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ON THE L -STABILIZATION OF THE DOUBLE INTEGRATOR SUBJECT
TO INPUT SATURATION

Yacine Chitour
1

Abstract. We consider a finite-dimensional control system (Σ) ẋ(t) = f(x(t), u(t)), such that there
exists a feedback stabilizer k that renders ẋ = f(x, k(x)) globally asymptotically stable. Moreover,
for (H,p, q) with H an output map and 1 ≤ p ≤ q ≤ ∞, we assume that there exists a K∞-function α
such that ‖H(xu)‖q ≤ α(‖u‖p), where xu is the maximal solution of (Σ)k ẋ(t) = f(x(t), k(x(t))+u(t)),
corresponding to u and to the initial condition x(0) = 0. Then, the gain function G(H,p,q) of (H,p, q)
given by

G(H,p,q)(X)
def
= sup
‖u‖p=X

‖H(xu)‖q ,

is well-defined. We call profile of k for (H,p, q) anyK∞-function which is of the same order of magnitude
as G(H,p,q). For the double integrator subject to input saturation and stabilized by kL(x) = −(1 1)Tx,
we determine the profiles corresponding to the main output maps. In particular, if σ0 is used to denote
the standard saturation function, we show that the L2-gain from the output of the saturation nonlin-
earity to u of the system ẍ = σ0(−x− ẋ+u) with x(0) = ẋ(0) = 0, is finite. We also provide a class of
feedback stabilizers kF that have a linear profile for (x, p, p), 1 ≤ p ≤ ∞. For instance, we show that
the L2-gains from x and ẋ to u of the system ẍ = σ0(−x − ẋ − (ẋ)3 + u) with x(0) = ẋ(0) = 0, are
finite.
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1. Introduction

Let (Σ) be the finite dimensional control system of the form:

(Σ) ẋ(t) = f(x(t), u(t)), (1.1)

where states x(t) ∈ Rn for all t ≥ 0 (the integer n is the dimension of (Σ)), inputs u : [0,∞)→ Rm are measurable
locally essentially bounded maps (the integer m is the dimension of the input space), and f is locally Lipschitz
in (x, u) with f(0, 0) = 0. Assume that (Σ) admits a feedback stabilizer, i.e., a map k : Rn → Rm locally
bounded such that k(0) = 0 and the closed loop system given by

ẋ = f(x, k(x)), (1.2)
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1 Université Paris XI, Département de Mathématiques, 91405 Orsay, France; e-mail: Yacine.Chitour@math.u-psud.fr

c© EDP Sciences, SMAI 2001



292 Y. CHITOUR

is globally asymptotically stable (GAS for short) with respect to the origin. For basic terminology on control
theory, we refer to [9]. We are interested in the robustness of the feedback k, i.e., in the stability of k with
respect to measurement and actuator noise. We first recall the following definition: the class of K∞-functions
consists of all α : R+ → R+ which are continuous, strictly increasing, unbounded and satisfy α(0) = 0. For
simplicity of the exposition, we also assume that k is locally Lipschitz. We hence consider the control system
(Σ)k given by

(Σ)k ẋ(t) = f(x(t), k(x(t)) + u(t)). (1.3)

We use xu to denote the maximal solution of (1.3) corresponding to u and to the initial condition x(0) = 0. For
p, q ∈ [1,∞], p ≤ q, and an output map H : Rn × Rm → Rl locally Lipschitz with H(0, 0) = 0, we then ask if
(Σ)k verifies the following properties:(

P 1
(H,p,q)

)
the assignment u 7→ H(xu, u) defines a map F(H,p,q) : Lp(R+,Rm)→ Lq(R+,Rl);(

P 2
(H,p,q)

)
there exists α(H,p,q) ∈ K∞ such that

∥∥F(H,p,q)(u)
∥∥
q
≤ α(H,p,q)

(
‖u‖p

)
. (1.4)

(Indices such as (H, p, q) are dropped when the context is clear.) The main output maps H are x, f(x, u), (the
integer l is then equal to n), hTx, hT f(x, u) where h is a fixed nonzero vector of Rn (the integer l is then equal
to 1). We also have local versions of

(
P 2

(H,p,q)

)
when (1.4) only holds in a neighborhood of 0 or a neighborhood

of ∞. The feedback k is said to be of shape α for (H, p, q) (at 0 or at ∞ respectively) or α is a shape of k for
(H, p, q) (at 0 or at ∞ respectively) if (H, p, q) satisfies

(
P 2

(H,p,q)

)
(in a neighborhood of 0 or ∞ respectively)

with Cα ∈ K∞ in equation (1.4) and C > 0 is a constant independent of u. Remark that if there exists a shape
α of k for (H, p, q), we can define the gain function G(H,p,q) : R+ → R+ associated to (H, p, q) by

G(H,p,q)(X) def= sup
‖u‖p=X

∥∥F(H,p,q)(u)
∥∥
q
. (1.5)

Then G is a nondecreasing function, continuous at 0 with G(0) = 0. In other words, k is of shape α for (H, p, q)
(at 0 or at∞ respectively) if G(H,p,q) = O(α) (at 0 or∞ respectively). We say that k is of profile α for (H, p, q)
at 0 (at ∞ respectively) or α is a profile of k for (H, p, q) at 0 (at ∞ respectively) if there exists c1, c2, X0 > 0
such that for every X < X0 (X > X0 respectively),

c1G(H,p,q)(X) ≤ α(X) ≤ c2G(H,p,q)(X).

This can be denoted by α �0 G(H,p,q)

(
α �∞ G(H,p,q) respectively

)
. When u 7→ f(0, u) and u 7→ H(0, u) are

not identically zero, and if the gain function G is defined and continuous at 0, then a profile for G exists at 0.
If, in addition, G is unbounded, then it also exists at ∞ (see proof in Lem. 2.2 below). Note that a profile is
uniquely determined up to the multiplication by a positive bounded function. A profile of k for (H, p, q) both
at 0 and at ∞ is simply called a profile of k for (H, p, q).

A natural way to quantify the robustness of a feedback stabilizer k satisfying
(
P 2

(H,p,q)

)
for some (H, p, q) is

to determine (when possible) the asymptotic behaviors of a corresponding profile α when ‖u‖p tends firstly to
0 and secondly to ∞. Moreover, given two feedback stabilizers k1 and k2 for (Σ) and (H, p, q), we can compare
k1 and k2 by comparing the asymptotic behaviors at 0 and ∞ of their respective profiles (when they exist). In
particular we say that k1 is better than k2 at 0 (at∞ respectively) for (H, p, q) if we have, for their corresponding
profiles α1, α2 (when they exist), that α1(X) = o(α2(X)) as X tends to 0 (to ∞ respectively). Therefore, the
notion of profile is a weaker generalization of the concept of finite-gain stability as it is defined in input/output
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studies and related works on computation of norms for nonlinear systems in state-space form (cf. [2,15] and the
references given therein). The definition of profile is also closely linked to the concept of input-to-state stability
(ISS) and related notions (e.g. integral input-to-state stability etc.) see [10]. For instance, if H(x, u) = x and
p = q = ∞, having a shape for (x,∞,∞) is equivalent to have the (ISS) property (cf. Th. H in [10]). To
illustrate the previous definitions, we consider a simple case namely the linear one. We assume that (Σ) is a
linear system ẋ = Ax+ Bu such that the uncontrollable modes have negative real parts. Then, there exists a
linear feedback k such that for every p, q ∈ [1,∞], p ≤ q and main output map H, k is of linear profile (i.e. the
corresponding α is a linear function for (H, p, q)). We can see with the previous example that that the notion
of linear profile is less precise than the notion of finite gain.

Under which conditions on f, k and on (H, p, q), the control system (Σ)k satisfies the properties (P 1)(H,p,q)

or (P 2)(H,p,q) are general issues one can address. In addition, other questions can be considered such as the
relationships between the two previous properties and (in the spirit of ISS results) the links between the fact
of admitting a profile and admitting a control Lyapunov function satisfying some dissipative inequality. In
this paper, we rather focus on a particular control system (SI2) (defined below) and we address through that
example the two following issues: given a control system admitting a feedback stabilizer k and a main output
map (H, p, q), then find first the profile of k for (H, p, q) and second, a feedback stabilizer with the best profile
for (H, p, q).

The control system (SI2) belongs to the class of linear control systems subject to input saturation:

ẋ = Ax+Bσ(u), (1.6)

where A is an n×n matrix, B an n×m matrix and σ is of “saturation” type. For instance, arctan, tanh and the
standard saturation function σ0(s) = s

max(1,|s|) are 1-dimensional examples of saturation functions. For this class
of systems, examples of feedback stabilizers are well-known under the necessary and sufficient condition that the
controllable modes are of non positive real part and the uncontrollable ones of negative real part (cf. [8,11–14],
and references therein). The interesting problems for control systems (1.6) occur when A admits at least one
eigenvalue λ with zero real part and more particularly when the multiplicity of λ is larger than one (we refer to
the latter as the critical case). The feedback stabilizer is necessarily nonlinear in general: in [3] and [14], it is
shown that, if (A,B) is controllable, m = 1 and A is equal to the nth-Jordan matrix, then the corresponding
control system (SIn), called the n-th-integrator with saturated input, cannot be globally stabilized by means of
a linear feedback if n ≥ 3. In [5], the authors consider the case when (A,B) is controllable and A is just neutrally
stable (i.e. the eigenvalues of A have non positive real parts and there are no nontrivial Jordan blocks). It is
shown there, that for the linear feedback stabilizer given by k(x) def= −BTx, we have for every p ≤ q ∈ [1,∞)
or p = q = ∞ and H(x, u) = x, a linear profile for (H, p, q). Moreover, for (H, p, q) = (x, p,∞) with p finite,
the profile of k is linear at 0 and equal to X 7→ Xp/p+1 at ∞. Finally, as a first result regarding the critical
case, it is shown in [5] that for (SI2), the linear feedback stabilizer kL(x) def= −(1 1)Tx is not of linear profile
at ∞ for (x, p, p) with p ∈ [1,∞]. For related work, in [6], the authors show that any linear system subject to
input saturation with poles of non positive real parts can be semi-globally stabilized (that is, on compact sets)
by means of linear feedback. In addition, they show in [7] that for every D > 0, there exists a linear feedback
stabilizer which is of linear profile (depending on D) under the restriction that all the inputs considered are
essentially bounded by D.

In the present paper, we consider the control system (SI2) given by

(SI2)
{
ẋ1 = x2,
ẋ2 = σ(u).

In a first part we determine the profiles of the linear feedback stabilizer kL for the main output maps. We show
that, at 0, all the profiles considered are linear and, at ∞, they are of the type X 7→ Xr, where r depends on
(H, p, q) (cf. Th. 2.5 below). Let us illustrate the aforementioned results. For that purpose, (x1, x2) is used to
denote the trajectory of (SI2)kL starting at 0 and corresponding to u ∈ Lp(0,∞). Then, we prove that there
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exist ai, bi > 0 and C > 0 such that, for every input u ∈ L2(0,∞) with ‖u‖2 > C, we have

‖x1‖2 ≤ a1‖u‖22, ‖x1‖∞ ≤ b1‖u‖
4
3
2 , (1.7)

‖x2‖2 ≤ a2‖u‖
4
3
2 , ‖x2‖∞ ≤ b2‖u‖

2
3
2 , (1.8)

‖ẋ2‖2 = ‖σ(−x1 − x2 + u)‖2 ≤ a3‖u‖2. (1.9)

We also prove that the exponents of ‖u‖2 in the above equations are best possible. As a corollary, we partially
solve part 2 of Problem 36 as defined in [1]: equation (1.9) shows that the L2-gain from the output of the
saturation nonlinearity to u of the system ẍ = σ0(−x− ẋ+ u) with x(0) = ẋ(0) = 0 is finite. However, we are
not able to compute the value of that L2-gain.

If one uses C1 feedback stabilizers for (SI2), the best profile one can get for the output map H(x, u) = x,
is a linear profile. In the second part of the paper, we exhibit a set of nonlinear feedback stabilizers for (SI2)
such that each of them admits a linear profile for H (cf. Th. 2.8 below). We also provide additional results
regarding nonzero initial states and the perturbed control system (PSI2)k:

(PSI2)k

{
ẋ1 = x2 + v1,
ẋ2 = σ(k(x) + u) + v2,

with v = (v1, v2), v1, v2 ∈ Lp
′
(0,∞), p′ ≥ 1 and ‖v‖∞ ≤ C0, for some constant C0 only depending on (SI2) (cf.

Ths. 2.6 and 2.9 below). We conclude this introduction with a remark regarding the techniques used to obtain
the results. In [5] and [7], the passivity technique is essentially generalized: for p ∈ [1,∞], the main argument of
the proofs consists of finding a suitable “storage function” Vp and establishing for Vp a “dissipation inequality”
of the form

dVp(xu(t))
dt

≤ −‖xu(t)‖p + λp‖u(t)‖p, (1.10)

for some constant λp > 0. We recall that in [5] a non-smooth Vp was needed. For more discussion on passivity,
see for instance [4] and [15]. In our situation, we are not able to find such storage functions. We just have at
our disposal a control Lyapunov function V (in the case of the feedback kL, the saturation function σ has to be
increasing and V is not even (iISS)-Lyapunov – see [10] –). Therefore the “dissipation inequality” satisfied by
V does not lead directly to the desired estimates. However, on a time interval I = [t0, t1] where the variation
of V is positive and “large”, we estimate the measures of subsets of I where the input u is “big”. We can then

bound integrals on I of various quantities in terms of
∫
I

|u|p and get global results.

2. Notations and statement of the results

In this section we define the class of saturation functions to be considered and state the main results we
obtain for (SI2). In addition, we provide simple remarks.

Definition 2.1. We call σ : R → R a saturation function (or an S-function) if there exist two real numbers
0 < a ≤ Kσ such that for all t, t′ ∈ R

(i) |σ(t) − σ(t′)| ≤ Kσ inf(1, |t− t′|);
(ii) |σ(t) − at| ≤ Kσtσ(t).

