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COMPARISON OF ACTIVE CONTROL TECHNIQUES
OVER A DIHEDRAL PLANE

Emmanuel Creusé
1, 2

Abstract. This work is devoted to the numerical comparison of four active control techniques in order
to increase the pressure recovery generated by the deceleration of a slightly compressible viscous flow
over a dihedral plane. It is performed by the use of vortex generator jets and intrusive sensors. The
governing equations, the two-dimensional direct numerical simulation code and the flow configuration
are first briefly recalled. Then, the objective of the control is carefully displayed, and the uncontrolled
flow described. The main part of this work deals with the explanation, the implementation and the
comparison of four active control strategies: closed loop control, adaptative control, physical ramp
control and sub-optimal control. Each of these techniques is of different nature, and results are very
formative to understand what is important – or less – to make the control efficient.
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Introduction

Nowadays, control in fluid mechanics represents a very important research axis. Delaying the detachment of a
boundary layer, or reducing the drag on a profile are for example crucial industrial and economic objectives.
Besides, a lot of papers, congresses and workshops are devoted to this theme.

On the one hand, a lot of processes are passive control ones. By passive control, we mean that the actions
generated on the system are time independant. The idea can be to optimize the shape or to work on the
material of a profile on which the fluid evolves, in order to improve a desired property. A reference work in
fluid mechanics was for example devoted to the direct numerical simulation of a turbulent flow over riblets,
to decrease the drag coefficient [8]. Indeed, passive control is most of the time simple to carry out and rather
cheap. Nevertheless, it is determinated once and for all. An alteration in the nature of the flow can so make it
inefficient, or even damaging.

On the other hand, the second possibility is to resort to active control. By active control, we mean that
the actions on the system are not only time dependant, but also function of the flow evolution itself. A very
large number of experiences and studies, both experimentally and numerically have been realized for the last
decade. A very complete inventory was drawed up by Moin and Bewley before 1994 [22], as well as by Hernandez

Keywords and phrases: Active control, compressible viscous flow, subsonic evolution.
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before 1996 [16]. Several more recent references will be mentionned throughout this paper, on which the work
developped below is based.

The object of this paper is to compare four active control techniques on a simple configuration, corresponding
to the evolution of a slightly compressible viscous flow over a dihedral plane for a laminar evolution. This
configuration was already studied. First, relevant boundary conditions were found to ensure a physically coherent
simulation [7], and then the dynamics of the uncontrolled flow was carefully described [13]. The four different
active control techniques have been chosen among different horizons, to understand as far as possible the
advantages and drawbacks of each approach. We will deal here with mechanical active control, statistical active
control, physical ramp control, and mathematical active control. Whatever the control studied, the control
device is always composed of one or several Vortex Generator Jets, to blow or to suck up fluid through the
dihedral, and intrusive sensors.

The paper is decomposed like explained here. The first part shortly recalls the governing equations and the
numerical scheme used to solve them, before displaying the flow configuration. In the second part, the purpose
of the control is explained, and the uncontrolled simulation presented. Then, in the third part, each of the four
active control techniques is developped, and for each of them the results obtained on the dihedral configuration
are presented, compared and commented.

1. Governing equations and numerical code

1.1. Governing equations

The governing equations are the well known two-dimensional compressible Navier–Stokes equations, given in
their non-dimensionalized formulation in an orthonormal system and with usual notations by:{

∂U

∂t
+∇ · F (U) =

1
Re
∇ ·G(U,∇U),

U(t = 0) = U0,

with:

U = [ρ, ρu, ρv, ρE]T .

Here, the total energy per unit of mass is denoted E, and Re is the numerical Reynolds number. The convective
flux are given by:

Fx(U) = [ρu, ρu2 + p, ρuv, (ρE + p)u]T ,

Fy(U) = [ρv, ρuv, ρv2 + p, (ρE + p)v]T .

The diffusive ones are given by:

Gx(U,∇U) = [0, σxx, σxy, βx]T ,

Gy(U,∇U) = [0, σxy, σyy, βy]T ,
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with:

βx = uσxx + vσxy +
γ k

Pr

∂T

∂x
,

βy = uσxy + vσyy +
γ k

Pr

∂T

∂y
,

where T is the temperature, γ = 1.4, k = 1, Pr = 0.72, and:

σxx =
4
3
∂u

∂x
− 2

3
∂v

∂y
,

σyy =
4
3
∂v

∂y
− 2

3
∂u

∂x
,

σxy = σyx =
∂u

∂y
+
∂v

∂x
·

The system is then closed by the state equation:

p = (γ − 1) ρ T,

as well as by the relation:

ρE =
1
2
ρ‖~u‖2 +

p

γ − 1
·

1.2. Numerical code

The previous equations are numerically solved by a direct numerical simulation on an unstructured mesh
of triangular cells. The convective term approximation is made with a finite volume method, with Roe solver
and a MUSCL technique in order to bring the second order accuracy in space. No flux limiter is needed, since
the solutions considered here do not exhibit discontinuities. The diffusive term approximation is ensured by a
finite element method, with classical conform P1 elements. The centered process also brings the second order
accuracy in space. Finally, the temporal integration of the residuals is performed with the Heun method, by
using a mass-lumping procedure. The temporal integration is so an explicit one, and a CFL condition has to
be respected to ensure the numerical stability of the scheme. More details about the numerical scheme will be
found for example in [7] or [14].

