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APPROXIMATE CONTROLLABILITY OF LINEAR PARABOLIC
EQUATIONS IN PERFORATED DOMAINS

Patrizia Donato
1

and Äıssam Nabil
2

Abstract. In this paper we consider an approximate controllability problem for linear
parabolic equations with rapidly oscillating coefficients in a periodically perforated domain.
The holes are ε-periodic and of size ε. We show that, as ε → 0, the approximate control
and the corresponding solution converge respectively to the approximate control and to
the solution of the homogenized problem. In the limit problem, the approximation of the
final state is alterated by a constant which depends on the proportion of material in the
perforated domain and is equal to 1 when there are no holes. We also prove that the solution
of the approximate controllability problem in the perforated domain behaves, as ε → 0, as
that of the problem posed in the perforated domain having as rigth-hand side the (fixed)
control of the limit problem.
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1. Introduction

In this paper we study the asymptotic behaviour, as ε → 0, of an approximate controllability
problem for linear parabolic equations with rapidly oscillating coefficients in a perforated domain.
The holes in the perforated domain are ε-periodic and of size ε. The oscillations of the coefficients
are also of order ε.

By definition, one has approximate controllability if the set of reachable final states is dense in L2.
Following Lions [12], we construct, for a fixed ε, an approximate internal control as the (unique)
solution of a related transposed problem (see Sect. 4). The final data of this problem is the (unique)
minimum point of a suitable functional Jε. We study then the asymptotic behavior of the system as ε
goes to zero.

In Section 3 we state the main result of this paper (Th. 3.4). It shows that the approximate
control and the corresponding solution converge respectively to the control and to the solution of the
homogenized problem. This means that the control problem in the highly heterogeneous system may
be replaced by the homogenized one, which might be relevant from a computational point of view.

At the limit, the approximation of the desired final state is altered by a constant 1√
θ
≥ 1, where θ

represents the proportion of the material in the perforated domain. When there are no holes this
constant is equal to 1, which gives the result proved by Zuazua [14].

We also show (Cor. 3.7) that one can replace, in the problem posed in the perforated domain, the
approximate control by the approximate control of the homogenized problem.
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In Sections 4 and 5 we construct, for a fixed ε, the approximate control of the system in the
perforated domain and we give some a priori estimates. To do that, we adapt to our case some
methods introduced by Fabre et al. in [10] and [11], where they prove the approximate controllability
of the semilinear heat equation with Dirichlet conditions. We also follow some ideas from Zuazua [14],
where he studies the asymptotic behaviour of the heat equation with oscillating coefficients in a fixed
domain.

The proof of the main result is given in Section 7. For passing to the limit as ε→ 0, we use some
results on the homogenization and correctors for linear parabolic equations in perforated domains
proved by the authors in [9]. We recall them in Section 2. The main point of the proof is to identify
the limit of the controls. We do that in Section 6 by using De Giorgi’s Γ-convergence techniques
(see Props. 6.4 and 6.5). We prove that the minimum point of Jε converge, as ε tends to zero, to the
(unique) minimum point of a suitable functional J . Moreover, this functional is that associated to
the homogenized problem in the construction of the approximate control. One of the main difficulties
coming from the presence of the holes is that one cannot simply use the lower semicontinuity of
the L2-norm in order to identify the limit control. Lemma 6.6 in Section 6 allows to overcome this
difficulty.

The results of this paper were announced in [8].

2. Preliminaries

Let Ω be a bounded connected open set of Rn, n ≥ 2, with boundary ∂Ω of class C2. Let
Y =]0, l1[× · · ·×]0, ln[ be the reference cell and S ⊂⊂ Y an open subset (the reference hole) with
boundary ∂S of class C2. We denote by ε a positive parameter taking its values in a positive sequence
which tends to zero. Introduce the set of holes in Rn defined by

τ(εS̄) = {ε(k(l) + S̄), k ∈ Zn, k(l) = (k1l1, · · · , knln)}·

Assume that the sequence (ε) and the open set Ω are such that

∂Ω ∪ τ(εS̄) = ∅.

This means that there exists a subset Kε of Zn such that

Ω ∩ τ(εS̄) = ∪k∈Kε(ε(k(l) + S̄)). (2.1)

Set
Sε = ∪k∈Kε(ε(k(l) + S̄)).

Then, the perforated domain Ωε is defined by

Ωε = Ω\Sε.

From (2.1), we have then
∂Ω ∩ ∂Sε = ∅, ∂Ωε = ∂Ω ∪ ∂Sε.

In the following we use the notations:
• Y ∗ = Y \S̄;
• |ω| = the Lesbegue measure of a measurable set ω of Rn;
• θ = |Y ∗|/|Y |;
• χ

ω
= the characteristic function of the set ω, χ

ω
(x) =

{
1 if x ∈ ω

0 elsewhere ;

• ṽ = the extension by zero on Ω of any function v defined on Ωε;
• ν = (νi)i=1,... ,n the unit external normal vector with respect to Y \S̄ or Ωε.

In the following we denote by c different constants independent of ε.
Recall that (for a proof see for instance [3], Chap. 2), as ε→ 0,

χ
Ωε
⇀ θ = |Y ∗|/|Y | L∞(Ω) weak ∗ . (2.2)
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This is due to fact that, by assumption (2.1), one has

χ
Ωε

(x) = (χ
Y ∗

)#
(x
ε

)
,

where (χ
Y ∗

)# is defined by

(χ
Y ∗

)#(y + k li ei) = χ
Y ∗

(y) a.e. on Y, ∀ k ∈ Z, ∀ i ∈ {1, . . . , n},

and {e1, . . . , en} is the canonical basis of Rn.
Let A(y) = (aij(y))1≤i,j≤n be a n× n matrix-valued function defined on Rn such that

A ∈ (C1(Ȳ ))n
2
, aij = aji ∀ 1 ≤ i, j ≤ n,

A is Y − periodic,

there exists α > 0 such that for any λ = (λ1, . . . , λn) ∈ Rn,
n∑

i,j=1

aij (y)λiλj ≥ α ‖λ‖2 a.e. on Y,

(2.3)

and denote for any ε,
Aε(x) = A

(x
ε

)
a.e. on Ω.

