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REMARKS ON EXACT CONTROLLABILITY
FOR THE NAVIER-STOKES EQUATIONS*

OLEC YU. IMANUVILOV!

Abstract. We study the local exact controllability problem for the Navier-Stokes equations that
describe an incompressible fluid flow in a bounded domain 2 with control distributed in a subdomain
w C QCR™ n e {2,3}. Theresult that we obtained in this paper is as follows. Suppose that 9(¢, z) is a
given solution of the Navier-Stokes equations. Let vo(z) be a given initial condition and [|9(0, -)—vo|| < €
where ¢ is small enough. Then there exists a locally distributed control u,suppu C (0,7) X w such
that the solution v(t,z) of the Navier-Stokes equations:

v —Av+ (v, Vv =Vp+u+ f, dive =0, v|ga =0, v|t=0 = vo
coincides with 0(t,z) at the instant T : v(T, z) = (T, z).

Résumé. On étudie le probleme de controlabilité locale exacte pour les équations de Navier-Stokes
incompressibles dans un domaine {2 borné avec un contrdle réparti dans un sous-domaine w C 2
C R",n € {2,3}. On obtient le résultat suivant. Supposons que 0(¢,x) soit une solution des équations
de Navier-Stokes et vo(z) une condition initiale telle que ||9(0,:) — vo|| < & pour ¢ assez petit. On
montre alors qu’il existe un contréle localement réparti u, suppu C [0,7] X w, tel que la solution
v(t,z) des équations de Navier-Stokes:

Ov—Av+ (v,V)v=Vp+u+f, divv=0, vloo =0, v|i=0 =10
coincide avec 0(t, z) au temps T: v(T,z) = 0(T, ).
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The paper is concerned on the local exact controllability of the Navier-Stokes equations, defined on the
bounded domain 2 C R™ (n = 2,3) with boundary 92 € C2?. More precisely, the investigated problem is as
follows. Let us consider the nonstationary Navier-Stokes equations

ov(t,x) — Av(t,z) + (v, V)v+Vp=f+ xou inQ, dive=0, (1)
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with boundary and initial conditions
vz =0, vli=o =wvo(z), (2)

where v(t,z) = (v1(t, ),...,vn(t,2)) is a velocity of fluid, p is a pressure, f(t,z) = (f1(t, z),..., fn(t,)) is
a density of external forces, u(t,z) is a control distributed in some an arbitrary fixed subdomain w of the
domain €2, and x,,- is a characteristic function of the set w:

(z) = 1, forzew
Xl = 0, forxzeQ\w.

Let (0(t,z),p(t,x)) be a solution of the Navier-Stokes equations with the right hand side f exactly same as
in (1):

00— A+ (0,V)0+Vp=finQ, divi=0, 9dlg=0 (3)
close enough to the initial condition vy at the moment t = 0
llvo = 9(0,)[ly1(0) <&, (the parameter ¢ is sufficiently small) (4)

where V1(Q) = {v(z) = (v1,...,v,) € (W2(Q))" : dive =0, v]sq = 0}.
One needs to find a control u such that for the given T' > 0 equality holds

o(T,x) = 0(T, x). (5)

We assume:

Condition 1. The boundary Q=T =UN T; € C?, (T;NT; =0 for all i # j) where I'; is a n-1 dimensional
compact connected manifold of class C?.

In order to formulate our results we introduce the following functional spaces
Vo) = {v(z) = (v1,...,v,) € (L*(Q)" : dive =0, (v,v)|aq = 0},

VE2(Q) = {v(t,z) € (Wy2(Q))" : dive = 0, v|pq = 0},
where v = v(z) = (11(x),...,vn(z)) is the outward unit normal to 9.
The main result of this paper is the following theorem:

Theorem 1. Let vg € V1(Q),f € L?(0,T;V°(Q)) and suppose that the pair (0,p) € WL(0,T;(V1()
NWL(2)™)x L2(0,T; W3(K2)) is a given solution of the Navier-Stokes equations (3) with the right hand side f.
Then for sufficiently small € > 0 there exists a solution (v,p,u) € V12(Q) x L2(0,T; WH(Q)) x (L*(Qu))" to
problem (1,2, 4,5).

The aim of this paper is to remove some technical conditions which appeared in the same result previously
proved by the author in [19]. The result of the previous paper is improved now in several directions. First we
omit the condition that the function ¢ vanished in some neighborhood of the boundary 0f). Second, we do not
assume that the domain €2 diffeomorphic to the unit sphere. And finally, now the function v is not supposed to
be a steady-state solution to the Navier-Stokes equations.

This paper is organized as follows. To prove Theorem 1 we used a version of the implicit function theorem.
The only one nontrivial condition to be checked is to show that the derivative of the corresponding mapping
at some point is an epimorphism. In our case this problem is equivalent to the zero controllability of the
linearization of the Navier-Stokes equations at the point ¢ (see problem (3.1-3.3)). Sections 1-3 are devoted to
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this problem. One of the usual ways to solve the controllability problem is to reduce it to a observability one for
the adjoint equation. So in Section 2 we introduced a linear operator (see Eq. (2.1)) which after change ¢t — —¢
is formally the adjoint of the derivative of the Navier-Stokes equations at the point (¢, z). The observability
problem for this operator is solved in three steps. First in Theorem 1.2 we got an appropriate estimate for the
pressure p. Then in Theorem 2.1 we obtained a Carleman estimate for the velocity v of the fluid via a weighted
L2?-norm of density of external forces f and L2-norm of the pressure p on the subdomain (0,7) x w. And
finally in Theorem 2.2 we proved an estimate (non Carleman type) for the velocity where in the right hand side
pressure and an initial condition are absent. In the Section 3 this observability estimate was converted into the
controllability result of Theorem 3.1. In Section 4 all conditions required by the implicit function theorem are
checked.

We close this introductory section by mentioning some of the previous results regarding our problems. The
case of the local exact controllability for the Navier-Stokes equations with boundary and local distributed control
has been studied in papers [9,11,12,21] and for the Boussinesq system in [10,14]. On the other hand, in pioneering
works [3-5] Coron proved the global approximate controllability for the 2-D Euler equations and the 2-D Navier-
Stokes equations with slip boundary conditions. Later this result was extended for the case of 3-dimensional
Euler equation in [15,16]. In [6] combining results on global approximate and local exact controllability results,
Coron and Fursikov obtained the global exact controllability for the Navier-Stokes system on a 2-D manifold
without boundary. The similar result for the Boussinesq system on torus was obtained recently in [14]. In [7]
Fabre obtained an approximate controllability of “cut off” Navier-Stokes equations.

1. ESTIMATE OF THE PRESSURE

It is well-known (see [30]) that for the Stokes system the pressure p is a harmonic function in z for each fixed
t. If we consider the linearization of the incompressible Navier-Stokes system at the point © the pressure is the
solution of the Laplace equation which right hand side some function of ¥, v and derivatives of these functions.
Unfortunately in the case when the velocity v has zero boundary conditions, there are no explicit boundary
condition on the pressure p. To solve observability problem in this section we will prove a new Carleman estimate
for the general second order elliptic equation. The main purpose of this Carleman estimate is to “minimize” (in
terms of power of s) the weight which corresponds to the term with the L?-norm of the trace of the pressure
on the boundary (see estimate (1.7)). To achieve this goal we will sacrifice the weight corresponding to the
L?-norm of the right hand side of the elliptic operator. The whole chapter is devoted to establish this estimate.

Let w be an arbitrary subdomain of Q. Denote @ = (0,T) x Q,Q, = (0,T) X w, X = (0,T) x 9Q. In this
paper we use the following functional spaces. Recall, that WI’f (Q), £k>0,1<p < oo is the Sobolev space of
functions with finite norm

1/p

p
el @) = Z/}a‘a'“(x)/ax?l--ﬁxi" do |,

la|<k g
where o = (al,ag,...,an), |a| = Q1 +"'+an;
W;PeT(K) = {u € W;(K)|u(,a@ +20,.)=u(z)ie{l,... ,n}},

where K = [T, [~£, €],

w1 = {ult.alw e L20.7sw3@), G € L20.TiTH@)
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LX(Q,p) = {v(t,x) : /QpUdedt < oo}-

In the domain € we consider the elliptic equation

Ay__i_laixi( ) Zb ()y=f inQ, (1.1)

0,J
In the above problem we assume
aij € C*(Q), aij(z) = aji(z), b €CHQ), ceL>), (1.3)

where 7,5 = {1,... ,n} and the uniform ellipticity: there exists 8 > 0 such that

n

a(z,(,¢) = Y aij(2)G¢G = B¢ VCER™, Q. (14)

ij=1

To formulate our Carleman estimate we need a special weight function.