1.3. Flow configuration

The flow considered in this work is the two-dimensional evolution of a viscous compressible flow over a
dihedral plane. The computational domain is displayed in dashed lines in Figure 1. The height of the boundary
layer at point A, on the inflow boundary (a), is denoted δ. The horizontal velocity very far from the dihedral is
denoted U∞, and µ and ρr are respectively the dynamic viscosity coefficient and a characteristic density of the
fluid. A characteristic Reynolds number of the flow Reδ can then be deduced from these previous values:

Reδ =
ρr U∞ δ

µ
· (1)
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Figure 1. Computational domain.

It should be noted that the distance between the leading edge O and the point A is completely defined as a
function of δ and Reδ. Indeed, by using the Blasius approximation for an incompressible laminar boundary
layer [11], we have:

δ ≈
5
√
µ
√
OA√

ρr U∞
· (2)

From (1) and (2), we get:

OA ≈ δ Reδ
25
·

In this work, Reδ = 400. Thus, the flow is in a laminar evolution. Mach number at infinity is M = 0.2, which
corresponds to a slightly compressible flow. The size of the computational domain is defined as a function of δ,
as indicated in Figure 1. α is equal to 10o. The grid is composed of 201×101 nodes. To obtain a good resolution
of the boundary layer and the separation point instabilities, the grid distribution is compacted near the dihedral
wall regions in the normal direction to the boundary and horizontally in the vicinity of the point B. For the
value Reδ = 400, 20 nodes are located in the height of the boundary layer at the entry of the domain.

1.4. Boundary conditions

The boundary (b) corresponds to an isothermal no-slip wall, and the boundaries (a, c) and (d) are artificial
ones, without any physical reality. On each of these frontiers, we have to specify relevant boundary conditions.
On the (a) boundary, a subsonic inflow condition is used. The two components of the velocity uin and vin
(adimensionalized by U∞ and corresponding to the Blasius profile) as well as the temperature T0 are strongly
specified: 

η =
5 y
δ
, Tin = T0

uin = f
′
(η), vin =

5
2Reδ

(ηf
′
(η) − f(η)),

where f(η) and f
′
(η) are tabulated functions of η [11]. The pressure is then deduced with the continuity

equation. On the (b) boundary, an isothermal no-slip wall is used. The two components of the velocity are set
to zero, and the temperature T0 is strongly specified. The pressure is also deduced with the continuity equation.
On the (c) boundary, we use the non reflecting boundary condition with a pressure recall, in order to specify to
the flow the static pressure at infinity. For a very accurate description of the implementation of the (a, b) and
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(c) boundary conditions, see [24]. Finally, on the (d) boundary, we use a recent artificial subsonic boundary
condition, which allows us to specify the value of the unique entering characteristic wave’s amplitude in a good
way with regard to the physics of the problem (see [7]).

2. Control purpose and description of the uncontrolled flow

2.1. Control purpose

Figure 2. ~τ and ~n definitions.

Let us note ~τ and ~n respectively the tangent and the normal vectors to the dihedral between the point B and
the point C (Fig. 2). uτ (respectively un) is the velocity in the ~τ direction (respectively in the ~n direction). In
such a configuration, the total force induced by the flow on the upper side of the part BC of the dihedral can
be mainly defined as the sum of a pressure force and of a friction one:

~F =
∫

[BC]

−p~n+ µ
∂uτ
∂n

~τ dl.

The upward thrust, defined as the component in the ~x direction of the force ~F , is so given by:

T =
∫

[BC]

−p sinα+ µ
∂uτ
∂n

cosα dl (α > 0).

For a laminar evolution, we will consider that the pressure force is predominant with regard to the friction one,
and T will be in a first approximation defined as:

T ≈
∫

[BC]

−p sinα dl. (3)

The objective of the control procedure is to maximize this approximated upward thrust. In order to do it, the T
value is compared to an ideal value Tid, which would have been obtained in the case of an incompressible perfect
inviscid fluid on the same configuration (ρ is then considered as constant). For such a flow, we note respectively
U and p the average velocity and the average pressure on the current section whose height is given by S (Fig. 3).
The inflow average velocity and pressure, as well as the height of the inflow section are respectively denoted Ue,
pe and Se. Provided that the top artificial boundary is high enough to ensure that the velocity of the fluid is
nearly horizontal on this boundary, we can write the mass conservation principle:

U S = Ue Se ,
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Figure 3. Ideal case for the upward thrust.

that is to say:

U =
Ue Se

Se + l sinα
·

Using Bernouilli’s theorem, p can be derived as a function of the inflow pressure pe:

p = pe +
1
2
ρU2

e

[
1−

(
Se

Se + l sinα

)2
]
·

After integration in (3), we get:
Tid ≈ (Tid)1 + (Tid)2, with:

(Tid)1 = Lpe , (4)

(Tid)2 =
LρU2

e

2

1− 1

1 +
L sinα
Se

 · (5)

(Tid)1 is function of L and pe. In fact, the transformation of the kinetic energy into a pressure force because
of the deceleration of the flow is quantified by the (Tid)2 contribution, and that’s why we focuss on this second
part of the ideal force Tid. The control’s efficiency is then evaluated by the pressure recovery coefficient Cr,
defined by:

Cr = 100
Tnum − (Tid)1

(Tid)2
·

Tnum is numerically evaluated with (3). (Tid)1 and (Tid)2 are computed by the expressions (4) and (5), with pe
and ρ beeing respectively the numerical inflow pressure and density, and Ue = U∞.