Let Vε be the Hilbert space
Vε = {v ∈ H1 (Ωε) : v|∂Ω = 0}

equipped with the H1(Ωε)−norm.

Let us consider the following problem:
u′ε − div (Aε∇uε) = fε in Ωε × (0, T ),

uε = 0 on ∂Ω× (0, T ),

Aε∇uε · ν = 0 on ∂Sε × (0, T ),

uε(x, 0) = u0
ε in Ωε.

(2.4)

It is well known (see [5], Chap. XVIII, Sect. 3) that if fε ∈ L2(Ωε × (0, T )) and u0
ε ∈ L2(Ωε),

problem (2.4) has a unique solution uε such that

uε ∈ L2(0, T ; Vε) ∩ C0([0, T ]; L2(Ωε)). (2.5)

In the following, we will make use of some homogenization results for linear parabolic problems in Ωε,
proved in [9]. We recall them here for the reader’s convenience.

We make the following assumptions, as ε→ 0:{
i) ũ0

ε ⇀ u0 weakly in L2(Ω),

ii) f̃ε ⇀ f weakly in L2(Ω× (0, T )).
(2.6)

Let us introduce the homogenized matrix A0, which is the same as in the elliptic case studied in [4].
For any λ ∈ Rn, let χ̂λ be the solution of the following problem:

−div (A∇(y · λ− χ̂λ)) = 0 in Y ∗,

(A∇(y · λ− χ̂λ)) · ν = 0 on ∂S,

χ̂λ Y-periodic,∫
Y ∗
χ̂λ(y) dy = 0,

(2.7)
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where A is the matrix given by (2.3). Set

ŵλ(y) = −χ̂λ(y) + λ · y a.e. on Y ∗. (2.8)

Then the n× n homogenized matrix A0 = {a0
ij}1≤i,j≤n is defined by

A0λ =
1
|Y |

∫
Y ∗
A∇ŵλ dy, for any λ ∈ Rn. (2.9)

We also introduce the (n × n) Y -periodic corrector matrix, C(y) = {Cij(y)}1≤i,j≤n where Cij(y) is
defined by

Cij(y) = δij(y)− ∂χ̂j

∂yi
(y) =

∂ŵj

∂yi
(y) a.e. on Y ∗,

with
ŵj = xj − χ̂j ,

where χ̂j is the solution of (2.7) for λ = ej and δij is the Kronecker symbol.
We define

Cε(x) = C
(x
ε

)
, a.e. on Ωε, (2.10)

which, by construction, is εY -periodic.
We have the following result (see [9]):

Theorem 2.1. Under hypothesis (2.3) and (2.6), let uε be the solution of problem (2.4). Then, there
exists an extension operator P ε ∈ L

(
L2(0, T ; Vε);L2(0, T ; H1

0 (Ω))
)
, such that, as ε→ 0, the following

convergences hold:

i) P εuε ⇀ u weakly in L2(0, T ; H1
0 (Ω)),

ii) Ãε∇uε ⇀ A0∇u weakly in [L2(Ω× (0, T ))]n,
(2.11)

where u is the solution of the homogenized equation
θu′ − div

(
A0∇u

)
= f in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(x, 0) =
u0

θ
in Ω,

(2.12)

with A0 given by (2.9).
Moreover, as ε→ 0, we have the following convergences:{

i) ũε ⇀ θu weakly in L∞(0, T ; L2(Ω)),

ii) ũε −→ θu strongly in C0([0, T ]; H−1(Ω)).
(2.13)

If further we suppose that

lim
ε→0
‖fε −

1
θ
f‖L2(Ωε×(0,T )) = 0, (2.14)

lim
ε→0
‖u0

ε −
1
θ
u0‖L2(Ωε) = 0, (2.15)

we have 
(i) lim

ε→0
‖uε − u‖C([0,T ];L2(Ωε)) = 0,

(ii) lim
ε→0
‖∇uε − Cε∇u‖L2(0,T ; [L1(Ωε)]n) = 0,

where Cε is the corrector matrix defined by (2.10).
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Remark 2.2. i) For the construction of the extension operator P ε we refer to [1] and [2] (see also [4]).
ii) Assumption (2.15) is equivalent to the following two conditions (see for instance [8], Lem. 5.4),

as ε→ 0:

ũ0
ε ⇀ u0 weakly in L2(Ω),

‖u0
ε‖2L2(Ωε)

−→ 1
θ
‖u0‖2L2(Ω).

Observe also that, if (2.15) holds, then for any sequence {ϕε}ε ⊂ L2(Ωε) such that

ϕ̃ε ⇀ ϕ weakly in L2(Ω),

as ε→ 0, one has

lim
ε→0

∫
Ωε

u0
εϕε dx =

∫
Ω

1
θ
u0ϕ dx.

3. Main results

In this section we state the main results of this paper. They will be proved in the next sections.
Let ω be an open nonempty subset of Ω and set

ωε = ω ∩ Ωε.

