of relaxed functional. Let (X, T ) be a topological space and F : X → [0,+∞].
Then the relaxed functional F of F , or relaxation of F , is the greatest T -lower semicontinuous functional less
than or equal to F . We also give the notion of sequential relaxation of F :

F (u) = inf
{

lim inf
j

F (uj) : uj → u in X
}
·

If T is induced by a metric, then the two notions are equivalent.
Let (X, d) be a metric space. A family (Fε)ε>0 of functionals Fε : X → [0,+∞] is said to Γ-converge to a

functional F : X → [0,+∞] at u ∈ X , and we write F (u) = Γ- limε→0+ Fε(u), if for every sequence (εj) of
positive numbers decreasing to 0 the following two conditions hold:

(i) (lower semicontinuity inequality) for all sequences (uj) converging to u inX we have F (u) ≤ lim infj Fεj (uj);
(ii) (existence of a recovery sequence) there exists a sequence (uj) converging to u in X such that F (u) ≥

lim supj Fεj (uj).
We say that Fε Γ-converges to F if F (u) = Γ- limε→0+ Fε(u) at all points u ∈ X and that F is the Γ-limit of
Fε. If we define the lower and upper Γ-limits by

F ′′(u) = Γ- lim sup
ε→0+

Fε(u) = inf
{

lim sup
ε→0

Fε(uε) : uε → u in X

}
,

F ′(u) = Γ- lim inf
ε→0+

Fε(u) = inf
{

lim inf
ε→0

Fε(uε) : uε → u in X
}
,

respectively, then the conditions (i) and (ii) are equivalent to F ′(u) = F ′′(u) = F (u). Note that the functions
F ′ and F ′′ are lower semicontinuous. Moreover if Fε ≡ F , for every ε > 0, then F ′ = F ′′ = F , the relaxation
of F .

A fundamental result concerning the notion of Γ-convergence is the following theorem:

Theorem 2.1. Let F = Γ-limε→0+ Fε, and let K ⊂ X be a compact set such that infX Fε = infK Fε for all ε.
Then F attains its minimum on X and

min
X

F = lim
ε→0+

inf
X
Fε. (2.1)

Moreover, if (uj) is a converging sequence such that limj Fεj (uj) = limj infX Fεj then its limit is a minimum
point for F .

We refer to [8] for an exposition of the main properties of Γ-convergence (see also [1]).

3. Relaxation of constrained energy functionals

Let Ω be a bounded, open set of RN , and let f : Rd × Rd×N → [0,+∞) be a continuous function.
The quasiconvex envelope Qf of f is defined by

Qf(y, ξ) = inf

{∫
(0,1)N

f(y, ξ +∇ϕ(x)) dx : ϕ ∈W 1,∞
0 ((0, 1)N ,Rd)

}
(3.1)

(see [13] and [14]). It has been shown by Dacorogna (see [6]) that, if f satisfies

0 ≤ f(y, ξ) ≤ C(1 + |ξ|p), ∀(y, ξ) ∈ Rd × Rd×N ,
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for some C > 0, p > 1, then the sequential relaxed energy

F(u) = inf
{

lim inf
n

∫
Ω

f(un,∇un) dx : un ⇀ u in W 1,p(Ω,Rd)
}

is given by

F(u) =
∫

Ω

Qf(u,∇u) dx.

The integral representation of the relaxed energy when the admissible fields are constrained to remain on a C1

manifold M⊂ Rd, has been studied in [7].
Let us consider the case M = Sd−1, the unit sphere in Rd. If y ∈ Sd−1, we denote by Ty(Sd−1) the tangent

space to Sd−1 at y. Recall that Ty(Sd−1) = y⊥, the linear hyperplane orthogonal to y.
The following definition was introduced in [7], when f does not depend on y.

Definition 3.1. Let y ∈ Sd−1 and ξ ∈ [Ty(Sd−1)]N . The tangential quasiconvexification of f at (y, ξ) is
defined by

QN,dT f(y, ξ) = inf

{∫
(0,1)N

f(y, ξ +∇ϕ(x)) dx : ϕ ∈W 1,∞
0 ((0, 1)N , Ty(Sd−1))

}
· (3.2)

We say that f is a tangential quasiconvex function if f(y, ξ) = QN,dT f(y, ξ), for all y ∈ Sd−1 and ξ ∈ [Ty(Sd−1)]N .

