
ESAIM: Control, Optimisation and Calculus of Variations March 2001, Vol. 6, 333–360

URL: http://www.emath.fr/cocv/

CONTROLLABILITY OF A SLOWLY ROTATING TIMOSHENKO BEAM

Martin Gugat
1

Abstract. Consider a Timoshenko beam that is clamped to an axis perpendicular to the axis of the
beam. We study the problem to move the beam from a given initial state to a position of rest, where
the movement is controlled by the angular acceleration of the axis to which the beam is clamped. We
show that this problem of controllability is solvable if the time of rotation is long enough and a certain
parameter that describes the material of the beam is a rational number that has an even numerator
and an odd denominator or vice versa.
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1. Introduction

In [2], a model for an Euler–Bernoulli beam rotating in a plane has been derived. In [7] Krabs has shown the
exact controllability of a rotating Euler–Bernoulli beam. In this paper we consider the corresponding problem
of boundary control at one end for a Timoshenko beam. The control is performed by the angular acceleration of
the axis, to which the beam is clamped. In [8], Krabs and Sklyar have shown controllability from a position of
rest to a position of rest for the Timoshenko beam for a special parameter value (namely γ = 1).

A similar problem with controls at both ends of the beam has been studied by Moreles in [9], where the
Timoshenko equations and the Rayleigh equations are considered. In [5], boundary control on the free end of
the beam is considered. A similar problem with nonhomogeneous parameters is treated in [11].

The equations of the Timoshenko beam can be transformed to a system where exactly one real parameter γ
appears in the equations. This parameter is always positive. Apart from γ, the length of the beam also plays an
important role. We show that the controllability of the beam can be guaranteed if a condition on the number-
theoretic properties of the parameter γ is satisfied: if the parameter is rational with an even numerator and
an odd denominator or vice versa and the rotation time is long enough and the beam is sufficiently short, the
system is completely controllable.

Our proofs are based on the method of moments as described by Russel in [10]. A detailed exposition
of the method of moments and its relation to problems of controllability is given in [1]. The controllability
result depends on the asymptotic behaviour of the eigenvalues of the beam, and this behaviour depends of the
properties of the parameter. If our condition on the parameter is satisfied, there is an asymptotic gap between
the eigenvalues of the Timoshenko beam in the sense that the distance between different eigenvalues is uniformly
bounded below by a positive constant.
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2. The Timoshenko beam and the problem of controllability

We consider a Timoshenko beam as described by Timoshenko in [12], that is clamped to an axis that is
perpendicular to the axis of the beam. The beam is controlled only at the clamped end, by the rotation of the
axis. Its motion is governed by the following two equations for x̃ ∈ [0, L̃] and t̃ ≥ 0:

ρw̃t̃t̃(x̃, t̃)−Kw̃x̃x̃(x̃, t̃) +Kφx̃(x̃, t̃) = −x̃ρũ(t̃), (1)
Iρφt̃t̃(x̃, t̃)−Kwx̃(x̃, t̃) +Kφ(x̃, t̃)−EIφx̃x̃(x̃, t̃) = −Iρũ(t̃). (2)

Here I is the moment of inertia of the cross section, ρ is the mass per unit length, E is Young’s modulus, Iρ is
the mass moment inertia of the cross section and K is as in [5].

Moreover, w̃ denotes the displacement of the center line of the beam with respect to a reference configuration
that rotates with the axis and φ(x, t) the rotation angle due to bending and shear with respect to the same
reference configuration and ũ(t̃) denotes the angular acceleration of the axis at time t̃.

We use the transformation x = x̃
√
ρ/
√
Iρ, t = t̃

√
ρ
√
EI/Iρ to obtain the equations in the form presented

in [3] (p. 188), where only one real parameter γ appears. Define

γ = ρEI/(KIρ),

ψ(x, t) = (EI/Iρ)φ(x̃, t̃), w(x, t) = (EI/(I3/2
ρ )w̃(x̃, t̃) and u(t) = (Iρ/ρ)ũ(t̃). For the transformed length L we

have L = (
√
ρ/
√
Iρ)L̃, and for x ∈ [0, L] we have the equations

wtt −
1
γ
wxx +

1
γ
ψx = −xu(t), (3)

ψtt −
1
γ
wx +

1
γ
ψ − ψxx = −u(t). (4)

The boundary conditions are

w(0, t) = ψ(0, t) = 0, wx(L, t) = ψ(L, t), ψx(L, t) = 0. (5)

In the sequel, assume that γ > 0 and γ 6= 1. In [8], the case γ = 1 and L = 1 is considered and controllability
from rest to rest is proved.

The initial state of the beam is described by the conditions

w(x, 0) = w0(x), wt(x, 0) = w1(x), ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x) (6)

and

θ(0) = θ0, θt(0) = θ1, (7)

where θ(t) denotes the angle of rotation at time t and u = θtt is the corresponding angular acceleration.
Assume that w0, w1, ψ0, ψ1 are continuous functions on the interval (0, L).
We consider the following problem of exact controllability: given an arrival time T > 0, find a control function

θ ∈ {ξ ∈ L2(0, T ) : ξtt ∈ L2(0, T ), ξ(0) = θ0, ξt(0) = θ1}

and such that the solution (w,ψ) of (3–7) with u = θtt satisfies the end conditions

w(x, T ) = 0 = wt(x, T ), ψ(x, T ) = 0 = ψt(x, T ), θ(T ) = 0 = θt(T ) (8)
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for all x ∈ [0, L]. So we are looking for a control function such that if for all t > T , the control is θ(t) = 0, the
beam stays in a position of rest.

3. The eigenvalues of an ordinary differential operator

We define the Hilbert space H = L2(0, L)× L2(0, L) and the differential operator

A(y, ϕ) =
(
− 1
γ
y′′ +

1
γ
ϕ′,

1
γ
ϕ− ϕ′′ − 1

γ
y′
)

with the domain

D(A) = {(y, ϕ) ∈ H : y′′, ϕ′′ ∈ L2, y(0) = 0 = ϕ(0), y′(L) = ϕ(L), ϕ′(L) = 0}·

Using the operator A, we can write the system (3, 4) in the form (with r1(x, t) = −u(t)x)

(wtt(·, t), ψtt(·, t)) +A(w(·, t), ψ(·, t)) = (r1(·, t),−u(t)).

Theorem 1. The operator A is self-adjoint in H and positive.
If γ > 1 and L2 ≤ 2γ − 1, it satisfies the coerciveness inequality

〈(y, ϕ), A(y, ϕ)〉H ≥
1
L2γ
‖(y, ϕ)‖2H +

1
2γ

∫ L

0

(y′ − 2ϕ)2. (9)

The resolvent is a Hilbert–Schmidt Operator. The eigenfunctions form a complete orthogonal system in H.

Proof. For (y, ϕ) ∈ D(A), (v, α) ∈ {(z, ξ) ∈ H : (z′′, ξ′′) ∈ H} we have

〈(v, α), A(y, ϕ)〉H =
1
γ
v(0)y′(0) + α(0)ϕ′(0) +

1
γ

(v′(L)− α(L))y(L) + α′(L)ϕ(L) + 〈A(v, α), (y, ϕ)〉H . (10)

For (v, α) ∈ D(A), this implies

〈(v, α), A(y, ϕ)〉H = 〈A(v, α), (y, ϕ)〉H .

Thus the operator A is symmetric, hence D(A) ⊂ D(A∗).
For (v, α) ∈ D(A∗), let (w, β) = A∗(v, α) ∈ H. Then for all (y, ϕ) ∈ D(A)

〈(w, β), (y, ϕ)〉H = 〈(v, α), A(y, ϕ)〉H .

Hence for all functions (y, ϕ) ∈ (C∞c )2, we have∫ L

0

wy =
∫ L

0

(
− 1
γ
vy′′ − 1

γ
αy′
)

∫ L

0

βϕ =
∫ L

0

(
1
γ
vϕ′ +

1
γ
αϕ− αϕ′′

)
.

Thus in the sense of distributions we have the equations

w = − 1
γ
v′′ +

1
γ
α′, β = − 1

γ
v′ − α′′ + 1

γ
α.
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So v′′ − α′ is in L2, hence v′ − α is also in L2 and α′′ = − 1
γ (v′ − α)− β is in L2, too.

Thus v′′ is also in L2 and (v′′, α′′) ∈ H. Now (10) implies that (v, α) ∈ D(A). So the operator A is
self-adjoint.

For (y, ϕ) ∈ D(A), we have

〈A(y, ϕ), (y, ϕ)〉H =
∫ L

0

|ϕ′|2 +
1
γ

∫ L

0

|y′ − ϕ|2.

If γ > 1, this implies that (9) holds, where the last inequality follows with the help of the Friedrichs inequality∫ L
0
|f ′|2 ≥ (2/L2)

∫ L
0
|f |2 if f ′ ∈ L2(0, L) and f(0) = 0.