We can always assume that |ω ∩ Ωε| 6= 0, for any ε > 0. We consider the following approximate
controllability system:

u′ε − div (Aε∇uε) = χ
ωε
φε in Ωε × (0, T ),

uε = 0 on ∂Ω× (0, T ),

Aε∇uε · ν = 0 on ∂Sε × (0, T ),

uε(x, 0) = u0
ε in Ωε,

(3.1)

where u0
ε ∈ L2(Ωε) and φε ∈ L2(Ωε × (0, T )).

Definition 3.1. We say that we have approximate controllability for system (3.1) in L2(Ωε) at time
T > 0 if the following holds:

For every u0
ε ∈ L2(Ωε), the set E(T ) of the reachable states at time T > 0 defined by

E(T ) = {uε(x, T ), uε is solution of (3.1) with φε ∈ L2(ωε × (0, T ))}

is dense in L2(Ωε).

In other words:
Given T > 0, for any u0

ε ∈ L2(Ωε), α > 0 and for any w1
ε ∈ L2(Ωε), there exists φε ∈ L2(ωε×(0, T ))

such that the corresponding solution of (3.1) satisfies

‖uε(x, T )− w1
ε‖L2(Ωε) ≤ α. (3.2)

Remark 3.2. Let φ0
ε be given in L2(Ωε). From the unique continuation principle (see [13]), applied

to the solution of the transposed heterogeneous problem
−φ′ε − div (Aε∇φε) = 0 in Ωε × (0, T ),

φε = 0 on ∂Ω× (0, T ),

Aε∇φε · ν = 0 on ∂Sε × (0, T ),

φε(x, T ) = φ0
ε in Ωε,

(3.3)
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one has that if
φε = 0 in ωε × (0, T ),

then
φε = 0 in Ωε × (0, T ).

Hence, for ε fixed, the approximate controllability of system (3.1) follows by using classical duality
arguments. But this method is not constructive.

A general method for constructing an approximate control was introduced by Lions [12]. The idea
is to built the control as the solution of a transposed problem associated to some initial condition.
This initial condition is obtained as the minimum point of a suitable functional associated to the
problem. Here, we construct a functional Jε as in Zuazua [14] (see also Fabre et al. [10] and [11]). To
do that, for u0

ε ∈ L2(Ωε) let us introduce the solution vε of the problem
v′ε − div (Aε∇vε) = 0 in Ωε × (0, T ),

vε = 0 on ∂Ω× (0, T ),

Aε∇vε · ν = 0 on ∂Sε × (0, T ),

vε(x, 0) = u0
ε in Ωε.

(3.4)

Let now w1
ε ∈ L2(Ωε) be given. For any φ0

ε ∈ L2(Ωε), we set

Jε(φ0
ε) =

1
2

∫ T

0

∫
ωε

|φε|2 dx dt+ α‖φ0
ε‖L2(Ωε) −

∫
Ωε

(
w1
ε − vε(T )

)
φ0
ε dx, (3.5)

where φε is the solution of (3.3) (remark that w1
ε − vε(T ) is still in L2(Ωε), since w1

ε is in L2(Ωε) and
vε is in C([0, T ]; L2(Ωε)).

The following theorem gives the approximate controllability for ε fixed.

Theorem 3.3. Given T > 0, under hypothesis (2.3), let α > 0, u0
ε ∈ L2(Ωε) and w1

ε ∈ L2(Ωε) be
fixed. Then Jε has a unique minimum point Φ0

ε. Moreover, if Φε is the solution of (3.3) for φ0
ε = Φ0

ε,
then the solution uε of the following system:

u′ε − div (Aε∇uε) = χ
ωε

Φε in Ωε × (0, T ),

uε = 0 on ∂Ω× (0, T ),

Aε∇uε · ν = 0 on ∂Sε × (0, T ),

uε(x, 0) = u0
ε in Ωε,

(3.6)

satisfies the estimate:

‖uε(T )− w1
ε‖L2(Ωε) ≤ α. (3.7)

This result will be proved in Section 4. In Section 5 (Cor. 5.3 and Rem. 5.4) we give some
a priori estimates on the controls. They will allow, together with the homogenization results quoted
in Section 2, to describe the asymptotic behaviour of problem (3.6).

To do that, let us introduce, for u0 ∈ L2(Ω), the solution v of the problem
θv′ − div

(
A0∇v

)
= 0 in Ω× (0, T ),

v = 0 on ∂Ω× (0, T ),

v(x, 0) = u0 in Ω.

(3.8)

For a given w1 ∈ L2(Ω), we define the functional J on L2(Ω) by

J(φ0) =
1
2
θ

∫ T

0

∫
ω

|φ|2 dx dt+ α
√
θ‖φ0‖L2(Ω) − θ

∫
Ω

(
w1 − v(T )

)
φ0 dx, (3.9)
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for any φ0 ∈ L2(Ω), where φ is the solution of the following homogeneous transposed problem:
−θφ′ − div

(
A0∇φ

)
= 0 in Ω× (0, T ),

φ = 0 on ∂Ω× (0, T ),

φ(x, T ) = φ0 in Ω.

(3.10)

The main result of this paper is the following:

Theorem 3.4. Let T > 0 be given. Under hypothesis (2.3), let also α > 0, u0 ∈ L2(Ω) and w1 ∈
L2(Ω) be given. Suppose that {w1

ε}ε ⊂ L2(Ωε) and {u0
ε}ε ⊂ L2(Ωε) satisfy the following assumptions:

i) lim
ε→0
‖w1

ε − w1‖L2(Ωε) = 0,

ii) lim
ε→0
‖u0

ε − u0‖L2(Ωε) = 0.
(3.11)

Let uε(x, t) be the solution of the controllability problem:
u′ε − div (Aε∇uε) = χ

ωε
Φε in Ωε × (0, T ),

uε = 0 on ∂Ω× (0, T ),

Aε∇uε · ν = 0 on ∂Sε × (0, T ),

uε(x, 0) = u0
ε in Ωε,

where Φε is the control given by Theorem 3.3.