A constant Kσ defined as above is called an S-bound for σ. When the context is clear, we simply use K to
denote an S-bound. Note that (i) is equivalent to the fact that σ is bounded and globally Lipschitz. On the
other hand, (ii) is equivalent to

tσ(t) > 0 for t 6= 0, lim inf
|t|→∞

|σ(t)| > 0, lim sup
t→0

σ(t) − σ′(0)t
t2

<∞.
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We say that σ is an iS-function if σ is an increasing S-function. If m is a positive integer, σ is an Rm-valued
S-function if σ = (σ1, . . . , σm), where each component σi is an S-function and

σ(t) = (σ1(t), . . . , σm(t)),

for x = (x1, . . . , xm)T . Here, we use (· · · )T to denote the transpose of (· · · ). Throughout this paper, if x ∈ Rn,
we use ‖x‖ def= (Σni=1x

2
i )

1/2 to denote the usual Euclidean norm. If E is a measurable set of R, |E| is its Lebesgue
measure. If S is a finite set, we use S# to denote its cardinality. For p ∈ [1,∞] and T > 0, we use Lp to denote
Lp(0,∞) and we let ‖x‖p (‖x‖p,[0,T ] respectively) denote the Lp-norm:

‖x‖p def=
(∫ ∞

0

‖x(t)‖pdt
)1/p

,

‖x‖p,[0,T ]
def=

(∫ T

0

‖x(t)‖pdt
)1/p

respectively

 ,

and

‖x‖∞ def= ess sup
0≤t<∞

‖x(t)‖,
(
‖x‖∞,[0,T ]

def= ess sup
0≤t≤T

‖x(t)‖ respectively
)
.

Various constants depending only on (SI2) and (H, p, q) will be considered. We will use the symbol const. to
denote those that depend on (SI2) and (H, p, q). Sometimes, a constant term may depend on an extra parameter
R. In this case, instead of const., we use const.R. For a ∈ R, let a+ def= sup(a, 0) and we use sgn a to denote the
sign of a

(
a
|a| if a 6= 0 and 0 otherwise

)
. For a, b > 0, the symbol a� b means that b is much larger than a. If

a, b ∈ R, we use ∆f
∣∣∣b
a

or ∆f
∣∣∣
I

to denote f(b)− f(a) where f is a function on R and I is the interval between a
and b.

Let us consider a control system of the form (Σ1) together with a feedback stabilizer k that gives rise to a
control system of the form (Σ1)k. For (H, p, q) with H a main output map and 1 ≤ p ≤ q ≤ ∞, assume that(
P 1

(H,p,q)

)
holds. Suppose that there exists X0 > 0 such that sup‖u‖p=X0

‖F(H,p,q)(u)‖q is infinite. In this case,

we say that k has infinite gain for (H, p, q). Otherwise, the gain function G(H,p,q) : R+ → R+ is well-defined and
we say that k has finite gain G(H,p,q) (or simply G) for (H, p, q). The function G is not necessarily continuous
but we have:

Lemma 2.2. Let (Σ1)k and (H, p, q) be defined as above. Suppose that k has finite gain G for (H, p, q). Then,
(a) G(X) = sup‖u‖p≤X ‖F(H,p,q)(u)‖q and thus G is nondecreasing;

(b) the gain function G : R+ → R+ is well-defined and continuous at 0 if and only if
(
P 2

(H,p,q)

)
holds. In

addition, the shape α given by (1.4) can be taken as a profile of k for (H, p, q) if,
(b1) for p <∞, G is unbounded;
(b2) for p = ∞, G is unbounded and ‖f(0, un)‖ > 0 for some sequence (un)n≥0, un ∈ Rm, such that

limn→∞ un = 0.

Proof of Lemma 2.2. We assume that X > 0. Let A = G(X) and B = sup‖u‖p≤X ‖F(H,p,q)(u)‖q. We clearly
have A ≤ B ≤∞. Assume first that B =∞. Then, for every R > 0, there exists uR ∈ Lp such that ‖uR‖p ≤ X
and 2R < ‖F(H,p,q)(uR)‖q <∞. If ‖uR‖p < X , we change uR outside an interval (0, TR) in order to construct
some vR ∈ Lp such that ‖vR‖p = X and ‖F(H,p,q)(vR)‖q ≥ R. The time TR is chosen as follows: if q is finite,
we should have

∫ TR
0 |F(H,p,q)(uR)|q ≥ Rq and if q =∞, |F(H,p,q)(uR)(TR)| = R. Then, A ≥ R for every R > 0,

which implies that A = ∞. We now assume that B is finite. For every ε > 0, there exists uε ∈ Lp such that
‖uε‖p ≤ X and B− ε < ‖F(H,p,q)(uε)‖q ≤ B. Exactly as before, if ‖uε‖p < X , we change uε outside an interval
(0, Tε) in order to construct some vε ∈ Lp such that ‖vε‖p = X and B− 2ε ≤ ‖F(H,p,q)(vε)‖q. Then A ≥ B− 2ε
for every ε > 0, which implies that A ≥ B.
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We now prove item (b). We have two alternatives; either u 7→ f(0, u) is the zero function or there existsX0 ≥ 0
such that G(X) > 0 if X > X0 and G(X0) = 0. In the first case, xu ≡ 0 for every locally essentially bounded
measurable u. Any α ∈ K∞ is a shape of k for (H, p, q). In the second case, let G+(X0) def= limX→X+

0
G(X). If

G+(X0) > 0, replace G by the function defined by G on (X0,∞) and X 7→ G+(X0) XX0
on [0, X0]. We can then

assume without loss of generality that G is continuous at X0. Let g def= G(X0 +1). The argument that follows is
standard. Since G(X0) = 0 and G is increasing, we can find a sequence of times (tn)n≥0 such that t0 = X0 + 1,
G(tn) = g/2n and for n ≥ 0, G(tn+1) ≤ G(t) ≤ G(tn) for t ∈ [tn+1, tn]. Then (tn)n≥0 is a decreasing sequence
to X0. Let α be the piecewise linear function defined on [X0, X0 + 1] such that for n ≥ 0 and t ∈ [tn+1, tn],
α is the line segment between (tn+1, 2G(tn+1)) and (tn, 2G(tn)). Then α is continuous, increasing, α(X0) = 0
and for all t ∈ [X0, X0 + 1] we have α(t)

4 ≤ G(t) ≤ α(t). If p < ∞, then X0 = 0 since there exist u ∈ Lp

with arbitrary small Lp-norm and arbitrary large L∞-norm. If p = ∞, take ᾱ(t) def= t + α(t). Then, for every
p ∈ [1,∞], we have constructed a shape of k at 0 for (H, p, q). Remark that the extra hypothesis on f in (b2)
implies that we have X0 = 0.

For the behavior at∞, we distinguish whether G is unbounded or not. When G is unbounded, the procedure
described as above holds in a similar way, by considering now a sequence of times (sn)n≥0 such that s0 = 1,
G(sn) = 2ng and, for n ≥ 0, G(sn) ≤ G(t) ≤ G(sn+1) for t ∈ [sn, sn+1]. It is clear that the function α
previously defined is a K∞-function and is a profile of k for (H, p, q) at∞. If G is bounded, there exists n0 such
that 2n0g ≤ supt∈R+ G(t) < 2n0+1g. Then for t ≥ sn0+1, we take for α a half-line of positive slope starting at
(s(tn0+1), 2G(sn0+1)). �

We give next a criterion for a shape to be a profile. This result will be used repeatedly in the sequel.

Lemma 2.3. Let (Σ1)k and (H, p, q) be defined as above. Suppose that α is a shape of k for (H, p, q) such that
there exists K > 1 and

(a) there exist r > 0, X0 > 1 and A ≥ 1 such that we have α(X/K) ≥ α(X)/AKr for X ≤ 1/X0 (α(KX) ≤
AKrα(X) for X ≥ X0 respectively);

(b) there exist a > 0 and a sequence (un)n≥0 ((vn)n≥0 respectively) such that ‖un‖p → 0, ‖un+1‖p ≥ ‖un‖p/K
(‖vn‖p →∞, ‖vn+1‖p ≤ K‖vn‖p) and

‖F (un)‖q
α
(
‖un‖p

) ≥ a
 ‖F (vn)‖q
α
(
‖vn‖p

) ≥ a respectively

 .

Then α is a profile of k for (H, p, q) at 0 (at ∞ respectively).

Condition (a) simply says that if β(X) def= α(X)
Xr , then β(KX)/β(X) is bounded below (above respectively) for

X in a neighborhood of 0 (of ∞ respectively). This is obvious if β is constant.

Proof of Lemma 2.3. We just prove the lemma in the neighborhood of ∞. We may also assume that (vn)n≥0

is increasing. For X large enough, there exists n0 such that ‖vn0‖p ≤ X < ‖vn0+1‖p. Then, we get

G(X)
α(X)

≥ G(‖vn0‖p)
α(‖vn0‖p)

α(‖vn0‖p)
α(X)

≥ 1
AKr

F (‖vn0‖p)
α(‖vn0‖p)

AKrα(‖vn0‖p)
α(‖vn0+1‖p)

≥ a

AKr
· �

At the light of Lemma 2.3, one can follow the two-step strategy described below in order to show that the profile
of k for (H, p, q) is a certain function α ∈ K:

Step 1: Establish that some α ∈ K∞ verifies the inequality (1.4).

Step 2: Exhibit a sequence of inputs such that the hypothesis of Lemma 2.3 are satisfied.

Remark 2.4. Let (Σ1)k and (H, p, q) be defined as above, with H a main output map and q finite. Suppose
that (x, u) 7→ f(x, k(x) + u) is differentiable at (0, 0) and k has finite gain for (H, p, q). If ẋ = Ax+ Bu is the
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linearized control system at (0, 0), assume for simplicity that A is Hurwitz. Then, a profile of k at 0 is linear.
In addition, there exist γ > 0 and a sequence (un)n≥0 with ‖un‖p →∞ such that

‖F (un)‖q
‖un‖p

≥ γ. (2.1)

(Simply consider inputs of small L∞-norm but large Lp-norm. The corresponding trajectories have small L∞-
norm.) Then, G is unbounded and, if k is of profile α at ∞, we have X = O(α(X)). Therefore, the real issue
is to determine α and the best profile of k for (H, p, q) at ∞ is at least linear.

We now state the main results of the paper. In Section 3, we study the linear feedback kL = −(x1 + x2) for
(SI2) and get the following two theorems:

Theorem 2.5. Let us consider the control system (SI2)kL , where σ is an (iS)-function. For (H, p, q) with H
a main output map and p ≤ q ∈ [1,∞], the profile of kL at 0 is linear and, at ∞, is as follows:

(1) for H(x, u) = x or x1, X 7→ Xr1(p,q) with r1(p, q) = 2p(q+1)
q(p+1) ;

(2) for H(x, u) = x2, X 7→ Xr2(p,q) with r2(p, q) = p(q+2)
q(p+1) ;

(3) for H(x, u) = σ(−x1 − x2 + u) = ẋ2, X 7→ Xp/q with q <∞.

In the previous results, we define ri(p,∞) and ri(∞,∞) as

ri(p,∞) def= lim
q→∞

ri(p, q) if p finite and ri(∞,∞) def= lim
p→∞

ri(p,∞).

In order to state results relative to (PSI2)kL , we consider the following Lyapunov function for (SI2) (introduced
in [14]):

V (x1, x2) = x2
2 +

∫ x1

0

σ(s)ds+
∫ x1+x2

0

σ(s)ds. (2.2)

If σ is an (iS)-function, then V is a strict Lyapunov function for the closed loop system (1.2) associated to
(SI2)kL . In addition, V is not a (iISS)-Lyapunov function for the system (SI2)kL . Note though that V

1
2 is a

(iISS) Lyapunov (but not (ISS)) for the system (SI2)kL . We have:

Theorem 2.6. Let us consider (PSI2)kL . There exists ε0 > 0 such that for p ∈ [1,∞], p1 ≤ p and p1 finite,
u ∈ Lp, v ∈ Lp1 and ‖v‖∞ ≤ ε0, x̄ ∈ R2, if (x1, x2) is the trajectory of (PSI2)kL corresponding to (u, v) starting
at x̄, we get

(1) for p1 ∈ [1, 2),

‖x1‖p ≤ const.
(
L(v, u, x̄) + ‖u‖2p + ‖v‖

p+1
p cp1
p1 + V (x̄)

p+1
p

)
, (2.3)

‖x2‖p ≤ const.
(
L(v, u, x̄) + ‖u‖

p+2
p+1
p + ‖v‖

p+2
2p cp1
p1 + V (x̄)

p+2
2p

)
, (2.4)

sup(‖x2‖∞, ‖x2‖2∞) ≤ const.‖x1‖∞ ≤ const.
(
L(v, u, x̄) + ‖u‖

2p
p+1
p + ‖v‖cp1

p1 + V (x̄)
)
, (2.5)

‖ẋ2‖p ≤ const.
(
L(v, u, x̄) + ‖v‖

cp1
2p
p1 + V (x̄)

p+2
2p

)
, (2.6)

with L(v, u, x̄) def= ‖v‖p1 + ‖u‖p + V (x̄)1/2 and cp1 = 2p1
2−p1

;
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(2) for p1 = 2, set Q(v, u, x̄) def=
(
‖u‖

2p
p+1
p + V (x̄) + 1

)
econst.‖v‖22 − 1. We have

‖x1‖p ≤ const.
(
L(v, u, x̄) + ‖u‖2p + V (x̄)

p+1
p +Q(v, u, x̄)

p+1
p ‖v‖

2
p

2

)
, (2.7)

‖x2‖p ≤ const.
(
L(v, u, x̄) + ‖u‖

p+2
p+1
p + V (x̄)

p+2
2p +Q(v, u, x̄)

p+2
2p ‖v‖

2
p

2

)
, (2.8)

sup(‖x2‖∞, ‖x2‖2∞) ≤ const.‖x1‖∞ ≤ const.
(
L(v, u, x̄) +Q(v, u, x̄)

)
, (2.9)

‖ẋ2‖p ≤ const.
(
L(v, u, x̄) + V (x̄)

p+1
2p + (Q(v, u, x̄)‖v‖2)

2
p

)
; (2.10)

(3) for p1 > 2 and ε > 0, there exist u, v with u continuous and compactly supported, v ∈ Lp1 and ‖v‖∞ ≤ ε,
such that the trajectory of (PSI2)kL corresponding to (u, v) starting at (0, 0) is unbounded.

In the statement of Theorem 2.6, the exponents corresponding to the case p =∞ are the limits of the exponents
when p tends to ∞.

In Section 4, we consider nonlinear feedbacks for (SI2). For that purpose, we define the class of F-functions
as follows:

Definition 2.7. A function F : R→ R is an F-function if F is C1, odd, F ′(0) = 0 and there exist r ≥ 1 such
that, for |x2| ≥ 1, we have

F ′(x2) ≥ sup
(

3|x2|, r
F (x2)
x2

)
· (2.11)

The next theorems describe the performances of the feedback kF defined below:

Theorem 2.8. Let us consider the control system (SI2) with σ an S-function, and the feedback kF (x) given by

kF (x) def= −
(
x1 + x2 + F (x2)

)
, (2.12)

where F an F-function. For p ∈ [1,∞], kF is a feedback stabilizer for (SI2) and is of linear profile for (x, p, p).