Setting, for any (y, ξ) ∈ Rd × Rd×N ,

f(y, ξ) =

 min{|y|, 1}f
(
y

|y| ,
(
Id×d −

y ⊗ y
|y|2

)
ξ

)
y 6= 0

0 y = 0,
(3.3)

we can prove, as in Proposition 2.2 of [7], that, for y ∈ Sd−1 and ξ ∈ [Ty(Sd−1)]N ,

QN,dT f(y, ξ) = Qf(y, ξ). (3.4)

Let us note that, if y ∈ Sd−1, then (Id×d− y⊗ y)ξ = (Pyξ1, . . . , Pyξ
N ), for any ξ = (ξ1, . . . , ξN ) ∈ Rd×N , where

Py is the orthogonal projection of Rd onto the tangent space Ty(Sd−1).
For any u ∈W 1,p(Ω,Sd−1) define

FT (u) = inf
{

lim inf
n

∫
Ω

f(un,∇un) dx : un ⇀ u in W 1,p(Ω,Rd), un ∈ Sd−1 a.e. in Ω
}
·

The following result is a slight generalization of Theorem 3.1 in [7]. We omit the proof since it does not require
any improvement of the argument used in [7].

Theorem 3.2. Let f : Rd × Rd×N → [0,+∞) be a continuous function such that

0 ≤ f(y, ξ) ≤ C(1 + |ξ|p), ∀(y, ξ) ∈ Rd × Rd×N , (3.5)

for some C > 0, p ≥ 1. Then for every u ∈W 1,p(Ω,Sd−1)

FT (u) =
∫

Ω

QN,dT f(u,∇u) dx.
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Remark 3.3. Let f satisfy (3.5) and the additional coerciveness assumption

C1|ξ|p ≤ f(y, ξ), ∀(y, ξ) ∈ Rd × Rd×N , (3.6)

for some constant C1 > 0, and define the functional

F (u) =

{ ∫
Ω f(u,∇u) dx if u ∈W 1,p(Ω,Sd−1)

+∞ if u ∈ L1(Ω,Rd) \W 1,p(Ω,Sd−1).
(3.7)

Then, for p > 1, as a straightforward consequence of the previous result, we have that the relaxation of F with
respect to the L1-metric

F (u) = inf
{

lim inf
n

F (un) : un → u in L1(Ω,Rd)
}
,

has the following integral representation

F (u) =

{ ∫
Ω
QN,dT f(u,∇u) dx if u ∈W 1,p(Ω,Sd−1)

+∞ if u ∈ L1(Ω,Rd) \W 1,p(Ω,Sd−1).

If p = 1, as a partial result, the following theorem characterizes F on W 1,1(Ω,Sd−1) and it is based on the lower
semicontinuity results of [11].

Theorem 3.4. Let f be a continuous function satisfying (3.5) and (3.6), with p = 1, and let f , given in (3.3),
satisfy the following hypothesis

(i) for all y0 ∈ Rd and for all η > 0 there exists δ > 0 such that |y − y0| < δ implies that

f(y0, ξ)− f(y, ξ) ≤ η(1 + |ξ|).

Then

F (u) =
∫

Ω

QN,dT f(u,∇u) dx on W 1,1(Ω,Sd−1).

Proof. From Theorem 3.2 it follows that

F (u) ≤
∫

Ω

QN,dT f(u,∇u) dx on W 1,1(Ω,Sd−1).

The opposite inequality is a consequence of (3.4). Indeed, if u ∈W 1,1(Ω,Sd−1) we have that ∇u ∈ [Tu(Sd−1)]N

a.e. in Ω, thus

f(u,∇u) = f(u,∇u) a.e. in Ω,

which implies

F (u) =
∫

Ω

f(u,∇u) dx on W 1,1(Ω,Sd−1).

Then, by virtue of (3.4) and the coerciveness assumption (3.6), we get the conclusion if we prove that for any
un, u ∈W 1,1(Ω,Rd), with un converging to u strongly in L1(Ω,Rd) and un bounded in W 1,1(Ω,Rd),

lim inf
n

∫
Ω

f(un,∇un) dx ≥
∫

Ω

Qf(u,∇u) dx.
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This can be done following the line of the proof of Theorem 2.1 in [11], up to slight modifications. Note that
the hypothesis (i) corresponds to condition (H4) in [11] and (3.5) yields

0 ≤ f(y, ξ) ≤ C(1 + |ξ|), (y, ξ) ∈ Rd × Rd×N .