We have, as ε→ 0, the following convergences:

i) χ
ωε

Φ̃ε ⇀ χωθΦ weakly in L2(Ω× (0, T )), (3.12)

ii) P εuε ⇀ u weakly in L2(0, T ;H1
0 (Ω)), (3.13)

where Φ is the solution of (3.10) for φ0 = Φ0, Φ0 being the unique minimum point of the functional
J defined by (3.9) and u is the solution of

θu′ − div
(
A0∇u

)
= χ

ω
θΦ in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(x, 0) = u0 in Ω.

(3.14)

Moreover, we have the following approximate controllability:

‖u(x, T )− w1‖L2(Ω) ≤
α√
θ
· (3.15)

This theorem will be proved in Section 7. Its proof needs to know the asymptotic behaviour of the
controls. This will be studied in Section 6.

Remark 3.5. Notice that in (3.15) the approximate controllability is altered by a constant which
depends on the proportion of material in the reference cell. This is related to the fact that the
coerciveness constant of the limit functional of Jε is multiplied (with respect to that of Jε) by

√
θ.

The case where θ = 1 corresponds to the case without holes studied by Zuazua (see [14]).

Remark 3.6. Introduce the functional

J̃ε : L2(Ω) −→ R

by
J̃ε(ψ0) = Jε

(
ψ0
|Ωε

)
,
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where ψ0
|Ωε is the restriction of ψ0 to Ωε and Jε is the functional given by (3.5). One can show, using

Propositions 6.4 and 6.5 of Section 6, that J̃ε Γ-converges, in the sense of De Giorgi (see [6]), for the
strong L2(Ω) topology.

On the other hand, the functionals J̃ε are not uniformly coercive (see De Giorgi and Franzoni [7]
for the definition and related properties), since a set of the form

{
v ∈ L2(Ω), J̃ε ≤ c

}
is not compact

in L2(Ω). Nevertheless, in Theorem 6.1 we give a direct proof of the convergence of the minimum
points.

The last result of this section shows that the solution uε of the control problem (3.6) behaves, at
the limit, as the solution of the system obtained replacing the right-hand side in (3.6) by the control
of the homogenized problem (3.14). Actually, one has

Corollary 3.7. Under the assumptions of Theorem 3.4, let uε be the solution of the controllability
problem (3.6), Φ being the control given by Theorem 3.3.

Then, if zε is the solution of
z′ε − div (Aε∇zε) = χ

ωε
Φ in Ωε × (0, T ),

zε = 0 on ∂Ω× (0, T ),

Aε∇zε · ν = 0 on ∂Sε × (0, T ),

zε(x, 0) = u0
ε in Ωε,

one has, as ε→ 0, the following convergences:

(i) P εuε − P εzε ⇀ 0 weakly in L2(0, T ; H1
0 (Ω)),

(ii) lim
ε→0
‖uε − zε‖C([0,T ];L2(Ωε)) = 0,

(iii) lim
ε→0
‖∇uε −∇zε‖L2(0,T ; [L1(Ωε)]n) = 0.

(3.16)

Moreover

lim sup
ε→0

‖zε(T )− w1
ε‖L2(Ωε) ≤ α. (3.17)

This result will be proved in Section 7.

4. The control for fixed ε

In this section we give, by adapting to our case some technics of Fabre et al. [10,11] and Zuazua [14],
some properties of the functional Jε defined by (3.5). This allows us to characterize the control of
system (3.1).

We have the following lemma:

Lemma 4.1. Under assumption (2.3) the functional Jε defined by (3.5) is continuous, strictly convex
and satisfies

lim inf
‖φ0
ε‖L2(Ωε)→∞

Jε(φ0
ε)

‖φ0
ε‖L2(Ωε)

≥ α, for any ε > 0 fixed. (4.1)

Moreover, if Φ0
ε is the (unique) minimum point of Jε, we have

‖
(
w1
ε − vε(T )

)
‖L2(Ωε) ≤ α⇐⇒ Φ0

ε = 0. (4.2)

We skip here the proof which follows exactly that given in [11], for the study of the approximate
controllability of the semilinear heat equation. In Section 3 (Lem. 5.2) we will prove that this inequality
holds uniformly in ε.
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We have the following characterization of the minimum point of Jε:

Corollary 4.2. Under the assumption of Lemma 4.1, for ε fixed, let Φ0
ε be the minimum point of the

functional Jε. We have∣∣∣∣∣
∫ T

0

∫
ωε

ΦεΨε dx dt−
∫

Ωε

(
w1
ε − vε(T )

)
ψ0
ε dx

∣∣∣∣∣ ≤ α‖ψ0
ε‖L2(Ωε), (4.3)

for any ψ0
ε ∈ L2(Ωε), with Φε solution of (3.3) for φ0

ε = Φ0
ε and Ψε solution of (3.3) for φ0

ε = ψ0
ε .

Proof. For λ ∈ R∗+ and ψ0
ε ∈ L2(Ωε), we have

Jε(Φ0
ε) ≤ Jε(Φ0

ε + λψ0
ε).

Thus ∫
Ωε

(
w1
ε − vε(T )

)
ψ0
ε dx ≤

∫ T

0

∫
ωε

ΦεΨε + α lim inf
λ→0

‖Φ0
ε + λψ0

ε‖L2(Ωε) − ‖Φ0
ε‖L2(Ωε)

λ

≤
∫ T

0

∫
ωε

ΦεΨε + α‖ψ0
ε‖L2(Ωε) for any ψ0

ε ∈ L2(Ωε).