The taller Cr is, the more efficient the control is.

2.2. Description of the uncontrolled flow

Without any control, the flow exhibits a periodic behaviour. Vortices are created from point B, and after
some merging phenomena are conveyed downstream towards the outflow boundary, where they leave the com-
putational domain. The isolines of several quantities such as the pressure, the vorticity, the Coherent Structures
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isolated with the Weiss criterion [2] and the stream function are displayed at three different times of a period
T400 (Fig. 4). For further informations, the accurate description of the flow’s dynamics has been carefully ex-
plained [13]. In this present work, the important quantity to take care of is the Cr evolution as a function of
the time. As it will be shown in the following results, without any control the temporal average value of Cr is
equal to 64.6%. The control processes will so have to increase this reference value.

Pressure isolines Vorticity isolines
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Figure 4. Reδ = 400. t = T400 (top), t = T400 + 2T400/5 (middle), t = T400 + 4T400/5 (bottom).



450 E. CREUSÉ

3. Active control

3.1. The closed loop control

We first remark that at any time of the uncontrolled simulation, the location of the vortices is closely
connected to the tangent pressure gradient (or the normal vorticity gradient) on the dihedral boundary (Fig. 5).
This property was also checked both experimentally [18] and numerically [23]. This property is used to guess

0 5 10 15 20 25 30 35 40 45

−5

0

5

0 5 10 15 20 25 30 35 40 45
−0.2

0

0.2

0 5 10 15 20 25 30 35 40 45
−0.2

0

0.2

Figure 5. Correlation between the vortices location (top) and the values of 1
ρ
∂p
∂τ (middle)

or − 1
Re

∂ω
∂n (bottom) on the dihedral.

the vortices location by analysing the tangent pressure gradient profile on the wall. As a consequence, a rather
simple active control technique can be suggested, like Hernandez did in a close configuration [16], which is called
“closed loop control”.

Let us consider an intrusive sensor at point S (Fig. 6). The tangent pressure gradient on the dihedral at node
S,
(
∂p
∂τ

)
S

, is measured at each time step of the simulation. Then, a Vortex Generator Jet at node V, with a

thickness e, is induced by specifying a vertical velocity whose amplitude qV (t) is given by:

qV (t) = ε

(
∂p
∂τ

)′
S

(t)[(
∂p
∂τ

)′
S

]
max

· (6)

(
∂p
∂τ

)′
S

(t) is the tangent pressure gradient variation around the temporal average value of
(
∂p
∂τ

)
(t), regularly

updated during the simulation.
[(

∂p
∂τ

)′
S

]
max

is the tallest value of
∣∣∣∣( ∂p∂τ )′S (t)

∣∣∣∣, recorded during a previous

uncontrolled simulation. Finally, ε = 0.0025 is the amplification coefficient. Here, the transfer function is
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Figure 6. Closed loop control.

very simple, and made exclusively of an amplifier to supply a signal whose level is hoped sufficient to excite the
system. Provided that the informations recorded at the sensor make a report on the frequency of the instabilities
responsible for the low value of Cr, we can hope that the jet generated by the actuator will significantly change
the flow characteristics and perhaps increase the Cr coefficient, since it will be pulsed at a relevant frequency.

The control begins at t = 900. After a transitional regime, the signal qV (t) becomes periodic, and its
amplitude is in the order of 4.5% of the velocity U∞ (Fig. 7a). It should be noticed that the temporal average
value of the signal is equal to zero. Several observations can be performed on the controlled solution.

(a) qV (t) (b) u(t) at a given point in the flow

Figure 7. qV (t), and u(t) at a given point in the flow.

First, the fundamental frequency of the flow has been multiplied by a factor 3. For example, we can see the
horizontal velocity signal as a function of the time at a given point in the flow in the zone where vortices evolve
(Fig. 7b). The amplitude of the fluctuations is also smaller for the controlled flow than for the uncontrolled one.
Then, the temporal average recirculation area, defined as the zone where the horizontal velocity is negative,
has been drastically reduced (Fig. 8). Moreover, vortices are smaller. They do not interact together anymore,
and are directly conveyed towards the outflow (Fig. 9). Finally, the average value of the Cr coefficient has been
increased up to 84.3%, which confirms that this control procedure is efficient (Fig. 10).

These results are preserved provided that the actuator V is located next to point B (just upstream or just
downstream), and provided that the sensor S is far enough from point B, in the zone where vortices are already
created and are more or less kindly conveyed towards the outflow boundary. Other numerical tests show that the
addition of a phase displacement in the transfer function (6) did not change the results. An accurate description
of the influence of each of the previous parameters such as the thickness of the jet, the ε value, the distance of
the sensor and of the actuator to point B will be found in [12].
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Uncontrolled average recirculation area Controlled average recirculation area.