We have:
Lemma 1.1 [2,20]. Let w; € w be an arbitrary fived subdomain of 2. Then there exists a function 1 € C?(£2)
such that

Y(x) >0Ve €Q, Yjon =0, |Vi(z)|>0 Vre\w. (1.5)

Using the function ¢ (x) constructed in Lemma 1.1 we introduce the function ¢ by formula
p(r) = V), (1.6)

where A > 1 is a parameter to be fixed below.
Also we need the following result:

Theorem 1.1 [2,20]. Let (1.5, 1.4) be fulfilled, ¢ € C%(Q), |V (z)| # 0, in Q\ w1 and let @ be the function
defined by (1.6). Then there exists a number X\ > 1 such that for an arbitrary X\ > X there exists so(\) such that
for each s > so(N)

2
Y

/(S|Vy|2+s3y2)62wdm <y /|Ay|262wdx—|—/ Oy
Q Q r, | OV

2% d o + / s3y2e?s® dm)
w1

Yy € W3 ()N Wy (),

where the constant Cy depends continuously on A and I'y = Int(0Q \ {x € IQ|a(z,v, Vip) <0}).
As it was mentioned above the main purpose of this chapter is to prove the following theorem:

Theorem 1.2. Let (1.3, 1.4) be fulfilled and functions 1, ¢, be defined as in (1.5, 1.6). Then there exists a
number \ > 0 such that for an arbitrary X\ > X there exists so(\) such that for each s > so()\) the solutions
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to problem (1.1, 1.2) satisfy the following inequality:

/(s%y2 + 571 |Vy[})e2Pdz < Cs <|g||2 L e +/ 57%f2625¢dx+/ SQerQS‘de) ) (1.7)
Q w3 (09) Q w1

where constant Co is independent of s.

To keep the proof of this theorem transparent we will separate it on several steps. To prove Theorem 1.2 let
us first consider the following auxiliary problem

"0 0z - 0z i
Lz = 7”2:1 pr (a”(x)a—%) + ;bz(az)a—xZ +e(x)z=f inG, (1.8)
z(xy, .o+ 20,00 =z2(x1, ... ) 1E{2,...,n}, (1.9)
_ /
2(0,2") = g('), 9x(-1,2) =z(-1,2") =0, (1.10)
8391

where ' = (z2,...,2,), K = H?;ll [—¢,¢],G =[-1,0] x K, and £ > 0 be an arbitrary fixed number.
Assume the following condition:

Condition 1.1. We assume that

all(x)zl, aij(xl,...,xk—l—Zf,...) = aij(x), bi(Il,...,l‘k—l—2€,...):bi(l‘),
c(xr,...,xp+20,...) = clx) Vi, je{l,...,n}, ke{2,...,n},
ai; € 02 (@), Q5 ($) = aji(x), b; € Ol (@), cE LOO(G),

where i,j € {1,...,n} and the uniform ellipticity: there exists 3 > 0 such that
a(z,6,0) = > aiy(@)G¢ = BICP VCER", zeG.
i,j=1

Denote

$a1) = ME | Pay) = —a, (1.11)

where A > 1 is some parameter.

Lemma 1.2. Let Condition 1.1 be fulfilled and the function ¢ be defined as in (1.11). Then there exists a number

A > 1 such that for an arbitrary X > X there exists so(\) that for s > so(\) the solutions to problem (1.8-1.10)
satisfy the following inequality:

/ (5%|VZ|2 JrS%ZZ) €25 do < C4 </ (|Vm/g|2 +g2)625¢(0)dx/ Jr/
G K

s fe250 da:) , (1.12)
G

where constant Cs is independent of s.
Proof. Denote w = ¢*?z, f = ¢*?f. Then by (1.8)

Lw = e**Le ™ *%w = f.
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The operator L can be written explicitly as follows
"0 0
Lw = — Z — (aij 8—:) — 2s\a(z, €1, Vw) + s\2¢a(z, &, e1)w

8xi

ij=1

— $?X2¢%a a(z, e, er w+Zb +cw s)«j)Z

~w + sAgbrw. (1.13)

We recall that the quadratic form a(x, &, n) was defined in (1.4). We introduce the operators Ly, Lo by formulas

0 ow

Liw=— Z — <aij—> — 32A2¢2a(x,€1,€1)w, (1.14)
=1 al’z‘ al'j

Low = —2s\¢a(z, €1, Vw) + 257\ pa(z, €1, €1 )w. (1.15)

By (1.13-1.15), using the new notations we have
Liw+ Low=fs in G, (1.16)
where

Oa;

s¢p 2
fs(x) = fe’® + s pa(z, €1, er)w Zb cw—i—s/\c;ﬁizzl 5

w — SAPbiw. (1.17)

We set G = [-1,7] x K, 7 € (—1,0).
Taking the L%(G,) — norm of both sides of (1.16) we obtain

1fsl1Z2(6.) = Lawl|F2qy + [[L2w]F2 g,y + 2(Liw, Law) L2, )- (1.18)

By (1.14) and (1.15) we have the following equality:

(LlwaLQU})[ﬂ(GT) = <_ Z a% (aljg%) - /\282¢2a(x7€17€1)w728A2¢a(x7€17€1)w>
i j

ij=1 L2(G)
+/ 22353 p3a(x, €1, € )wal(x, €, Vw)dz
G-
0 ow
Z 8$ T oz, 2s ¢a(x, €1, Vw)dx = Ag + A1 + As. (1.19)

‘fzg 1
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Integrating by parts in the first term of the right hand side of (1.19) we obtain

A= | — Z 9 (aa—w> — N2s%¢%a(x, &1, &) w, 25\ ¢alz, €1, €1 )w

7
i &ri J 8%
1,]= LQ(GT)

= / ( — 2533 Na(z, 1, &) *w? + 25\ pa(z, €1, € )a(z, Vw, Vw)
G,

- ow 0
) R
+ 25 %w Z ajj— o, 8—@(¢>a(:ﬂ,61,61)))d:p

i,7=1

- / 2502 pa(x, €1, & )wa(x, €y, Vw)da'. (1.20)
{T}xK
Integrating by parts in the second term of the right-hand-side of (1.19), we have

Ay :/ 22353 p3wal(x, €1, €1 )a(x, &, Vw)d
GT

= / Ns3pPa(x, €y, er)a(z, €1, Vw?)d
GT

“ 0
= /GVT (3)\483(1)3(1(1';6_)1761)2“_)2 _ w2¢3)\383 ; a—xi(aila(x’e_)l’e_)l))> dl'

+/{} K)\383¢3a(x,é'1,é'1)2w2da:’. (1.21)
T X

Finally, integrating by parts for the third term of right-hand-side of (1.19) we have

Ay = / Z pr (aug )28)\¢a(x €1, Vw)dx

Gr 1,7=1
N (mw,a,w)wm S (wg s )
G, i,j=1 Femt T T
—23)«1)1]21 a”a Z a1e 8$Jaw>dx+/{T}XK28)\¢a(a:,é'1,Vw)2 dz’
= /G T <2sA2¢a(x,51,Vw)2 - 28/\¢>Mil (aij gj %C;M g;j;>
stW p3 laa” ot et M)Z“” jzn_: 5, §:>dx

—|—/{} K2s/\¢a(x,é'1,Vw)2 dz'. (1.22)
T X
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Integrating in (1.22) by parts once again, we obtain

. - ow daiy Ow da;; Ow Ow
A= [ |2532¢a(z,&, Vw)* — 2500 D | ay +)\§ J
2 /G ( sAga(z, & w) AP (“Jaxi — 8:E &w) sA¢ e Z Oxy Ox; axj

4,j=1 4,J=1

— s\?¢a(x, €1, é1)a(z, Vw, Vw) + a(z, Vw, Vw)se Z 8au>
+/ (—sAga(z, €1, €1)a(z, Vw, Vw) + 2sA¢a(z, €1, Vw)?) da’. (1.23)
{T}IxK

Using (1.19-1.21) and (1.23) one can rewrite (1.18) as follows

||fs||2L2(GT) = ||L1w||%2(GT) + ||L2w||%2(GT)
+ 2/ (Ms3pPa(x, €y, e1)°w? + s\ pal(z, €1, €)a(x, Vw, Vw)

.

+ 2502 pa(z, &1, Vw)?)dz + S(1,w) + X1 (1) + Xa(7), (1.24)
where
S(r,w) = 2/ K(Qs)«j)a(x, &1, Vw)? — sApa(z, €1, €)a(x, Vw, Vw)
T}x
- 2{5;2¢a(x, €1, €1)wa(z, €, Vw) + s*X3¢a(z, €1, &1)*w?) da’
and

_ darg Ow \ 5 3.3 -
XI(T)2/G< 23)«;52(@”8 s 8@) w2 \3s Zla

1,j=1

Oa;; Ow Ow
+ s\¢ Z aie ”Z D2, O, 8—% + a(z, Vw, Vw)sio ZZ )

= ow 8
Xo=2 [ 2s)\2 § i ,e1,¢e1))dx.
2 /G s\ w aJ&UJ s (pa(z,é1,er))dz

3,7=1

Taking the parameter A sufficiently large we have

1fsllZ26.) = ILawl|F2q,y + [ Taw]F2q,)
11 o
+ 5 ()\45‘3¢‘3a(x,é’1, é’1)2w2 + 5A2¢a(x,€1,€1)a(x, Vw, Vw)
G

+ 2s\2¢a(z, €1, Vw)?)dz + S(,w) + Xa(7)

.

forall)\>5\an(js>1.
Now let A > A be fixed. Taking the parameter sg(\) sufficiently large we obtain from the previous inequality

1fslli2c,) = 12wl @, + I L1wllia, )
—|—/ (AP pPa(x, €1, e1)*w? + sNpa(x, &1, é1)a(z, Vw, Vw)

.