(4.4)

The same computation with λ ∈ R∗− gives∫
Ωε

(
w1
ε − vε(T )

)
ψ0
ε dx ≥

∫ T

0

∫
ωε

ΦεΨε − α‖ψ0
ε‖L2(Ωε) for any ψ0

ε ∈ L2(Ωε). (4.5)

Inequalities (4.4) and (4.5) give the result.

Proof of Theorem 3.3. We decompose the solution uε as uε = wε + vε where vε is defined by (3.4)
and wε is the solution of the following problem:

w′ε − div (Aε∇wε) = χ
ωε

Φε in Ωε × (0, T ),

wε = 0 on ∂Ω× (0, T ),

Aε∇wε · ν = 0 on ∂Sε × (0, T ),

wε(x, 0) = 0 in Ωε,

(4.6)

where Φε is the solution of (3.3) for φ0
ε = Φ0

ε, Φ0
ε being the unique minimum point of the functional

Jε defined by (3.5). Let now ψ0
ε ∈ L2(Ωε) and let Ψε be the solution of the transposed problem (3.3)

for φ0
ε = ψ0

ε . By multiplying (4.6) by Ψε and integrating by parts, we get

−
∫ T

0

〈wε,Ψ′ε〉Vε,V ′ε dt+
∫

Ωε

wε(T )Ψε(T ) dx +
∫ T

0

∫
Ωε

Aε∇wε∇Ψε dx dt =
∫ T

0

∫
ωε

ΦεΨε dx dt. (4.7)

From (3.3) and Corollary 4.2, it comes∣∣∣∣∫
Ωε

wε(T )Ψε(T ) dx−
∫

Ωε

(
w1
ε − vε(T )

)
ψ0
ε dx

∣∣∣∣ ≤ α‖ψ0
ε‖L2(Ωε).

Since Ψε(T ) = ψ0
ε is arbitrary we deduce that

‖wε(T )−
(
w1
ε − vε(T )

)
‖L2(Ωε) ≤ α,

which gives
‖uε(T )− w1

ε‖L2(Ωε) ≤ α.
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Remark 4.3. Let us point out that the symmetry and the C1-regularity of the matrix A have been
only used when applying the unique continuation property mentioned in Remark 2.2. For the ho-
mogenization results recalled in Section 2, symmetry is not necessary and it suffices to suppose A
in (L∞ (Y ))n

2

. Observe also that the unique continuation property is not needed in the case of a
control distributed over Ω, i.e. for ω = Ω.

5. A priori estimates on the controls

In this section we give some a priori estimates for the control obtained in Section 4, when the
data w1

ε and u0
ε satisfy (3.11), i.e.{

i) lim
ε→0
‖w1

ε − w1‖L2(Ωε) = 0,

ii) lim
ε→0
‖u0

ε − u0‖L2(Ωε) = 0.
(5.1)

Remark 5.1. Under assumption (5.1), using the corrector result stated in Theorem 2.1, we deduce
that

lim
ε→0
‖
(
w1
ε − vε(T )

)
−
(
w1 − v(T )

)
‖L2(Ωε) = 0 (5.2)

where v is solution of (3.8).

In the same spirit as in [14], we show in the next lemma that inequality (4.1) is uniform in ε. This
will provide a uniform estimate in ε for the unique minimum point Φ0

ε of the functional Jε.

Lemma 5.2. Under assumptions (2.3) and (5.1), the functional Jε defined by (3.5) satisfies:

lim inf
‖φ0
ε‖L2(Ωε) →∞

ε→ 0

Jε(φ0
ε)

‖φ0
ε‖L2(Ωε)

≥ α. (5.3)

Proof. Consider a sequence {j} ⊂ N and {εj}j∈N ⊂ {ε}ε>0 such that

εj → 0 and ‖φ0
εj‖L2(Ωεj ) →∞ as j →∞.

To simplify, we still denote by ε such a sequence. We have

‖φ0
ε‖L2(Ωε) →∞ as ε→ 0.

Set ψ0
ε =

φ0
ε

‖φ0
ε‖L2(Ωε)

. Then, there exists a subsequence (still denoted by ε) and ψ0 ∈ L2(Ω) such that

ψ̃0
ε ⇀ ψ0 weakly in L2(Ω). (5.4)

Set Ψε =
φε

‖φ0
ε‖L2(Ωε)

, where φε is solution of (3.3). We have


−Ψ′ε − div (Aε∇Ψε) = 0 in Ωε × (0, T ),

Ψε = 0 on ∂Ω× (0, T ),

Aε∇Ψε · ν = 0 on ∂Sε × (0, T ),

Ψε(x, T ) = ψ0
ε in Ωε.

(5.5)

From Theorem 2.1, we have

Ψ̃ε ⇀ θΨ weakly in L∞(0, T ; L2(Ω)), (5.6)
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where Ψ is solution of
−θΨ′ − div

(
A0∇Ψ

)
= 0 in Ω× (0, T ),

Ψ = 0 on ∂Ω× (0, T ),

Ψ(x, T ) =
ψ0

θ
in Ω.

(5.7)

From the definitions of Jε (see (3.5)), ψ0
ε and Ψε, we have

Jε(φ0
ε)

‖φ0
ε‖L2(Ωε)

=
1
2
‖φ0

ε‖L2(Ωε)

∫ T

0

∫
ω

|Ψ̃ε|2 dx dt+ α−
∫

Ω

(
w̃1
ε − ṽε(T )

)
ψ̃0
ε dx. (5.8)

Two cases arise

(i) lim inf
ε→0

∫ T

0

∫
ω

|Ψ̃ε|2 dx dt > 0,

(ii) lim inf
ε→0

∫ T

0

∫
ω

|Ψ̃ε|2 dx dt = 0.