Figure 8. Average recirculation areas.

t = T t = T +
T

4

t = T +
T

2
t = T +

3T
4

Figure 9. Coherent Structures with closed loop control during a period T .

These observations allow us to conclude that the closed loop control process is actually efficient, because the
relevant characteristic frequency of the instabilities has been catched by the sensor, and suitably reflected to
the actuator. It generates an important recirculation area reduction, and as a consequence leads to a better
pressure recovery coefficient.

Figure 10. Cr = f(t) (The control procedure is applied at t = 900).
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3.2. The adaptative control

In the previous control, the transfer function is rather simple, and has been found by a fairly intuitive
way. Now, we wonder if it would be possible to improve it, by using an algorithm which could progressively
learn by himself the link between the

(
∂p
∂τ

)
S

(t) value as a function of some previous velocities induced at the
actuator V. The transfer function will continuously have to identify the system, in order to find the suitable
control to produce. Nevertheless, the physical aspect as well as the governing equations of the phenomena will
not be taken into account. A detailed explanation of the principle of these methods will be found in [17]. In
fact, an adaptative system is a system whose effect is adjustable such that its behaviour and its efficiency get
better and better during the time with regard to an identified criterion, because of its environment. Then, it
would be perhaps possible to specify a given vertical velocity at node V and at time t as a function of a desired
future

(
∂p
∂τ

)
S

value at node S. As a consequence, we are first looking for the np real weights wik, (1 ≤ i ≤ np),
which would check as better as possible: (

∂p

∂τ

)k
S

≈
np∑
i=1

wik q
k−r−i
V . (7)

r is a delay parameter.
(
∂p
∂τ

)k
S

is the tangent pressure gradient at the sensor S and time tk. qk−r−iV is the

vertical velocity imposed at node V and time tk−r−i, and wik (1 ≤ i ≤ np) are the np unknown we are looking
for.

The r coefficient is numerically deduced by the time needed on the uncontrolled flow for a vertical velocity
induced at the actuator V to have repercussions recorded at the sensor S. We choose here np = 7. The wik
values (1 ≤ i ≤ np) are regularly updated with the use of the Last Mean Square algorithm [26] on the previous
closed loop simulation, until the convergence is reached. Then, the control procedure can begin parallel to the
continuously updating of the weights. Using (7), we can deduce the quantity qkV to impose as a function of a

desired
(
∂p
∂τ

)k+r+1

S
value which is noted Dk+r+1

S :

qkV =

Dk+r+1
S −

np∑
i=2

wik+r+1 q
k+1−i
V

w1
k+r+1

·

Of course, at time tk, the wik+r+1 (1 ≤ i ≤ np) values are not available. That’s why we have to assume that
wik+r+1 ≈ wik, that is to say that the wik values (1 ≤ i ≤ np) are slowly varying with regard to the time. Finally,
we get:

qkV =

Dk+r+1
S −

np∑
i=2

wik q
k+1−i
V

w1
k

· (8)

A relation such as (8) does not ensure that the vertical velocity qkV remains bounded. As a consequence, a
troncature procedure has to be added to avoid |qkV | beeing greater than 0.045U∞.

Finally, the Dk+r+1
S value is chosen as:

Dk+r+1
S = β

np∑
i=1

wik q
k−r−i
V + (1− β)

(
∂p

∂τ

)
S

,
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‖wk+1 − wk‖l2(t) qV (t)
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Figure 11. Adaptative control as a function of β.
‖wk+1 − wk‖l2(t) (left) and qV (t) (right).
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where
(
∂p
∂τ

)
S

is the average tangent pressure gradient at node S, regularly updated during the controlled sim-
ulation. We have to choose β between β = 0 and β = 1. Of course, the case β = 1 would lead exactly to the
same results as the closed loop control ones.

Remark. For the previous closed loop control, the actuations were updated at each numerical time step δt
imposed by the CFL condition. For the adaptative control, the actuations are updated at each ∆t = T400/45,
where T400 is the fundamental frequency of the uncontrolled simulation. Of course, in order to make the
comparisons possible, we checked than even with the actuations updated at each ∆t, the closed loop control
gives the same results as the ones previously displayed.

The initial datum used is a flow obtained with the closed loop control. Results are analysed for different
values of β. On Figure 11, we can see the evolution of ‖wk+1−wk‖l2(t) from the start of the control process until
the established controlled regime is reached (left row), as well as the evolution of qV (t) when the established
controlled regime is reached (right row). First, we can see that the smaller β is, the more complex qV (t) is, and
the longer it is for the vector wk to reach the convergence.

Nevertheless, the Cr coefficient is nearly the same as the one obtained with the closed loop control (Tab. 1).
No significant improvement is observed. So, we can deduce that even if the transfer function seems more
sophisticated, the main fact which makes such a control efficient is the vortices frequency crossing which is
recorded at the sensor S, and has repercussions on the qV (t) signal.

Table 1. Adaptative control Cr as a function of β.