The variation of constant formula shows that the resolvent of A is an integral operator with an L2-kernel. �

3.1. The eigenvalue equation of the operator

Consider the eigenvalue equation

Az = λz (11)

that is equivalent to the equations

− 1
γ
y′′ +

1
γ
ϕ′ = λy, (12)

1
γ
ϕ− ϕ′′ − 1

γ
y′ = λϕ. (13)

If γ > 1 and L2 ≤ 2γ − 1, the coerciveness inequality (9) implies that all eigenvalues are greater than or equal
to 1/(L2γ).

Lemma 1. Assume that γ > 0 and L > 0 are such that

2 + (γ + 1/γ) cos
(
L
√

1 + 1/γ
)
− L

√
1 + 1/γ sin

(
L
√

1 + 1/γ
)
6= 0. (14)

Then the number 1/γ cannot be an eigenvalue of the operator A.

Proof. Suppose that A(y, ϕ) = (y, ϕ)/γ. Then (13) yields ϕ′′ = −y′/γ and (12) implies that y + y′′ = ϕ′. This
yields the equation

y′′′ = ϕ′′ − y′ = −(1 + 1/γ)y′.

So we have

y(x) = A sin
(√

1 + 1/γ x
)

+B cos
(√

1 + 1/γ x
)

+ C

and

ϕ′(x) = y(x) + y′′(x) = − 1
γ
A sin

(√
1 + 1/γ x

)
− 1
γ
B cos

(√
1 + 1/γ x

)
+ C.

The boundary condition y(0) = 0 yields C = −B. The boundary condition ϕ′(L) = 0 yields the equation

A sin
(√

1 + 1/γ L
)

+B cos
(√

1 + 1/γ L
)

= γC = −γB.
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We have

ϕ(x) =
1
γ

A√
1 + 1/γ

cos
(√

1 + 1/γ x
)
− 1
γ

B√
1 + 1/γ

sin
(√

1 + 1/γ x
)

+ Cx+D.

The equation ϕ(0) = 0 implies D
√

1 + 1/γ = −A/γ. The boundary condition y′(L) = ϕ(L) yields the condition

A cos
(√

1 + 1/γL
)
−B sin

(√
1 + 1/γ L

)
= D

√
1 + 1/γ + C

√
1 + 1/γL = −A/γ −B

√
1 + 1/γL.

So A and B solve the following system of linear equations:

A sin
(√

1 + 1/γL
)

+B
[
cos
(√

1 + 1/γL
)

+ γ
]

= 0.

A
[
cos
(√

1 + 1/γL
)

+ 1/γ
]

+B
[
− sin

(√
1 + 1/γL

)
+
√

1 + 1/γL
]

= 0.

If A = 0 = B, we have C = 0 and D = 0, so y = 0 = ϕ. So we are looking for a nontrivial solution that can
only exist if the determinant of the above system vanishes, which is the case if

2 + (γ + 1/γ) cos
(√

1 + 1/γL
)
−
√

1 + 1/γL sin
(√

1 + 1/γL
)

= 0.

This contradicts our assumption. �
Let a complex number ω be given and define

y(x) = −ω sin(ωx),
ϕ(x) = (−ω2 + γλ) cos(ωx).

Then equation (12) holds and

1
γ
ϕ− ϕ′′ − 1

γ
y′ − λϕ = −(ω4 + ω2(−λ− γλ) + γλ2 − λ) cos(ωx).

Hence z = (y, ϕ) satisfies the eigenvalue equation (11) if

ω4 + ω2(−λ)(1 + γ) + γλ2 − λ = 0. (15)

Now let

y(x) = ω cos(ωx), (16)
ϕ(x) = (−ω2 + γλ) sin(ωx). (17)

Then equation (12) holds and

1
γ
ϕ− ϕ′′ − 1

γ
y′ − λϕ = −(ω4 + ω2(−λ− γλ) + γλ2 − λ) sin(ωx).

Hence z = (y, ϕ) as defined in (16, 17) satisfies the eigenvalue equation (11) if (15) holds.
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3.2. The roots of a polynomial

For fixed λ ∈ R, we consider the equation (15). Define

α(λ) = λ
γ + 1

2
+

√
λ+

λ2

4
(γ − 1)2,

β(λ) = λ
γ + 1

2
−
√
λ+

λ2

4
(γ − 1)2.

The solutions of (15) are
√
α(λ), −

√
α(λ),

√
β(λ), −

√
β(λ).

For λ > 0, we have α(λ) > 0. For λ > 1/γ, we have

β(λ) =
λ2(γ + 1)2/4− λ− λ2(γ − 1)2/4

α(λ)
= (λ2γ − λ)/α(λ) > 0

hence in this case, the four solutions of (15) are all real numbers.
For 0 < λ < 1/γ, we have α(λ) > 0 and β(λ) < 0 hence in this case

√
α(λ) and −

√
α(λ) are real numbers

and the solutions i
√
−β(λ), −i

√
−β(λ) are complex.

For λ = 1/γ, we have β(λ) = 0.
Define

ω1(λ) =
√
α(λ), ω2(λ) =

√
β(λ). (18)

If λ > 1/γ, we have ω1(λ) > 0 and ω2(λ) > 0.
For 0 < λ ≤ 1/γ, we have ω1(λ) > 0 and iω2(λ) =

√
−β(λ) is a real number.

We have

ω1(λ)2 + ω2(λ)2 = α(λ) + β(λ) = λ(γ + 1) (19)

and

ω1(λ)2ω2(λ)2 = α(λ)β(λ) = γλ2 − λ. (20)

Moreover, the following equation holds:

(−ω1(λ)2 + γλ)(−ω2(λ)2 + γλ) = ω1(λ)2ω2(λ)2 − γλ(ω1(λ)2 + ω2(λ)2) + γ2λ2 = −λ. (21)

Finally, we have

(−ω1(λ)2 + γλ)2 + (−ω2(λ)2 + γλ)2 = (−ω1(λ)2 + γλ− ω2(λ)2 + γλ)2 − 2(−ω1(λ)2 + γλ)(−ω2(λ)2 + γλ)

= (2γλ− (ω1(λ)2 + ω2(λ)2))2 + 2λ = (2γλ− λ(γ + 1))2 + 2λ

= 2λ+ (γ − 1)2λ2. (22)

3.3. The boundary conditions

Now we return to the eigenvalue equation (11). It has the general solution

y(x) = C1(−ω1(λ)) sin(ω1(λ)x) + C2ω1(λ) cos(ω1(λ)x)
+C3(−ω2(λ)) sin(ω2(λ)x) + C4ω2(λ) cos(ω2(λ)x)

ϕ(x) = C1(−ω2
1(λ) + γλ) cos(ω1(λ)x) + C2(−ω2

1(λ) + γλ) sin(ω1(λ)x)
+C3(−ω2

2(λ) + γλ) cos(ω2(λ)x) + C4(−ω2
2(λ) + γλ) sin(ω2(λ)x).
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The boundary condition y(0) = 0 implies the equation

C2ω1(λ) + C4ω2(λ) = 0.

We have seen that for λ 6= 1/γ, ω2(λ) 6= 0. In the sequel, we assume that (14) holds. Then Lemma 1 implies
that λ 6= 1/γ.

So we have the equation

C4 = −(ω1(λ)/ω2(λ))C2. (23)

The boundary condition ϕ(0) = 0 implies the equation

C1(−ω1(λ)2 + γλ) + C3(−ω2(λ)2 + γλ) = 0,

hence C3 = −((−ω1(λ)2 + γλ)/(−ω2(λ)2 + γλ))C1. (Note that (21) implies that −ω2(λ)2 + γλ 6= 0.)
We have

ϕ′(x) = C1(−ω1(λ)2 + γλ)(−ω1(λ)) sin(ω1(λ)x) + C2(−ω1(λ)2 + γλ)(ω1(λ)) cos(ω1(λ)x) (24)

+ C3(−ω2(λ)2 + γλ)(−ω2(λ)) sin(ω2(λ)x) + C4(−ω2(λ)2 + γλ)(ω2(λ)) cos(ω2(λ)x).

Hence the following equation holds:

0 = ϕ′(L) = C1[(−ω1(λ)2 + γλ)(−ω1(λ)) sin(ω1(λ)L) + (−ω1(λ)2 + γλ)ω2(λ) sin(ω2(λ)L)]

+ C2[(−ω1(λ)2 + γλ)(ω1(λ)) cos(ω1(λ)L) + (−ω2(λ)2 + γλ)(−ω1(λ)) cos(ω2(λ)L)]

= C1(−ω1(λ)2 + γλ)[−ω1(λ) sin(ω1(λ)L) + ω2(λ) sin(ω2(λ)L)] (25)

+ C2ω1(λ)[(−ω1(λ)2 + γλ) cos(ω1(λ)L)− (−ω2(λ)2 + γλ) cos(ω2(λ)L)].

The derivative of the function y is given by the equation

y′(x) = C1(−ω2
1(λ)) cos(ω1(λ)x) + C2(−ω2

1(λ)) sin(ω1(λ)x) + C3(−ω2
2(λ)) cos(ω2(λ)x)

+C4(−ω2
2(λ)) sin(ω2(λ)x).

Moreover, the boundary conditions imply that

0 = ϕ(L)− y′(L) = C1γλ cos(ω1(λ)L) + C2γλ sin(ω1(λ)L) + C3γλ cos(ω2(λ)L) + C4γλ sin(ω2(λ)L).