In case (i), in view of (5.1) and (5.4), the term
∫

Ω

(
w̃1
ε − ṽε(T )

)
ψ̃0
ε dx is uniformly bounded with

respect to ε. Hence, one has

lim
ε→0

Jε(φ0
ε)

‖φ0
ε‖L2(Ωε)

= +∞,

which gives (5.3).
For case (ii), since θ 6= 0, we deduce from (5.6) that

Ψ = 0 in ω × (0, T ).

From the unique-continuation property due to Saut and Scheurer [13], we deduce that

Ψ = 0 in Ω× (0, T ).

Since Ψ ∈ C([0, T ]; L2(Ω)) and due to (5.7), we have Ψ(T ) =
ψ0

θ
. Then we deduce that

ψ0 = 0 in L2(Ω). (5.9)

On the other hand, from (5.2, 5.4, 5.9) and Remark 2.2 (written for ϕε = ψ0
ε , u0

ε = w1
ε − vε(T ) and

u0 = θ(w1 − v(T ))), it comes that

lim
ε→0

∫
Ω

(
w̃1
ε − ṽε(T )

)
ψ̃0
ε dx = 0. (5.10)

Passing to the limit as ε→ 0 in (5.8), we find

lim inf
ε→0

Jε(φ0
ε)

‖φ0
ε‖L2(Ωε)

≥ α,

which shows that we have again (5.3) and ends the proof.

Corollary 5.3. Under the assumptions of Lemma 5.2, there exists a constant c independent of ε such
that

‖Φ0
ε‖L2(Ωε) ≤ c. (5.11)



32 P. DONATO AND A. NABIL

Proof. By contradiction, we suppose that there exists a subsequence (still denoted by ε), such that

‖Φ0
ε‖L2(Ωε) −→∞, as ε→ 0,

so that, from Lemma 5.2,

lim
ε→0

Jε(Φ0
ε)

‖Φ0
ε‖L2(Ωε)

≥ α.

Since Φ0
ε minimizes the functional Jε one has

Jε(Φ0
ε) ≤ Jε(0) = 0 ∀ε.

Hence,

α ≤ lim
ε→0

Jε(Φ0
ε)

‖Φ0
ε‖L2(Ωε)

≤ 0

which contradicts the fact that α is strictly positive.

Remark 5.4. From estimate (5.11) we deduce that there exists Φ0 and a subsequence (still denoted
by ε) such that

Φ̃0
ε ⇀ θΦ0 weakly in L2(Ω). (5.12)

One can then apply Theorem 2.1 to the controls {Φε}ε, solutions of (3.3) for φ0
ε = Φ0

ε. All the
difficulty is to identify the weak limit Φ0 as the unique minimum point of a suitable functional. In
this case, convergence (5.12) holds for the whole sequence {Φ0

ε}ε>0.

6. Some preliminary results

In this section we study the limit behaviour of the control Φε given by Theorem 3.3. The following
theorem shows that the limit control can be uniquely identified as the solution of the transposed
problem (3.10) associated to the minimum point of the functional (3.9).

Theorem 6.1. Under hypothesis (2.3) and (5.1), let u0 and w1 be given in L2(Ω). The sequence
{Φ0

ε}ε of the minimum points associated to the functionals Jε, satisfies, as ε → 0, the following
convergences: {

i) Φ̃0
ε ⇀ θΦ0 weakly in L2(Ω),

ii) ‖Φ0
ε‖L2(Ωε) −→

√
θ‖Φ0‖L2(Ω),

(6.1)

where Φ0 is the minimum point of the functional J defined by (3.9).

The proof of this theorem will be given at the end of this section. It makes use of Propositions 6.4
and 6.5 below.

An immediate consequence of Theorem 6.1 is the following:

Corollary 6.2. Under the hypothesis of Theorem 6.1 the control Φε given by Theorem 3.3 satisfies,
as ε→ 0, {

(i) P εΦε ⇀ Φ weakly in L2(0, T ; H1
0 (Ω)),

(ii) Φ̃ε ⇀ θΦ weakly in L∞(0, T ; L2(Ω)),
(6.2)

with Φ solution of (3.10) for φ0 = Φ0, Φ0 being the minimum point of the functional J given by (3.9).
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Moreover, we have the following corrector result:{
(i) lim

ε→0
‖Φε − Φ‖C([0,T ];L2(Ωε)) = 0,

(ii) lim
ε→0
‖∇Φε − Cε∇Φ‖L2(0,T ; [L1(Ωε)]n) = 0,

(6.3)

where Cε(x) is the corrector matrix given by (2.10).

Proof. Thanks to convergences (6.1) given by Theorem 6.1, the result is a direct consequence of the
homogenization result given in Theorem 2.1, applied to the control Φε.

Remark 6.3. As for the functional Jε given by (3.5), one can easily show that the functional J(φ0)
defined by (3.9) is continuous, strictly convex and satisfies the following coercivity condition:

lim inf
‖φ0‖L2(Ω)→∞

J(φ0)
‖φ0‖L2(Ω)

≥ α
√
θ. (6.4)

Moreover, if Φ0 ∈ L2(Ω) is such that

J(Φ0) = min
φ0∈L2(Ω)

J(φ0), (6.5)

we have ∣∣∣∣∣
∫ T

0

∫
Ω

θΨΦ−
∫

Ω

θ
(
w1 − v(T )

)
ψ0

∣∣∣∣∣ ≤ α√θ‖ψ0‖L2(Ω), (6.6)

for any ψ0 ∈ L2(Ω), with Φ and Ψ solutions of (3.10) for φ0 = Φ0 and φ0 = ψ0 respectively.