+ 25\ 2¢a(z, &1, Vw)?)dz + S(t,w) V¥ s > so(N). (1.25)
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By (1.15, 1.10) and Cauchy-Bunyakovskii inequality
1 1 . .
ZHLQU}H%Q(GT) + Z/ SN ¢3a(x, €1, 61)%w? de > ks? / w(r, 2’ )?de’ V7 e [-1,0], (1.26)
G, K

where constant x > 0 is independent of s, 7.
Denote by

7 (w) = max {T|S(T,’LU) > —ks3 /KU)(T, x')? dm’} : (1.27)

T€[—1,0]
By (1.25-1.27)

3
||f8||2L2(GT*) = ZA (/\483<;53a(x,é’1,é’1)2w2 + SA2¢G($,€1,€1)G($,VM, VU})

+ 25\2¢a(x, &1, Vw)?)dr ¥ s > so()N). (1.28)

If 7% (w) = 0 the lemma is proved. Now let us consider the case 7*(w) < 0. Multiplying (1.16) by sai;w scalary
in L?(G) and integrating by parts we have

/ fsanwdr = / (sa(x, &1, é)a(z, Vw, Vw) — s3A\2¢%a(x, &1, &) *w?)da
G G

+/ sa(a:,Vw,Vau)wda:f/ sayra(z, e, Vw)w dx’
G {0}x K

1
—/ s*\para(z, €, e widx’ + = / sap1byw?de’ + X, (1.29)
{0} x K {0} x K
where
X3 :/ 52)\2¢a(x el é'1)2w2 +i52>\i(¢a 1a1»)w2
. ) 9 pt 8Ij 1 J
8@11 S i 8([)@‘0,11) 2
- A Aob - = —_ dx.
+sa11< ila —SAp+c+s ¢1> 2; oz, w T
Obviously
X §O432/ w? da. (1.30)
G
Note that

—/ sana(x,é’l,Vw)wdx'—/ s*\opayia(z, €1, & )w? da’
{0}x K {0}x K

= —/ sayia(zx, €, Vze*? — sApéiw)w da’
{0}x K
f/ S )\zj)aua(x,é'l,é'l)wQ dr’ = —/ salla(x,é'l,Vz)wes¢ da’
{0}xK {0}x K

/ san—esd’w dx’ +s/ Z—MwQ dz’. (1.31)
{0}x K Oxq {0yxK 55 2 Oxj
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Denote

1 "1 4
X, = —/ sajibyw?dx’ + s Z —Mw2 dz’. (1.32)
2 Jioyxk (yxk 32 Ox;

Using (1.31) one could rewrite (1.29) as

/ sap fwdz = / (sa(w, €1, é1)a(z, Vw, Vw) — s A2 ¢?a(z, €1, &) *w?)dx
G G
2 0z s¢ /
+ [ sa(z, Vw,Va)wdx — saf; m—we’? dz’ + X3 + Xy. (1.33)
G {0}x K L1

One could rewrite (1.33) as

01
—/ —S(x1, w)dxy +/(28a(x,é'1,Vw)2 — 2sXa(z, €1, €1)wa(x, €, Vw))dx
1279 G

= / sanfwda: +/ sa%lﬁwesd’dﬂv’ — X3 — X4 — / sa(xz, Vw, Va1 )w dz.
e (Oixk  Om e

From this equality, by (1.27) we have

i ™o
/%1/ s2w? d:p—/ —S(xl,w)daler/ 2sa(x, €1, Vw)?dx
(r*,0)x K 12X e
S/Zs)\a(x,é'l,é’l)wa(x,é', Vw)dx—i—/ sanfwdm
G G

0
+/ sa%l—zwes‘ﬁdm’ —/ sa(z, Vw, Vai )wdr — X3 — Xy,
{0}x K L1 G

where &1 = r/(2Xe*). Hence by (1.28) we have

/%2/ (s%w2 + sa(x, Vw, &)%) dx < C’5</ s e dx’
G {0}xK

9 z
ajq a—xlw

+|X3|+|X4|+/(|Vw|2+82w2)dfv+8|/ anfwdx|+||f|%2<c>)
G G

1 y
<o shtarec(1 [ P+
{0} x K € J{o}xK Oxq
+/(|Vw|2+52w2)dx+|X3|+|X4|> Vs> so(N), (1.34)
G

where A2 = 2 min{#1, 2} is some constant independent of s. Note that by (1.10)
/ (s3w? + sa(z, &, Vw)?)dz > kst / w?(0,2")dx’, (1.35)
G K

where 43 > 0 is independent of w, s.



REMARKS ON EXACT CONTROLLABILITY FOR THE NAVIER-STOKES EQUATIONS 49

Taking in (1.34) parameter ¢ sufficiently small and increasing so(A) if necessary, by (1.30, 1.35) we obtain

[ 53+ sate.e1, Ve < 07(|X4| ey + [ Vul ds
G G

o 52
{0}x K Oy

Increasing parameter sg(A) if it is necessary we obtain from (1.35, 1.36)

Al

2
+s er‘bdx') Vs > s0(N). (1.36)

: . 9z |?
s2w? 4 sa(z, €, Vw)?)de < Cs | || f1|22/c + Vdea:Jrsi = €25 d 4 Vs> sg(N).
L2(G)
G G {0}x K 0xq
(1.37)
Since
S(0,w) <0,
for all values of the parameter s large enough we have
92(0,2") |°
/ % 20 gz < Cg/ (IVarg|? + g2)e25?© da. (1.38)
K 1 K

By (1.37, 1.38)

/(s%wersa(a:,é'l,Vw)Q)d:EgClo<|f||%2(g)+/ |Vw|2dx+s%/ (|ng/|2+g2)625¢(0)d:£’> Vs > so(A).
€ G K

(1.39)
By (1.33)
1 2 5.2 119z o4 '
s2|Vw|*de < C1p s2wdr + 52 e’?w| dx
e e (oixk |01
ey + [ [FwPde 41560 150) s> 5000,
G

From this inequality, by (1.30, 1.32, 1.38, 1.39) we obtain (1.12). |

In the right hand side of estimate (1.12) we have the W3-norm of the function g. This norm is too strong for
our purposes. So now we would like to obtain from this estimate the similar one but with the L?-norm in the
right hand side First we formulate the following result:

Proposition 1.1. Let g = 0, Condition 1.1 be fulfilled and function ¢ be defined as in (1.11). Then there exists

a number X > 0 such that for an arbitrary X > X there exists so(\) such that for each s > so(\) the solutions of
problem (1.8-1.10) satisfy the following inequality:

0
/ (51_2@|Vz|2 + 83_2€|Z|2)628¢ dx < Clg/
G

-1

1F (21, My gy €20 dln, - VL €[0,1]

where constant Cho is independent of s.

The proof of this proposition is exactly the same as the proof of Theorem 2.1 as we can see from [22].
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Now we are ready to prove the following lemma:
Lemma 1.3. Let Condition 1.1 be fulﬁlled and function ¢ be defined as in (1.11). Then there exists a number

XA > 0 such that for an arbitrary X\ > X there exists so(\) such that for each s > so(\) the solutions of
problem (1.8-1.10) satisfy the following inequality:

/ 8%|Z|2628¢d1'+84 H
G owy )

0
< Ci2 </ g*e* O da +/ s f(a, ')Hlv;l(K)eQw dxl) ; (1.40)
K —1

+ 51| Z(21, .)||§V2_1(K)> 0@ dgy

where constant C12 is independent of s.

Proof. Denote P = — 3", 8%2? + 1. There exists P~' : W5 p,,.(K) — W;'}ir( ) for all s € {0,—1}. Let
R =P 'R, = %P’l i€{2,...,n} and u; = R; z, fi = R;f. Obviously

"L O,
Zfaxl +u;=2z inK (1.41)
and
n
[2(z1, )l p2(x) < 0132 llwi (@1, ) llw (k)3
i=1
Haz(xu-) H Aui(x1,-)
8391 Wz_l(K 8391 LQ(K)7
[2(21, w1 (k) < Cra Z llwi@1, ) 2(x)- (1.42)
=1
By (1.8-1.10)
Lui + [L, RZ]Z = fz in G, (143)
uwi(0,2") = Rig, wi(xy,..,xj+20,..) = ui(x1, ..., xj,..) jE{2,...,n}, (1.44)
. _1 /
us(—1,2) = 28CELT) o e (1.45)
81'1

where [A, B] = BA — AB is the commutator of operators A and B, ' = (22, ...,%,). Note that

‘ : (1.46)
W5 (K)

0z(x1, .)ew
8.1‘1

le*IL, Rz (a1, s < Cis (|z<x1, el ey + H
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where the constant Ci5 is independent of s and 7. Then by (1.46) and Lemma 1.2 there exists A > 1 such that
for all A > A there exists so(\) such that

/ (si |Vu; |2 + 5%u§)628¢ dx < C’16</ lg)2e25?(© gz’
G K

0 2

+/ 1 0z(w1,-) H 250(1) g +/ s~ H|2[2e2 da
1 81'1 Wz_l(K) a
0

+/ s~ 1250 f (2, .)||§V2_1(K) d:c1> V s> s0(N). (1.47)
~1

By (1.42, 1.47) for all s > sg
0 2
L 2 2s¢ 1 32(931,')H 2 2 2sp(x1)
stz d:EJr/ s || ————= + st z(z1, )|I5, -1 e dxy
/G —1 ( 8I1 W2_1(K) Wy (K)

n
< 0172/(8i|Vui|2+s%uf)eQS¢dm
i=17/G

§C1s</ 92625¢(0) dm/Jr/ s’izze%(ﬁda:
K G

[l
—1

O HW21(K)

0
—1 2s5¢(x 2
+/718 1 e259( 1)|f(x1,.)|W2_1(K)da:1).

e25¢(x1) dxq

Then by increasing the parameter so(A) if necessary we obtain

0
/sizzezwdx Jr/ 51 H
G -1 W5 (K)