For instance −(x1 +x2 +3x2|x2|) and −(x1 +x2 +x3
2) are examples of kF -feedbacks. The function F̄ : R→ R

defined by F̄ (x2) def= x2 + F (x2) is a C1-diffeomorphism and let K : R → R be defined by K(y) def= F̄−1(y).
In order to state the results for the perturbed system (PSI2)kF , we need to consider a Lyapunov function VF
defined in (4.5) below, for which there exist a, b > 0 such that, for all (x1, x2) ∈ R2, we have

a
(
x2

1 + F̄ (x2)2
)
≤ VF (x1, x2) ≤ b

(
x2

1 + F̄ (x2)2
)
. (2.13)

We get the following theorem (compare to Th. 2 of [5]):

Theorem 2.9. Let us consider (PSI2)kF . There exists ε0 > 0 such that, for p ∈ [1,∞], u, v ∈ Lp and
‖v‖∞ ≤ ε0, x̄ ∈ R2, if (x1, x2) is the trajectory of (PSI2)kF corresponding to (u, v) starting at x̄, the following
estimate holds

‖x‖p ≤ const.
(
‖v‖p + ‖u‖p + Lp(VF (x̄)1/2)

)
, (2.14)
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where

Lp(X) def=

(∫ X

0

sp

K(s)
ds

)1/p

for p finite and L∞(X) def= X. (2.15)

3. The linear feedback kL

We rewrite (SI2)kL as follows {
ż = y − σ(z + u),
ẏ = −σ(z + u),

where z = x1 + x2, y = x2 and σ(·) (u(·) respectively) stands for −σ(−·) (−u(·) respectively). Moreover, up
to a time reparameterization and a linear change of variables, we can assume that σ′(0) = 1. Let us define
σ+ = lim+∞ σ, σ− = − lim−∞ σ and, for r > 0,

Kr
def= inf{|σ(z)|, |z| > r} and δr

def= sup
|z|,|z′|> 2

3 r,zz
′>0

|σ(z)− σ(z′)|.

Let K be an S-bound for σ and σm
def= min(σ+, σ−), σM

def= max(σ+, σ−). Then we have

K ≥ max(1, σM , ‖σ′‖∞).

Fix C, ρ > 0 and ρp for p finite such that

ρ � 1� C,

εσ(εC) >
3
4
σε if ε = ±,

2KCρp <
1
2

min
(

1,
Kp
ρ

2

)
,

ρp <
ρ

2
,

δC � min
(

1,KC ,
3
16
σm

)
.

In addition, let θ def= C
2(C+K) ∈ (0, 1/2). The Lyapunov function defined in (2.2) is written now

V (z, y) = y2 +
∫ z−y

0

σ(s)ds+
∫ z

0

σ(s)ds. (3.1)

For r > 0, set Vr
def= max{V (z, y), ‖(z, y)‖ ≤ r}. We use V̇ to denote the time derivative of V along trajectories

of (SI2)kL and we have

V̇ = −2y∆σ
∣∣∣z+u
z

+ y∆σ
∣∣∣z−y
z
− σ(z)σ(z + u). (3.2)

We sometimes consider a classical Lyapunov function for (SI2) given by

W (z, y) def=
y2

2
+
∫ z

0

σ(s)ds. (3.3)
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Remark 3.1. When yz < 0, z(z + u) ≤ 0 and |y| � max(|z|, |u|) � 1, an easy computation shows that
V̇ ≥ K

2 |y|. This situation explains why V cannot give rise to a dissipation inequality of the kind (1.10).
However, in the case described previously, we also have that |ż| ≥ |y| − K, which implies that the previous
situation firstly cannot last more than a time interval of length 1 and secondly is preceded and followed by
time intervals where |z| ≥ |y| and whose lengths are of same order as |y|. Therefore, by integrating (3.2) on
appropriate time intervals, one hopes to achieve the desired results.

Remark 3.2. The above remark is related to the following fact: assume that, at some point t0, we have
|y(t0)| > K and z(t0) = 0. Then, t0 is an isolated zero of z and, if t1 is an another zero of z, then

|t1 − t0| ≥ 2
(
|y(t0)|
K

− 1
)
. (3.4)

Indeed, without loss of generality, we can assume that y(t0) > 0 and t1 > t0. For t ≥ t0, we have y(t) ≥
y(t0)− (t− t0)K, which implies that

ż(t) ≥ y(t0)−K − (t− t0)K.

A simple integration yields equation (3.4).

3.1. Proof of Theorem 2.5

Thanks to Remark 2.4, for the rest of the paper, we look for profiles at ∞. Therefore, we can assume that
all the inputs considered in the sequel satisfy ‖u‖p ≥ C, for p ∈ [1,∞].

The next proposition is a preliminary step towards the proof of Theorem 2.5 for p =∞ and its proof is given
in the Appendix:

Proposition 3.3. Let p ∈ [1,∞], T > 0 and u ∈ Lp. Let (z, y) be the corresponding trajectory of (PSI2)kL .
Then, we have

(a) ‖y‖2∞,[0,T ] ≤ const. ‖z‖∞,[0,T ];
(b) either ‖y‖2∞,[0,T ] ≥

σm
2 ‖z‖∞,[0,T ] or

‖z‖∞,[0,T ] ≤ const. ‖u‖
2p

2p+1

p,[0,T ], (3.5)

where 2p
2p+1 is taken to be equal to 1 for p =∞.

We now prove (1.4) for p =∞. Taking into account Proposition 3.3, it is enough to show that:

Proposition 3.4. For u ∈ L∞ and ‖u‖∞ ≥ C we have

‖z‖∞ ≤ const. ‖u‖2∞.

Proof of Proposition 3.4. Let M = ‖u‖∞ ≥ C. For T > 0, we pick [t0, t1] ∈ [0, T ] such that we have, for
t ∈ [t0, t1],

W (t0) =
Wmax

2
≤W (t) ≤W (t1) = Wmax.

Define λ > 0 such that Wmax = W (t1) = λM2. Without loss of generality, we can assume that λ > 2. Then,
proving Proposition 3.4 amounts to show that λ is actually bounded independently of u. This is what we do
next.
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Thanks to Proposition 3.3, we can suppose that

const. λM2 ≤ y2
max ≤ const. zmax ≤ const. λM2, (3.6)

where ymax, zmax are defined as before.
The conclusion will be the consequence of two lemmas given below and whose proofs are given in the appendix.

First, we prove that:

Lemma 3.5. With the previous notations, either λ is bounded independently of u or there exists, on [t0, t1], a
sequence of times (tj)1≤j≤2N+1 such that

(i) on [t1, t2N+1], |z(t)| = M + C exactly for t equal to some tj, 1 ≤ j ≤ 2N + 1;
(ii) |z(t)| ≥M + C on I2l−1

def= [t2l−1, t2l] and |z| ≤M + C on I2l = [t2l, t2l+1] for l = 1, · · · , N ;

(iii) ∆W
∣∣∣t2N+1

t1
≥ λ

16M
2.

In a second step, we evaluate the variations of W along I2l−1 and I2l. Set ∆W
∣∣∣
j

def= ∆W
∣∣∣tj+1

tj
, for j =

1, · · · , 2N + 1. We get the following key estimate:

Lemma 3.6. With the previous notations, we have for l = 1, · · · , N ,

∆W2l−1 + ∆W2l ≤ −const.
√
λM + const. M. (3.7)

Finally, by adding all the inequalities (3.7) for l = 1, · · · , N , we obtain that

λ

16
M2 ≤ ∆W

∣∣∣t2N+1

t1
≤ NM(−const.

√
λ+ const.).

Then, λ has to be bounded above by some const. and the proof of Proposition 3.4 is finished. �

We now consider (3) of Theorem 2.5, in the case where p = q < ∞. The first step consists of showing the
next proposition:

Proposition 3.7. Let p ∈ [1,∞), u ∈ Lp and xu = (z, y) be the trajectory of (SI2)kL corresponding to u and
starting at 0. Then, we have

‖σ(z + u)‖p ≤ const. ‖u‖p. (3.8)

Proof of Proposition 3.7. Equation (3.8) will be obtained from the integration of (3.2) on non-overlapping
measurable sets S, whose countable union is equal to R+. We will distinguish several cases for the S’s and, for
each case, we aim at establishing the inequality∫

S

(V̇ + const. |σ(z + u)|p) ≤ const.
∫
S

|u|p, (3.9)

either by the corresponding differential inequality V̇ +const. |σ(z+u)|p ≤ const. |u|p or by a direct computation.
We will also use repeatedly a result given in [5]:

Remark 3.8. The trajectories of (SI2)kL corresponding to inputs u ∈ Lp with p <∞ converge to 0 at infinity.

For the rest of the proof, we assume that ‖u‖p ≥ C. We will consider the following cases:
(A) |y| ≤ C; we have two sub-cases defined by

(A1) |z| ≥ ρ:
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(A2) |z| < ρ;
(B) |y| > C.

Before starting the study of cases (A) and (B), we provide the following remark in order to motivate the
technical details of the proof of Proposition 3.7:

Remark 3.9. We have defined the previous cases in such a way that we can reduce the core of the argument
to the proof of equation (3.9) when S = I, an open interval on which |z|− |y|−C has a constant sign and, more
importantly, where z is monotone. As usual, we introduce the subset E of I defined as

E =
{
t ∈ I, |u(t)| ≥ |z(t)|

3
a.e.
}
·

Next, we write V̇ as a sum of several terms (see Eq. (3.14)), whose integrals over I can be easily estimated in

terms of
∫
I

|u|p and |E|, except for one of them (a quantity J1 defined below in Eq. (3.15)). Similarly to the

integral J defined in equation (5.13), J1 is handled after being written first, by using z as a parameter instead
of the time t, and finally as a double integral. Note that, in most of the estimations, the hypothesis of σ being
increasing is crucial.

If (A1) holds, we have clearly have

V̇ + const. |σ(z + u)|p ≤ const. |u|p, (3.10)

whether |u| ≥ ρp or not.
If (A2) holds, we consider the sets

S0 = {t ≥ 0 | |y(t)| ≤ C, V (z(t), y(t)) < 4ρ2
p},

S′0 = {t ≥ 0 | |y(t)| ≤ C, |z(t)| < ρ}·

As ε tends to 0+, S0 and S′0 are the limits of the open sets

Sε = {t ≥ 0 | |y(t)| < C + ε, V (z(t), y(t)) < 4ρ2
p},

S′ε = {t ≥ 0 | |y(t)| < C + ε, |z(t)| < ρ}·

Note that S0 ⊂ S′0 and Sε ⊂ S′ε. Thanks to Remark 3.8, the open sets Sε/S0 and S′ε/S
′
0 are bounded and

their measures tend to zero as ε tends to 0+. Since V̇ + const.|σ(z + u)|p is bounded over R+, in order to
establish (3.9) for E = S′0, it is enough to do it for E = S′ε with constants independent of ε.

On Sε, we have

V̇ ≤ const. |u|
√
V − const. V . (3.11)

Set Vp
def= V p/2. Then, using (3.11), we get

V̇p ≤ const. V
p−1
p

p − const. Vp. (3.12)

On each finite interval (t, t′) of Sε, we have Vp(t) = Vp(t′), which implies that ∆V
∣∣∣t′
t

= 0. By integrating (3.12)

(and applying Hölder’s inequality for p > 1), we get

∆V
∣∣∣t′
t

+ const.
∫ t′

t

|σ(z + u)|p ≤ const.
∫ t′

t

|u|p. (3.13)
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If (t,∞) ⊂ S0, we have ∫ ∞
t

V pp ≤ V pp (t) + const.
∫ ∞
t

|u|p,

which leads to (3.13) with t′ =∞. On S′ε/Sε, we clearly have (3.10) since the dominant term in V̇ is 1
2yσ(−y)

if |u| ≤ ρ. Thus, we have established (3.9) for E = S′ε and ε > 0 small enough.
We assume that (B) |y| > C holds. The open set S2 = {t ≥ 0| |y(t)| > C} is a union (at most countable) of

open intervals (Is). Since u ∈ Lp, the trajectories of (SI2)kL converge to 0 at infinity, each interval Is has finite
length.

We now focus on an interval I = (t0, t1) where y(t0) = y(t1) = C and y > C on I. We will prove (3.9) for
S = I. Let T def= t1 − t0. We assume that T ≥ 10C

σm
, otherwise we are back to case (A). We say that condition

(R) is satisfied at t ∈ I if
(R) y(t) + C ≤ |z(t)|.

Moreover, z is strictly increasing from I to [z0, z1], where z0 = z(t0) and z1 = z(t1). Then, z is equal to 0 at
most once. We have the following situation:

Lemma 3.10. With the notations above, one of the two next cases occurs:
(B1) z has a constant sign on I and (R) is satisfied on I except (maybe) on an interval (t′0, t

′
1) such that

if z ≤ 0, t′1 = t1 and there is equality in (R) at t′0;
if z ≥ 0, t′0 = t0 and there is equality in (R) at t′1;

(B2) z has a unique zero at t̄ and (R) is satisfied on I, except on an interval I ′ = (t′0, t
′
1) such that t̄ ∈ I ′ and

there is equality in (R) at t′0 and t′1.

Proof of Lemma 3.10. Consider the function f defined on I by

f(t) def= |z(t)| − y(t)− C = sgn z(t)z(t)− y(t)− C.

For all t ∈ I, except maybe for at most one point, we have

(sgn z)ḟ = y(t)− (sgn z(t) + 1)σ(z(t) + u(t)) > 0.

Depending on the sign of z, f(t0) and f(t1), we easily get the conclusion. �
In each above case, we will establish (3.9) first on I ′ and second on I/I ′. We also need to rewrite (3.2) as

V̇ = −2ż∆σ
∣∣∣z+u
z−θy

− ż∆σ
∣∣∣z−θy
z

− ż∆σ
∣∣∣z−θy
z−y

− σ(z + u)∆σ
∣∣∣z+u
z−y
− σ2(z + u). (3.14)

We get

∆V
∣∣∣t1
t0

= J1 + J2 + J3,

where

J1 = −
∫ t1

t0

ż∆σ
∣∣∣z−θy
z

−
∫ t1

t0

ż∆σ
∣∣∣z−θy
z−y

, (3.15)

J2 = −
∫ t1

t0

(
2ż∆σ

∣∣∣z+u
z−θy

+ σ(z − y)∆σ
∣∣∣z+u
z−y

)
, (3.16)

J3 = −
∫ t1

t0

([
∆σ
∣∣∣z+u
z−y

]2

+ σ2(z + u)

)
≤ 0. (3.17)
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We now suppose that (B1) holds. We will only treat the case when z ≥ 0 and indicate the minor modifications
occurring, when z ≤ 0, before treating case (B2). Then, we assume that z ≥ 0 and I ′ = [t0, t′1). Let T ′ = t′1−t0.
We have

T ′ ≤ 2
1− 2K

C

, |∆V
∣∣∣
I′
| ≤ CT ′, ∆z

∣∣∣
I′
≤ CT ′ and ∆y

∣∣∣
I′
≤ T ′,

by simply taking into account that ż ≥ C −K and ẏ ≥ K. Let us consider the set E given by

E =
{
t ∈ I ′, |u(t)| > z(t)

3
a.e.
}
· (3.18)

Then, we have:

Lemma 3.11. With the previous notations, |E| ≥ const. T ′ with const. independent of C.