Proposition 6.4. Let ψ0 ∈ L2(Ω). Under hypothesis (2.3) and (5.1) the functional Jε defined
by (3.5) satisfies

lim
ε→0

Jε(ψ0
|Ωε) = J(ψ0),

where ψ0
|Ωε is the restriction of ψ0 to Ωε and J is the functional given by (3.9).

Proof. Let ψ0 ∈ L2(Ω) and Ψε(x, t) the solution of the following problem
−Ψ′ε − div (Aε∇Ψε) = 0 in Ωε × (0, T ),

Ψε = 0 on ∂Ω× (0, T ),

Aε∇Ψε · ν = 0 on ∂Sε × (0, T ),

Ψε(x, T ) = ψ0
|Ωε in Ωε.

(6.7)

Since
ψ̃0|Ωε ⇀ θψ0 weakly in L2(Ω),

from Theorem 2.1 applied to Ψε, we have

P εΨε ⇀ Ψ weakly in L2(0, T ; H1
0 (Ω)), (6.8)

where Ψ is solution of
−θΨ′ − div

(
A0∇Ψ

)
= 0 in Ω× (0, T ),

Ψ = 0 on ∂Ω× (0, T ),

Ψ(x, T ) = ψ0 in Ω.

(6.9)
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We want to pass to the limit in the following expression:

Jε(ψ0
|Ωε) =

1
2

∫ T

0

∫
ω

|Ψ̃ε|2 dx dt+ α

(∫
Ω

χ
Ωε
|ψ0|2

) 1
2

dx−
∫

Ω

(
w̃1
ε − ṽε(T )

)
ψ0 dx. (6.10)

It is easy to see, in virtue of (2.2), that

lim
ε→0

(∫
Ω

χ
Ωε
|ψ0|2 dx

) 1
2

−→
(∫

Ω

θ|ψ0|2 dx
) 1

2

. (6.11)

Taking into account (5.2) and Remark 2.2, we get∫
Ω

(
w̃1
ε − ṽε(T )

)
ψ0 dx −→

∫
Ω

θ
(
w1 − v(T )

)
ψ0 dx. (6.12)

We show now that

lim
ε→0

∫ T

0

∫
ω

|Ψ̃ε|2 dx dt =
∫ T

0

∫
ω

θ|Ψ|2 dx dt.

Indeed, we write

lim
ε→0

∫ T

0

∫
ω

∣∣∣Ψ̃ε

∣∣∣2 dx dt = lim
ε→0

〈
Ψ̃ε, P

εΨε

〉
L2(0,T ;H−1(Ω)),L2(0,T ;H1

0 (Ω))
.

On the other hand, convergence (2.13) from Theorem 2.1 applied to Ψε, gives

Ψ̃ε −→ θΨ strongly in C([0, T ]; H−1(Ω)).

This convergence and (6.8) allows us to pass to the limit and we have

lim
ε→0

∫ T

0

∫
ω

∣∣∣Ψ̃ε

∣∣∣2 dx dt =
∫ T

0

∫
ω

θ|Ψ|2 dx dt. (6.13)

Finally, convergences (6.11, 6.12) and (6.13) give

lim
ε→0

Jε(ψ0
|Ωε) =

1
2

∫ T

0

∫
ω

θ|Ψ(x, t)|2 dx dt+ α

(∫
Ω

θ|ψ0|2
) 1

2

dx−
∫

Ω

θ
(
w1 − v(T )

)
ψ0 dx

= J(ψ0),

where J is the functional defined by (3.9).

Proposition 6.5. Let ψ0 ∈ L2(Ω). Under hypothesis of Proposition 6.4, for any sequence {ψ0
ε}ε

⊂ L2(Ωε) such that, as ε→ 0,

ψ̃0
ε ⇀ θψ0 weakly in L2(Ω), (6.14)

we have

lim inf
ε→0

Jε(ψ0
ε) ≥ J(ψ0). (6.15)

To prove this proposition, we make use of the following lemma, which we give in a more general
framework than needed here.
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Lemma 6.6. Let O be an open set of Rn and {Oε}ε ⊂ O a sequence of open subsets of O. Suppose
that {vε}ε ⊂ Lp(Oε) , p > 1, is such that,as ε→ 0,

1. χOε ⇀ χ
0

in L∞(O) weakly ∗,
2. ṽε ⇀ χ

0
v weakly in Lp(O),

for some v ∈ Lp(O). Then

lim inf
ε→0

∫
Oε
|vε|p dx ≥

∫
O
χ

0
|v|p dx. (6.16)

Proof. By the convexity on R of the function g(y) = |y|p, we have

|vε(x)|p ≥ |v(x)|p + p|v(x)|p−2v(x) (vε(x) − v(x)) a.e. on Oε.

Hence, passing to the zero extensions, we get∫
O
|ṽε|p dx ≥

∫
O
χOε |v|

p dx+ p

∫
O
|v|p−2v

(
ṽε − vχOε

)
dx. (6.17)

On the other hand, it is easy to see that the assumptions imply that

ṽε − vχOε ⇀ 0 weakly in Lp(O),

|v|p−2v ∈ Lp′(O), where
1
p

+
1
p′

= 1,

so we deduce the following convergences:∫
O
|v|p−2v

(
ṽε − vχOε

)
dx −→ 0,∫

O
χOε |v|

p dx −→
∫
O
χ

0
|v|p dx.

Then, by passing to the lower limit, as ε→ 0, in (6.17) one has the result.

Remark 6.7. Observe that inequality (6.16) improves that obtained by using the lower semiconti-
nuity of the norm, namely

lim inf
∫
O
|ṽε|p dx ≥

∫
O
χ
p

0
|v|p dx,

since χ
0
≤ 1.