< Cyg Z/ (si|Vui|2 + s%uf)628¢dx < C’19</ 22?0 g/
i=17C K

9z(z1,) |2

8I1

+ S% HZ(:L'h .)”%/VQI(K)) 623¢(321)d1-1

0
+/ 3ie2s¢(m1)|f(xl,.)|$/vz_1(K)d:E1> (1.48)
-1

for all s > sg. The proof of this lemma is complete. a
We have:

Lemma 1.4. Let Condition 1.1 be fulfilled and function ¢ be defined as in (1.11) . Then there exists a number

A > 0 such that for an arbitrary X\ > X there exists so(\) such that for each s > so(\) the solutions of
problem (1.8-1.10) satisfy the following inequality:

0 2
[tade s Hvap o stap)edn s st [ )| e dny
G 111021 w3 (0
0
§025<|9||21 & 4 / sl 126256 d 4 / A2, e25¢dx1), (1.49)
W22 (K) G —1 W2 2(K)

where constant Cag is independent of s.
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i< £>

Proof. Let Z = Az = [p.4 M p12dg’, where £ = (&a,..., &), u(a') € C§° (K1), K1 = I ,[—2¢, 24],

(1+|£ 2

)t
(') € C(Ky), Ko =111, [—2¢,34], p1, plx = 1. Since z is the periodic function in variable 2/ we have

2] < Cos(ll2llwp ) + 12l i)

(H@xl 2_1(K)> '

|| ze*¢||? < Cog(||ze*? ||L2( 1LO;WE (K1)

L2(— 10W2( )
0
-1 2 2s¢(0 / -1 2 2s¢
+ s 4 (/]{g e ( )dl’ +[18 4||f(1'17~)||W2_1(K)6 dl'l) .

2 ~
0
< H_Zew
L2(—1,0;W, 2(K)) Oz L2(—1,0:W2 (K1)

0
1 (/ 92623¢(0) dx'—l—/ S_Z||f($1,')||2 (K) dm1>> .
K —1

w2 (r0)

Haxl W (K1) Hal'l

By (1.40) we obtain from these estimates

2

0z o5
81'1

_|_
V2l
PN

By (1.8-1.10)

Lz + [L,A]Z = Af in G1 = [—1,0] X Kl,
20,2y = Ag, Z(z1,..,m; +44,.) = Z(x1, .0y xj,..) G E{2,...,n},
05(~1,2")

Z(-1,2") = o

=0 in Kl.

W;%uo) '

WQ%(K) H Ox

Note that (see [30])

1L, Azl L2(x,) < Co <|Z||

Applying to problem (1.52-1.54) the Carleman estimate (1.12) and keeping in mind (1.55) we have
/ (s% |VZ + 5322) e*? dx < C3 / (V2 Agl? + |Ag|?)e?*?© dz’
+/ (s~5|AS + |[L,A]z|2)623¢dx>
G1

< Gy Hgng e + / sTHASPeH? da
(K) G

2
+s*% lzl1? . 2% day |.
W ( 1
W, % (K)

0z
8.1‘1

(1.50)

(1.51)

(1.55)
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From this inequality, thanks to (1.40, 1.50, 1.51) we obtain

0
5 1
/ s1]z|%e?? da +s14 /
G —1

< Oy <|g||2 ,
W2 (K)

2 1 2

0z 2

5 (F107) o) dpy

w; % (k)

where constant C33 is independent of s.
Multiplying (1.8) by s~ 12€25? scalary in L?(G) we have

/ s*%a(x,Vz,Vz)e%d) dx = 72/
G

G K

n
Jr/s*% (fcszi >2625¢dx.
G i=1

Using known a priori estimates for elliptic equations (see [28]) we have

0z
8$i

92(0, 2"

8351

S

o <awe (i,

i , —y o gl s
WQQ(K) -L,o;W, 2(K)) Wy

(K)

< Oss <|fes¢|| T lge’]

L2(—1,O;W2_%(K)) WQ% (K)

From (1.57) using (1.56, 1.58) and Cauchy-Bunyakovskii inequality we obtain

0
J R R R e (T F W e
G W2 (K) —1

2

1

Let us introduce the function 1 (x) = 21°2(x). By (1.9, 1.10) this function satisfies the equations

Lz +[L, 2%z = 21°f, #(0,2') = z,(~1,2") =0,
0z1(—1,2")

21(I1,...,$1‘+2€,..)Zgl(I)\V’iE{Q,...,n}, o
1

Obviously
L, 21°)2(2)] < Cao(|21[*|V2(@)| + |2(2)]) Vo € G.
Therefore, by (1.59)

s _3 s 3 ~ .8
1L, 21°)2e*? (| 22(qy < Cun(s™ 5 (1[V2[e*| L2(ays¥ V21 |e* |12y + 1201 22(ay)

0
3 ~ _1
< Cua(s7][VEe™| 12y + 91 4 625+/ s f(z1, )
W22(K) -1

0
628+/ ST, )Py e da
_ W, 2 (K)

+ |z||L2(G))

[
W, 2 (K)

=0.

[
W, 2 (K)

).

shagza(e, v, Ve do - [ s la(e, 92)e0 o

+ |Z€8¢|L2(G)) .

e2s¢ dx) .

e?? dx).

53

(1.56)

(1.57)

(1.58)

(1.59)

(1.60)

(1.61)

(1.62)

Applying to (1.60, 1.61) the Carleman estimate from Proposition 1.1 with £ = 0 and using (1.62) we obtain

0
LGIvar + a P d < cy ( J 5@y e dan ol e gy +

» (K

2 1 €

(1.63)
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Hence estimate (1.49) follows from (1.59, 1.63). The proof of Lemma 1.4 is complete. O
Let T be an (n — 1) dimensional compact connected C? manifold without boundary in R™. We consider the
following elliptic equation on the manifold [—1,0] x T.

Az = ]i_o % (aij(:z)g—;> + iéi(a})g—; + &)z = f(&) in[-1,0] x T, (1.64)
2001 = g(), Z e =1l =0, (1.65)

where & = (x9,x) = (0, 21,...,2,) and we assume that
aij € C?([=1,0] x I), b; € CY([~1,0] x '), &€ L>([-1,0] x I). (1.66)

We have:

Lemma 1.5. Let the operator A be elliptic on the manifold [-1,0] x I, condition (1.66) be fulfilled and the
function ¢ be defined as in (1.11). Then there exists a number A > 0 such that for an arbitrary A > X there
exists so(A\) such that for each s > so(A\) the solutions of problem (1.64-1.66) satisfy the following inequality:

0 2
628¢($0)dx0

w, 2(I)

/ ((x%OS% + S_%)|VZ|2 + s%|z|2)e2s¢(xo)dx + si / Z(ﬂ?o, )
[=1,0]xT

-1

9o

0
§025</g2628¢(0)d0+/ S—in(xO,.)HiV_l 62s¢(xo)dx0+5—%||$(1)0f€s¢|%2(@), (1.67)
r ~1

where constant Cas is independent of s.

Proof. Let {Ux}_ | be a covering of the manifold T, hy — are the local coordinates which corresponds to this
system, and {ej, }%_, is the partition of unity such that e;, € C3(Uy), Zfil erx(x) = lforall z € I'. Using the atlas
{Ug, hi} we can introduce the new atlas {Uy, hx,} on the manifold [~1, 0] x T as follows Uy = [~1, 0] x Uy, hj =
(ﬁgk), .. Bg?_l) where ng) = x9, fzgk) = hgk) (2),... ,715521 =pP (). O‘t}viously the partition of unity {e;}#< | has
the same properties on manifold [—1,0]xI" as on manifold I': e;, € C?(Uy), supper C [—1,0]x Uy, Zle ex(z) =1

for all x € [—1,0] x Ug. Also

0z
A, erlz(xg, - 1 <C z(xg, - 1+ ||=— (=0, . , 1.68
A, cil=(ao. ), 3 1, < Cis (n BT (- >HW22(F)) (1.65)

where the constant Cag is independent of xg. Denote zx = zeg. Then by (1.64, 1.65) function zj satisfies to
equations

Az + [A,ek]z = fer in[-1,0] x T,
0z(—1,")

= 2.(—1.)|p = 0.
. Ir =2z(~1,-)[r =0

zk(0,-)|r = exg,
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In the local coordinates hy the function Zj = z (ﬁ;l(x)) satisfies to equations

fZax ( §x> Zb YOk | o) = (fex — [Arexl) o bt n [-1,0]x he(U),  (1:69)

i,7=1

N - - 0zZp(—1,- 5
Zkl[=1,0)x0m (Un) = VEk|[—1,0/x0m () = 0,  Zk(0,-) = gex, %(To) =Z(—1,-) =0. (1.70)

Taking sufficiently large cube K = H?;ll [—¢,¢] we may assume that hi(Ux) C K. Then by extending the
functions Zx, gey o h,;l, (fex — [/i, erlz) o h,;l by zero on the whole cube K, and the coefficients a;;, bi, ¢ up to
periodic functions in K by taking into account properties of regularity (1.4) and ellipticity (1.5) we obtain that
the function Zj, satisfies to problem (1.1-1.3) where f = (fekf[fl, ek]z)oﬁgl, g= gekoﬁgl forallk € {1,...,K}.
Thus by Lemma 1.4 and estimate (1.68) we have

0
/ (22057 + s~ 8)|Vag|? + 57|25 |?)e25¢@0) dms%/ %( 0,°) . e g
[—1,0]xT —1 || 00 W, 2(I)
0 1 82: 2
< Cor| llgl® s €* +/ s~4 | [ f (o, - )H + ’ ——(@o,)|| ., o )? 4 e259(0) dg
w3 (I) 1 w2y | 9o w, 2 (D) w7 (T)