Proof of Lemma 3.11. From (5.8) written on I ′ and the fact that ∆y
∣∣∣
I′
≥ 0, we get

0 ≤ −σ
(
C

3

)
(T ′ − |E| − |F |) + 2K|E|,

where F = {t ∈ I ′, z ≤ 1}. We clearly have

|F | ≤
C
3

C + 2
1− 2K

C

≤ 1
3
,

and, if F is not empty, we have

T ′ − |F | ≥
z(t′1)− C

3

C + 2
1− 2K

C

≥ 5
4
· (3.19)

We conclude easily. �
In the case where F is not empty, E contains a subset E′ of E of measure |E|2 ≥ const. T ′ such that

z ≥ const. C on E′. Then |u| will be larger than const. C on E′ of E and we have∫
I′
|u|p ≥

∫
E′
|u|p ≥ const. CpT ′ ≥ |∆V

∣∣∣
I′
|+ const.

∫
I′
|σ(z + u)|p.

In the case where F is empty, we simply take E′ = E, and now∫
I′
|u|p ≥

∫
E

z ≥ const.
C

2
T ′ ≥ const. C(|∆V

∣∣∣
I′
|+ const.

∫
I′
|σ(z + u)|p).

Then (3.9) is obtained.
We next establish (3.9) on I/I ′ = [t′1, t1]. This is a consequence of the following lemma, whose proof is

delayed to the Appendix:

Lemma 3.12. Let J1, J2 and J3 be defined in (3.15, 3.16) and (3.17) respectively. we have
(J1) J1 ≤ const. sup(y(t1), C)δC ≤ const. δCT ;

(J2) J2 ≤ const. δCT + const.
∫
I/I′
|u|p;
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(J3) J3 ≤ −const. T + const.
∫
I/I′
|u|p;

where const. is independent of C.

Equation (3.9) is obtained on I and that concludes case (B1). When z ≤ 0, the only differences with the
other case occur in the proof of (J2) given in the Appendix.

We now suppose that case (B2) holds. The case where z ≤ 0 can be deduced from the case where z ≥ 0
similarly to what ws done in case (B1). Then, it is enough to establish (3.9) on the interval [t̄, t1] where z
remains positive. The interval [t̄, t1] is the union of I ′ = [t̄, t′1) and [t′1, t1]. It is easy to see that the procedure
that led to (3.9) on I/I ′ above (the inequalities (3.15, 3.16) and (3.17) together with Lems. 3.12 and 5.1) will
also prove (3.9) on [t′1, t1]. Therefore, the last part of the proof of Proposition 3.7 consists of getting (3.9) on I ′.

We can suppose that y(t̄) ≥ 8C since t1 − t̄ can be taken larger than 10C
σm

. Indeed, if y(t̄) ≤ 8C, we
reproduce the argument involving the set E, defined in (3.18), and Lemma 3.11 (with [t̄, t1] now instead of I ′)
and obtain (3.9).

Until the end of the proof of Proposition 3.7, we assume that y(t̄) ≥ 8C.
We have that z(t̄) = 0 and z(t′1) = y(t′1) + C. Let

T ′′
def= t′1 − t̄ and ȳ def=

∫ t′1

t̄

y

T ′′
·

Since

−K ≤ ẏ ≤ K and T ′′C ≤ T ′′ȳ =
∫ t′1

t̄

y = C + y(t̄),

we get T ′ ≤ 1 + y(t̄)
C and y(t̄)−KT ′′ ≤ ȳ ≤ y(t̄) +KT ′′. Then, we get

y(t̄)
(

1− 2K
C

)
≤ ȳ ≤ y(t̄)

(
1 +

2K
C

)
·

We finally obtain the following estimate for T ′′:

6
7
≤ 1− 2K

C
≤

1 + C
y(t̄)

1 + 2K
C

≤ T ′′ ≤
1 + C

y(t̄)

1− 2K
C

≤ 9
8

(
1 +

4K
C

)
· (3.20)

Define t′′0 ∈ [t̄, t′1] such that z(t′′0) = y(t′′0 ). We have

t′1 − t′′0 ≤
∆(z − y)

∣∣∣t′1
t′′0

y(t̄)−KT ′′ ≤
1
7
·

Then, T1
def= t′′0 − t̄ ≥ 1− 2K

C −
1
7 ≥

5
7 . Using (3.2), we have

∆V
∣∣∣t′1
t̄

+
∫ t′1

t̄

|σ(z + u)|p ≤ J + J ′ −
∫ t′1

t̄

σ(z)σ(z + u), (3.21)

where

J
def= −2

∫ t′1

t̄

y
(
σ(z + u)− σ(z)

)
and J ′ def=

∫ t′′0

t̄

y
(
σ(z − y)− σ(z)

)
.
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We first have that

−
∫ t′1

t̄

σ(z)σ(z + u) ≤ 2K2,

and

J ′ ≤ −
∫ t′′0

t̄

yσ(z) ≤ −σ(1)
2

T1y (t̄) .

Suppose that |J | ≤ |J ′|. Then (3.9) follows readily. If |J | > |J ′|, by taking into account the next equation,

|J | ≤ 3 (T ′′ − |E| − |F |) y (t̄) δC + 5Ky (t̄) |E|,

with E =
{
t ∈ [t̄, t′1] , |u| > z

3 a.e.
}

and F = {t ∈ [t̄, t′1] , |z| ≤ 1}, we obtain, as in Lemma 3.11,

|E| ≥ const. T ′′.

This implies that (3.9) holds on [t̄, t′1]. Then, case (B) is finished, which ends the proof of Proposition 3.7. �
The second step of (3) of Theorem 2.5 in the case where p = q < ∞ consists of providing an appropriate

sequence of inputs un ∈ Lp satisfying the conditions of Lemma 2.3. This is done in the Appendix.
We now prove (1) and (2) of Theorem 2.5 in the case where p = q < ∞. We first establish the next

proposition:

Proposition 3.13. Let p ∈ [1,∞), u ∈ Lp and xu = (z, y) be the trajectory of (SI2)kL corresponding to u and
starting at 0. Then, there exists const. > 0 such that for ‖u‖p ≥ const. we have

‖z‖p ≤ const. ‖u‖2p, (3.22)

‖y‖p ≤ const. ‖u‖
p+2
p+1
p , (3.23)

‖y‖2∞ ≤ const. ‖z‖∞ ≤ const. ‖u‖
2p
p+1
p . (3.24)

Before starting the proof of the above proposition, we give three preliminary lemmas. The proofs of the last
two are given in the Appendix.

Lemma 3.14. Let p ∈ [1,∞). If γp > 0 is the Lp-gain of the linear system given by ẋ = Ax+ bu with

A =
(
−1 1
−1 0

)
and b = (1 1)T ,

then, for every u ∈ Lp with xu = (z, y) the trajectory of (SI2)kL corresponding to u and starting at 0, we have

‖xu‖p ≤ γp‖ū‖p, (3.25)

where ū = z − σ(z + u).

Proof of Lemma 3.14. This is simply a consequence of the rewriting of (SI2) as

ẋu = Axu + bū.

Note that, for all t ∈ R+,

|ū(t)| ≤ |u(t)|+K(z(t) + u(t))σ(z(t) + u(t)) ≤ const. |u(t)|+Kz(t)σ
(
z(t) + u(t)

)
.

�
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Lemma 3.15. Let p ∈ [1,∞), u ∈ Lp and xu = (z, y) be the trajectory of (SI2)kL corresponding to u and
starting at 0. Then, we have

‖y2‖p ≤ const. ‖zσ(z + u)‖p. (3.26)

Let u ∈ Lp and xu = (z, y) be the trajectory of (SI2)kL corresponding to u and starting at 0. For R > 0,
consider the set ER given by

ER = {t ∈ R+, V (t) > R}·

Lemma 3.16. With the notations above, we either have ‖V ‖p ≤ const.R ‖u‖p or

‖V ‖pp ≤ const.R
∫
ER

V p. (3.27)

With the previous lemma at hand, we can start the argument of Proposition 3.13.
For the rest of this proof, we choose R def= C2. For T > 0, we will “slice” [0, T ] ∪ER into a finite number of

disjoint measurable sets Lk and Mk defined below and prove, for each N = Lk ∪Mk the estimates

∫
N

|z|p ≤ const.
(∫

N

|u|p
)2

, (3.28)∫
N

|y|p ≤ const.
(∫

N

|u|p
) p+2
p+1

, (3.29)

with of course const. independent of k and T .
Let Vm

def= V∞,[0,T ] and km
def=
[

ln Vm
R

ln 2

]
. For k = 0, · · · , km, we define Lk and Mk as

Lk
def=
{
t ∈ [0, T ] ∪ER,

Vm
2k+1

< V (t) <
Vm
2k

}
, (3.30)

and

Mk
def=
{
t ∈ [0, T ] ∪ER, V (t) =

Vm
2k

}
· (3.31)

It is easy to see that estimates (3.22) and (3.23) of Proposition 3.13 are consequences of Lemma 3.16 together
with (3.28, 3.29) and the following inequality: for every α ≥ 1, integer n ≥ 1 and positive real numbers
a1, · · · , an, we have

n∑
1

aαi ≤
(

n∑
1

ai

)α
.

We first establish (3.22) and (3.23) for the Lk’s. In the sequel, we fix k ∈ {0, · · · , km} and use L and V̄ to
denote Lk and Vm

2k respectively. Since V is continuous, L is the countable union of disjoint intervals Ij = (tj , t′j),
j ∈ Ω, such that for every t ∈ (tj , t′j) we have

V̄

2
< V (t) < V̄ ,
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and each Ij falls into one of the three following cases:

(c1) V (tj) = V (t′j)
(

= V̄
2 or V̄

)
;

(c2) V (tj) = V̄
2 and V (t′j) = V̄ ;

(c3) V (tj) = V̄ and V (t′j) = V̄
2 .

For l = 1, 2, 3 and j ∈ Ω, we use Ωl to denote the set of indices j ∈ Ω such that Ij verifies (cl). Let T (j) def= t′j−tj .

Remark 3.17. The sets Ω2 and Ω3 are nonempty. In addition
(
V

1
2

)·
, the time derivative of V

1
2 along xu, is

bounded by 5K. Then, we have that Ω#
2 and Ω#

3 are finite. In addition, a simple continuity argument together
with Remark 3.2 shows that each interval Ij , j ∈ Ω3, has a closest interval Il(j), l(j) ∈ Ω2, on its left and

Ω#
3 = Ω#

2 ≤ const.
T

V̄
1
2
· (3.32)

Moreover, for every j ∈ Ω, we have on Ij that |V̇ | ≤ 8σM V̄
1
2 and∫

Ij

|z|p ≤ const. T (j)V̄ p and
∫
Ij

|y|p ≤ const. T (j)V̄
p
2 . (3.33)

We fix j ∈ Ω and we will get an estimate of ∆V
∣∣∣
Ij

. We first assume that z has at least two zeros on Ij . Since

|ż| ≥ const. V̄
1
2 at a zero of z and, thanks to Remark 3.2, z has a finite number Nj of isolated zeros on Ij , with

Nj ≤ const. Tj

V̄
1
2

. Let t0 < · · · < tNj be the sequence of zeros of z on Ij . Set

Ti
def= ti+1 − ti and ∆Vi

def= ∆V
∣∣∣ti+1

ti
.

Notice that Ti ≥ const. V̄
1
2 . For i = 0, · · · , Nj , we define the following sets:

Ei =
{
t ∈ [ti, ti+1], |u| > |z|

3
a.e.
}

; (3.34)

E′i =
{
t ∈ [ti, ti+1], |u| ≤ |z|

3
a.e.
}

; (3.35)

Fi =
{
t ∈ [ti, ti+1] , |y| ≤ |z| − C

}
; (3.36)

F ′i =
{
t ∈ Fi, |u| >

|y|
2
, uy < 0 a.e.

}
(3.37)

Gi =
{
t ∈ F ′i , |u| ≥ ρV̄

1
2 a.e.

}
· (3.38)

Set Θ = {i ∈ {0, · · · , Nj}, |Ei| > ρ}. Note that

Θ# ≤
∑Nj

0 |EI |
ρ

·

Moreover, for i ∈ {0, · · · , Nj − 1}, we have y(ti)y(ti+1) < 0.
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The next lemma is the key estimate for getting Proposition 3.13:

Lemma 3.18. With the above notations, we have

∆Vi +
σ2
m

2
Ti +

σ2
m

8
V̄

1
2 ≤ const. V̄

1
2

(
|Ei|+ |Gi|

)
. (3.39)

In order to relate the left hand side of equation (3.39) and
∫
|u|p, we use the set Ei together with the next

estimate.

Lemma 3.19. With the above notations, we have, for i ∈ Θ,∫
Ei

|z|p ≥ const. |Ei|V̄
p
2 . (3.40)

We now want to establish that, for every i ∈ Ω,∫ ti+1

ti

|u|p ≥ const. V̄
p−1

2

(
∆Vi +

σ2
m

2
Ti +

σ2
m

16
V̄

1
2

)
. (3.41)

Thanks to Lemma 3.18, (3.41) is immediate if |Ei| ≤ ρ, since we can rewrite (3.39) as

∆Vi +
σ2
m

2
Ti +

σ2
m

16
V̄

1
2 ≤ const. V̄

1
2 |Gi|.

For the remaining case, i ∈ Θ and (3.41) follows from Lemma 3.19.
By adding up (3.41) for i = 0, · · · , Nj, we get∫ tNj

t0

|u|p ≥ const. V̄
p−1

2

(
∆V

∣∣∣tNj
t0

+
σ2
m

2
(tNj − t0) +Nj

σ2
m

16
V̄

1
2

)
.