Hence the following equation holds.

0 = C1 cos(ω1(λ)L) + C2 sin(ω1(λ)L) + C3 cos(ω2(λ)L) + C4 sin(ω2(λ)L)

= C1

[
cos(ω1(λ)L)− −ω1(λ)2 + γλ

−ω2(λ)2 + γλ
cos(ω2(λ)L)

]
+ C2

[
sin(ω1(λ)L)− ω1(λ)

ω2(λ)
sin(ω2(λ)L)

]
.

Thus we have

0 = C1[ω2(λ)(−ω2(λ)2 + γλ) cos(ω1(λ)L)− (−ω1(λ)2 + γλ)ω2(λ) cos(ω2(λ)L)] (26)

+ C2[ω2(λ)(−ω2(λ)2 + γλ) sin(ω1(λ)L)− (−ω2(λ)2 + γλ)ω1(λ) sin(ω2(λ)L)].
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We are looking for a nonzero solution (C1, C2, C3, C4) and (25) and (26) imply that it can only exist if the
vectors

((−ω1(λ)2 + γλ)[−ω1(λ) sin(ω1(λ)L) + ω2(λ) sin(ω2(λ)L)],

ω1(λ)[(−ω1(λ)2 + γλ) cos(ω1(λ)L)− (−ω2(λ)2 + γλ) cos(ω2(λ)L)])

and

(ω2(λ)[(−ω2(λ)2 + γλ) cos(ω1(λ)L) − (−ω1(λ)2 + γλ) cos(ω2(λ)L)],

(−ω2(λ)2 + γλ)[ω2(λ) sin(ω1(λ)L)− ω1(λ) sin(ω2(λ)L)])

are linearly dependent.

Lemma 2. All the eigenvalues of the operator A are simple, that is the space generated by the corresponding
eigenfunctions has dimension 1.

Proof. For an eigenvalue λ, the above vectors are linearly dependent. To show the assertion, we show that these
vectors cannot both be the zero vector. Suppose that both vectors equal zero, then

ω1(λ) sin(ω1(λ)L) = ω2(λ) sin(ω2(λ)L),
ω2(λ) sin(ω1(λ)L) = ω1(λ) sin(ω2(λ)L)

hence 0 = (ω1(λ)2 − ω2(λ)2) sin(ω1(λ)L) and since (ω1(λ)2 − ω2(λ)2) 6= 0 this implies that sin(ω1(λ)L) = 0.
Analogously, we can show that cos(ω1(λ)L) = 0, which is a contradiction. �

3.4. The spectral equation

So for the eigenvalues of the operator A that are unequal to 1/γ, we obtain the spectral equation

0 = (−ω1(λ)2 + γλ)[−ω1(λ) sin(ω1(λ)L) + ω2(λ) sin(ω2(λ)L)]

× (−ω2(λ)2 + γλ)[ω2(λ) sin(ω1(λ)L)− ω1(λ) sin(ω2(λ)L)])

− ω1(λ)[(−ω1(λ)2 + γλ) cos(ω1(λ)L)− (−ω2(λ)2 + γλ) cos(ω2(λ)L)]

× ω2(λ)[(−ω2(λ)2 + γλ) cos(ω1(λ)L)− (−ω1(λ)2 + γλ) cos(ω2(λ)L)].

The equation can be written in the simpler form

0 = (−ω1(λ)2 + γλ)(−ω2(λ)2 + γλ)[−ω1(λ)ω2(λ)(sin2(ω1(λ)L) + sin2(ω2(λ)L))

+ (ω1(λ)2 + ω2(λ)2) sin(ω1(λ)L) sin(ω2(λ)L)]

− ω1(λ)ω2(λ)[(−ω1(λ)2 + γλ)(−ω2(λ)2 + γλ)(cos2(ω1(λ)L) + cos2(ω2(λ)L))

− ((−ω1(λ)2 + γλ)2 + (−ω2(λ)2 + γλ)2) cos(ω1(λ)L) cos(ω2(λ)L)].

Further simplification yields the form

0 = (−ω1(λ)2 + γλ)(−ω2(λ)2 + γλ)(−ω1(λ)ω2(λ))

× (sin2(ω1(λ)L) + cos2(ω1(λ)L) + sin2(ω2(λ)L) + cos2(ω2(λ)L))

+ (−ω1(λ)2 + γλ)(−ω2(λ)2 + γλ)(ω1(λ)2 + ω2(λ)2) sin(ω1(λ)L) sin(ω2(λ)L)

+ ω1(λ)ω2(λ)((−ω1(λ)2 + γλ)2 + (−ω2(λ)2 + γλ)2) cos(ω1(λ)L) cos(ω2(λ)L).



CONTROLLABILITY OF A SLOWLY ROTATING TIMOSHENKO BEAM 341

Using (19–22), this can be written in the form

0 = −λ
(
−
√
γλ2 − λ

)
2 + (−λ)λ(γ + 1) sin(ω1(λ)L) sin(ω2(λ)L)

+
√
γλ2 − λ(2λ+ (γ − 1)2λ2) cos(ω1(λ)L) cos(ω2(λ)L).

Dividing by λ2
√
γλ2 − λ yields the spectral equation

0 = (γ − 1)2 cos(ω1(λ)L) cos(ω2(λ)L) +
2
λ

(1 + cos(ω1(λ)L) cos(ω2(λ)L)) (27)

− γ + 1√
γλ2 − λ

sin(ω1(λ)L) sin(ω2(λ)L).

3.5. The asymptotic behaviour of the eigenvalues

Define

δ(λ) =
2

(γ − 1)2λ
[1 + cos(ω1(λ)L) cos(ω2(λ)L)] − γ + 1

(γ − 1)2

1√
γλ2 − λ

sin(ω1(λ)L) sin(ω2(λ)L). (28)

Since we have assumed that γ 6= 1, the function δ is well-defined for λ > 0, λ 6= 1/γ.
We have seen that the eigenvalues of the operator A unequal to 1/γ are the solutions of the equation

0 = cos(ω1(λ)L) cos(ω2(λ)L) + δ(λ), (29)

where ω1(λ) and ω2(λ) are defined in (18).
The definition of δ(λ) implies that for λ > 1/γ,

|δ(λ)| ≤ 1
(γ − 1)2

(
4
λ

+
γ + 1√
γλ2 − λ

)
· (30)

Hence for λ sufficiently large, we have δ(λ) ∈ [−1, 1] and it is easy to show that the following statement holds:
if the equation

0 = cos(ω1(λ)L) cos(ω2(λ)L) + δ(λ)

is valid, then | cos(ω1(λ))L| ≤
√
|δ(λ)| or | cos(ω2(λ))L| ≤

√
|δ(λ)|, which implies that

Lω1(λ) ∈
[
jπ + arccos

(√
|δ(λ)|

)
, jπ + arccos

(
−
√
|δ(λ)|

)]
for some j ∈ N or

Lω2(λ) ∈
[
kπ + arccos

(√
|δ(λ)|

)
, kπ + arccos

(
−
√
|δ(λ)|

)]
for some k ∈ N.

Define

ε(λ) = π/2− arccos
(√
|δ(λ)|

)
.
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Note that ε(λ) = arcsin
(√
|δ(λ)|

)
= arccos

(
−
√
|δ(λ)|

)
− π/2, that limλ→∞ ε(λ) = 0 and that we have

Lω1(λ) ∈ [jπ + π/2− ε(λ), jπ + π/2 + ε(λ)]

for some j ∈ N or

Lω2(λ) ∈ [kπ + π/2− ε(λ), kπ + π/2 + ε(λ)]

for some k ∈ N.
There exists a constant C > 0 such that ε(λ) ≤ C/

√
λ for λ sufficiently large.

In fact, for λ ≥ 2/γ we have γλ2 − λ ≥ (γ/2)λ2 and thus

ε(λ) ≤ π

2

√
|δ(λ)| ≤ π

2
1

|γ − 1|

√
4
λ

+
γ + 1√
(γ/2)λ2

hence we can choose the constant as

C =
π

2

√
4

(γ − 1)2
+

γ + 1
(γ − 1)2

√
(γ/2)

·

This implies that we have

Lω1(λ) ∈ [jπ + π/2− C/
√
λ, jπ + π/2 + C/

√
λ]

for some j ∈ N or

Lω2(λ) ∈
[
kπ + π/2− C/

√
λ, kπ + π/2 + C/

√
λ
]

for some k ∈ N.