+574 / (V] + |f|2)628¢(3’°’d:c>, Vs > so(k, ). (1.71)
G

Summing up inequalities (1.71) respect to the index k we have
/ ((aB's% +579)|Val® + 5[z dz
[~1,0]xT
L0
+sz/
0 1
< Cos( ol e+ [ sH o,
w5 (D) -1

0z
g, 2

w; % (1)

0z 2

o —— (z0,") e259(20) do

w, 2(I)

} ™)

+ |2 (o, - )||2 Je?s¢(70) dag
w2 (1)

N

+s5 / O(|V2[* + | f]?)e?? zo)dﬂf) Vszso:mgxso(k,)\).
e

Thus, taking parameter sg sufficiently large for all s > sy we obtain

/ (2377 + 5~ 1)|Vz ] + 51 [2[2)e20(0) dp
[=1,0]xT

0 2
+si/ Hp 2 (%0,7) e*9(70) dxg < Coo | [|lg% | 4
1920 Wy (r) w2 (D)
0
+/ 57| f (o, )2 _s 625‘1’(””0)61930%97%/3”%0|J"|2€28¢(I°)d93 - (1.72)
1 w, 2 () G

The proof of the lemma is finished. a
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To obtain the Carleman estimate (1.7) by means of cutoff functions we divide the problems in two cases. In
the first case the support of a function y is concentrated near the boundary, and in the second case when y has
a compact support in . In order to deal with the first case we are going to use the Carleman estimate (1.67).
Problem (1.1, 1.2) will become (1.64, 1.65) after a special change of variables which existence established in the
following lemma:

Lemma 1.6. Under Condition 1 there exists €* > 0 such that the set QF = {z]|0 < (x) < e*} is C2-
diffeomorphic to the manifold [—1,0] x T.

Proof. First we note that by Condition 1 there exists €¢ sufficiently small such, that for all € € (0,¢) the set
Q. = {0 < ¢(z) < &} consists of N connected components Q¢ such that QL N Q4 = {#} for i # j. We assume
that the set Q! contains I';. To prove this lemma it suffices to establish the existence of diffeomorphism of Q¢
on the manifold [—¢,0] x T'; for some € > 0. We construct a diffeomorphism n(z) = (=9 (x), p(x)) from the set
Q% into [—¢,0] x I'; where p(z) = u is the solution to the extremal problem

T) = 3lle =yl ok, 9(y) =0. (1.73)

Let us prove that for all x € Q% with e sufficiently small this problem has only one solution. First, the existence
of at least one solution u € T'; could be proved using standard arguments (see [25]). Applying the Lagrange
principle to problem (1.73) we have

x —u=AVy(u), (1.74)
where the Lagrange multiplier A € R! is some constant. Thus, by (1.5)
z—u= |z —ul[Vi(u)/[Vi(u)]. (1.75)
Suppose that for some z € Q¢ problem (1.73) has two solutions u;. Obviously ||z —u1|| = ||z —wuz||, thus by (1.75)
ug —u1 = [lz — w [ (Ve (ur) [V (ur)| = Vip(uz)/[Vip(uz)]). (1.76)
From (1.5, 1.75) we have
luz = wrl < Jlo = wi]| € Jluz — wi ], (1.77)

where constant C' only depends on the norm ||¢|| @) - Thus, taking €¢ small enough such that max,cq:
dist(z,T) < CLH we obtain from (1.77) that u; = us.

One can easily check, that for all sufficiently small € n(Q%) C [—¢, 0] xT;. Let us show that the mapping 7 is the

one-to-one mapping. Our proof is by contradiction. Suppose that there exists the sequence {x,(:), x,(f)}zo:l CR"

such that 77(3:,(:)) = 77(3:,@) with a:,(j ) e Q4 and :E,(:) # :E,(f). Without loss of generality one can assume that
k

x,(cj) — T € I';. The equality n(x,(cl)) = n(x,(f)) implies w(x,(cl)) = 111(36,(@2)). Thus by considering the restriction of

the function ¢(x) on the line orthogonal to I'* at the point p(x,(cl)) there exists at least one point x,(f’) € [x,(ﬁl), x,(f)]
() O(F) _ P = i ~
Bl/(p(;;cl))) = 0. Hence 775 = 0 and V(&) = 0. But this contradicts tF) (1.5).
Obviously the mapping 7(z) is continuous. Our aim is to prove that n € C%(Q%;[—¢, 0] x ;). This statement
is trivial for the first component of the vector-function 7. Hence now we should prove p € C?(Q%;[—¢,0] x ;).

Let & be an arbitrary fixed point in Q¢, and U be a sufficiently small neighborhood of this point in R and

€9

such that
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O(u) : B.(0) € R"! — T the local coordinate system on the manifold I'; in the neighborhood of p(%) :
p(2) € 0(Br(0)). Then if p(z) = (), the point ¥ is the solution to the extremal problem

Ji(v) = || — 0(v)|| — inf, v € B,(0)

and by the Fermat theorem the pair (&, ) satisfies to the system of linear equations

i(;zﬁei(ﬁ))aei(m =0 (e{l,...,n—1}- (1.78)

i=1 dvg

Moreover there exists an open set U C U such that for all z € U exists v € B,(0) that p(z) = 6(v) and
equations (1.78) hold true with (x,v) exchanged for (Z,?).
We introduce the new mapping
F(z,v) : R® x R"™! — R~
where F(z,v) = (Fi(z,v),..., F—1(z,v)) and

Fi(z,v) = Z(fﬂz‘ - 91‘(”))8225:)'

Note that % is an epimorphism for all v € B,.(0) and x € Y. In fact
OF . (v) < 020 (v)
_ i —0; .
v; Z 81}@ BIC KOl
=1 =1
So the matrix {gF’f} is the sum of two matrices A(v) = {ag;} = {—> 1, %Jﬂ) 627“;’)} and B(v) = {bs;} =

(=30 (z — i(v))gﬂea(”)} For each ¢ > 0 there exists g > 0 such that for all € € (0,e9)
[B(v)|| < 0.

On the other hand rank A = n — 1. Thus taking ¢( sufficiently small we have

OFp\
rank {8_%} =n-—1.

Hence by implicit function theorem there exists a unique mapping v = p(r) of class C%such that F(x, u(x)) = 0.

On the other hand, since by Condition 1 the manifold T'; is compact one can choose €y > 0 such that
n € C?(Q, [—¢,0] x Ty) for all z € QF with e € (0, ).

Finally let us show that n(Q.) = [—£,0] x I; for all € sufﬁciently small. Our proof is by contradiction.
Suppose that there exists a sequence {y;}5° such that y, € [— ,O] x T; and yi = Yok, Y)) & n(Q’%) Without
loss of generality we can assume that y;, — ¢’. On the other hand on the line orthogonal to I'; at the point yj,
one can find &y € Q% such that ¢(Z;) = yo k. But in this case equality (1.74) holds true with z,u changed for
&1, y,. Moreover for k sufficiently large one can choose the local coordinate system 6(u) on the manifold I'; in
the neighborhood of y;, such that p(zx) € 0(B,-(0)), ¥’ = 6(0). Let y;, = 6(v},) and p(&x) = 0(0x). Then v;, — 0
and 9 — 0. Thus F(&y,0,) = F(&k,v},) = 0. But in the small neighborhood of (§’,0) this mapping has only
one solution. We arrived to contradiction. g

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Condition 1 implies that for e sufficiently small the set Q. = {z]|0 < ¢(x) < €} consists
of N connected components. By Lemma 1.6 one can choose £* small enough so that each component is
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diffeomorphic to manifold [—1,0] x I';. Hence there exists diffeomorphism 7(z) : Q.- — [~1,0] x T of class C2.
Let e;(x) i € {1,2} be a set of functions such that e;(z) € C?(Q), ea(z) € CZ(Q\ Qe /a), e1(z) = 1 for all
T € Qaevyy, and eg(w) = 0 in Q\ Qrov/g, e2(x) = 1 for all z € Q\ Q.. /o and e;(z) > 0 in Q. Obviously
[y(@)| < [ (@)] + lga(2)], where y:(x) = y(x)es(x). By (1.1-13) we have

Ay +[Aeily = fei inQ,  yiloa = gei,

where [A, e;] is a first order differential operator with coefficients in L>°(2). It is well known (see [29], p. 102)
that the diffeomorphism 7 transfers the elliptic operator A into the elliptic operator on manifold [—1,0] x 9
of the form

N Ry
A= —+ Ai(xg,x)—,
Oz} jgo 3o )835%

where A;(xo, ) is a differential operator of order 2 — j on 9.
Hence the function § = 71 o n~! is the solution to the boundary value problem

15 = (fe; — [A,eiy) o™ in [—1,0] x 09,

) L 0
Gloo=o = (ger) o™, §(-1,") = a—xo(—l,-) =0.