β value Cr
β = 1.0 84.3%
β = 0.9 84.7%
β = 0.8 84.4%
β = 0.6 83.5%

3.3. The physical ramp control

Now, we would like to use several actuators and sensors, to see if it could bring higher efficiency. To do it,
we consider a control process based on physical arguments. Obviously, the success of such a method strongly
depends on the physical phenomena’s understanding capability. To take an example, a reference work was
performed to decrease the drag generated by a turbulent boundary layer on a wall [9]. The idea was to use
Vortex Generator Jets to move away from the wall the tangential viscous strains, responsible for the drag. Then,
a normal wall velocity was imposed as a function of the normal velocity at a given distance just upon the wall.
Results were rather good, and an interpretation of these good performances was given later [15]. Unfortunately,
with the use of intrusive sensors in the wall, results were not so good.

We propose now a recent control type based on the Lighthill theory [20]. This control has been recently used
by Koumoutsakos in a different configuration [19].

3.3.1. Basis principle

The generation of vorticity near a no-slip wall caused by a VGJ can be decomposed in two successive steps.
In the first one, the fluid is considered inviscid. If we assume that a jet is produced by an actuator located at a
point A

′

1 on the wall during an elementary time step ∆t, since the fluid is a non viscous one, a slip velocity Ug
is created on the wall, whose modulus at a given point S1 on the wall is inversely proportionnal to the distance
S1A

′

1 (Fig. 12). In the second step, this fictitious slip velocity is canceled by the vorticity normal flux generation
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Figure 12. Physical ramp control: basis principle.

∂ω
∂y , in order to ensure the actual no-slip boundary condition. As a consequence, the generated circulation in
the flow on each elementary segment of the wall whose lenght is δs is then δΓ = Ug δs, and we have:

δΓ = ν
∂ω

∂y
∆t δs.

ν = µ/ρr is the kinematic viscosity of the fluid. Finally, a vertical VGJ centered on A
′

1, whose thickness is d1

and whose amplitude is q1 (q1 > 0 corresponding to blowing and q1 < 0 corresponding to suction), generated
during an elementary time step ∆t produces at node S1 a vorticity normal flux defined by:

∂ω

∂y
(x1) = ds

q1
2π ν ∆t

∫ d1/2

−d1/2

ds
x1 − x′1

·

Considering now N actuators A
′

j (1 ≤ j ≤ N), and N sensors Si (1 ≤ i ≤ N), the normal flux of vorticity
produced on Si because of the jets generated at the N actuators during an elementary time step ∆t can be
deduced by superimposition:

∂ω

∂y
(xi) =

1
2π ν ∆t

N∑
j=1

qjds
∫ dj/2

−dj/2

ds
xi − x′j − s

· (9)

Since the flow is a slightly compressible one, we can admit, in a first approximation, that ∇.~u = 0. Using the

incompressible Navier–Stokes equation, as well as the fact that on a no-slip wall we have ~u =
∂~u

∂t
= ~0, we can

easily prove:

−ν
(
∂ω

∂y

)
=

1
ρ

(
∂p

∂x

)
·

Then, the relation (9) becomes:

∂p

∂x
(xi) = − ρ

2π ∆t

N∑
j=1

qj

∫ dj/2

−dj/2

ds
xi − x′j − s

· (10)

3.3.2. Control procedure

Now, we consider the set of N sensors Si (1 ≤ i ≤ N) and actuators Aj (1 ≤ j ≤ N), alternately allocated on
the dihedral between the points B and C (Fig. 13). With the previous analysis, it is now possible to establish
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Figure 13. Physical ramp control: sensors and actuators locations.

explicitly the amplitude of the actuation vector Qk to impose at the actuators in order to achieve a desired
pressure tangential gradient vector Dk at the sensors at time tk:

Qk = B−1(Dk −Xk−1), (11)

with:

Qk =
[
qk1 (x

′

1), qk2 (x
′

2), ..., qkN (x
′

N )
]T

,

Xk−1 = −
[

1
ρk−1

∂pk−1

∂τ
(x1),

1
ρk−1

∂pk−1

∂τ
(x2), ...,

1
ρk−1

∂pk−1

∂τ
(xN )

]T
,

Bij =
1

2 π
ln

∣∣∣∣∣x
′

j − xi − dj/2
x
′
j − xi + dj/2

∣∣∣∣∣ , 1 ≤ i ≤ N, 1 ≤ j ≤ N.

Here, we choose Dk to be equal to the vector whose component i is the average value of
1
ρ

∂p

∂τ
(xi) regularly

updated since the begining of the simulation (1 ≤ i ≤ N).
Numerically speaking, we actually use the relation (11) in a modified formulation:

Qk = εK B−1(Dk −Xk−1).

εK is a parameter which has to be adjusted. In order to do it, we simply remark that the closed loop control
can be considered as a physical ramp control with one sensor and one actuator. As a consequence, the closed
loop control results obtained with the actuator just downstream the point B are used to derive the value of εK
in the physical ramp control with one sensor and one actuator which leads to these same results.