Lemma 3. Let D = 1/|γ − 1|.
If γ > 1, for all λ > 1/γ we have

ω1(λ) ∈
(√

γλ,
√
γλ+D/

√
γλ
)
, (31)

ω2(λ) ∈
(√

λ−D/
√
λ,
√
λ
)
. (32)

If γ ∈ (0, 1), for all λ > 1/γ we have

ω1(λ) ∈
(√

λ,
√
λ+D/

√
λ
)
, (33)

ω2(λ) ∈
(√

γλ−D/
√
γλ,

√
γλ
)
. (34)
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Proof. If γ > 1, we have the equalities

ω1(λ)−
√
γλ =

(
ω1(λ)−

√
γλ
) (
ω1(λ) +

√
γλ
)

ω1(λ) +
√
γλ

=
α(λ) − γλ
ω1(λ) +

√
γλ

=

√
λ+ λ2(γ − 1)2/4− λ(γ − 1)/2

ω1(λ) +
√
γλ

=
λ2(γ − 1)2/4 + λ− λ2(γ − 1)2/4(

ω1(λ) +
√
γλ
) (√

λ+ λ2(γ − 1)2/4 + λ(γ − 1)/2
)

=
1(

ω1(λ) +
√
γλ
) (

(γ − 1)/2 +
√

1/λ+ (γ − 1)2/4
) ·

Hence ω1(λ) >
√
γλ and the assertion for ω1 follows.

Analogously we can show that

ω2(λ) −
√
λ =

β(λ)− λ
ω2(λ) +

√
λ

=
−1

(ω2(λ) +
√
λ)((γ − 1)/2 +

√
1/λ+ (γ − 1)2/4)

·

Thus ω2(λ) <
√
λ and the assertion for ω2 follows.

The proof for the case γ ∈ (0, 1) works analogously. �
Lemma 3 implies that for every eigenvalue λ of the operator A that is sufficiently large we have

L
√
γλ ∈

[
jπ + π/2− (C + LD)/

√
γλ, jπ + π/2 + (C + LD)/

√
γλ
]

for some j ∈ N or

L
√
λ ∈

[
kπ + π/2− (C + LD)/

√
λ, kπ + π/2 + (C + LD)/

√
λ
]

for some k ∈ N.
For k ∈ N, t > 0 define ak = kπ + π/2, bk(t) =

√
a2
k/(L2t) − 4(C + LD)/(Lt), ck(t) =√

a2
k/(L2t) + 4(C + LD)/(Lt).

Lemma 4. There exist k0 ∈ N and λ0 > 0 such that all the square roots of the eigenvalues of the operator A
that are greater than λ0 are contained in the intervals

Ik =
[
ak/(L

√
γ) + bk(γ)
2

,
ak/(L

√
γ) + ck(γ)
2

]
,

Jk =
[
ak/L+ bk(1)

2
,
ak/L+ ck(1)

2

]
for k ≥ k0.

Proof. If λ is sufficiently large, the inequality L
√
γλ ≥ ak − (C + LD)/

√
γλ implies that(√

λ
)2

− ak
√
λ/ (L

√
γ) + (C + LD)/(Lγ) ≥ 0,

hence

√
λ ≥

(
ak/ (L

√
γ) +

√
a2
k/(L2γ)− 4(C + LD)/(Lγ)

)
/2.
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Moreover, the inequality L
√
γλ ≤ ak + (C + LD)/

√
γλ implies that

√
λ ≤

(
ak/ (L

√
γ) +

√
a2
k/(L2γ) + 4(C + LD)/(Lγ)

)
/2.

Hence if λ is large enough, the statement L
√
γλ ∈

[
ak − (C + LD)/

√
γλ, ak + (C + LD)/

√
γλ
]

implies that√
λ ∈

[
(ak/(L

√
γ) + bk(γ))/2, (ak/(L

√
γ) + ck(γ))/2

]
.

The assertion for the other family of intervals follows analogously. �

Lemma 5. Let γ > 1. There exists a number k0 ∈ N such that for all natural numbers k greater than k0 the
function t 7→ cos(ω1(t2)L) changes its sign in the interval Ik and the function t 7→ cos(ω2(t2)L) changes its sign
in the interval Jk.

For γ ∈ (0, 1), there exists a number k0 ∈ N such that for all natural numbers k greater than k0 the function
t 7→ cos(ω1(t2)L) changes its sign in the interval Jk and the function t 7→ cos(ω2(t2)L) changes its sign in the
interval Ik.

Proof. We only proof the statement for the case γ > 1. For a fixed k ∈ N, define

α = (ak/ (L
√
γ) + bk(γ)) /2,

β = (ak/ (L
√
γ) + ck(γ)) /2.

Then Ik = [α, β], ak − L
√
γα = (C + LD)/

(√
γα
)

and L
√
γβ − ak = (C + LD)/

(√
γβ
)
.

Now let k ∈ N be such that α2 > 1/γ. Then Lemma 3 implies that ω1(α2)−√γα ≤ D/
(√
γα
)
, hence

d1 := ω1(α2)− ak/L = ω1(α2)−√γα+
√
γα− ak/L ≤ D/ (

√
γα)− (C + LD)/ (L

√
γα)

= −C/ (L
√
γα) < 0.

Moreover, ω1(β2)−√γβ ≥ −D/(√γβ), hence

d2 := ω1(β2)− ak/L = ω1(β2)−√γβ +
√
γβ − ak/L ≥ −D/(

√
γβ) + (C + LD)/(L

√
γβ)

= C/(L
√
γβ) > 0.

Thus we have

cos(ω1(α2)L) cos(ω1(β2)L) = cos(ak + Ld1) cos(ak + Ld2)
= (cos(Ld2 − Ld1) + cos(2ak + Ld2 + Ld1))/2
= (cos(Ld2 − Ld1) + cos(π + Ld2 + Ld1))/2
= (cos(Ld2 + L|d1|)− cos(Ld2 − L|d1|))/2
= − sin(Ld2) sin(L|d1|).

If k is sufficiently large we have Ld1 ∈ (−π, 0) and Ld2 ∈ (0, π), hence − sin(Ld2) sin(L|d1|) < 0, and the
assertion for the interval Ik follows.

The assertion for the interval Jk follows analogously. �

Lemma 6. Assume that
√
γ = q/p with p, q ∈ N with p even and q odd or with q odd and p even.

Then for all k, j ∈ N we have

|ak − aj/
√
γ| ≥ π/(2q). (35)



CONTROLLABILITY OF A SLOWLY ROTATING TIMOSHENKO BEAM 345

Moreover there exists k0 ∈ N such that the intervals (Ik, Jk)k≥k0 are all disjoint and the distance between the
intervals is uniformly bounded below by a positive number, hence we have

inf
j,k≥k0

inf
s∈Ik,t∈Jj

|s− t| =: ρ > 0. (36)

Proof. From the definition of ak we have

ak − aj/
√
γ = kπ + π/2− (jπ + π/2)p/q = π((2k + 1)q − (2j + 1)p)/(2q).

Since one of the numbers (2j + 1)p, (2k + 1)q is even and the other is odd, the absolute value of the difference
is always greater than or equal to 1, i.e.

|(2k + 1)q − (2j + 1)p| ≥ 1

and hence (35) follows.
There exists k0 ∈ N such that for all k ≥ k0 the lengths l(Ik), l(Jk) satisfy the inequalities l(Ik) < π/(8qL)

and l(Jk) < π/(8qL). This implies that for all k, j ≥ k0 the intersections Ik ∩ Ij , Jk ∩ Jj , Ik ∩ Jj are all empty,
and that (36) is valid. �

Lemma 7. Assume that
√
γ = q/p with p, q ∈ N with p even and q odd or with q odd and p even.

There exists k0 ∈ N such that for all k ≥ k0 the function

t 7→ cos(ω1(t2)L) cos(ω2(t2)L) + δ(t2)

is strictly monotone on the intervals Ik, Jk and thus the intervals Ik, Jk contain at most one square root of an
eigenvalue of the operator A.

Proof. Define the function F (t) = cos(ω1(t2)L) cos(ω2(t2)L) + δ(t2). Then F is differentiable and the deriva-
tive is

F ′(t) = − sin(ω1(t2)L) cos(ω2(t2)L)ω′1(t2)2tL− cos(ω1(t2)L) sin(ω2(t2)L)ω′2(t2)2tL+ δ′(t2)2t.