In addition, on each of the two intervals [tj , t0] and [tNj , t′j ], we have

∆V +
σ2
m

4
∆t ≤ const. V̄

1
2

(
|E1|+ |G1|

)
,

where ∆V and ∆t are the variations of V and t respectively, E1 and G1 correspond to Ei and Gi defined
in (3.34) and (3.38) for [tj , t0] and [tNj , t′j]. We hence obtain, for every j ∈ Ω,

V̄
p−1

2

(
∆V

∣∣∣
Ij

+
σ2
m

4
T (j) +Nj

σ2
m

8
V̄

1
2

)
≤ const. V̄

p−1
2

(
|E(j)|+ |G(j)|

)
≤
∫
Ij

|u|p, (3.42)

where

E(j) =
{
t ∈ Ij , |u| >

|z|
3

a.e.
}
,

G(j) =
{
t ∈ Ij , |u| > sup

(
ρV̄

1
2 ,
|y|
2

)
, uy < 0, |y| ≤ |z| − C a.e.

}
·

Note that (3.42) remains valid in the case where z has at most one zero on Ij .
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For j ∈ Ω1, equation (3.42) implies that∫
Ij

|u|p ≥ const. T (j)V̄
p−1

2 . (3.43)

For j ∈ Ω2, equation (3.42) implies that∫
Ij

|u|p ≥ const.
(
T (j) + V̄

)
V̄
p−1

2 . (3.44)

As for j ∈ Ω3, two possibilities occur whether T (j) > 4V̄
σ2
m

(case (c31)) or not (case (c32)). Thanks to Remark 3.17,
if j ∈ Ω3 verifies case (c32), consider l(j) ∈ Ω2. Then,∫

Ij

|u|p + 2
∫
Il(j)

|u|p ≥ const.
(
σ2
m

4

(
T (j) + 2T (j′)

)
+ ∆V

∣∣∣
Ij

+ 2∆V
∣∣∣
Il(j)

)
V̄
p−1

2 .

Since ∆V
∣∣∣
Ij

+ 2∆V
∣∣∣
Il(j)

= V̄
2 , we have

∫
Ij∪Il(j)

|u|p ≥ const.
(
T (j) + T (j′) +

V̄

4

)
V̄
p−1

2 .

If j ∈ Ω3 verifies case (c31), then
σ2
m

8
T (j) ≤

(
∆V

∣∣∣
Ij

+
σ2
m

4
T (j)

)
,

which means that this case is equivalent to case (c1). From now on, Ω′1 is the set of indices j for which case
(c1) or (c32) holds and Ω′2 is the set of indices j for which case (c2) or (c31) holds.

Set

T1,V̄
def=

∑
j∈Ω′1

T (j) and T2,V̄
def=

∑
j∈Ω′2

(
T (j) +

V̄

4

)
·

Note that

T2,V̄ ≥
V̄

4
and T1,V̄ + T2,V̄ ≥ const. (|L|+ V̄ ). (3.45)

Then, we have ∫
L

|u|p ≥ const. V̄
p−1

2 (T1,V̄ + T2,V̄ ), (3.46)

∫
L

|z|p ≤ const. V̄ p(T1,V̄ + T2,V̄ ), (3.47)

and ∫
L

|y|p ≤ const. V̄
p
2 (T1,V̄ + T2,V̄ ). (3.48)
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Using (3.45–3.48), we get

(∫
L

|u|p
)2

≥ const. V̄ p−1(T1,V̄ + T2,V̄ )2, (3.49)

and

(∫
L

|u|p
) p+2
p+1

≥ const. V̄
(p−1)(p+2)

2(p+1) (T1,V̄ + T2,V̄ )
p+2
p+1 . (3.50)

It remains to establish (3.49) and (3.50) for Mk (instead of Lk in the aforementioned equations). Similarly to
the way in which case (A2) was handled, it is enough to do it for Mk,ε given by

Mk,ε = {t ∈ [0, T ] ∪ER, V̄ − ε < V (t) < V̄ + ε},

with ε > 0 small enough. For k and ε fixed, we reproduce the argument given above with L equal now to Mk,ε

until getting equation (3.50). The first relevant modification occurs in equation (3.44) where the right-hand side
becomes const.

(
T (j) + 2ε

)
V̄
p−1

2 . The cases (c31) and (c32) are now defined whether T (j) > const. ε or not.
Then, ones gets (3.45, 3.49) and (3.50) with T2,V̄ ≥ const. ε. By taking limits as ε tends to zero, we get (3.49)
and (3.50) for Mk with T1,V̄ + T2,V̄ ≥ |Mk|. Adding up (3.49) for Lk and (3.49) for Mk, we obtain

(∫
Lk∪Mk

|u|p
)2

≥ const. V̄ p−1T 2
k ,

with Tk ≥ sup
(
|Lk ∪Mk|, const. V̄

)
. Then

(∫
Lk∪Mk

|u|p
)2

≥ const. V̄ pTk

(
Tk
V̄

)
≥ const.

∫
Lk∪Mk

|z|p. (3.51)

Similarly, adding up (3.50) for Lk and (3.50) for Mk, we obtain

(∫
Lk∪Mk

|u|p
) p+2
p+1

≥ const. V̄
(p−1)(p+2)

2(p+1) T
p+2
p+1
k .

It follows that

(∫
Lk∪Mk

|u|p
) p+2
p+1

≥ const. V̄
p
2 Tk

(
Tk
V̄

) 1
p+1

≥ const.
∫
Lk∪Mk

|y|p. (3.52)

Therefore the proof of (3.22) and (3.23) is finished. As for (3.24), it is obtained by considering (3.46) on L0∪M0,∫
L0∪M0

|u|p ≥ const. V
p−1

2
m T0 ≥ const. V

p+1
2

m .

Then, the proof of Proposition 3.13 is completed. �
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Proposition 3.20. Let p ≤ q ∈ [1,∞), u ∈ Lp and xu = (z, y) be the trajectory of (SI2)kL corresponding to u
and starting at 0. Then, there exists const. > 0 such that for ‖u‖p ≥ const. we have

‖z‖q ≤ const. ‖u‖r1(p,q)
p , (3.53)

‖y‖q ≤ const. ‖u‖r2(p,q)
p , (3.54)

‖ẏ‖q ≤ const. ‖u‖
p
q
p , (3.55)

where r1(p, q) = 2p(q+1)
q(p+1) and r2(p, q) = p(q+2)

q(p+1) .

Proof of Proposition 3.20. By interpolating q between p and ∞, and if ξ = z, y or ẋ, we have

‖ξ‖q ≤ ‖ξ‖
q−p
q
∞ ‖ξ‖

p
q
p .

Using Propositions 3.13 and 3.7, the conclusions of the above proposition are reached. �
In order to finish the proof of Theorem 2.5, we have to show that the several shapes obtained in Proposi-

tions 3.7 and 3.13 are in fact the profiles announced in Theorem 2.5. For that purpose, it remains to exhibit
sequences of inputs verifying the hypotheses of Lemma 2.3. This is done in the Appendix, where we construct
two such sequences (u1

n) and (u2
n). It turns out that (u1

n) works to get (1) and (2) of Theorem 2.5 and (u2
n) to

get (3) of Theorem 2.5.

3.2. Proof of Theorem 2.6

First, recall that (SI2)kL is controllable. In addition, we have the following proposition:

Proposition 3.21. For p ∈ [1,∞], there exists Cp such that for every (z, y) ∈ R2 and ‖(z, y)‖ ≥ Cp there exists
u(z,y) ∈ Lp such that

const. ‖u(z,y)‖p ≤ V (z, y)
p+1
2p ≤ const. ‖u(z,y)‖p. (3.56)

Proof of Proposition 3.21. Let (z, y) ∈ R2 and ‖(z, y)‖ ≥ Cp. It is enough to show that we can reach (0, ȳ)
with ȳ = V (z, y)

1
2 . This can easily be deduced from the construction of the sequence (u1

n) in the Appendix. �

Therefore, any trajectory of (PSI2)kL starting at (z, y) ∈ R2 and corresponding to u ∈ Lp and v ∈ Lp1 (with
p1 ∈ [1,∞]), can be seen as the trajectory of (PSI2)kL starting at 0 and corresponding to ũ ∈ Lp and v ∈ Lp1

(with p1 ∈ [1,∞]), where ũ is the concatenation of u(z,y) defined in Proposition 3.21 and u.
For the rest of the section, we will only consider trajectories of (PSI2)kL starting at 0 and use the estimates

given below to get Theorem 2.6: for p ∈ [1,∞], for every (z, y) ∈ R2 and ‖(z, y)‖ ≥ Cp, for every u ∈ Lp, we
have

const.
(
V (z, y)

p+1
2p + ‖u‖p

)
≤ ‖ũ‖p ≤ const.

(
V (z, y)

p+1
2p + ‖u‖p

)
. (3.57)

Remark 3.22. The previous paragraph indicates how to get (ISS)-type estimates. By taking into account (3.57),
then, for p ∈ [1,∞], there exist C0, C1, C2 > 0 such that, for (z, y) ∈ R2 and u ∈ Lp, if x is the trajectory of
(PSI2)kL starting at (z, y) and corresponding to u ∈ Lp, the following inequality holds for t ≥ 0,

‖x(t)‖ ≤ const. V (x(t)) ≤ const.
(

sup(‖x(0)‖, ‖x(0)‖2)e−C2t(1− [sgn (sup(‖x(0)‖, ‖x(0)‖2)− C0)]+)

+(sup(‖x(0)‖, ‖x(0)‖2)− C1t)[sgn (sup(‖x(0)‖, ‖x(0)‖2)− C0)]+
)

+ ‖u‖
2p
p+1

p,[0,t]. (3.58)
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Let p ∈ [1,∞] and u ∈ Lp, p1 ∈ [1,∞), with p1 ≤ p and v = (v1, v2)) ∈ Lp1 . Set ε0
def= σm

4γ∞
, where γ∞ is the

L∞-gain of the linear control system (L2) defined by

(L2) ẋ = A1x+ bu,

with A1 =
(

0 1
−1 −1

)
.

Let x = (z, y) be the trajectory of (PSI2)kL starting at 0 and corresponding to u and v. Let x1 = (z1, y1)
be the trajectory of (L2) starting at 0 and corresponding to v. Then, (Z, Y ) = (z − z1, y− y1) is the trajectory
of (PSI2)kL starting at 0 and corresponding to ū = z1 + u and v̄ = (0, z1 + y1). We suppose that ‖v‖∞ ≤ ε0.
Then, v̄ is a locally absolutely continuous (l.a.c. for short) input such that

v̄ ∈ Lp1 , ‖v̄‖∞ ≤
σm
2
· (3.59)

Therefore, we have reduced the proof of Theorem 2.6 to the case where the trajectory of (PSI2)kL starts at 0
and corresponds to an input v of the type (0, v̄).

We first prove part (3) of Theorem 2.6 and suppose hence that p1 > 2.
For every ε > 0, we construct a curve x which is l.a.c., unbounded and can be seen as the trajectory of

(PSI2)kL starting at 0 and corresponding to some continuous and compactly supported input u and to some
v̄ ∈ Lp1 such that ‖v̄‖∞ ≤ ε. We will suppose that σ is equal to the standard saturation function σ0. Let

W0 >

(
5
ε

) 2p1
p1−1

.

There exists a continuous input u steering 0 to (0,W
1
2

0 ) in time T > 0 along (SI2)kL . Then, x is defined on
[0, T ] as the resulting trajectory. For t > T , we take u = 0 and v̄ as follows: let (tk)k≥0 be the sequence of zeros

of z on [T,∞). For k ≥ 0, define Wk
def= W (z(tk), y(tk)) and

ck =
5

W
p1−1
2p1

k

·

Then, for k ≥ 0 and t ∈ (tk, tk+1], we define the input v̄ as

¯v(t) def= ck
y

(1 + y2)
p1+1
2p1

·

The derivative of W along x, on (tk, tk+1], is equal to

Ẇ = −σ(z)2 + yv̄ = −σ(z)2 + ck
y2

(1 + y2)
p1+1
2p1

·

If |y| ≥ 1, we have

ck
y2

(1 + y2)
p1+1
2p1

=
5

(1 + 1
y2 )

p1+1
2p1

(
y2

Wk

) p1−1
2p1

.

Then Ẇ is bounded and it is larger than 1
2 as soon as y2 ≥ 1

20W , i.e. when |y| ≥
√
|z|
4 . This situation occurs

during 3
4 (tk+1 − tk), as a careful examination of the dynamics of (z, y) shows. Then, we prove inductively that
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the above sequences are well-defined by using the next equation: for k ≥ 0, we have

¯v(t) ≤ ε,

W
1
2
k ≤ tk+1 − tk ≤ 2W

1
2
k ,

2W
1
2
k ≤ Wk+1 −Wk ≤ 6W

1
2
k .

We also obtain that, for k ≥ 0,
const. k2 +W0 ≤Wk ≤ const. k2 +W0.

The above equations imply that, for k ≥ 1, we have∫ tk+1

tk

|v̄|p1 ≤ const.
ln k
kp1−1

·

Since
∑
k≥1

ln k
kp1−1 is finite, we have ‖v̄‖p1 is finite and we are done. It is easy to adapt the above construction

to an arbitrary iS-function.

From now on, we only consider trajectories of (PSI2)kL starting at 0 and corresponding to u, v̄, with u ∈ Lp,
v̄ = (0, v)) with v l.a.c. and satisfying (3.59). Moreover, we assume that p1 ≤ 2.

The key estimates to get Proposition 3.4 (p = ∞) and Proposition 3.13 (p finite) respectively are equa-
tion (3.6) and equation (3.18). Considering (PSI2)kL , the two previous equations are still valid with, however,

the addition on their respective right-hand side of the term
∫
I

|yv|, where I is the ad hoc interval. Indeed, the

important point is that all the estimates on z, ż, y and ẏ that were made (in particular the lower bounds), are
not essentially modified if ‖v‖L∞ is small enough with respect to σm (and thus to K,C).

In the sequel, we will only treat the case where p is finite since the argument when p =∞ follows the same
lines.

In the present situation, equation (3.42) becomes

∆V
∣∣∣
Ij

+ const.
(
T (j) + V̄

1
2

)
≤ const. V̄

1
2

(
|E(j)|+ |G(j)|

)
+ const.

∫
I(j)
|yv|. (3.60)

Setting TV̄ = T1,V̄ + T2,V̄ ≥ const. V̄ , equation (3.46) becomes

V̄
p−1

2 TV̄ ≤ const.
(∫

L

|u|p + V̄
p
2

∫
L

|v|
)
. (3.61)

We have to consider two sub-cases.
First, we suppose that p1 < 2. By applying Hölder’s inequality in (3.61), we get

V̄
p+1

2 ≤ const. V̄
p−1

2 TV̄ ≤ const.
(∫

L

|u|p + V̄
p
2 T

1− 1
p1

V̄
‖v‖p1

)
. (3.62)

Therefore, we obtain

TV̄ ≤ const.