Thus, by Lemma 1.5 the estimate (1.67) for the function ¢ holds true. Moreover, it follows from the definition of
the functions e;, that all coefficients of the commutator [A, e;] have a compact support in Q. Thus by (1.1-1.3)

2
5—8lal 20|a| o 12 / 5-8|al 20]a| a, |2
S [ (T ) ity ar < 3 S [ (5T ) e

lal<1 i=1|a|<1

2
< Ca Z/ |9@i|2€2wd“+5_i/(|fei|2 + [[A4, ei]y|*)e?*? da
— Joa Q
+/ s2y?e®Pdx | < 032(||g|2 1 628+8_%/(|f|2+1/)10|Vy|2+y2)623“’d9:+/ s2ye?s® dm) Vs > sg,
w1 sz (092) Q w1

where we used Theorem 1.1 in order to estimate yo . This inequality imply immediately Carleman estimate (1.7).
O

2. CARLEMAN ESTIMATE FOR THE STOKES SYSTEM

In this section we will solve the observability problem for the linearized Navier-Stokes system. First let us
consider the system of partial differential equations obtained from differential operator adjoint to the linearized
Navier-Stokes system at point ¢ by the change of variables ¢t — —t.

0
2 Ay+ B*(y,0) + B*(d,y) = Vp+ f in Q,

ot
dlvy = 0; y|2 = 07 y(oﬂ ) = Yo, (22)

—~
[\
—_

~—

where the operators B*(-, 0), B*(0,-) are defined by formulas

B*(y,0) = ((y, ;—;) b (y, %)) , B*(0,y) =—(0,V)y. (2.3)
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‘We have:

Lemma 2.1. Let © € WL (0,T;(VL{(Q) (WL (Q))")).Then for each yo € VY(Q), f € L?(0,T;V°(Q)) there
exists a unique solution y € V12(Q) to problem (2.1, 2.2). Moreover this solution satisfies to the estimate

lyllvizo) < Cilllyollve ) + [1fllL20,7:v0@)))-

This lemma can be proved by standard arguments (see for example [31]). In order to formulate our Carleman
estimate let us first introduce the weight functions

@) _ Nlvllea 1— Xlom 1
(t(T —t))3 , at) = at, z)|oa = NUAED) p(t) = [COEDE (2.4)

at,x) =

where A > 1 is some parameter to be fixed below. By (1.5, 2.4)
a(t) < alt,z) Y(t,z) € Q. (2.5)
First let us remind some standard Carleman estimates for the heat equation

0 .
3_i —Az=finQ, zlx=0. (2.6)

We have:
Lemma 2.2 [20]. Let z € L%(Q) be solution to (2.6) and f € L2(Q). Then there exists a A\ > 1 such that for

any A > \ one can find so(A) such that the following inequality holds

/ S

+5Q|Vz|* + 8@ 2% | 25 dx dt

EpN

8:168

<y (/ fPe¥ s dxdt +/ $3p3 22625 dx dt) Vs > s9, (2.7)
Q

w1
where the constant Co is independent of s and wy is the subdomain from the Lemma 1.1.

Now we can prove the following theorem:

Theorem 2.1. Let y € L?(0,T;V°(Q)) be solution to (2.1, 2.2) and f € L?(0,T;V°(Q)). Then there exists a
A > 1 such that for any A > X one can find so(\) such that the following inequality holds

A

Cs (/ f2(62m + (sgﬁ)%e%d) dx dt +/ (s3<p3y2 + (550)171 ) 25”‘dmdt> Vs > s, (2.8)
Q

w1

n 2

+3 Oy
@]

—1 89:189:]

+ 5¢|Vy|* + s°@%y? | e*5* dx dt

where the constant C5 is independent of s and wy is the subdomain from the Lemma 1.1.

Proof. Applying the Carleman estimate (2.7) to the linearized Navier-Stokes system and keeping in mind the
inequality

1B (y(t. ), 0(t, NIELayye + 1B @), y(t N2 e < 04/Q(|Vy(t’$)|2 +y(t,2)[?) do
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I(s) < Cs (/

Applying the divergence operator div to both parts of equation (2.1) we obtain

we have

s3p3y2e? da:dtJr/ |Vp|2ese da:dtJr/
Q

f2e*® da dt) Vs > so(A). (2.9)
Q

w1

for a.e. t € [0,77].
Note that

|div(B* (0(t, 2), y(t, ) + B (y(t, ), 0(t, )| < Ce(|Vy(t, o) + [y(t, 2)]) V(¢ ) € Q. (2.11)

From (2.10), using the estimates (1.7, 2.11) we can estimate the gradient of the pressure as follows

/ |Vp(t,-)|?e*** dx < C; <||p( SR (Ssz)(t))%er&(t)
Q

w2 (09)

+ [ IvoR + e dot |

w1

(s) T pe 25”‘dm> (2.12)

where before applying (1.7) we made the change s — s/(t(T — t))® and we multiplied the inequality (1.7) by
exp{— exp{)\2|\1/)||c(§)}/(t(T —1))8}. Inequalities (2.9, 2.12) imply

u@§@</ (s%@%y + (s0) F p?)e>* du dt

w1

T
414 () ¥ Ipt, 2,

e dt +/ f2e* da dt) Vs > so(A). (2.13)
W2 (09Q) Q

To estimate the norm of the trace of the pressure on the boundary we introduce the new function w(¢,z) =
y(t, z)p% (£)es™D) | By (2.1, 2.2) this function satisfies to the system of equations

3
8

Lw — (sdt + agt @ ) w=Vppied 4 fpfesd in Q, (2.14)

wly =0, divw =0, w(0,-) =0. (2.15)

By the Sobolev embedding Theorem and the standard energy a priori estimates for solutions of (2.14, 2.15) we
have

T
[z et ar< oy [0 st e
2

< Cho (/ ((s¢)i|sdt+ 8{;’f 522 28a+|f|2(8<p)3628@> dmdt+/ 2(sp) 1 QSadxdt>
Q

w

Taking into account that

<Cu@d(t) vtelo,T]
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we obtain from the previous inequality

T T
/0 () lp(t, )2 eMdtgcu< / (524 p(t, )72y ye** dt

w2 (09)
—I—/Q (s%¢3y2625a + |f|2(s¢)%6255‘) dxdt). (2.16)

From (2.5, 2.13, 2.16) the Carleman estimate (2.8) follows immediately. O
Let us consider the system of partial differential equations which is obtained from (2.1, 2.2) by change of
variables t — —t:

L*z:f%fAerB*(z,f))JrB*(f),z):Vqufin Q, (2.17)
divz=0, z|lg=0, 2z(T,)= =z, (2.18)

where the operators B*(0,-), B*(-,0) are defined in (2.3). A short calculation shows, that L* is the adjoint of
the differential operator which corresponds to the linearization of the Navier-Stokes equations at the point .
We need the following technical lemma:

Lemma 2.3. Let zo € V() and 6 € WL (0,T; (VY (Q) N (WL(Q)"). Then the solutions of problem (2.17,
2.18) satisfy the estimate

0z
ot

The proof of this lemma is given in Appendix.
Let us consider the boundary value problem for the stationary Stokes system

+12ll20,7/2:v2 () < Cis(l|2ll 220,37 /4;v 1)) + 1f | 220,37 /45v0 () )- (2.19)
L2(0,7/2;V0())

Av=Vq+g in Q, dive =0, v|sqg = 0. (2.20)

The following lemma is proved in [31]:

Lemma 2.4. For any g € V—1(Q) there exists a unique solution v € V(Q) of problem (2.20) and this solution
satisfies the estimate

[vllvie) < Cullgllv-1(o)- (2.21)

Let us introduce the function (¢, z) by the formula
k(t,2) = (¥ — XNl ) (e(0)(T = 1), /(1) = min, ge(tia),  R(D) = max,cgr(tia),  (222)
e C™®0,T], L(t)=tVte[3T/2,T), L(t)>0 Vtel0,T]. (2.23)

Let us take the parameter X such that

>
\Y
P

where \ defined in Theorem 2.1 and

9
max, gk (t, z) < Tominmeﬁm(t,x) vt € [0,T]. (2.24)
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Note that
3
k(t,x) = ax(t,x) VY(tz)e <§T, T) x 2.
Now we are ready to prove an observability inequality for system (2.17, 2.18). We have

Theorem 2.2. Let pair (z,q) € VY2(Q) x L?(0,T; WH(Q)) satisfies (2.17, 2.18), f € L*(0,T;V°(Q2)). Then
there exists § > 0 such that inequality holds

||z(0,~)|\%,0(9)+/(Tft)8|z|ze§”da:dt§015 (/ |z|2el%§'”<dxdt+/ |f|2el%§f<dxdt), (2.25)
Q Q

w

where the constant Cy5 is independent of f, z.

Proof. Let us introduce the functions , g, f by formulas

T

2 2

r(t,x)z/tz(r,x)dr, g(t,x):/;q(T,x)dT, f(t,x)z/gtf(ﬂx)dr

Short calculations shows that the pair (r, g) satisfies the equations

ve=vos [ 5 (6., 250 Y s / (M) s s (Go) ima. 20

2

divr=0, r|g=0. (2.27)
Let us show that the function g satisfies the estimate
T
gt 2w < C16<|Z (5, ) ez + 2l L2z 0 xwypn + 1206 )l 22w
Mz + 176 s ) (2.29)

where Cig is independent of ¢ € [0,T]. Using the definition of the function r we can rewrite equation (2.26) as
follows

- ar =Ygz (o) 42t - BO0) - B o)

+/TtB* (T(Sv.)’%) ds+/TtB* (%,r(s,)) ds+f inQ (2.29)

2

Note that the function g in (2.29) is defined up to a constant. To fix it we set
/ q(t,z)dz =0 Vte[0,T).
w1
This equality implies

/ g(t,x)de =0 Vte[0,T]. (2.30)

1
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We are looking for the functions r, g in the form r = ry + r9, 9 = g1 + g2, where

—Ar; =Vg —z (%,) + z(t,") — B*(r,0) — B*(v,r)

o ) [ (22

2

ds+ f in w,

divry =0, 7"1|@wf0,/gltacda:—OtG(O,T). (2.31)

1

By Lemma 2.4 the unique solution of problem (2.31) exists and satisfies the estimate

)

+ 112t )l (z2(wyyn

Ir1llviqw) + lg1llz2@) < Cn(
(L2 (w))™

Il 2z oxwpn + 7 )l @z + I1f(t, ')||(L2(w))">' (2.32)

By virtue of (2.29, 2.27, 2.31) the functions r3, g2 should satisfy the equations
Are =Vgo in w, divrg = 0. (2.33)

Thus
Agos =0 in w.