We have

ω′1(λ) =
(γ + 1)/2 +

[
1 + λ(γ − 1)2/2

]
/
[
2
√
λ+ λ2(γ − 1)2/4

]
2
√
λ(γ + 1)/2 +

√
λ+ λ2(γ − 1)2/4

,

ω′2(λ) =
(γ + 1)/2−

[
1 + λ(γ − 1)2/2

]
/
[
2
√
λ+ λ2(γ − 1)2/4

]
2
√
λ(γ + 1)/2−

√
λ+ λ2(γ − 1)2/4

·

Hence if γ > 1, limt→∞ ω′1(t2)2t =
√
γ and limt→∞ ω′2(t2)2t = 1, and if γ ∈ (0, 1), the roles of ω1 and ω2 are

exchanged.
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Moreover we have

δ′(λ) =
2

(γ − 1)2

(
− 1
λ2

)
(1 + cos(ω1(λ)L) cos(ω2(λ))L)

+
2

(γ − 1)2

1
λ

(− sin(ω1(λ)L)ω′1(λ)L cos(ω2(λ)L)− cos(ω1(λ)L) sin(ω2(λ)L)ω′2(λ)L)

− γ + 1
(γ − 1)2

(
−1

2
1

(γλ2 − λ)3/2

)
(2γλ− 1) sin(ω1(λ)L) sin(ω2(λ)L)

− γ + 1
(γ − 1)2

1√
γλ2 − λ

(cos(ω1(λ)L)ω′1(λ)L sin(ω2(λ)L) + sin(ω1(λ)L) cos(ω2(λ)L)ω′2(λ)L),

hence limt→∞ δ′(t2)2t = 0.
Now assume that γ > 1, and let t ∈ Ik be given, then for k sufficiently large we have

|ω1(t2)− ak/L| ≤ |ω1(t2)−√γt|+ |√γt− ak/L| ≤ O(1/t),

hence

| cos(ω1(t2)L)| = | cos(ak + ω1(t2)L− ak)| = | sin(ω1(t2)L− ak)| ≤ O(1/t),

and

| sin(ω1(t2)L)|2 ≥ 1−O(1/t2). (37)

Since all the sufficiently large roots of the function t 7→ cos(ω2(t2)L) are contained in the intervals (Jk)k∈N,
equation (36) implies that there exists k0 such that

inf
k≥k0

inf
t∈Ik
| cos(ω2(t2)L)| =: M2 > 0. (38)

Hence we can conclude that there exists k0 such that for k ≥ k0 and t ∈ Ik the sign of F ′(t) is equal to the
sign of

− sin(ω1(t2)L) cos(ω2(t2)L)

and since the function sin(ω1(t2)L) cos(ω2(t2)L) does not have a root in the interval Ik, this implies that the
derivative F ′ has constant sign in Ik. Hence the function F is strictly monotone on the interval Ik.

The assertion for the intervals Jk and for the case γ ∈ (0, 1) can be shown analogously.
Due to (29), the assertion for the roots of the eigenvalues of the operator A follows. �

Lemma 8. Assume that
√
γ = q/p with p, q ∈ N with p even and q odd or with q odd and p even.

There exists k0 ∈ N such that for all k ≥ k0 the intervals Ik and Jk contain one square root of an eigenvalue
of the operator A.

Proof. We only prove the statement for the case γ > 1.
For t ∈ Ik, define the function

H(t) = cos(ω1(t2)L) + δ(t2)/ cos(ω2(t2)L).

Then the function H is well-defined since due to Lemma 6 the function t 7→ cos(ω2(t2)L) does not have a root
in Ik.
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Inequality (30) implies that there exists a constant M3 > 0 such that for t ≥ 1 we have

|δ(t2)| ≤M3/t
2.

As in the proof of Lemma 5, let α = (ak/(L
√
γ) + bk(γ))/2 and d1 = ω1(α2)− ak/L ∈ (−(C + 2LD)/(L

√
γα),

−C/(L√γα)). Then

cos(ω1(α2)L) = cos(ak + Ld1) = cos(ak) cos(Ld1)− sin(ak) sin(Ld1) = (−1)k+1 sin(Ld1).

Now (38) implies that

H(α) cos(ω1(α2)L) = cos2(ω1(α2)L) + cos(ω1(α2)L)δ(α2)/ cos(ω2(α2)L)

≥ sin2 (C/ (
√
γα)) − sin ((C + 2LD)/ (

√
γα)) δ(α2)/M2

≥ C2/(2γα2)−M3(C + 2LD)/
(
M2
√
γα3

)
> 0

if α is sufficiently large. Therefore the sign of H(α) is equal to the sign of cos(ω1(α2)L) if α is sufficiently large.
In a similar way, we can show that for β = (ak/(L

√
γ) + ck(γ))/2 the sign of H(β) is equal to the sign

of cos(ω1(β2)L). Lemma 5 states that the function t 7→ cos(ω1(t2)L) changes its sign in the interval Ik, hence
the function H changes its sign in the interval Ik = [α, β] and due to the continuity of H this implies that the
interval Ik contains a root of H and thus by equation (29) the square root of an eigenvalue of the operator A.

The assertion for the interval Jk follows analogously. �
The following theorem summarizes the preceeding lemmas.

Theorem 2. Assume that
√
γ = q/p with p, q ∈ N with p even and q odd or with q odd and p even.

Then there exists λ0 > 0, k0 ∈ N such that all the square roots of the eigenvalues that are greater than λ0

are contained in the intervals Ik, Jk (k ≥ k0) and each of these intervals contains exactly one square root of an
eigenvalue.

Moreover, there is an asymptotic gap between the eigenvalues in the sense that for all ε > 0 there exists λ̄ > 0
such that the distance between all square roots of eigenvalues that are greater than λ̄ is greater than π/(2qL)−ε.

4. Controllability and moment problems

Now we return to the question of controllability that was introduced in Section 2. From the given intial
state, we want to steer the system to rest with the given arrival time T > 0.

The control function is the angular acceleration of the axis u = θtt. For the angle of rotation, we have the
initial conditions (7) and the end conditions

θ(T ) = 0 = θt(T ). (39)

These conditions can be replaced by the two moment equations

∫ T

0

u(s) ds = −θ1, (40)∫ T

0

su(s) ds = θ0. (41)
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If u satisfies (40) and (41), then

θ(t) = t

(∫ t

0

u(s) ds
)

+ tθ1 −
∫ t

0

su(s) ds+ θ0

satisfies (7) and (39).
For a given control function u ∈ L2(0, T ), the solution of the intitial boundary value problem (3–6) can be

written in the form

y(x, t) =
∞∑
j=1

yj(t)φj(x),

where the functions φj are eigenfunctions of the operatorA which are normalized to form a complete orthonormal
system (see Th. 1). The corresponding eigenvalues are denoted as λj , and we assume that they are ordered in
such a way that the sequence (λj)j∈N is increasing. By Lemma 2 we can assume that the sequence is strictly
increasing.

With the expansions of the initial values

(w0, ψ0) =
∞∑
j=1

y0
jφj , (w1, ψ1) =

∞∑
j=1

y1
jφj

and the expansion

(−x,−1) =
∞∑
j=1

rjφj(x), x ∈ (0, L)

we obtain for the solution the expression

yj(t) = y0
j cos

(√
λjt
)

+
y1
j√
λj

sin
(√

λjt
)

+
∫ t

0

u(s)rj√
λj

sin
(√

λj(t− s)
)

ds

(see for example [1]). The end conditions (8) are equivalent to the sequence of equations

yj(T ) = 0 = y′j(T ), j ∈ N.

This means that for all j ∈ N

y0
j cos

(√
λjT

)
+

y1
j√
λj

sin
(√

λjT
)

+
∫ T

0

u(s)rj√
λj

sin
(√

λj(T − s)
)

ds = 0,

−y0
j sin

(√
λjT

)
+

y1
j√
λj

cos
(√

λjT
)

+
∫ T

0

u(s)rj√
λj

cos
(√

λj(T − s)
)

ds = 0.

By trigonometric identities, this yields the sequence of moment equations∫ T

0

u(s)rj sin
(√

λjs
)

ds = y0
j

√
λj (42)∫ T

0

u(s)rj cos
(√

λjs
)

ds = −y1
j , j ∈ N. (43)
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In the next section, we will compute the numbers rj . We show that for γ > 1 for all j with λj ≥ 1/γ, these
numbers are unequal to zero. If the beam is sufficently short, we can guarantee that the numbers rj are all
unequal to zero.

Hence the set of successful controls that steer the system from the given initial state to the desired target
state with the given arrival time is equal to the solution set of the moment problem (40–43).

4.1. The Fourier coefficients of the right-hand side

In this section we compute the values of the numbers rj . Let the eigenfunction φj = (yj , ϕj) be given. We
have

rj = 〈(−x,−1), φj〉H =
1
λj
〈(−x,−1), Aφj〉H .

Now (10) with v(x) = −x, α(x) = −1 implies

rj =
1
λj

(
−ϕ′j(0) + 〈A(−x,−1), φj〉H

)
= −ϕ′j(0)/λj ,

since A(−x,−1) = 0.

Lemma 9. If γ > 1 and condition (14) holds, for all j ∈ N with λj ≥ 1/γ, we have ϕ′j(0) 6= 0 and thus rj 6= 0.

Proof. Suppose that ϕ′j(0) = 0. Then equation (24) implies that

0 = C2(−ω1(λj)2 + γλj)ω1(λj) + C4(−ω2(λj)2 + γλj)ω2(λj) = C2ω1(λj)(ω2(λj)2 − ω1(λj)2),

where the last line follows from equation (23). Since ω1(λj) 6= 0 6= ω2(λj)2 − ω1(λj)2, this implies that C2 = 0.
Thus C1 6= 0 and equation (25) implies that

ω1(λj) sin(ω1(λj)L) = ω2(λj) sin(ω2(λj)L). (44)

Moreover, equation (26) implies that

(−ω2(λj)2 + γλj) cos(ω1(λj)L) = (−ω1(λj)2 + γλj) cos(ω2(λj)L). (45)

We introduce the notation

h1(λj) = (−ω1(λj)2 + γλj)2, h2(λj) = (−ω2(λj)2 + γλj)2.