Remark. It would have been also possible, with such a control, to use M sensors and N actuators, with
M < N , and to add N −M additional constraints in order to make the B matrix inversible. For example, we
could take M = N−1, and ask to the total mass flux through the wall to be equal to zero. It would be specified,
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q1(t) q2(t)

2000 2050 2100 2150
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

2000 2050 2100 2150
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

actuator 1 t actuator 2 t

q3(t) q4(t)

2000 2050 2100 2150
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

2000 2050 2100 2150
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

actuator 3 t actuator 4 t

q5(t) q6(t)

2000 2050 2100 2150
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

2000 2050 2100 2150
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

actuator 5 t actuator 6 t

q7(t) q8(t)

2000 2050 2100 2150
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

2000 2050 2100 2150
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

actuator 7 t actuator 8 t

Figure 14. Physical ramp control: actuations Q(t) for N = 8.
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Figure 15. Sub-optimal control: definition of ΓC . Local (left) or distribuated (right).

provided that the density ρ is considered as constant and that all the actuators have the same thickness, by:

N∑
j=1

qkj = 0.

Results are presented for N = 8. Table 2 gives the sensors and actuators location on the dihedral. Then, the

Table 2. dSi and dAi for n = 8.

Locations 1 2 3 4
Sensors dSi 12, 5δ200 16, 5δ200 21, 5δ200 26, 5δ200

Actuators dAi 9δ200 14δ200 19δ200 24δ200

Locations 5 6 7 8
Sensors dSi 31, 5δ200 36, 5δ200 41, 5δ200 46, 5δ200

Actuators dAi 29δ200 34δ200 39δ200 44δ200

Figure 14 gives the evolution of qkj (t) (1 ≤ j ≤ 8) when the established controlled regime is reached. We can see
that the fundamental frequency of the signal is the same whatever actuator is concerned. Moreover, the closer
the actuator is to point B, the taller the amplitude of the actuation is.

Finally, it appears that the average Cr coefficient is about 85.9%, which is an interessant improvement with
regard to the two previous control procedures, since it corresponds to a relative saving of 1.9%.

3.4. The sub-optimal control

Now, we would like to consider a control procedure based on a mathematical analysis of the governing
equations: the optimal control. The governing equations are now used to conceive the control strategy. It leads
to a systematic method to find retroactive control laws for the more efficient control velocities distribution in
order to reach a wanted effect. This control strategy was introduced by Abergel and Temam for fluid mechanics
problems [1] following the traces of Lions [21]. It was then developped by Choi et al. for the stochastic Burger
equation [10]. More recently, Bewley et al. considered this control procedure in several configurations [3–6,25],
and Hernandez began to consider it for the configuration we are dealing with [16].

Let us note ΓC a part of the dihedral on which the control Φ will be applied. ΓC can be local, or distributed
along the wall (Fig. 15). We then note ΓP =[BC]. We hope the aim of the control to be reached by minimizing
the functionnal JT (Φ, p) given by:

JT (Φ, p) =
∫

[0,T ]

α

2

∫
ΓC

Φ2 dl +
1
2

∫
ΓP

(p− pid)2 dl dt.
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Such an objective is very difficult because of the very large computational time needed, as we will see later.
As a consequence, the control procedure is simplified by introducing the sub-optimal control, which consists in
minimizing the functionnal J(Φ, p) between two successive time steps given by:

J(Φ, p) =
α

2

∫
ΓC

Φ2 dl +
1
2

∫
ΓP

(p− pid)2 dl = JC(Φ) + JP (Φ).

JC(Φ) corresponds to the cost of the control. JP (Φ) permits to know how far the pressure distribution along ΓP
is from an ideal distribution pid, which has to be specified. The greater α is, the more expensive is the control
process.

Let us consider that the solution Un is given on the whole domain. We want to derive Φ to be applied
between the times tn and tn+1, in order to minimize the functionnal J(Φ, p) at time tn+1 by solving:

• compressible Navier–Stokes equations from tn to tn+1;
• on the dihedral,

 un = Φ and uτ = 0 on ΓC from tn to tn+1,

un = 0 and uτ = 0 on Γ\ΓC from tn to tn+1;

• other boundary conditions unchanged.

In order to do it, we have to explicitly express the Frechet derivative of J(Φ, p) with regard to Φ. It will then
be possible to make use of a descent algorithm to reach the relevant control value Φ to apply. We first have:

DJ

DΦ
(Φ, p)Φ̃ = α

∫
ΓC

Φ Φ̃ dl +
∫

ΓP

(p− pid) ψ dl ,

with:

ψ =
Dp

DΦ
Φ̃.

Since for our configuration the fluid is slightly compressible, we do the incompressiblity approximation. That’s
why we introduce the incompressible Navier–Stokes equations in order to derive the un+1, vn+1 and pn+1 values
at each node of the mesh. Moreover, we consider a pressure implicit discretization:



un+1 − un + ∆t
∂pn+1

∂x1
= Rn1 ,

vn+1 − vn + ∆t
∂pn+1

∂x2
= Rn2 ,

∂un+1

∂x1
+
∂vn+1

∂x2
= 0 ,

un = Φ and uτ = 0 on ΓC from tn to tn+1 ,

un = 0 and uτ = 0 on Γ\ΓC from tn to tn+1.
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Rn1 and Rn2 are residuals depending on Un only. The Frechet derivative with regard to Φ of this previous system
takes the formulation:



η1 + ∆t
∂Ψ
∂x1

= 0 ,

η2 + ∆t
∂Ψ
∂x2

= 0 ,

∂η1

∂x1
+
∂η2

∂x2
= 0 ,

ηn = Φ̃ and ητ = 0 on ΓC from tn to tn+1 ,

ηn = 0 and ητ = 0 on Γ\ΓC from tn to tn+1.