The hypothesis of coerciveness on f , required in Theorem 2.1 of [11], is not needed by the boundedness of un
in W 1,1(Ω,Rd).

Remark 3.5. Note that, even if the function f does not satisfy the coerciveness condition (3.6), the same
conclusion of Theorem 3.4 still holds for the functional

F̃ (u) = inf
{

lim inf
n

F (un) : un → u in L1(Ω,Rd), (un) bounded in W 1,1(Ω,Rd)
}
·

Remark 3.6. It is easy to prove that, if f(y, ξ) is Lipschitz in ξ uniformly with respect to y, the hypothesis
(i) on f in Theorem 3.4 is implied by the same hypothesis on f .

4. Limit of micromagnetic energies on thin films

For ε > 0 let Ωε be a thin three-dimensional domain of the form Ωε = ω × (−ε, ε), with ω a bounded open
set of R2, and denote Ω := Ω1. Let p ≥ 1 and let W : R3 × R3×3 → R be a continuous function such that, for
any (y, ξ) ∈ R3 × R3×3,

1
C
|ξ|p ≤W (y, ξ) ≤ C(1 + |ξ|p), (4.1)

for some constant C > 0.
Define, for any m ∈ L1(Ωε,R3),

Eε(m) =

{
1
ε

∫
Ωε

(
W (m,∇m) + 1

2∇u ·m
)

dx if m ∈W 1,p(Ωε,S2)

+∞ otherwise,
(4.2)

where u is related to m by the equation

div(−∇u+m) = 0 on R3, (4.3)

with m extended by 0 outside Ωε.
Through the change of variables

m(xα, x3) = m(xα, εx3), u(xα, x3) = u(xα, εx3), xα = (x1, x2) ∈ ω, x3 ∈ (−1, 1), (4.4)

we rescale the functional (4.2) as

Eε(m) =


∫

Ω
W

(
m,∇αm,

1
ε
∇3m

)
dx+ 1

2

∫
R3

(
∇αu ·mα + 1

εm3∇3u
)

dx if m ∈W 1,p(Ω,S2)

+∞ otherwise,
(4.5)

subjected to the constraint

div (−∇αu+mα) +
1
ε
∇3

(
−1
ε
∇3u+m3

)
= 0 on R3, (4.6)
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where we have used the notation

mα = (m1,m2), ∇i =
∂

∂xi
, i = 1, 2, 3, ∇α = (∇1,∇2).

We now proceed to clarify the meaning of the magnetostatic equation (4.6). Consider the following variational
principle

min
u∈V

1
2

∫
R3
|∇αu−mα|2 +

∣∣∣∣1ε∇3u−m3

∣∣∣∣2 dx, (4.7)

where

V =
{
v ∈ L1

loc(R3) : ∇v ∈ L2(R3,R3),
∫
B

v dx = 0
}
,

and B is a fixed ball of RN . V is a Hilbert space with inner product

(u, v)V =
∫
R3

(
∇αu · ∇αv +

1
ε2
∇3u∇3v

)
dx.

The direct method of the calculus of variations yields a unique minimizer of (4.7) in V , satisfying the Euler–Lagrange
equation ∫

R3
(∇αu−mα) · ∇αv +

1
ε

(
1
ε
∇3u−m3

)
∇3v dx = 0 ∀v ∈ V, (4.8)

that is the weak form of (4.6). Setting v = u in (4.8), and taking into account that m vanishes outside Ω, we
obtain ∫

Ω

∇αu ·mα +
1
ε
m3∇3u dx =

∫
R3
|∇αu|2 +

1
ε2
|∇3u|2 dx. (4.9)

Note that the left-hand side of this expression is twice the magnetostatic energy given by the second integral
in (4.5).

The following proposition is due to Gioia and James (Prop. 4.1 of [12]).

Proposition 4.1. Suppose mε → m in L2(R3,R3), mε = 0 on R3 \ Ω, and let uε be the minimizer of (4.7)
corresponding to mε. Then

∇uε → 0,
1
ε
∇3uε → m3 in L2(R3).