Due to (21), we know that −ω2(λj)2 + γλj 6= 0, so we obtain the equation

1− sin2(ω1(λj)L) = cos2(ω1(λj)L) =
(−ω1(λj)2 + γλj)2

(−ω2(λj)2 + γλj)2
cos2(ω2(λj)L)

=
h1(λj)
h2(λj)

(1− sin2(ω2(λj)L) =
h1(λj)
h2(λj)

(
1− ω1(λj)2

ω2(λj)2
sin2(ω1(λj)L)

)
.

Thus we have the following equation

sin2(ω1(λj)L)
[
1− ω1(λj)2h1(λj)

ω2(λj)2h2(λj)

]
= 1− h1(λj)

h2(λj)
= 1− ω1(λj)2

ω2(λj)2

h1(λj)
h2(λj)

+
(
ω1(λj)2

ω2(λj)2
− 1
)
h1(λj)
h2(λj)

· (46)
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This implies the equation

sin2(ω1(λj)L) = 1 +
(
ω1(λj)2 − ω2(λj)2

ω2(λj)2

)
/

(
h2(λj)
h1(λj)

− ω1(λj)2

ω2(λj)2

)
·

We have

h2(λj)
h1(λj)

− ω1(λj)2

ω2(λj)2
=
ω2(λj)2(−ω2(λj)2 + γλj)2 − ω1(λj)2(−ω1(λj)2 + γλj)2

ω2(λj)2(−ω1(λj)2 + γλj)2
·

Due to (19), we have

ω2(λj)2(−ω2(λj)2 + γλj)2 − ω1(λj)2(−ω1(λj)2 + γλj)2

= ω2(λj)2(ω1(λj)2 − λj)2 − ω1(λj)2(ω2(λj)2 − λj)2

= ω2(λj)2(ω1(λj)4 − 2λjω1(λj)2 + λ2
j)− ω1(λj)2((ω2(λj)4 − 2λjω2(λj)2 + λ2

j )

= ω1(λj)2ω2(λj)2(ω1(λj)2 − ω2(λj)2) + λ2
j (ω2(λj)2 − ω1(λj)2)

= (ω1(λj)2 − ω2(λj)2)(ω1(λj)2ω2(λj)2 − λ2
j)

= (ω1(λj)2 − ω2(λj)2)((γ − 1)λ2
j − λj) (47)

where the last line follows from equation (20). So we have

sin2(ω1(λj)L) = 1 +
(

1
ω2(λj)2

)
/

(
(γ − 1)λ2

j − λj
ω2(λj)2(−ω1(λj)2 + γλj)2

)
= 1 +

(−ω1(λj)2 + γλj)2

λj((γ − 1)λj − 1)
·

If λj > 1/(γ − 1), we have (γ − 1)λj − 1 > 0.
This implies that sin2(ω1(λj)L) > 1, which is a contradiction.
To consider the other case, namely λj ∈ (1/γ, 1/(γ − 1)], we use equation (46)

sin2(ω1(λj)L)
[
1− ω1(λj)2h1(λj)

ω2(λj)2h2(λj)

]
= 1− h1(λj)

h2(λj)

to obtain the equation

sin2(ω1(λj)L)[ω2(λj)2h2(λj)− ω1(λj)2h1(λj)] = ω2(λj)2h2(λj)− ω2(λj)2h1(λj) = ω2(λj)2[h2(λj)− h1(λj)].

Due to (47), this yields the equation

sin2(ω1(λj)L)(ω1(λj)2 − ω2(λj)2)λj((γ − 1)λj − 1) = ω2(λj)2[h2(λj)− h1(λj)].

Now using (19), we get the equation

h1(λj)− h2(λj) = (ω2(λj)2 − λj)2 − (ω1(λj)2 − λj)2

= ω2(λj)4 − 2ω2(λj)2λj + λ2
j − ω1(λj)4 + 2ω1(λj)2λj − λ2

j

= ω2(λj)4 − ω1(λj)4 + 2λj(ω1(λj)2 − ω2(λj)2)

= (ω1(λj)2 − ω2(λj)2)[2λj − (ω1(λj)2 + ω2(λj)2)]

= (ω1(λj)2 − ω2(λj)2)[2λj − λj(γ + 1)]

= (ω1(λj)2 − ω2(λj)2)(1− γ)λj .
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Thus the following equation holds:

sin2(ω1(λj)L)((γ − 1)λj − 1) = (γ − 1)ω2(λj)2. (48)

For γ > 1 and λj ∈ (1/γ, 1/(γ− 1)], we have (γ − 1)λj − 1 ≤ 0, which gives a contradiction, since the left hand
side of equation (48) is negative and the right-hand side is strictly positive.

We have assumed (14), so Lemma 1 implies that 1/γ cannot be an eigenvalue of A. �

Lemma 10. If γ > 1 and condition (14) holds and L < π/
√

1 + 1/γ, then for all j ∈ N, we have ϕ′j(0) 6= 0
and thus rj 6= 0.

Proof. Lemma 9 gives the assertion for λj ≥ 1/γ. So only the case λj < 1/γ remains.
For λ < 1/γ, we have β(λ) < 0 and ω2(λ) =

√
β(λ) = i

√
−β(λ).

Hence sin(ω2(λ)L) = sin
(
i
√
−β(λ)L

)
= i sinh

(√
−β(λ)L

)
.

Suppose that ϕ′j(0) = 0. Then equation (44) yields

ω1(λ) sin(ω1(λ)L) = ω2(λ) sin(ω2(λ)L) = −
√
−β(λ) sinh

(√
−β(λ)L

)
.

We have α(1/γ) = 1 + 1/γ, so the definition of ω1(λ) implies that for λ ∈ (0, 1/γ) we have

0 < ω1(λ)L ≤ ω1(1/γ)L = L
√

1 + 1/γ < π,

hence sin(ω1(λ)L) > 0. This implies the following inequality:

0 < ω1(λ) sin(ω1(λ)L) = −
√
−β(λ) sinh(

√
−β(λ)L) < 0,

which is a contradiction. �
Lemma 9 allows us to prove a lemma about the coefficients of the eigenfunctions. For every j, the lemma

states that at least one of two formulas that give the coefficient C1 in terms of the coefficient C2 is valid.

Lemma 11. If γ > 1 and condition (14) holds, for all j ∈ N with λj ≥ 1/γ we have

sin(ω2(λj)L)− ω1(λj)
ω2(λj)

sin(ω1(λj)L) 6= 0

or

cos(ω1(λj)L)− ω2(λj)2 − λj
ω1(λj)2 − λj

cos(ω2(λj)L) 6= 0.

Thus for the coefficients of the eigenfunctions φj = (yj , ϕj) we have

C1 = C2
ω1[cos(ω1(λj)L)− (ω1(λj)2 − λj)/(ω2(λj)2 − λj) cos(ω2(λj)L)]

ω2(λj)[sin(ω2(λj)L)− (ω1(λj)/ω2(λj)) sin(ω1(λj)L)]
(49)

or

C1 = C2
sin(ω1(λj)L)− (ω1(λj)/ω2(λj)) sin(ω2(λj)L)

cos(ω1(λj)L)− [(ω2(λj)2 − λj)/ω1(λj)2 − λj)] cos(ω2(λj)L)
·
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Proof. Let j ∈ N be given. Suppose that

sin(ω2(λj)L)− ω1(λj)
ω2(λj)

sin(ω1(λj)L) = 0 (50)

and

cos(ω1(λj)L)− ω2(λj)2 − λj
ω1(λj)2 − λj

cos(ω2(λj)L) = 0. (51)

By the proof of Lemma 9, we have C2 6= 0, hence (25) and (50) yield

0 = (−ω1(λj)2 + γλj) cos(ω1(λj)L)− (−ω2(λj)2 + γλj) cos(ω2(λj)L).

By (51) and (19), this yields

ω2(λj)2 − λj
ω1(λj)2 − λj

cos(ω2(λj)L) = cos(ω1(λj)L) =
ω1(λj)2 − λj
ω2(λj)2 − λj

cos(ω2(λj)L).

Moreover, C2 6= 0 and (26) and (51) yield the equation

0 = sin(ω1(λj)L)− ω1(λj)
ω2(λj)

sin(ω2(λj)L) = 0.

By (50), this yields

ω2(λj)
ω1(λj)

sin(ω2(λj)L) = sin(ω1(λj)L) =
ω1(λj)
ω2(λj)

sin(ω2(λj)L).

Now we consider two cases.
Case 1: If sin(ω2(λj)L) 6= 0, we have

ω2(λj)
ω1(λj)

=
ω1(λj)
ω2(λj)

,

hence ω1(λj)2 = ω2(λj)2, which is a contradiction, since λj > 0.
Case 2: If sin(ω2(λj)L) = 0, we have cos(ω2(λj)L) 6= 0, hence

(ω1(λj)2 − λj)2 = (ω2(λj)2 − λj)2.

Thus

ω2(λj)4 − ω1(λj)4 + 2λj(ω1(λj)2 − ω2(λj)2) = 0.

By (19), this yields the equation (ω1(λj)2 − ω2(λj)2)λj(1− γ) = 0, which is a contradiction. �
In the next two lemmas we obtain lower bounds for |ϕ′j(0)|. The first lemma treats the case

√
λj ∈ Ik and

the second the case
√
λj ∈ Jk.