Here,

η1 =
Dun+1

DΦ
Φ̃ ; η2 =

Dvn+1

DΦ
Φ̃.

The adjoint system can be then deduced by the scalar product with the dual variables (ζ1, ζ2, π):

∫
Ω

[(
ηi + ∆t

∂Ψ
∂xi

)
ζi +

∂ηi
∂xi

π

]
dV = 0

⇐⇒
∫

Ω

[
ηiζi + ∆t

∂(Ψζi)
∂xi

−∆tΨ
∂ζi
∂xi

+
(
∂(ηiπ)
∂xi

− ηi
∂π

∂xi

)]
dV = 0

⇐⇒
∫

Ω

[
ηi

(
ζi −

∂π

∂xi

)
−∆tΨ

∂ζi
∂xi

]
dV +

∫
∂Ω

(∆tΨζn + ηnπ) dl = 0.

As a consequence, the adjoint state equation is given by:


ζi −

∂π

∂xi
= 0 ,

∂ζi
∂xi

= 0,

and the boundary condition has to be chosen in a convenient way to reach what we are looking for, that is to

say an explicit expression of
DJ

DΦ
(Φ, p). To do it, we make the choice:

 ζn = (p− pid) and ζτ = 0 on ΓP ,

ζn = 0 and ζτ = 0 on Γ\ΓP .
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We obtain: ∫
∂Ω

∆tΨζndl +
∫
∂Ω

ηn π dl = 0

⇐⇒
∫

ΓP

∆t(p− pid) Dp
DΦ

Φ̃dl +
∫

ΓC

π Φ̃ dl = 0

⇐⇒ ∆t
(
DJ

DΦ
(Φ, p)Φ̃− α

∫
ΓC

Φ Φ̃dl
)

+
∫

ΓC
π Φ̃ dl = 0.

Then,
DJ

DΦ
(Φ, p)Φ̃ =

∫
ΓC

(
αΦ− π

∆t

)
Φ̃dl.

Finally, we express explicitly the Frechet derivative of J(Φ, p) as a function of the adjoint pressure π:

DJ

DΦ
(Φ, p) = αΦ− π

∆t
·

Remark. If (ζ1, ζ2, π) is solution of the adjoint problem, then (ζ1, ζ2, π+C) is also solution (C ∈ IR). In order
to choose C, we set at the top left corner of the domain π = 0. This choice is justified in order to ensure that
Φ ≡ 0 in the case where p ≡ pid on ΓP . Indeed, in this case we would have in the same time:

DJ

DΦ
Φ̃ = α

∫
ΓC

ΦΦ̃ dl and
DJ

DΦ
Φ̃ =

∫
ΓC

(
αΦ− π

∆t

)
Φ̃ dl.

If p ≡ pid on ΓP , the resolution of the adjoint problem leads to π ≡ constante in the whole domain, then π ≡ 0
since π = 0 on ΓC .

The previous analysis leads to a control procedure which is summarized on the next page. Of course, the
sub-optimal control is very computationaly expensive, since we have to solve at each numerical time step and
at several times an adjoint problem. That’s why, after the theoritical approximations we have already done,
we must do now numerical approximations. The first one consists in doing only one iteration for the control
updating (in fact, the adjoint problem is resolved only one time at each time step). It can be justified by the
fact that since the CFL condition is very restrictive, we can consider the control to be produced at time tn+1

very close to the control produced at time tn, which is the initial datum for the adjoint problem. The second
one is that the resolution of the adjoint problem is solved by a Gauss-Seidel relaxation method cell to cell for
which we do not wait for the convergence of the solution, but stop the resolution after a given a priori number of
iterations. It can also be justified for the same previous reason. Even if the sub-optimal control is cheaper than
the optimal control, it costs roughly 100% CPU time more, whereas all the previous controls have negligible
computational costs. We set α = 0.1 and µ = 3.75 . 10−6. This last value was deduced with the help of several
numerical tests.

The first results obtained with a local ΓC at the same location as the actuator used for the closed loop
control are rather disappointing. Indeed, when the established controlled flow is reached, the average Cr
coefficient is equal to 70.4%. The adjoint pressure on ΓC oscillates around zero (Fig. 16a), but qV (t) remains
always negative (Fig. 16b). It is fortunately better than the uncontrolled flow, but similar results are obtained
with a passive technique by imposing a permanent suction through the actuator V with qV (t) ≡ −0.045U∞.
Moreover, it should be noted that the fundamental frequency of the uncontrolled simulation is still detected in
this controlled flow, contrary to the three previous control processes. A decrease of µ leads to a deterioration
of the control efficiency, whereas an increase of µ prevents the qV (t) signal to oscillate, and compels it to stay
at the maximum value permitted by the truncature procedure. If we now use a distributed ΓC , at the same
location as the actuators used for the physical ramp control, the average Cr coefficient is equal to 71.8%, which
is not a very significant improvement, and the actuations on each actuator remain all negative.
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(1)
Φn and Un known