Applying the Laplace operator A to this last equation we obtain A?ry = 0. Thus thanks to (2.33) and from
well known estimates about interior regularity of solutions of elliptic equations (see [24]) we have

()

7l 2z oy xwypyr + IrE 2@y + 1208 )l 2 + I£(t, ')H(L?(w))”>- (2.34)

r2(t)l (c2@ryyn < Casllr(t) — r1(t) L2y~ < Clg(

(L2 (w))"

By (2.34) equality (2.33) implies the estimate

&)

F 17l L2z xwyn + IFE L2y + 112(E, ')||(L2(w))">~ (2.35)

+[Ir(t, )l L2 @)

”vQ?(tv ')”(C(Gl))" < Oy (
(L2 ()™

2

By (2.30, 2.31) we obtain

/ go(t,z)dx =0Vt € [0,T].

1



64 O.YU. IMANUVILOV

&)

L) p2eoyn + |2 (ts ')|(L2(w))">- (2.36)

Thus inequality (2.35) yields

lg2(t, )l L2(wr) < Cz1<

+ lr @t 22wy + ||7"H(L2((g,t)xw))n
(L2(w))™

This inequality and (2.32) imply (2.28).

Note that, since for each fixed = the function a(t, x) reaches it maximum at 7'/2 we have
t 0, ) L 90(s, ) ’
/Q /Z B (T(& ~)7 T) ds + /T B (T, T(87 )) ds

2
where the constant Cy, is independent of s.

Applying Carleman inequality (2.8) to equations (2.26, 2.27) and taking into account (2.37) we have

2

eX % dx dt < 022/ (IVr]? 4+ r?) e*** dx dt,
Q

(2.37)

0?r
83@8353

2
) + 5¢|Vr|2 + s3¢3|r|2> e dx dt

(sp) T g2e® dy dt + / s3p3|r|?e? 5 dx dt

w1
2
z (%, :E) ) e®5 dg dt) , (2.38)

Parameter so(\) is defined in Theorem 2.1. Set § = 2s0(\). Using a priori estimate (2.19) for system (2.17,

2.18) in the right hand side of inequality (2.38) we can replace the function o by x and the function ¢ by
(T —t)=% and the constant Ca3 by Cay(s):
2

T ) g2
z|=,- < Cay(s) / —=—e*Fdxdt
( 2 Vi(Q) Qu, (T —1)*

7,.2 1 ~
+/ ﬁesﬁdl'dt+/czm|f|265ndl_dt+

where s > sg()\).

/ (T — )8 2%~ da dt +
Q

“1l

()

2
. (2.39)
Vo(e)

where s > s.

Using estimate (2.28) one can rewrite (2.39) as follows

T N
z (_’.) < Oy / (T—t)_24|7"|263" dz dt
2 Qu,
~ 2
+/ (|f|2+|Z|2+|T|2)e§ﬁdxdt+/T 12L2((2 1 xpyn
0

T~ 1) T~ 1)
&)

2
/ (T — t)8| 2| da dt +
Q

Vi(Q)

e%F dt

w

1
e —— SR dx dt
+/Q(T—t)6|f|e xdt +

2
. (2.40)
Vo)
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Note that by (2.22-2.24)

£12 2 2 £12
Q

(T —1)* Q (T—1)°
T |22 2 2 . . .
+/ (LQ((Q,t)QXZJ))) SR dt < Cog </ |f|261—90sn da dt +/ |Z|2€%Sﬁd:€dt) ’
0 (T —1) Q Q.

where Cyg is independent constant. Thanks to this last inequality we deduce from (2.40)

()

+/ |f|2e0%% da dt +
Q

2

< Cor / |Z|26%§Rd£)§dt
Vi) N

(5 ) 21

Let us finish the proof by contradiction. By Lemma 2.1 instead of showing the estimate (2.25) it suffices to

prove
T
Z —_— .
2 )

If inequality (2.42) is not true, then by (2.41) there exists a sequence (zk, gk, fx) such that

(2)

/ |2|2(T — t)%e®* da dt +
Q

2
/ 2T — £)8e™ da dt +
Q

< Cag </ |z|26%§%dmdt+/ |f|26%§%dxdt>. (2.42)
) ” Q

Vi

> 0, (2.43)
(L2E@)n

Lz, =V + fr inQ, divz, =0, 2|y =0, klim

fe — 0 in (LQ(Q,el_gog’%))", / |Zk|26%§k dxdt — 0 as k — oo,

Qu

% (% ) o (g ) in (L2(Q))", 2 — = weakly in VI2((0,T — ¢) x Q) (2.44)

for all € € (0,T). Passing to the limit in (2.43), and taking into account (2.44) we obtain

L*2=VqinQ, divz=0, z|x=0, z|g, =0, (2.45)
T
(2@~
From (2.8, 2.45) we obtain
z=0,

but this is impossible by virtue of (2.46). Therefore the proof of lemma is complete. g
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3. SOLVABILITY OF LINEAR CONTROLLABILITY PROBLEM

Let us consider the problem of exact controllability of the linearized Navier-Stokes equations:

0
Ly= a—ﬁ — Ay + B(y,d) + B(i,y) = Vp+ [ + xwu in Q, (3.1)
dlvy = 07 y|2 - 07 y(oa I) = y0($)7 (32)
y(T,z) =0,

where the functions o, f are given and u is a control taken in the space (L?(Q.,))". Before studying solvability
of problem (3.1-3.3) let us recall some existence theorems for boundary value problem (3.1, 3.2), assuming that
u is a fixed function.

Let us set

ﬂ(taﬂf) = *§I‘&(t,l’), (34)

where the function s defined in (2.22) and the parameter § have been taken from Theorem 2.2. Since the
function (¢, ) is negative, n(t, z) is positive. Moreover lim;_,7_on(t, ) = 4o0.
Later on we use the following weight function:

en

+ Xw- (3.5)

To formulate our results we need to introduce some non-standard functional spaces

F(Q,G) = {f € (LQ(Q))n = fl € (LQ(Qa9)>na
3 fo € Ly(0,T; W) such that f = f; + Vfo}-

The norm of the space F(Q,0) is defined by the relation

) 1/2
I fll Q.00 = fll,%ffz (”le%Lg(Q,B))" + ”vaH%LQ(Q))") : (3.6)
f=f+Vf2

We are looking for solution of the controllability problem in the following space

Y(Q) = {y e VIA(Q)|Ly € F(Q.0),e 55y € V12(Q)}

equipped with the norm
2k
1913 @) = ||Ly||%‘(Q,9) + e yl[3r2 -

where the function x introduced in (2.22) and the operator L determined in (3.1). Now we can convert ob-
servability inequality (2.25) into the controllability result for the linearized Navier-Stokes system (3.1-3.3). We
have

Theorem 3.1. Let f € F(Q,0), yo € V(). Then there exists a solution of problem (3.1-3.3) (y,p,u) €
Y(Q) x L2(0,T; WHQ)) x (L?(Q.))™ which satisfies the estimate

(W, p, wlly@)x 20, m5w2 @) x(22@u)» = Crlllvollvi) + 1fllF@.0))- (3.7)
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Proof. We first assume that f € L*(Q,0) and f|g~ = 0. Let us consider the extremal problem

1 1
Ti(y,u) = —/ pr|y|? dx dt + —/ my|u|?dzdt — inf, (3.8)
2Jq 2Jq
Ly=u+Vp+f in @, divy=0, y‘z =0, y(0,z)=yo(z), y(T,z)=0, (3.9)
where
—95R () (T —1)8 %% —
pi(t) = e T 0T (k) = 4 e
k.xeQ\w.

Obviously the functions pg, my are bounded in @ for every k > 0.
By Lemma 2.1 the exists an admissible element to problem (3.8, 3.9). So it is easy to prove (see [25,26]) that
problem (3.8, 3.9) has a unique solution, which we denote as ({x, px, ) € V12(Q)x L2(0, T; W3 () x (L?(Q))™.
Thus, applying the Lagrange principle to extremal problem (3.8, 3.9) (see [1,9]) we obtain

Lgk} = f + ka + ﬁk in Q7diV@k = 07 gk‘z = 07 yk‘(Ta ) = 07 gk(o’ ) = Yo, (310)
Lz, = Vi +pkgk in Q, Zk}z =0, divzg =0, 2z = —mygiy inQ, (311)
where the operator L* defined in (2.17) is an operator conjugate to the operator L.