Lemma 12. If γ > 1 and (14) holds, we have

inf
j∈N:
√
λj∈Ik for some k∈N and λj≥1/γ

∣∣ϕ′j(0)
∣∣ > 0. (52)
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Proof. Let j ∈ N be given. We use the notation λ = λj , ω1 = ω1(λj), ω2 = ω2(λj), y(x) = yj(x), ϕ(x) = ϕj(x).
Then the results from 3.3 imply that

y(x) = C1

(
−ω1 sin(ω1x) + ω2

−ω2
1 + γλ

−ω2
2 + γλ

sin(ω2x)
)

+ C2ω1(cos(ω1x)− cos(ω2x)),

ϕ(x) = C1(ω2
2 − λ)(cos(ω1x)− cos(ω2x)) + C2

(
(ω2

2 − λ) sin(ω1x)− ω1

ω2
(ω2

1 − λ) sin(ω2x)
)
,

where we have used the equation −ω2
1 + γλ = ω2

2 − λ that follows from (19).
Hence for all x ∈ (0, L), we have

|y(x)| ≤ |C1|
(
ω1 + ω2

∣∣∣∣ω2
2 − λ
ω2

1 − λ

∣∣∣∣)+ 2|C2|ω1.

This implies the inequality ∫ L

0

y(x)2 dx ≤
[
|C1|

(
ω1 + ω2

∣∣∣∣ω2
2 − λ
ω2

1 − λ

∣∣∣∣)+ 2|C2|ω1

]2

L. (53)

Moreover, for all x ∈ (0, L) we have

|ϕ(x)| ≤ 2|C1||ω2
2 − λ|+ |C2|

(
|ω2

2 − λ|+
ω1

ω2
|ω2

1 − λ|
)
.

This yields the inequality∫ L

0

ϕ(x)2 dx ≤
[
2|C1||ω2

2 − λ|+ |C2|
(
|ω2

2 − λ|+
ω1

ω2
|ω2

1 − λ|
)]2

L. (54)

For γ > 1 and
√
λ ∈ Ik and k sufficiently large, (37) implies

| sin(ω1(λ)L)|2 ≥ 1−O(1/λ) (55)

and | cos(ω1(λ)L)|2 ≤ O(1/λ).
Moreover, Lemma 3 implies the ineqality

ω1(λ)
ω2(λ)

≥
√
γλ√
λ

=
√
γ.

This implies that ∣∣∣∣sin(ω2L)− ω1

ω2
sin(ω1L)

∣∣∣∣ ≥ ω1

ω2
| sin(ω1L)| − | sin(ω2L)| ≥ √γ| sin(ω1L)| − 1.

Hence (55) implies that for λ sufficiently large∣∣∣∣sin(ω2L)− ω1

ω2
sin(ω1L)

∣∣∣∣ > 0.



354 M. GUGAT

Hence (25) yields the equation

C1 = C2
ω1[(ω2

2 − λ) cos(ω1L)− (ω2
1 − λ) cos(ω2L)]

ω2(ω2
2 − λ)[sin(ω2L)− (ω1/ω2) sin(ω1L)]

· (56)

Hence the following inequality holds:

|C1| ≤ |C2|
ω1

ω2

| cos(ω1L)|+ (|ω2
1 − λ|/|ω2

2 − λ|)√
γ| sin(ω1L)| − 1

·

We have

lim
k→∞,

√
λ∈Ik

(
ω1(λ)
ω2(λ)

| cos(ω1(λL))| + (|ω1(λ)2 − λ|/|ω2(λ)2 − λ|)
√
γ| sin(ω1(λ)L)| − 1

)
/λ

=
√
γ

√
γ − 1

lim
λ→∞

(|ω2
1(λ) − λ|/(λ|ω2

2(λ) − λ|) =
√
γ

√
γ − 1

lim
λ→∞

|ω2
1(λ) − λ|2
λ2

=
√
γ

√
γ − 1

(γ − 1)2.

Thus for all ε > 0, the inequality

|C1| ≤ |C2|(
√
γ

√
γ − 1

(γ − 1)2 + ε)λ

holds for λ sufficiently large. In particular |C1| ≤ |C2| O(λ).
So (53) implies the inequality

∫ L

0

y2/L ≤ |C2|2
[
ω1

ω2

| cos(ω1L)|+ (|ω2
1 − λ|/|ω2

2 − λ|)√
γ| sin(ω1L)| − 1

(
ω1 + ω2

|ω2
2 − λ|
|ω2

1 − λ|

)
+ 2ω1

]2

.

So we have ∫ L

0

y2 ≤ |C2|2[O(λ3/2)]2.

Moreover, equation (54) yields the inequality

∫ L

0

ϕ2/L ≤ |C2|2
[
ω1

ω2

| cos(ω1L)|+ (|ω2
1 − λ|/|ω2

2 − λ|)√
γ| sin(ω1L)| − 1

2|ω2
2 − λ|+ |ω2

2 − λ|+
ω1

ω2
|ω2

1 − λ|
]2

.

So we have ∫ L

0

ϕ2 ≤ |C2|2[O(λ)]2.

Since the eigenfunctions are normalized, this yields

1 =

(∫ L

0

y2 + ϕ2

)1/2

≤ |C2|O(λ3/2).
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Thus there exists a constant M̂ > 0 that only depends on γ such that |C2| ≥ M̂/(λ3/2). Since by Lemma 3 we
have ω2

1(λ)− ω2
2(λ) ≥ (γ − 1)λ, this implies

|ϕ′j(0)| = |C2|(ω2
1 − ω2

2)ω1 ≥ M̂(γ − 1)λ
√
γλ/λ3/2

if
√
λj ∈ Ik is sufficiently large, and the assertion follows with Lemma 9. �

Lemma 13. If γ > 1, (14) holds and
√
γ = q/p with p even and q odd or vice versa we have

inf
j∈N:
√
λj∈Jk for some k∈N and λj≥1/γ

∣∣ϕ′j(0)
∣∣ /√λj > 0. (57)

Proof. For k sufficiently large and
√
λ ∈ Jk we have

cos(ω2(λ)L) = O
(

1/
√
λ
)
.

Moreover, equation (36) implies that there exists k0 ∈ N such that

inf
k≥k0

inf
t∈Jk
| cos(ω1(t2)L)| =: M1 > 0.

Hence for λ sufficently large and
√
λ ∈ Jk we have∣∣∣∣cos(ω1L)− ω2

2 − λ
ω2

1 − λ
cos(ω2L)

∣∣∣∣ ≥M1 −
∣∣∣∣ω2

2 − λ
ω2

1 − λ

∣∣∣∣ | cos(ω2L)| ≥M1 −
λ

(γ − 1)2λ2
| cos(ω2L)| > 0.

Hence (26) implies the equation

C1 = C2
sin(ω1L)− (ω1/ω2) sin(ω2L)

cos(ω1L)− [(ω2
2 − λ)/(ω2

1 − λ)] cos(ω2L)
·

We have

lim sup
k→∞,

√
λ∈Jk

∣∣∣∣ sin(ω1(λ)L) − (ω1(λ)/ω2(λ)) sin(ω2(λ)L)
cos(ω1(λ)L)− ((ω2

2(λ)− λ)/ω2
1(λ) − λ)) cos(ω2(λ)L)

∣∣∣∣ ≤ 1 +
√
γ

M1
·

Hence |C1| ≤ [(1 +
√
γ)/M1] |C2|.

So (53) implies the inequality∫ L

0

y2/L ≤ |C2|2
[

1 +
√
γ

M1

(
ω1 + ω2

|ω2
2 − λ|
|ω2

1 − λ|

)
+ 2ω1

]2

.

So we have ∫ L

0

y2 ≤ |C2|2[O(
√
λ)]2.

Moreover, equation (54) yields the inequality∫ L

0

ϕ2/L ≤ |C2|2
[
2

1 +
√
γ

M1
|ω2

2 − λ|+ |ω2
2 − λ|+

ω1

ω2
|ω2

1 − λ|
]2

.
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So we have ∫ L

0

ϕ2 ≤ |C2|2[O(λ)]2.

This yields

1 =

(∫ L

0

y2 + ϕ2

)1/2

≤ |C2| O(λ).

Thus there exists a constant M̂ > 0 that only depends on γ such that |C2| ≥ M̂/λ. This implies

|ϕ′j(0)| = |C2|(ω2
1 − ω2

2)ω1 ≥ M̂(γ − 1)λ
√
γλ/λ = M̂(γ − 1)

√
γ
√
λj

if
√
λj ∈ Jk is sufficiently large, and the assertion follows with Lemma 9. �

4.2. Controllability

We have seen at the beginning of Section 4 that the question of controllability is equivalent to the question:
For which right-hand sides (c1j , c

2
j)j≥0 is the moment problem∫ T

0

u(s) ds = c10, (58)∫ T

0

u(s)s ds = c20, (59)∫ T

0

u(s) sin
(√

λjs
)

ds = c1j , (60)∫ T

0

u(s) cos
(√

λjs
)

ds = c2j (61)

solvable? This approach to controllability is well-established, see the bibliographical remarks in [6] (p. 78).
For the convenience of the reader we state Theorem 1.2.22 from [6] (p. 74) in our notation.