(∫
L

|u|p +
(∫

L

|v|p1

) 2
2−p1

)
,

V̄
p+1

2 ≤ const.

(∫
L

|u|p +
(∫

L

|v|p1

) 2
2−p1

)
.
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Recall that ∫
L

|z|p ≤ const. V̄ pTV̄ ,∫
L

|y|p ≤ const. V̄
p
2 TV̄ ,∫

L

|σ(z + u)|p ≤ const. TV̄ .

Next, we only prove (2.3). If
∫
L

|u|p ≥ V̄
p
2 T

1− 1
p1

V̄
‖v‖p1 , then we get (3.22). Otherwise, we get

∫
L

|z|p ≤ const. V̄ p+
p1
2 ‖v‖p1

p1
≤ ‖v‖p1+(p+

p1
2 )p1

p1

and we conclude.
The second sub-case occurs for p1 = 2. This case is more delicate than the previous one since (3.60) does

not provide directly any interesting estimate. We will rewrite it in two different ways: first, we easily get that

∆V
∣∣∣
Ij

+ const.
(
T (j) + V̄

1
2

)
≤ const.

∫
Ij

|u|p

V̄
p−1

2

+
∫
Ij

|yv|, (3.63)

and second, if we divide (3.60) by V̄ , we can write it as∫
Ij

V̇

V
+ const.

∫
Ij

dt
V
≤ const.

∫
Ij

|u|p

V̄
p+1

2

+ const.
∫
Ij

|v|
V

1
2
· (3.64)

This leads to rewrite (3.61) as

TV̄ ≤ const.
∫
L

|u|p

V̄
p−1

2

+
∫
L

|yv|, (3.65)

or

1 +
∫
L

dt
V
≤ const.

∫
L

|u|p

V̄
p+1

2

+ const.
∫
L

|v|
V

1
2
· (3.66)

Let J0 =
∫
L

|v|
V

1
2

. By applying the Cauchy–Scharwz inequality for J0 and then the Young’s inequality for

x 7→ x2, we have that, for every µ > 0,

J0 ≤ const.
(∫

L

dt
V

) 1
2
(∫

L

|v|2
) 1

2

≤ const.
µ

∫
L

dt
V

+ const. µ
∫
L

|v|2. (3.67)

Then, equations (3.66) and (3.67) imply that

1 +
∫
L

dt
V
≤ const.

∫
L

|u|p

V̄
p+1

2

+ const.
∫
L

|v|2. (3.68)

We next divide the set of integers {0, · · · , km} in two disjoint subsets K1 and K2 such that k ∈ K1, if∫
Lk

|u|p ≥ V̄
p−1

2

∫
Lk

|yv|,
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and k ∈ K2, if the opposite inequality holds. Let k2 = K#
2 and k1 = infK1 k. Then k2 ≥ k1. By applying (3.62)

to k1, we have
Vk1 ≤ const. ‖u‖

2p
p+1 ,

and by summing up (3.66) for k ∈ K2, we obtain

k2 ≤ const. ‖v‖22.

Since Vm = 2k1Vk1 ≤ 2k2Vk1 , we get

Vm ≤ const. ‖u‖
2p
p+1 econst.‖v‖22 ,

and (2.9) follows. The other inequalities of Theorem 2.6 can be deduced as done before. �

4. The feedback kF

From now on, σ is an iS-function and F is an F-function. Note that K is odd, C1 and increasing. In
addition, we have the following obvious estimates:

Lemma 4.1. The function y 7→ y
K(y) is even, increasing on R+ and for every y ∈ R,

const. inf(|y|, 1) ≤ |K(y)| ≤ const. inf(|y|, |y| 12 , |y| 1r ) and K ′(y) ≥ 1
1 + |K(y)| ·

Proof of Lemma 4.1. This easily follows from (2.11). �
As a consequence of Lemma 4.1, we have that, for every λ ∈ (0, 1) and y ≥ 0,

K(λy)
K(y)

≥ λ. (4.1)

Up to a time reparameterization and a linear change of variable in (SI2), we may assume that |σ(t)| ≥ 2 for
|t| ≥ 1. We use the C1 change of variable given by

z
def= x1 + F̄ (x2), (4.2)

y
def= F̄ (x2), (4.3)

to rewrite (SI2)kF as 
ż = K(y)− σ(z + u)

K ′(y)
,

ẏ = −σ(z + u)
K ′(y)

·

For y ∈ R, we define the odd function G by

G(y) def= y − sgn (y)K(y)2 − 1
4
K(y), (4.4)

and, for y ∈ R, we have
2
3
|y| 1 + |y|

1 + 3|y| ≤ |G(y)| ≤ |y|.
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We define the Lyapunov function VF by

VF (z, y) =
1
2
z2 − zG(y) +

∫ y

0

G(s)ds. (4.5)

There exist const. > 0 such that for every z, y ∈ R2

const.
(
z2 + y2

)
≤ VF (z, y) ≤ const.

(
z2 + y2

)
,

which implies (2.13). Moreover, VF is a strict Lyapunov function for (SI2)kF . It follows from the dissipation
inequality given below:

Lemma 4.2. If we use V̇F to denote the time derivative of VF along the trajectories of (SI2)kF , we have

V̇F +
1 + |K(y)|

2
V

1
2
F inf

(
V

1
2
F , 1

)
+ ≤ 4(1 + |K(y)|)|z|σ(3|u|)M(z, y, u), (4.6)

where

M(z, y, u) def=

 1, if |u| > |z|
2
> inf

(
V

1
2
F , 1

) V 1
2
F

12
,

0, otherwise.

Proof of Lemma 4.2. We compute V̇F and obtain

V̇F = zK(y)− zσ(z + u)
(

2|K(y)|+ 1
4

)
−K(y)G(y).

By considering the sub-cases defined whether |z|2 < |u| or not and V
1
2
F > 1 or not, we conclude. �

As a consequence, we can see that VF is an (ISS)-Lyapunov function.

4.1. Proof of Theorem 2.8

We first assume that p =∞ and ‖u‖∞ ≥ C. Then, by Lemma 4.2, we have

V̇F ≤ −(1 + |K(y)|) inf
(

1, V
1
2
F

)(
V

1
2
F − 24K‖u‖∞

)
.

Therefore
∥∥∥V 1

2
F

∥∥∥
∞
≤ 24K‖u‖∞.

For the rest of the pqper, we assume that p ∈ (1,∞). Let us show a result similar to Remark 3.2:

Lemma 4.3. The trajectories of (SI2)kF corresponding to inputs u ∈ Lp, with p finite, converge to 0 at infinity.

Proof of Lemma 4.3. For X ≥ 0, let R(X) def= Lp(X
1
2 )p, where Lp was defined in (2.15). We use R and

·
R to de-

note the Lyapunov function R
(
VF (z, y)

)
and its time derivative along trajectories of (SI2)kF . Multiplying (4.6)

by V
p−1

2
F

K(V
1
2
F )

, we get

·
R+

1 + |K(y)|
2 sup

(
K
(
V

1
2
F

)
, 1
)V p

2
F ≤ 4

1 + |K(y)|
K
(
V

1
2
F

) |z|V p−1
2

F σ(3|u|)M(z, y, u). (4.7)
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Then, we have

·
R+ V

p
2
F ≤ 8V

p−1
2

F σ(3|u|)M(z, y, u), if VF ≤ 1, (4.8)
·
R +

1 + |K(y)|
2K
(
V

1
2
F

) V p
2
F ≤ 4

1 + |K(y)|
K
(
V

1
2
F

) |z|V p−1
2

F σ(3|u|)M(z, y, u) if VF > 1. (4.9)

We deduce that
·
R ≤ const. |u|p,

which implies that Lp
(∥∥∥V 1

2
F

∥∥∥
∞

)
≤ const. ‖u‖p. Moreover, since xu is bounded, ẋu is also bounded and by (4.8)

and (4.9), we also have

const. ‖u‖p

∫ ∞
0

V
p
2
F ≤

∫ ∞
0

V
p
2
F

sup
(
K
(
V

1
2
F

)
, 1
) ≤ const. ‖u‖pp.

Therefore, by Barbălat’s lemma, we get that xu converges to 0 at infinity. �
Next, we establish a similar result to Lemma 3.15:

Lemma 4.4. Let p ∈ [1,∞), u ∈ Lp and xu = (z, y) be the trajectory of (SI2)kF corresponding to u and
starting at 0. Then, we have

‖K(y)2‖p ≤ const. ‖zσ(z + u)‖p, (4.10)

with equality if p = 1.

Proof of Lemma 4.4. Consider the function

QF (z, y) def= −zK(y)
(
K(y)2

)p−1

+
∫ y

0

K(s)
(
K(y)2

)p−1

ds.

Let Q̇F be the time derivative of QF along xu. We have

Q̇F = −|K(y)|2p + (2p− 1)
(
K(y)2

)p−1

zσ(z + u). (4.11)

Similarly to Lemma 3.15, we integrate (4.11) between 0 and T for every T > 0, then we apply Hölder’s inequality
(for p > 1), and we conclude by letting T goes to ∞ and by taking into account Lemma 4.3. �

As a corollary, we prove Theorem 2.8 for p = 1. According to Lemma 4.4, we have

‖zσ(z + u)‖1 = ‖K(y)2‖1 ≤ const. ‖y‖1.

Moreover, dividing (4.6) by V
1
2
F implies that(

L1

(
V

1
2
F

))·
+ V

1
2
F

1 + |K(y)|
2K
(
V

1
2
F

) inf
(
V

1
2
F , 1

)
≤ 4

1 + |K(y)|
K
(
V

1
2
F

) |z|σ(3|u|)M(z, y, u), (4.12)

where L1 was defined in (2.15). Since y 7→ y
K(y) is increasing for y ≥ 0, we have

V
1
2
F

K(V
1
2
F )
≥ const.

|y|
|K(y)| ·
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Then, we deduce from equation (4.12) that

(
L1

(
V

1
2
F

))·
+
|y|
2
≤ 12K|u|.

After integration, we obtain ‖y‖1 ≤ const. ‖u‖1. A trajectory of (SI2)kF starting at 0 and corresponding to the
input u is also the trajectory of the linear system given by ẋ = A1x+ b1w with

A1 =
(

0 1
−1 −1

)
, b1 = (0 1)T ,

and with w =
(
z+u−σ(z+u)

)
−u−y+K(y). By (ii) of Definition 1, we get |w| ≤ const. (|zσ(z+u)|+|u|+|y|).

Since A1 is Hurwitz, we conclude.
From now on, we assume that Rm

def= ‖R‖∞,
∥∥∥V 1

2
F

∥∥∥
∞
, ‖u‖p ≥ C2. In order to prove Theorem 2.8, we look

for establishing the inequality ∫ ∞
0

V
p
2
F ≤ const.

∫ ∞
0

V
p−1

2
F |u|, (4.13)

which provides the result together with Hölder’s inequality.
Set km

def=
[

ln Rm
C

ln 2

]
. We consider

S0 =
{
t ≥ 0, R

(
z(t), y(t)

)
> C

}
,

S1 =
{
t ≥ 0, R

(
z(t), y(t)

)
≤ C

}
·

As done before, we approximate S1 by a decreasing sequence of open sets (S1,ε) such that |S1,ε/S1| tends to
zero as ε tends to. On each interval I ′ of S1,ε, we look for

∆R
∣∣∣
I′

+ const.
∫
I′
V
p
2
F ≤ const.

∫
I′
V
p−1

2
F |u|. (4.14)

This last equation is a direct consequence of the fact that (4.7) can be simply written on S1 as

·
R + const. V

p
2

1 ≤ const. V
p−1

2
1 |u|.

Similarly to the proof of Proposition 3.13, we “slice” up S0 according to (3.30) with the obvious modifications.
On each interval I of Lk or Mk,ε falling into one of the (ci) cases, we look for obtaining the inequality

∆R
∣∣∣
I

+ const.
∫
I

V
p
2
F ≤ const.

∫
I

V
p−1

2
F |u|. (4.15)

Equation (4.13) is finally obtained by summing up (4.15) on S0 and (4.14) on S1.
Therefore, it remains to show (4.15) to finish the proof of Theorem 2.8. Let I = (t0, t1) be an interval of

some Lk or Mk,ε such that ∆R
∣∣∣
I

= µ R̄2 where µ = ±1, 0 and R̄ = Rm
2k

. Let

T
def= t1 − t0 and V̄ def= R−1(R̄).
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We easily get that R−1
(
R̄
2

)
= λV̄ with

(
1
2

) 1
p

≤ λ ≤
(

1
2

) 1
p+1

.

Therefore ∆VF
∣∣∣
I

= (1− λ)V̄ and we have, for every t ∈ I, λV̄ ≤ VF (t) ≤ V̄ . In addition, we get

1√
2
T V̄

p
2 ≤

∫
I

V
p
2
F ≤ T V̄

p
2 .

Consider the following subsets of I:

E1 =
{
t ∈ I, |y| ≥ ρV

1
2
F

}
,

E2 =
{
t ∈ I, |y| < ρV

1
2
F

}
,

E =
{
t ∈ E2, |u| >

|z|
2

a.e.
}
·

We first assume that |E1| ≥ ρT . Then, for t ∈ E1, we have

1 + |K(y)|
2K
(
V

1
2
F

) ≥ ρ

2
,

which implies that ∫
I

1 + |K(y)|
2K
(
V

1
2
F

) V p
2
F ≥ const. ρ

∫
E1

V
p
2
F ≥ const. ρT V̄

p
2 ,

and we get (4.15) by integration of (4.9).

We next assume that |E1| < ρT . Then, |z| > (1 − ρ)V
1
2
F on E2. Let k0

def= supE2
|K(y)|. We have

k0 ≤ K
(
ρV

1
2
F

)
and the following lemma:

Lemma 4.5. With the above notations, let

U
def=
{
t ∈ E2, |K(y)| ≥ k0

2

}
·

Then, either E2 = I or |U |+ |E| ≥ const. T .