Φn,0 ← Φn, and Un,0 ← Un.
↓

(2)
Φn,k and Un,k known

↓

(3)
Adjoint problem resolution:

ζ1 −
∂π

∂x1
= 0

ζ2 −
∂π

∂x2
= 0

∂ζ1
∂x1

+
∂ζ2
∂x2

= 0

ζn = pn,k − pid and ζτ = 0 on ΓP

ζn = 0 and ζτ = 0 on ∂Ω\ΓP
↓

(4)
Obtention of Φn,k+1 with:

Φn,k+1 = Φn,k − µ(αΦn,k − π

∆t
)

↓

(5)
Computation of Un,k+1 by resolution of

compressible Navier–Stokes equations, with:
Φ = Φn,k+1

↓

(6)
If Φn,k has converged, then we go at step (7)

If not, we go at step (2) to do an additional iteration on k

↓

(7)
Φn+1 ← Φn,k+1, and Un+1 ← Un,k+1.
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(a) π(t) at a node of ΓC . (b) qV (t) on ΓC .

Figure 16. Sub-optimal control.

We so tried to use the sub-optimal control algorithm with a local ΓC but also a local ΓP . The unique
difference is that to solve the adjoint problem, the non homogeneous boundary condition is imposed only on a
small part of [BC], corresponding to the location of the sensor for the closed loop control. This way to proceed
allows us to recover a Cr coefficient of 82.3%, which is close to the results obtained with the previous controls.
the signal qV (t) is this time a crenel type signal because of the truncated procedure (Fig. 17). Of course, even
if it is numerically satisfactory, the use of this local ΓP makes the previous theoritical analysis no more valid.

Figure 17. qV (t) on ΓC , sub-optimal control.
Use of a local ΓP for the resoultion of the adjoint problem.

These observations can be interpretated by the fact that with the use of a global ΓP , the vortices passage
frequency is no more detected. Indeed, there are continually several vortices on ΓP . As a consequence, the
adjoint pressure on ΓC is computed from this global average flow on ΓP , and does not vary fastly enough. On
the contrary, when ΓP is local, the adjoint pressure on ΓC takes better into account the highest frequencies
corresponding to the vortices passage on ΓP .

4. Conclusion

In this paper, four active control techniques are compared to increase the upward thrust on a dihedral plane,
generated by a compressible viscous flow. This upward thrust is essentially induced by the pressure on the
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dihedral since the evolution is laminar, and is characterized by the value of a defined pressure recovery coefficient
Cr . In order to do it, several tangential pressure gradient sensors as well as several Vortex Actuator Jets are
used on the wall.

The closed loop control, whose transfer function simply consists in an amplification, reaches a remarkable
result by improving the Cr coefficient from 64.6% to 84.3%. It is due to the fact that the actuator is excited
at a frequency corresponding to the instabilities frequency detected at the sensor location. This control cancels
the vortices interactions, and significantly decreases the temporal average recirculation area.

With the same sensor and the same actuator, the adaptative control is used to modify the transfer function.
The principle is to find and to use a correlation law between the velocities induced at the actuator and the
signal recorded at the sensor. This control carries out at the same time both a training phase and a control
phase. Unfortunately, no significant improvement was noticed with regard to the closed loop control results.
In fact, since the jet at the actuator remained at the same fundamental frequency and at the same amplitude,
results obtained are nearly the same.

A third control strategy is based on physical arguments, and developped in previous works by Koumoutsakos.
We applied it to our configuration by using 8 sensors and 8 actuators. The quantization of a vorticity normal
flux produced in the vicinity of a normal jet generated on a no slip wall is given by a mechanical analysis of
the phenomena. Then, after a generalization to several actuators, the amplitudes of the 8 jets to impose on
the dihedral in order to reach a desired discret pressure tangent flux at the 8 sensors are deduced. This way to
proceed leads to an increase of Cr in the order of 1.9% with regard to the previous controls. In fact, not only
the relevant frequency is produced by the jets (which ensures at least the same results as the closed loop ones),
but the pressure field is also locally modified closed to each of the 8 actuators, what permits to improve also a
little the results.

Finally, the last control procedure is based on the governing equations of the flow. The aim is to minimize
a functionnal which quantifies how far the pressure distribution along the downstream part of the dihedral is
from a desired pressure distribution. Because of the slightly compressible nature of the flow, incompressible
Navier–Stokes equations are used in a first approximation. Consequently, an adjoint problem is considered and
resolved, to obtain the expression of the derivative of this functionnal to use a descent type algorithm. In a first
time, results are rather disappointing, since the pressure recovery coefficient Cr is equal to 70.4%. Nevertheless,
in a second time, the fact of using only a reduced part of the downstream part of the dihedral to specify the
boundary conditions for the resolution of the adjoint problem leads to results very close to those obtained by
the previous control methods. This can be certainly explained by the fact that the use of the whole downstream
part of the dihedral for the resolution of the adjoint problem prevents the high frequencies to be specified at
the actuator, because of an average process. On the contrary, the use of a small part of the downstream part
of the dihedral allows the high frequencies to be specified to the actuator.

The author wishes to thank particularly C.H. Bruneau for fruitful discussions about several topics developped in this
work.
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