Theorem 3. Assume that

lim inf
j→∞

√
λj −

√
λj−1 > 2π/T. (62)

For x > 0, let d(x) = number of
√
λj < x. Assume that

lim sup
y→∞

lim sup
x→∞

(d(x+ y)− d(x))/y < T/(2π). (63)

Then for every sequence (c1j , c
2
j)j≥0 such that

∞∑
j=0

(c1j )
2 + (c2j)

2 <∞,

there is exactly one minimum norm solution in L2(0, T ) of the moment problem (58–61).



CONTROLLABILITY OF A SLOWLY ROTATING TIMOSHENKO BEAM 357

For the controllability of the rotating Timoshenko beam, this yields the following result.

Theorem 4. Assume that
√
γ = q/p with p, q ∈ N with p even and q odd or with q odd and p even.

Assume that for all j ∈ N, we have ϕ′j(0) 6= 0. Assume that

T > max {4qL, 2 (1 +
√
γ)L} ·

Then for all sequences (y0
j , y

1
j )j∈N such that

∞∑
j=1

(λj(y0
j )2 + (y1

j )2)λ2
j/(ϕ

′
j(0))2 <∞, (64)

there is exactly one minimum norm solution in L2(0, T ) of the moment problem (40–43) and the problem of
null-controllability with arrival time T is solvable.

Proof. Let ε = π/(2qL) − (2π)/T . Since T > 4qL, we have ε = π(T − 4qL)/(2qTL) > 0. Theorem 2 implies
that if j is large enough we have

√
λj −

√
λj−1 >

π

2qL
− ε

2
>

π

2qL
− ε =

2π
T
,

hence (62) holds. Moreover, if x is sufficiently large, Lemma 4 implies that

d(x+ y)− d(x) ≤ Ly
(

1
π

+
√
γ

π

)
+ 2 = Ly

1
π

(1 +
√
γ) + 2.

Hence we obtain

lim sup
y→∞

lim sup
x→∞

d(x+ y)− d(x)
y

≤ L

π
(1 +

√
γ).

Since L
(
1 +
√
γ
)
< T/2, this implies that (63) holds. Thus Theorem 3 implies the assertion. �

If γ > 1, the assumptions can be weakened: in this case for eigenvalues λj that are greater than 1/γ, Lemma 9
implies that we have ϕ′j(0) 6= 0. Moreover, if in addition L < π/

√
1 + 1/γ, we have ϕ′j(0) 6= 0 for all j ∈ N by

Lemma 10.

Theorem 5. Let γ > 1 be given such that (14) holds. Assume that L < π/
√

1 + 1/γ and that
√
γ = q/p with

p, q ∈ N with p even and q odd or with q odd and p even.
Moreover, assume that

T > max {4qL, 2 (1 +
√
γ)L} ·

Then for all sequences (y0
j , y

1
j )j∈N such that (64) holds, there is exactly one minimum norm solution in L2(0, T )

of the moment problem (40–43) and the problem of null-controllability with arrival time T is solvable.

Now we can use the lower bounds for (ϕ′j(0))2 from Lemma 12 and Lemma 13 to obtain the following theorem:

Theorem 6. Let γ > 1 be given such that (14) holds. Assume that L < π/
√

1 + 1/γ and that
√
γ = q/p with

p, q ∈ N with p even and q odd or with q odd and p even.
Moreover, assume that

T > max {4qL, 2 (1 +
√
γ)L} ·
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Then for all (w0, ψ0) ∈ D(A) with A(w0, ψ0) ∈ D(A) and for all (w1, ψ1) ∈ D(A) there is exactly one minimum
norm solution in L2(0, T ) of the moment problem(40–43) and the problem of null-controllability with arrival
time T is solvable.

Remark 1. The assumption L < π/
√

1 + 1/γ can be replaced by the condition ϕ′j(0) 6= 0 or y0
j = 0 = y1

j for
all λj < 1/γ.

Proof. We have

y1
j = 〈(w1, ψ1), φj〉 =

1
λj
〈(w1, ψ1), Aφj〉 =

1
λj
〈A(w1, ψ1), φj〉·

Since A(w1, ψ1) is in H, Theorem 1 implies that the coefficients 〈A(w1, ψ1), φj〉 are in l2. Hence the sequence
(y1
jλj) is in l2, that is

∞∑
j=1

(y1
j )2λ2

j <∞.

Moreover, we have

y0
j = 〈(w0, ψ0), φj〉 =

1
λ2
j

〈(w0, ψ0), A2φj〉 =
1
λ2
j

〈A2(w0, ψ0), φj〉·

Since A2(w0, ψ0) is in H, Theorem 1 implies that the coefficients 〈A2(w0, ψ0), φj〉 are in l2. Hence the sequence
(y0
jλ

2
j) is in l2, that is

∞∑
j=1

(y0
j )2λ4

j <∞.

By Lemma 12 and Lemma 13, we have infj∈N |ϕ′j(0)| > 0. Hence condition (64) holds, and the assertion
follows. �

It is interesting that the above controllability results for the Timoshenko beam are completely different from
the result that holds for the Euler–Bernoulli beam where the fast growth of the eigenvalues implies that the
system is controllable for arbitrarily small arrival times without additional restrictions to the parameters (see
for example [4]).

If the assumptions of the controllability result are valid, the numerical algorithm for the computation of
time-optimal controls introduced in [4] can be used for the rotating Timoshenko beam.

Remark 2. The condition (w1, ψ1) ∈ D(A) in Theorem 6 can be interpreted as a compatibility condition. This
can be seen as follows.

The boundary condition w(0, t) = 0 implies that wt(0, t) = 0 for all t ≥ 0, thus for (w1, ψ1) ∈ D(A) we have
wt(0, 0) = w1(0) = 0, and in the same way, the boundary condition ψ(0, t) = 0 implies that ψt(0, 0) = ψ1(0) = 0.

If the functions (w,ψ) are sufficiently regular, for example C(2)-functions, the condition wx(L, t)−ψ(L, t) = 0
implies by the theorem of Schwarz the equations

0 = wxt(L, t)− ψt(L, t) = wtx(L, t)− ψt(L, t).

Hence 0 = w′1(L)− ψ1(L).
Similarly, we obtain the condition 0 = ψxt(L, t) = ψtx(L, t), hence ψ′1(L) = 0.
In this situation, three of the equations of the condition A(w0, ψ0) ∈ D(A) can be explained in a similar way.
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Let (w0, ψ0) with A(w0, ψ0) ∈ D(A) be given. Define (w2, ψ2) := A(w0, ψ0). Then (3) for t = 0 implies the
equation

w2(x) = −u(0)x− wtt(x, 0).

Hence we have w2(0) = − d
dtwt(0, t)|t=0 = w1(0) = 0.

Equation (4) implies that

ψ2(x) = −u(0)− ψtt(x, 0),

hence if ψ is a C(3)-function, we have ψ′2(L) = − d
dtψxt(L, t)|t=0 = 0.

If w is also a C(3)-function, we have

w′2(L) = −u(0)− d
dt
wtx(L, t)|t=0 = −u(0)− d

dt
ψt(L, t)|t=0 = −u(0)− ψtt(L, 0) = ψ2(L).

So only the condition 0 = ψ2(0) = −ψ′′0 (0)− 1
γw
′
0(0) is not explained as a compatibility condition.

Hence if w and ψ are C(3)-functions, the condition A(w0, ψ0) ∈ D(A) requires only that ψ′′0 (0)
+(1/γ)w′0(0) = 0.

Remark 3. Note that the physical meaning of the parameter γ is given by the equation γ = EρI/(KIρ). With
the parameters given in [5] for a solid aluminium bar, we have γ > 1.

Remark 4. The assumption
√
γ = q/p should be interpreted as a relation between bending and shear.

5. Conclusion

We have shown that the rotating Timoshenko beam is exactly controllable if the parameter γ is a rational
number greater than one with even numerator and odd denominator or vice versa, the time-interval is long
enough and the beam is short enough.

The last assumption was only necessary since we had to secure that ϕ′j(0) 6= 0 for all j ∈ N.
We have shown this for the eigenvalues larger than 1/γ. For the eigenvalues smaller than 1/γ, we have only

shown ϕ′j(0) 6= 0 if the beam is sufficently short. The author does not expect that this assumption is really
necessary, but the question is open.

In our analysis, we have given intervals that contain the eigenvalues of the beam. These intervals are very
useful for numerical computations of the eigenvalues, since each of them contains exactly one eigenvalue.

It is interesting to compare the controllability result with the result for the Euler–Bernoulli beam. For this
model, which is also known as the beam of Euler–Bernoulli–Navier, the rapid growth of the eigenvalues implies
controllability for arbitrarily short time-intervals. This situation is related to the fact that in the beam of
Euler–Bernoulli–Navier, propagation of waves with infinite speed occurs.

This is in contrast to the situation for the Timoshenko beam, where the waves propagate in the beam with
finite speed only, and the time interval has to be long enough to assure controllability.
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