Proof of Lemma 4.5. If E1 is not empty, then k0 = K
(
ρV

1
2
F

)
. Since E2 is open, it is the countable union of open

intervals. For every interval J = (t, t′) of E2, let UJ
def= U∩J and EJ

def= E∩J . We have |K(y(t))|, |K(y(t′))| ≤ k0

with equality at t or at t′. Similarly to (5.8), we get∣∣∣σ(C)(t′ − t)− const. |EJ |
∣∣∣ ≤ 2k0. (4.16)

Since the time derivative of K(y) is bounded (by Kσ), we have k0 ≤ const. |UJ |. Therefore, we obtain

|UJ |+ |EJ | ≥ const. (t′ − t).
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Adding up, we conclude. �
According to the previous lemma, three possibilities may occur: E1 is empty, |E| ≥ const. T or |U | ≥ const. T .

Suppose first, that |E| ≥ const. T . Then, for a.e. t ∈ E, we have

|u| > |z|
2
> const. V

1
2
F .

We deduce that ∫
I

V
p−1

2
F |u| ≥ const.

∫
I

V
p
2
F .

This implies (4.15), except in the case where ∆R
∣∣∣
I

= R̄
2 . But we also have

R̄ ≤ const.
V
p+1

2
F

K(V
1
2
F )

and V̄ ≤ const. ∆VF
∣∣∣
I
≤ const. TK(V̄

1
2 )V̄

1
2 .

Then, ∆R
∣∣∣
I
≤ const.

∫
I

V
p−1

2
F |u| and we conclude this case.

Suppose now that |U | ≥ const. T . We may also assume that k0 = K
(
ρV

1
2
F

)
. Then

∫
U

1 + |K(y)|
2K
(
V

1
2
F

) V p
2
F ≥ const.

K
(
ρV̄

1
2

)
K
(
V̄

1
2

) (1− λ)T V̄
p
2 ≥ T V̄

p
2 .

We easily conclude here.
Finally, suppose that E1 is empty. Then, z has a constant sign on I, let say z > (1 − ρ)V

1
2
F on I. Equa-

tion (4.16) becomes ∣∣∣σ(C)T − const. |E|
∣∣∣ ≤ 2k0 ≤ const. K

(
ρV̄

1
2

)
. (4.17)

If |∆R
∣∣∣
I
| = R̄

2 , then |∆VF
∣∣∣
I
| ≥ const. V̄ . Thanks to (4.6), we deduce that |∆VF

∣∣∣
I
| ≤ const. k0V̄

1
2 , which

implies that

T ≥ const.
V̄

1
2

K
(
ρV̄

1
2

) ,
with the last const. independent of ρ. Since K

(
ρV̄

1
2

)2

≤ const. ρV̄
1
2 , we obtain, from (4.17), that |E| ≥

const. T . That situation was already treated. Therefore, the proof of Theorem 2.8 is finished.

4.2. Proof of Theorem 2.9

Using the change of variables given by (4.3), we rewrite (PSI2)kF as
ż = K(y) +

−σ(z + u) + v2

K ′(y)
+ v1,

ẏ =
−σ(z + u) + v2

K ′(y)
·
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We choose ε0 = σ(1)
4 . The time derivative of VF along trajectories of (PSI2)kF becomes

V̇F +
1 + |K(y)|

2
V

1
2
F inf

(
V

1
2
F , 1

)
≤ 8(1 + |K(y)|)|z|σ

(
const. (|u|+ |v1|+ |v2|)

)
M(z, y, u) + const. |v1||y|N(z, y),

where

N(z, y) def=
{

1, if VF < 1,
0, otherwise.

From the previous equation, we can follow exactly the lines of the proof of Theorem 2.8 only changing |u| by
|u| + |v1| + |v2| and checking at each step that the extra term |v1||y|N(z, y) does not alter the computations.
The term Lp(VF (x̄)1/2), appearing in (2.14), comes from the integration of (4.7).

5. Appendix

We first notice that (SI2) is controllable. We construct the required sequences assuming that σ is the standard
saturation function σ0. The difference with an arbitrary iS-function simply consists of having a different set of
const. below.

5.1. Construction of
(
u(1)

)
We construct a l.a.c. curve c : [0,∞) → R2 such that c is a trajectory of (SI2)kL corresponding to an

piecewise C1 input u. Then, each input of the sequence
(
u

(1)
n

)
will be the concatenation of un, the restriction

of u to an finite time interval [0, Tn], and the zero input for t > Tn. There exists a continuous input ū steering 0

to
(

0, V
1
2

0

)
with V

1
2

0 ≥ C in time T0 > 0 along (SI2)kL . Then, c is defined on [0, T0] as the resulting trajectory.
We take u = C − z until z = y + 2. In time T ′, we reach the point x′ = (V ′, V ′ − 2), with

T ′ = V
1
2

0 +
√
V0 − 4 and V ′ = V

1
2

0 − 2 +
√
V0 − 4.

From x′, we take u to be 0, until z = 0. In time T ′′, we are, hence, at some point (0,−V ′′), with T ′′, V ′′ =
2V ′ + o

(
1
V ′

)
. By symmetry with respect to (0, 0), we repeat the procedure from (0,−V ′′) and we end up at

(0, V1) for a time T1. We clearly have

T1 − T0, V1 − V0 = 4V
1
2

0 + o

(
1

V
1
2

0

)
·

The above construction is then repeated. We, thus, define two sequences (Vk)k≥0 and (Tk)k≥0 such that we
have

const. V
1
2
k ≤ Tk+1 − Tk ≤ const. V

1
2
k , const. V

1
2
k ≤ Vk+1 − Vk ≤ const. V

1
2
k .

We also obtain that, for k ≥ 0,
const. k2 + V0 ≤ Vk ≤ const. k2 + V0.

It is easy then to get that, for 1 ≤ p ≤ q and k large,

const. k2q+1 ≤
∫ Tk+1

Tk

|z|q ≤ const. k2q+1, const. kq+1 ≤
∫ Tk+1

Tk

|y|q ≤ const. kq+1,

const. kp ≤
∫ Tk+1

Tk

|u|p ≤ const. kp.
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For n ≥ 0, the input u(1)
n is defined as u on [0, Tn] and 0 afterwards. If we use

(
z

(1)
n , y

(1)
n

)
to denote the resulting

trajectory, then we get, for 1 ≤ p ≤ q ≤ ∞,

const. n
2(q+1)
q ≤ ‖z(1)

n ‖q ≤ const. n
2(q+1)
q , (5.1)

const. n
q+2
q ≤ ‖y(1)

n ‖q ≤ const. n
q+2
q , (5.2)

const. n
p+1
p ≤ ‖u(1)

n ‖p ≤ const. n
p+1
p . (5.3)

5.2. Construction of
(
u(2)

)
We already know that the shape found in Proposition 3.7 is the profile (3) in Theorem 2.5, thanks to

Remark 2.4. But, even though the Lp-norms of the inputs ūn involved to obtain the preceding result can be
chosen increasing to ∞, their L∞-norms are, of course, very small. For n ≥ 0, the input u(2)

n is simply obtained
as the concatenation of an input vn and an input ūnk given as follows: vn is defined on some [0, Tvn ] with large
L∞-norm and such that the resulting trajectory reaches the origin at time Tvn ; ūnk is chosen such that its
Lp-norm is bigger than the Lp-norm of vn. Therefore, the sequence

(
u

(2)
n

)
completes the proof that, the shape

found in Proposition 3.7, is the profile (3) in Theorem 2.5 and the u(2)
n have arbitrarily large L∞-norm.

5.3. Proof of Proposition 3.3

We use ymax and zmax to denote ‖y‖∞,[0,T ] and ‖z‖∞,[0,T ] respectively.
We start with the argument for (a). We pick [t0, t1] ∈ [0, T ] such that we have, for t ∈ [t0, t1],

|y(t0)| = ymax

2
≤ |y(t)| ≤ |y(t1)| = ymax.

Recall that ymax
2 is in the range of y since the initial state is zero. Without loss of generality, we consider the

case y(t) ≥ 0 on [t0, t1]. Let L def= t1 − t0. Then,

ymax

2
= ∆y

∣∣∣t1
t0

= −
∫ t1

t0

σ(z + u) ≤ KL,

and

2zmax ≥ ∆z
∣∣∣t1
t0

=
∫ t1

t0

y + ∆y
∣∣∣t1
t0
≥ ymax

2
(L+ 1).

The two previous equations imply that zmax ≥ y2
max
8K .

As for item (b), we pick [t0, t1] ∈ [0, T ] such that we have, for t ∈ [t0, t1],

W (t0) =
Wmax

2
≤W (t) ≤W (t1) = Wmax,

where W is given by (3.3) and Wmax = ‖W‖∞,[0,T ]. Note that σm ≤ Wmax
zmax

≤ const. We may assume that, for

every t ∈ [t0, t1], |y(t)| <
√

Wmax
2 . This clearly implies that, for every t ∈ [t0, t1],

|z(t)| ≥ Wmax

4σM
,
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in which case z has a constant sign on [t0, t1]. Assume now that Wmax < C. Then (3.5) follows immediately
since ‖u‖p ≥ C. For the rest of the argument, Wmax ≥ C. Consider the two following subsets of [t0, t1] given by

E1 =
{
t ∈ [t0, t1], |u(t)| < |z(t)|

3
a.e.
}
, (5.4)

E2 =
{
t ∈ [t0, t1], |u(t)| ≥ |z(t)|

3
a.e.
}
· (5.5)

We derive W along the trajectory of (SI2)kL corresponding to u and get

Ẇ = −y∆σ
∣∣∣z+u
z
− σ(z)σ(z + u) = −ż∆σ

∣∣∣z+u
z
− σ2(z + u). (5.6)

Note that |ż| ≤
√

Wmax
2 + K and |∆σ

∣∣∣z+u
z
| ≤ δC on E1. We integrate (5.6) between t0 and t1 and since∫ t1

t0
Ẇ =

∫
E1
Ẇ +

∫
E2
Ẇ , we get

σ2
m(L− |E2|) +

Wmax

2
≤ (L− |E2|)δC

(√
Wmax

2
+K

)
+

(√
Wmax

2
+K

)
2K|E2|.

The above equation can be written as

σ2
mL+

Wmax

2
≤ LδC

√
2Wmax + 3K|E2|

(√
Wmax

2
+K

)
. (5.7)

On the other hand, we have

∆y
∣∣∣t1
t0

= −
∫ t1

t0

σ(z) +
∫ t1

t0

∆σ
∣∣∣z+u
z

, (5.8)

which implies that

σmL ≤
∫ t1

t0

σ(z) ≤ −∆y
∣∣∣t1
t0

+
∫
E1

∆σ
∣∣∣z+u
z

+
∫
E2

∆σ
∣∣∣z+u
z

.

Using the definition of E1 and E2, we get

σmL ≤ 2ymax + (L− |E2|)δC + 2K|E2|. (5.9)

We thus obtain

L ≤ 4
σm

√
Wmax

2
+

6K
σm
|E2|. (5.10)

Equations (5.7) and (5.10) give
√
Wmax ≤ const. |E2| which, in turn, implies that for p finite

‖u‖pp,[0,T ] ≥
∫
E2

|u|p ≥W p+ 1
2

max ,

and |{t ∈ [t0, t1], |u(t)| ≥ const. Wmax a.e.}| > const. L. The proof of Proposition 3.3 is finished.
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5.4. Proof of Lemma 3.5

If |z(t)| = M+C for t ∈ [t0, t1], then |ż| ≥ |y|−K ≥
√
λ

4 M . Thanks to Remark 3.2, the zeros of |z|−(M+C)
are isolated. Then Lemma 3.5 simply says, unless trivial cases, there is an odd number of zeros of |z|− (M +C)
such that the variation of W between the smallest and the largest zeros is larger than λ

16M
2. We do so by

examining several cases.
Assume that |z(t0)| > M + C and |z(t1)| > M + C. In addition, suppose that

for all t ∈ [t0, t1], |z(t)| ≥M + C. (5.11)

Then, we have |ẏ| ≥ 3
4σm. It implies that

3
4
σm(t1 − t0) ≤ |∆σ

∣∣∣t1
t0
y| ≤ 2ymax.

We deduce that L = t1 − t0 ≤ 8ymax
3σm

. By integrating (5.6) and using (3.6), we get

λ

2
M2 = ∆W

∣∣∣t1
t0
≤
∫ t1

t0

(|y|+K)|∆σ
∣∣∣|z|+M
|z|

| −
∫ t1

t0

σ2(|z| −M).

By using (3.6), we have ∫ t1

t0

(|y|+K)|∆σ
∣∣∣|z|+M
|z|

| ≤ 2δCLymax.

It implies that
λ

2
M2 ≤ δCconst. λM2 −

(
3
4
σm

)2

L,

which is impossible. Then (5.11) cannot hold. Therefore, let t1 ∈ [t0, t1] such that |z(t1)| = M + C and

|z| ≥ M + C on [t0, t2]. Then ∆W
∣∣∣t1
t1
≥ λ

4M
2. By reproducing the previous argument on [t1, t1], we can find

t2 ∈ [t1, t1] such that |z(t2)| = M + C and ∆W
∣∣∣t2
t1
≥ λ

8M
2. Again, unless λ is bounded, we can get a third

zero of |z| − (M + C) with the required properties. Going on in the same fashion, we prove the conclusions of
Lemma 3.5.

Let us study now the case where |z(t0)| < M + C and |z(t1)| < M + C. Suppose that

for all t ∈ [t0, t1], |z(t)| ≤M + C. (5.12)

Then, for all t ∈ [t0, t1], we have |y(t)| ≥
√
λ

4 M . Hence,

2(M + C) ≥ |∆z
∣∣∣t1
t0
| ≥ L

√
λ

8
M.

On the other hand, we also have λ
2M

2 = ∆W
∣∣∣t1
t0
≤ const.

√
λML. We finally get that M is bounded by a

constant independent of u, which is impossible. Therefore (5.12) cannot hold and there exists t′0 ∈ [t0, t1] such
that |z(t′0)| > M + C. Then, if t2 is the first time after t0 such that |z(t2)| = M + C and t3 is the first time

before t1 such that |z(t3)| = M + C, we have that ∆W
∣∣∣t3
t2
≥ λ

8M
2. Again, unless we are done, we can get a

third zero for |z| − (M + C) with the required properties.
All the other cases reduce to those studied above and Lemma 3.5 is thus proved.
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5.5. Proof of Lemma 3.6

On I2l−1, |ẏ| ≥ 3
4σm and |y(tj)| ≥ const. M . Therefore there exist ti < tf ∈ I2l−1 such that |y| > σM on

[t2l−1, ti[ and ]tf , t2l−1] and |y| ≤ σM on [ti, tf ]. We get |ż| > 0 on [t2l−1, ti[ and ]tf , t2l]. We may assume that
z > 0 on I2l−1. Let

zm
def= min(z(t2l−1), z(ti) and z′m = max

(
z
(
t2l−1

)
, z
(
ti
))
.