We now state the thin-film approximation result in the superlinear case.

Theorem 4.2. If p > 1, then Eε Γ-converges with respect to the L1-strong topology to the functional E :
L1(Ω,R3)→ [0,+∞] defined as

E(m) =

{
2
∫
ωQ

2,3
T Ŵ (m,∇m) dxα +

∫
ω |m3|2 dxα if m ∈W 1,p(ω,S2)

+∞ otherwise,
(4.10)

where Ŵ : R3 × R3×2 → R is given by

Ŵ (y, ζ) := inf
z∈y⊥

W (y, ζ, z). (4.11)
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Remark 4.3. It is easy to check, by the continuity and the growth assumptions (4.1) on W , that Ŵ satisfies
the hypotheses of Theorem 3.2.

Proof of Theorem 4.2. As usual we divide the proof in two steps dealing with the Γ-lim inf and Γ-lim sup
inequalities, separately.
Step 1. Γ- lim infε→0 Eε(m) ≥ E(m) for any m ∈ L1(Ω,R3).

Let εh ↘ 0 and let mh → m in L1(Ω,R3) be such that lim infhEεh(mh) < +∞. Then, up to a subsequence,
by the coerciveness assumption (4.1), we have that mh ∈W 1,p(Ω,S2) and

sup
h

∫
Ω

|∇αmh|p +
1
εph
|∇3mh|p dx < +∞.

Thus mh converges to m weakly in W 1,p(Ω,R3) and strongly in Lq(Ω,R3), for every q < +∞, since ‖mh‖L∞(Ω)

is equi-bounded. Moreover, m ∈ W 1,p(Ω,S2), and ∇3m = 0, that is m does not depend on the transverse
direction x3.

Since ∇3mh ∈ m⊥h and (4.9) holds, we have

Eεh(mh) ≥
∫

Ω

Ŵ (mh,∇αmh) dx+
1
2

∫
Ω

|∇αuh|2 +
1
εh2
|∇3uh|2 dx,

where uh is the solution of (4.6) corresponding to mh. Then Theorem 3.2 and Proposition 4.1 yield

lim inf
h

Eεh(mh) ≥
∫

Ω

Q3,3
T Ŵ (m,∇αm) dx+

1
2

∫
Ω

|m3|2 dx.

A straightforward application of Fubini’s theorem in the definition (3.2) shows thatQ3,3
T Ŵ (m, ζ) ≥ Q2,3

T Ŵ (m, ζ),
(m, ζ) ∈ R3 × R3×2. By the arbitrariness of the sequence (εh), we get the conclusion.
Step 2. Γ- lim supε→0 Eε(m) ≤ E(m), for any m ∈ L1(Ω,R3).

By the lower semicontinuity of Γ-lim sup and by Theorem 3.2 and Remark 3.3, it suffices to show that, for
every m ∈W 1,p(ω,S2),

Γ- lim sup
ε→0

Eε(m) ≤ 2
∫
ω

Ŵ (m,∇m) dxα +
∫
ω

|m3|2 dxα. (4.12)

Let m ∈ W 1,p(ω,S2). For any η > 0, a measurability selection criterion (see [5] for example) allows us to find
a measurable function z̃ : ω → R3 such that z̃(x) ∈ m(x)⊥ a.e. in ω and∫

ω

Ŵ (m,∇m) dxα ≥
∫
ω

W (m,∇m, z̃) dxα − η.

The growth assumptions on W and Ŵ ensure that z̃ ∈ Lp(ω,R3). Consider a sequence z̃n ∈ C∞c (ω,R3) which
approximates z̃ strongly in Lp(ω,R3), and set

zn = (I −m⊗m)z̃n,

that is the projection of z̃n on m⊥. We have that zn ∈ W 1,p(ω,R3) ∩ L∞(ω,R3) and zn still converges to z̃
strongly in Lp(ω,R3). Then, we can find n(η) such that∫

ω

Ŵ (m,∇m) dxα ≥
∫
ω

W (m,∇m, zn(η)) dxα − 2η.
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Set z = zn(η) and define, for ε > 0,

mε(x) = m(xα) + εx3z(xα), mε(x) =
mε(x)
|mε(x)| , x ∈ Ω.