Since the function py only depends on the variable ¢ only, by Lemma 2.1 px g € L2(0,T;V1(Q)). So we can
apply the estimate (2.25) to equation (3.11) in order to obtain:

/ (T — t)%e* |2k dardt + || ¢ (0, -) |12 < Co (/ pRetoSF g [2dwdt + / e16%% |2y |2 dar dt) . (3.12)
Q Q Q
We observe that |py(t)e10%5()| < 1 for all (t,2) € Q and |my(t, z)e0°%(D| < 1 for all (t,z) € Q,,. In fact

_ i )= ——_—_ c@ — _ .
0T —t 1170 T 10770 = 10 7 e (e ¢ ) T T —t+imp) <0

Keeping in mind these inequalities and substituting the function zj by using the forth equation in (3.11) in the
last integral of equality (3.12) we have

/|zk(0,x)|2dm+/ |20 2T — £)8e™ da dt < Cs (/ pk|g)k|2dmdt+/ mk|ﬁk|2dmdt). (3.13)
Q Q Q Qu

Multiplying (3.111) by g scalarly in (L?(Q))", and integrating by parts with respect to ¢ and z, bearing in
mind (3.10) after simplifications we have

0= (L"2k — Var — prbr, Uk)(£2(Q)» = — /Q |9k |? d dt + (zi, L) 220y + (22(0,+), (0, ) (£2(0)n
= —/ P |9 |? da dt — / my|ig)? d dt + / (f, zr) d dt + (2x(0,-), yo) (2())n -
Q Q Q
Hence

1 1
AU 5/42 (pr|91|? + my| g |?) dodt = 3 (/Q(f, 2p) dx dt + (2x(0, ')ayo)(LQ(Q))n> - (3.14)
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Note that

‘/Q(f, Zk)d:L' dt' S C4HfH(L2(Q,9))" (T — t)4€§H/QZkH(Lz(Q))n. (315)

By (3.13-3.15) we obtain

TG i) < Cs (|1 £l re@.0) + 1voll 2y )V Ti Gk, k).
Hence
Tk, i) < Cg(”f”??(@,e) + ||y0||%L2(Q))")' (3.16)
By virtue of (3.16, 3.4) we have a subsequence {(§, i) } 5., such that

(Gr, ) — (y,u) weakly in  V3(Q) x (L*(Q))",
r — 0 in  (L*((0,T) x (2\ w)))",

/ mk|dk|2dmdt+/ okl dz dt < C. (3.17)
Qu Q

Also, by (3.13, 3.17) it follows from (3.11)
Mt ||y 0,r—e)x) < Cr(e)
for all € € (0,7T). Hence without loss of generality one can assume
G (t,z) — u(t,x) almost everywhere in Q. (3.18)

Using (3.17), we pass to the limit in (3.10) to obtain that pair (y,u) is a solution of problem (3.1-3.3). The
relations (3.16, 3.17) and Lemma 2.1 imply the estimate

(Y, 2 Wllviz@yx L2 o,mwi @) x 22@u) < Csl|yollvi) + 1 fllF@q.0))- (3.19)
Also by (3.17, 3.18) and Fatou’s theorem (see [23], p. 307) we have

I 2 e 58y (12 B oy < €O (3.20)

Now to prove (3.7) we need only to estimate the norm of the function e~ 3%y in the space V12(Q). Let us make
220k, N\ ,—25k

the following change of variables in (3.1). Set § = ye_%g’%,ﬁ = pe_%g’%,g = (f—235;y)e
yoe~ 55%(0) Note that by (3.19, 3.20)

2 an
T — —£SK . —
,2U=ue 577, Yy =

lgll 2@y + lallz2@)» < Colllyollvoy + [l r@.0)- (3.21)

We observe, that the pair (7, ) satisfies the equation
Ly=Vp+g+ xotin Q, (3.22)
divy =0, glz=0, 5(0,z) = go(x). (3.23)

Thus (3.19-3.21) and a priori estimate taken from Lemma 2.1 implies (3.7).
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Now let f € F(Q,0) be an arbitrary function. Then there exist functions f; € (L?(Q,0))" and fy €
L2(0,T;W4(Q2)) such that f = f; + V. Above we proved that there exists a solution (y,p,u) of the exact
controllability problem (3.1-3.3) with initial datum (yo, (1 — x. ) f1) which satisfy the estimate (3.7). Obviously
(Y, + f2,u+ Xwf1) is a solution of this problem for the initial datum (yo, f). a

4. PROOF OF THE MAIN THEOREM

Now our nearest aim is to reduce the proof of Theorem 1 to the case of a linear controllability problem. We
look for a solution of problem (1, 2, 4, 5) in the form

v(t,x) = 0(t, x) + y(t, x). (4.1)
Substitution of (4.1) into equations (1, 2, 5) and then subtraction from them of the same equation for ¢ yields

N(ya(Lu) = aty(t,l') - Ay+B(ﬁ7y) +B(yaf)) +B(y7y) - V(]f)(wu =0in Qa (

divy =0, (

y(0,z) = vo(z) — (0, x), (

y(T,z) = 0. (

We will solve the problem (4.2-4.5) with help of the following variant of the implicit function Theorem (see [1]).

Theorem 4.1 (on a right inverse operator). Suppose that X, Z are Banach spaces and
A: X -7
s a continuously differentiable map. We assume that for xo € X, zo € Z the equality
A(zo) = 2o (4.6)

holds and the derivative A'(xo) : X — Z of the map A at xo is epimorphism. Then there exists € > 0 such that
for any z € Z which satisfies the condition

Iz — z0llz < €

there exists a solution x € X of the equation

A(z) = 2.
In our case the space
X =Y(Q) x L*(0,T; W5(Q)) x (L*(Qu))" (4.7)
and
Z = F(Q,0) x V}(Q). (4.8)
The operator A is defined by the formula
Ay, ¢, u) = (N (y, q,u),9(0,-)). (4.9)

We have:
Lemma 4.1. Let o € WL1(0,T; VY(Q) (WL (Q)"), then A € CH(X,Y).
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Proof. It follows directly from the definitions of the spaces X, Z that the operator
(¥, q,u) = (Bry(t, x) — Ay + B(0,y) + By, 9) — Vg = xou, 9(0,4)) : X — Z

is continuous and moreover continuously differentiable in virtue of linearity. The operator B is a bilinear one.
So to prove this lemma it is sufficient to establish continuity of the bilinear operator

B:Y(Q) xY(Q) — (L*(Q.0)",
where the function § was defined in (3.6). Note that from (2.4, 2.22, 3.5)

n(t,xz) < —8k(t,x) VY (t,z) € Q. (4.10)
Then (4.10) and simple transformations give the estimate

2
lyil*[Vy;[*e"
1By, y2)|I? » <O g / I dxdt
(L2(Q,0)) g, ([T—1tp

ij=1
+/ |yi|2|Vyj|2da:dt> <G Y / i |Vyﬂ e~ du dt
Qu

2,7=1
45z 434
< Galle™> yllvraiglle™* " pelia g
This inequality proves the theorem. O

Proof of the Theorem 1. Firstly we apply the inverse operator theorem to the problem (4.2-4.5). Let A be the
operator defined by formulas (4.9, 4.2), and let the spaces X, Z be defined as in (4.7, 4.8). Set xy = (0,0,0),
20 = (0,0). Then equation (4.6) obviously holds. By Lemma 4.1 A € C'(X, Z) and by Theorem 3.1 Im.A’(0) =
Z. So all necessary conditions to apply the theorem about the inverse operator are fulfilled. Therefore there
exists such £ > 0 such that for any initial data (4.4) satisfying the inequality

lyollvi) <e

the problem (4.2—-4.5) has a solution (y,p,u) € X. Then the triple (y+0, p+p, u) is a solution of the problem (1—
3, 5). O

APPENDIX

Proof of Lemma 2.3. Making the change of the variable ¢ — (T —¢) in (2.17, 2.18) we obtain the system

O At Bav) 4B (v,2)= Va4 fin Q (1)

divz = 0, Z|E =0, Z(O, ) = 20, (2)

where v(t,x) = 0(T — t,z),f(t,z) = f(T — t,z). Now instead of (2.19) it suffices to prove

|2

+ HZ||L2(T/2,T;V2(Q)) < C(||ZHL2(T/4,T;V1(Q)) =+ ||fHL2(T/4,T;V0(Q)))~ (3)

L2(T/2,T;V0(Q))
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The Sobolev embedding theorem implies the following estimates

1B*(2,v) + B*(v, 2)llL2(0,msv-1(2)) < CllzlL20,m3vo) IVl L 0,m50w L (2)))
1B*(2,v) + B*(v, 2)||L2(0,75v00)) < Cllzll20,m5v1 () IV Loe 0,150w2 (02))m)- (4)

Thanks to inequalities (4) using the Faedo-Galerkin method and arguing exactly same way as in [31] (p. 255)
we can construct a solution to problem (1, 2) such that

2z
ot
Thus for z € VO(Q), f € L%(0,T;V°(Q)) there exists a solution to problem (1, 2) a function z € L?(0,T; V1()).

Denote z = pz, where p € C*[0,T], p(t) =1 for all t € [T/2,T] and p(t) = 0 for all ¢ € [0,T/4]. The function
z satisfies to the system of equations

+ HZ”L2(07T;V1(Q)Q(W21+5(Q))") < C(llzollvs(e) + Ifl20,7;v-1+2(0))) s € {0,1} (5)
L2(0,T5v0(Q))

) )
a—j — Az + B'(z,v) + B*(v,2) :V(pq)+za—§+pfin Q, (6)
divz=0, z|x=0, z(0,:)=0, (1)

Thus applying to problem (6, 7) the apriori estimate (5) with s = 0 we obtain (2.19). The proof of the lemma
is complete. O

The author wish to acknowledge the many helpfull comments and suggestions of referees that resulted in an improved
paper.
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