Then

∆W
∣∣∣ti
t2l−1

=
∫ ti

t2l−1
−
(
ż∆σ

∣∣∣z+u
z

+ σ2(z + u)
)

dt = −
∫ z(ti)

z(t2l−1)

∆σ
∣∣∣z+u
z

dz −
∫ ti

t2l−1
σ2(z + u)dt

≤
∫ z′m

zm

|∆σ
∣∣∣z+u
z
|dz −

∫ ti

t2l−1
σ2(z −M)dt.

Since σ is increasing and globally Lipschitz, it has a non negative derivative function σ′ locally essentially
bounded. Define

J
def=
∫ z′m

zm

|∆σ
∣∣∣z+u
z
|dz. (5.13)

Then, we have

J ≤
∫ z′m

zm

∫ z+M

z−M
σ′(s)ds dz =

∫ ∫
zm≤z≤z′m

z−M≤s≤z+M
σ′(s)ds dz ≤

∫ ∫
C≤z≤z′m+M

z−M≤s≤z+M
σ′(s)ds dz.

By Fubini’s theorem, we can permute the order of integration in J and we obtain

J ≤
∫ ∫

s−M≤z≤s+M
C≤s≤const. λM2

σ′(s)ds dz ≤
∫ const. λM2

C

σ′(s)
∫ min(z′m,s+M)

max(zm,s−M)

dz ds ≤ 2M∆σ
∣∣∣const. λM2

C
≤ 2MδC .

Then, we get

∆W
∣∣∣ti
t2l−1

≤ 2MδC −
σ2
m

2
(ti − t2l−1).

In addition, we have

σM (ti − t2l−1) ≥ |∆y
∣∣∣ti
t2l−1
| ≥ const.

√
λM,

in which case

∆W
∣∣∣ti
t2l−1

≤ 2MδC − const.
√
λM ≤ −const.

√
λM.

Moreover, since σM (tf − ti) ≥ |∆y
∣∣∣tf
ti
| = 2σM , we have

∆W
∣∣∣tf
ti
≤ σMδC −

(
3σm

4

)2

(tf − ti) ≤ 0.

Then, we obtain ∆W2l−1 ≤ −const.
√
λM . On I2l, |y| ≥ const.

√
λM , which implies that

∆W2l ≤ const.
√
λM(t2l+1 − t2l) ≤ const.

∣∣∣∣∫
I2l

y

∣∣∣∣ ≤ const. |∆z
∣∣∣t2l+1

t2l
| ≤ const. M.

Adding the appropriate inequalities, we get the conclusion of Lemma 3.6.
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5.6. Proof of Lemma 3.12

We start with (J2). We assume that z ≥ 0.If u+ y < 0, then |u| > y, in which case we have

|2ż∆σ
∣∣∣z+u
z−θy

+ σ(z − y)∆σ
∣∣∣z+u
z−y
| ≤ const. |u|p. (5.14)

If u+ y ≥ 0, then ∆σ
∣∣∣z+u
z−y
≥ 0, since σ is increasing. We have to distinguish two subcases, whether u+ θy ≥ 0

or not. If u+ θy ≥ 0, then ∆σ
∣∣∣z+u
z−θy

≥ 0. Then,

−
(

2ż∆σ
∣∣∣z+u
z−θy

+ σ(z − y)∆σ
∣∣∣z+u
z−y

)
≤ 0,

and (J2) is immediate. If u+ θy < 0, then |u| > θy and we get equation (5.14).
We turn to the case where z ≤ 0. If u+ θy < 0, then |u| > θy, and equation (5.14) follows readily. Assume,

then, that u+θy ≥ 0. We also have that u+y ≥ (1−θ)y ≥ C
2 . We distinguish two subcases, whether z+u ≥ −C

or not. If z + u ≥ −C, then u > |z| − C ≥ y and equation (5.14) follows. If z + u < −C, then |∆σ
∣∣∣z+u
z−y
| ≤ δC

and

−
(

2ż∆σ
∣∣∣z+u
z−θy

+ σ(z − y)∆σ
∣∣∣z+u
z−y

)
≤ const. δC ,

and we get (J2).
For (J3), we may simply assume that z ≥ 0. We have

J3 ≤ −
σ2
m

4
|I/I ′|+K2|E′|,

where E′ =
{
t ∈ I/I ′, |u(t)| ≥ z(t)

3 a.e.
}

. Since z ≥ 1 on I/I ′, we get (J3).
It remains to show (J1). We simply assume that z ≥ 0. Set z′1 = z(t′1), z1 = z(t1). Since ż ≥ C on I/I ′, we

can take z as a new parameter instead of the time t for functions defined on I/I ′. In particular, we can consider
y as a function of z on [z0, z1]. In addition, we rewrite (3.15) as

J1 = −
∫ z1

z′1

∆σ
∣∣∣z−θy
z

dz −
∫ z1

z′1

∆σ
∣∣∣z−θy
z−y

dz,

=
∫ ∫

z′1≤z≤z1
z−θy(z)≤s≤z

σ′(s)ds dz −
∫ ∫

z′1≤z≤z1
z−y(z)≤s≤z−θy(z)

σ′(s)ds dz. (5.15)

Note that z − θy and z − y can be reparameterized as functions of z ∈ [z0 − y(z0), z1] and they verify

1
2
≤ d(z − θy)

dz
,

d(z − y)
dz

≤ 2.

Therefore, we can define, for s ∈ [z0 − y(z0), z1], two functions Z(s) and Z̄(s) as follows

Z(s) = z0 for s ∈ [z0 − y(z0), z0],
Z(s)− θy(Z(s)) = s for s ∈ [z0, z1 − θy(z1)],

Z(s) = z1 for s ∈ [z1 − θy(z1), z1]

and
Z̄(s)− y(Z̄(s)) = s for s ∈ [z0 − y(z0), z1 − y(z1)],

Z̄(s) = z1 for s ∈ [z1 − y(z1), z1].
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By Fubini’s theorem, we can permute the order of integration in (5.15) and we obtain

J1 = J ′1 + J ′2 + J ′3 + J ′4,

where

J ′1 =
∫ z1−y(z1)

z0

(
2Z(s)− s− Z̄(s)

)
σ′(s)ds,

J ′2 =
∫ z0−θy(z0)

z0−y(z0)

(
Z(s)− Z̄(s)

)
σ′(s)ds,

J ′3 =
∫ z0

z0−θy(z0)

(
2Z(s)− z0 − Z̄(s)

)
σ′(s)ds,

J ′4 =
∫ z1

z1−y(z1)

(
Z(s)− s

)
σ′(s)ds.

Since Z(s) ≤ Z̄(s) and Z(s) ≤ s on s ∈ [z0 − y(z0), z0], we have J ′2 ≤ 0 and J ′3 ≤ 0. In addition, we have

J ′4 =
∫ z1

z1−y(z1)

(
σ(z)− σ(z − θy)

)
dz ≤ 2 sup(y(t1), C)δC , (5.16)

since z > z − θy ≥ 2C for s ∈ [z1 − y(z1), z1]. As for J ′1, we can write it as follows

J ′1 =
∫ z1−y(z1)

z0

(
2θy(Z(s))− y(Z̄(s))

)
σ′(s)ds.

We get J ′1 ≤ 0 as a consequence of the next lemma:

Lemma 5.1. For s ∈ [z0, z1 − y(z1)], we have 2θy(Z(s))− y(Z̄(s)) ≤ 0.

Proof of Lemma 5.1. We have

2θy(Z(s))− y(Z̄(s)) = 2θ∆y
∣∣∣Z̄(s)

Z(s)
− (1− 2θ)y(Z̄(s)) ≤ −(1− 2θ)C + 2θ∆y

∣∣∣Z̄(s)

Z(s)
.

On the other hand, we have

|∆y2
∣∣∣Z̄(s)

Z(s)
| ≤ 2|

∫ Z̄(s)

Z(s)

ydy
dz

dz| ≤ 2
∫ Z̄(s)

Z(s)

|yσ(z + u)|
y − σ(z + u)

dz ≤ 2K
1− K

C

|∆z
∣∣∣Z̄(s)

Z(s)
| ≤ 2CK

C −Ky(Z̄(s)).

We thus obtain

|∆y
∣∣∣Z̄(s)

Z(s)
| ≤ 2CK

C −K
y(Z̄(s))

y(Z(s)) + y(Z̄(s))
≤ 2CK
C −K ·

Then, 2θy(Z(s))− y(Z̄(s)) ≤ −(1− 2θ)C + 2CK
C−K = 0.

5.7. Proof of Lemma 3.15

Consider the function

Q(z, y) def= −zy|y|2p−2 +
|y|2p
p
·

If we use Q̇ to denote the time derivative of Q along xu, we get

Q̇ = −|y|2p + (2p− 1)|y|2p−2zσ(z + u).
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For every T > 0, we integrate the above inequality on [0, T ] and get

Q(T ) +
∫ T

0

|y|2p ≤ const.
∫ T

0

(|y|2p)
p−1
p |zσ(z + u)|.

By applying Hölder’s inequality for p > 1, we get

Q(T ) +
∫ T

0

|y|2p ≤ const.

(∫ T

0

|y|2p
)p−1

p

‖zσ(z + u)‖p.

By letting T tend to infinity and thanks to Remark 3.8, we get the result.

5.8. Proof of Lemma 3.16

The two previous lemmas clearly imply that

‖V ‖p ≤ const. (‖V σ(z + u)‖p + ‖u‖p) .

Therefore, we have, by using Proposition 3.7,∫ ∞
0

V p ≤ const.
(∫ ∞

0

V p|σ(z + u)|p + ‖u‖pp
)
≤ const.

(∫
ER

V p|σ(z + u)|p +
∫
R+/ER

V p|σ(z + u) + ‖u‖pp|p
)

≤ const.
(∫

ER

V p|σ(z + u)|p + const. Rp‖σ(z + u)‖pp + ‖u‖pp
)
≤ const.

∫
ER

V p + const. Rp‖u‖pp.

From the last equation, we conclude.

5.9. Proof of Lemma 3.18

The set Fi is an interval [t′, t′′] such that 1
2 ≤ t′ − ti ≤ 3

2 and 1
2 ≤ ti+1 − t′′ ≤ 3

2 . Set Si = [ti, ti+1]/Fi. We

have 1 ≤ |Si| ≤ 3 and |y| ≥ V̄
1
2

2 on Si. Then,∫
Si

V̇ =
∫
Si∩Ei

V̇ +
∫
Si∩E′i

V̇ ≤ const. |Si ∩Ei|V̄
1
2 − |Si ∩E′i|

σ2
m + V̄

1
2

2
≤ − 1

4 V̄
1
2 + const. V̄

1
2 |Si ∩Ei|.

On Fi, using the estimates obtained in Lemma 3.12 of case (B1), we get∫
Fi

V̇ ≤ −σ
2
m

4
V̄

1
2 + const. |Fi ∩Ei|+ 2

∫
F ′i

|ż||∆σ
∣∣∣z−θy
z+u
|.

We also have ∫
F ′i/Gi

|ż||∆σ
∣∣∣z−θy
z+u
| ≤

∫
F ′i

|ż|∆σ
∣∣∣z
z−ρV̄

1
2
≤
∫
Fi

|ż|∆σ
∣∣∣z
z−ρV̄

1
2
.

We need the next lemma to complete the proof of Lemma 3.18:

Lemma 5.2. With the previous notations, we have∫
Fi

|ż|∆σ
∣∣∣z
z−ρV̄

1
2
≤ const. δ

V̄
1
2

(
|Ei|+ V̄

1
2

)
.
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Proof of Lemma 5.2. Define Li = [t′, t̄′] ∪ [t̄′′, t′′] and Mi = (t̄′, t̄′′) in such a way that |y| > σM + 1 on Li and
|y(t̄′)| = |y(t̄′′)| = σM + 1. Assume first that

|Mi ∩Ei| <
σm
4K
|Li|. (5.17)

Let us show that |Mi| is bounded, in which case |y| remains also bounded. For that purpose, consider the
following equation

∆y
∣∣∣t̄′′
t̄′
≤ −

∫
Mi

σ(z) +
∫
Mi

|∆σ
∣∣∣z
z+u
|.

It implies that
σm|Mi| ≤ 2(σM + 1) + δC |Mi|+ 2K|Mi ∩Ei|.

Then, by using (5.17), we at once get that |Mi| is bounded. Therefore, we have∫
Mi

|ż|∆σ
∣∣∣z
z−ρV̄

1
2
≤ const. δ

V̄
1
2
.

Assume now that |Mi ∩Ei| ≥ σm
4K |Li|. Then, |Mi| ≤ const. |Ei|, in which case we obtain∫

Mi

|ż|∆σ
∣∣∣z
z−ρV̄

1
2
≤ const. δ

V̄
1
2
|Ei|.

Finally, we have∫
Li

|ż|∆σ
∣∣∣z
z−ρV̄

1
2
≤ 3

∫ t̄′′

t̄′
∆σ
∣∣∣z
z−ρV̄

1
2
≤
∫ ∫

z(t̄′)≤z≤z(t̄′′)

z−ρV̄
1
2≤s≤z

σ′(s)ds dz ≤ ρV̄
1
2 ∆σ

∣∣∣z(t̄′′)
z(t̄′)−ρV̄

1
2
≤ const. δ

V̄
1
2
V̄

1
2 . �

We also have
∫
Gi

|ż||∆σ
∣∣∣z−θy
z+u
| ≤ const. |Gi|V̄

1
2 . Adding up all the inequalities, we get (3.39).

5.10. Proof of Lemma 3.19

Define Ui =
{
t ∈ Ei, |z| ≥ V̄

1
2

2σM

}
. Then, we clearly have

∫
Ui

|z|p ≥ const. |Ui|V̄
p
2 .

We may assume that |Ui| < ρ|Ei|, otherwise we are done. Moreover, since Ei/Ui is included in Si, |Ei| is
bounded. Recall that |Ei/Ui| ≥ ρ

2 and |y| ≥ V̄ 1
2 on Ei/Ui. In addition, we have

|z(t)| ≥ V̄ 1
2 |t− ts|, (5.18)

where s = i or i + 1. The set Ei/Ui contains a subset E′′i of measure larger than ρ
4 and disjoint from [ti, ti +

ρ
8 ] ∪ [ti+1 − ρ

8 , ti+1]. We deduce from (5.18) that

∫
E′′i

|z|p ≥ const.
∫ ρ

4

ρ
8

(
V̄

2
s

) p
2

ds ≥ const. V̄
p
2 ≥ const. |Ei|V̄

p
2 .

The author would like to thank E.D. Sontag for suggesting the inequality given in equation (1.9).
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