Since z ∈W 1,p(ω,R3)∩L∞(ω,R3), then, for ε sufficiently small, mε is well defined and belongs to W 1,p(Ω,S2);
moreover, both mε and mε converge to m strongly in L∞(Ω,R3). An easy computation shows that

∇mε =
(

I

|mε|
− mε ⊗mε

|mε|3
)
∇mε.

In particular, as ∇mε = (∇m+ εx3∇αz, εz), we have

∇αmε =
(

I

|mε|
− mε ⊗mε

|mε|3
)

(∇m+ εx3∇αz), ∇3mε =
(

I

|mε|
− mε ⊗mε

|mε|3
)
εz

and, letting ε tend to 0,

∇αmε → (I −m⊗m)∇m = ∇m, 1
ε
∇3mε → (I −m⊗m) z = z,

strongly in Lp(Ω,R3).
Thus, by (4.1) and by Proposition 4.1, we get

lim
ε→0

Eε(mε) = 2
∫
ω

W (m,∇m, z) dx+
∫
ω

|m3|2 dx ≤ 2
∫
ω

Ŵ (m,∇m) dx+
∫
ω

|m3|2 dx+ 2η.

The inequality (4.12) easily follows by the definition of Γ-lim sup and the arbitrariness of η > 0. 2

Remark 4.4. The previous result can be extended to the case of an applied field h, by considering functionals
of the type

Gε(m) = Eε(m)− 1
ε

∫
Ωε

h ·mdx.

Through the change of variables (4.4), we obtain the functionals

Gε(m) = Eε(m)−
∫

Ω

h(xα, εx3) ·m(x) dx. (4.13)

In order to identify the Γ-limit of Gε, a continuity assumption of h in x3 is required. By simplicity, we may
consider h(x) = q(x3)g(xα), with g ∈ L1(ω;R3) and q ∈ C(−1, 1). Then it is easy to show that Gε Γ-converges to

G(m) = E(m)− 2q(0)
∫
ω

g ·mdxα. (4.14)

Remark 4.5. If W is also a tangential quasiconvex function, the direct method of the calculus of variations
yields the existence of a minimizer of Gε(m).

As a straightforward consequence of Theorem 2.1, we deduce the following result on the convergence of
minimum problems.
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Corollary 4.6. Let W be a tangential quasiconvex function, h be as in Remark 4.4, and let Gε and G be defined
by (4.13) and (4.14). If mε ∈W 1,p(Ω,S2) is a minimizer of Gε, then, for every sequence (εh) tending to 0 there
exists a subsequence (not relabelled) (mεh) converging weakly in W 1,p(Ω,R3) to a function m ∈ W 1,p(ω,S2)
which is a minimizer of G.

Remark 4.7. If W (y, ξ) = γ|ξ|2 +ϕ(y), that is Eε represents the standard micromagnetic energy, we have that

Q2,3
T Ŵ (y, ζ) = γ|ζ|2 + ϕ(y),

and we generalize the convergence result of minimum problems obtained in [12].

If p = 1, as a consequence of Theorem 3.4 we obtain the following Γ-convergence result.

Theorem 4.8. Let p = 1 and let W satisfy the additional hypotheses:
(a) W (y, ξ) is Lipschitz in ξ uniformly with respect to y;
(b) for all y0 ∈ Rd and for all η > 0 there exists δ > 0 such that |y − y0| < δ implies that

W (y0, ξ)−W (y, ξ) ≤ η(1 + |ξ|).

Then

Γ(L1)- lim
ε→0

Eε(m) = 2
∫
ω

Q2,3
T Ŵ (m,∇m) dxα +

∫
ω

|m3|2 dxα on W 1,1(ω,S2).

Proof. It can be easily proved that hypotheses (a) and (b) are inherited by Ŵ . Then we can proceed as in the
proof of Theorem 4.2, by taking into account Theorem 3.4 and Remarks 3.5, 3.6.

Our attention on this problem was drawn by Irene Fonseca. We thank her for many useful discussions concerning the
subject of this paper. This research was done while we were postdoctoral associates at the Center for Nonlinear Analysis
(NSF Grant No. DMS-9803791) at Carnegie Mellon University of Pittsburgh.
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