Inequality (6.16) will play an essential role on order to identify the limit of the sequence (Φ0
ε) of

the minimum points of the functionals Jε.

Proof of Proposition 6.5. By applying Lemma 6.6 for O = Ω, Oε = Ωε and vε = ψ0
ε , we obtain, by

taking into account (2.2), the following inequality:

lim inf
ε→0

∫
Ωε

|ψ0
ε |2 dx ≥

∫
Ω

θ|ψ0|2 dx. (6.18)

Let Ψε be the solution of (3.3) for φ0
ε = ψ0

ε . Then from Theorem 2.1 we have

P εΨε ⇀ Ψ weakly in L2(0, T ; H1
0 (Ω)),

with Ψ solution of (6.9) and (see (6.13))

lim
ε→0

∫ T

0

∫
Ωε

|Ψε|2 dxdt = θ

∫ T

0

∫
Ω

|Ψ|2 dxdt. (6.19)
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On the other hand, we deduce from (5.2, 6.14) and Remark 2.2 that

lim
ε→0

∫
Ωε

(
w1
ε − vε(T )

)
ψ0
ε dx = lim

ε→0

∫
Ω

(
w̃1
ε − ṽε(T )

)
ψ̃0
ε dx =

∫
Ω

θ
(
w1 − v(T )

)
ψ0 dx. (6.20)

Combining (6.18, 6.19) and (6.20) we get

lim inf
ε→0

Jε(ψ0
ε) = lim inf

ε→0

{
1
2

∫ T

0

∫
ωε

|Ψε|2 dx dt+ α‖ψ0
ε‖L2(Ωε) −

∫
Ωε

(
w1
ε − vε(T )

)
ψ0
ε dx,

}

≥ 1
2
θ

∫ T

0

∫
ω

|Ψ|2 dx dt+ α
√
θ‖ψ0‖L2(Ω) −

∫
Ω

θ
(
w1 − v(T )

)
ψ0 dx, (6.21)

which is the desired result.
Proof of Theorem 6.1. As seen in Remark 5.4, the sequence {Φ0

ε}ε of the minimum points of Jε,
satisfies (up to a subsequence),

Φ̃0
ε ⇀ θΦ0 weakly in L2(Ω). (6.22)

From Proposition 6.5, we deduce

J(Φ0) ≤ lim inf
ε→0

Jε(Φ0
ε). (6.23)

On the other hand, let ψ0 be in L2(Ω). Using Proposition 6.4, we have

lim sup
ε→0

Jε(Φ0
ε) ≤ lim sup

ε→0
Jε(ψ0

|Ωε) = lim
ε→0

Jε(ψ0
|Ωε) = J(ψ0). (6.24)

From (6.23) and (6.24) and Remark 6.3, we deduce that Φ0 is the unique minimum point of the
functional J given by (3.9). Consequently all the sequence {Φ̃0

ε}ε weakly converges to θΦ0 in L2(Ω),
which gives (6.1)i.

To prove (6.1)ii, we use (6.23) and we choose in (6.24) ψ0 = Φ0. We get

J(Φ0) ≤ lim inf
ε→0

Jε(Φ0
ε) ≤ lim sup

ε→0
Jε(Φ0

ε) = J(Φ0),

so

lim
ε→0

Jε(Φ0
ε) = J(Φ0). (6.25)

Moreover, writing (6.13) for the solution Φε of
−Φ′ε − div (Aε∇Φε) = 0 in Ωε × (0, T ),

Φε = 0 on ∂Ω× (0, T ),

Aε∇Φε · ν = 0 on ∂Sε × (0, T ),

Φε(x, T ) = Φ0
ε in Ωε,

it comes that

lim
ε→0

∫ T

0

∫
ω

|Φ̃ε|2 dx dt =
∫ T

0

∫
ω

θ|Φ|2 dxdt, (6.26)

where Φ is solution of (3.10) for φ0 = Φ0. By virtue of (5.2) and Remark 2.2, we have

lim
ε→0

∫
Ωε

(
w1
ε − vε(T )

)
Φ0
ε dx = lim

ε→0

∫
Ω

(
w̃1
ε − ṽε(T )

)
Φ̃0
ε dx =

∫
Ω

θ
(
w1 − v(T )

)
Φ0 dx. (6.27)
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Taking into account (6.25, 6.26) and (6.27), we deduce finally

lim
ε→0
‖Φ0

ε‖L2(Ωε) =
√
θ‖Φ0‖L2(Ω).

This ends the proof of Theorem 6.1.

7. Proofs of Theorem 3.4 and Corollary 3.7

Proof of Theorem 3.4. Let us notice first that (3.12) is a consequence of Corollary 6.2. On the
other hand, as in the proof of Theorem 3.3, we decompose the solution uε as uε = vε + wε, vε
and wε being defined respectively by (3.4) and (4.6). Then, the linearity of the extension operator
P ε, assumption (3.11) and Theorem 2.1 give

P εuε = P εvε + P εwε ⇀ u = v + w weakly in L2(0, T ; H1
0 (Ω)),

where v is the solution of (3.8) and w satisfies the following equation
θw′ − div

(
A0∇w

)
= χ

ω
θΦ in Ω× (0, T ),

w = 0 on ∂Ω× (0, T ),

w(x, 0) = 0 in Ω.

(7.1)

This gives convergence (3.13) with u the unique solution of (3.14).
To show (3.15), we consider ψ0 ∈ L2(Ω) and Ψ solution of (3.10) for φ0 = ψ0.
Multiplying equation (7.1) by Ψ and integrating by parts, it comes∫ T

0

∫
Ω

(
−θΨ′ − div(A0∇Ψ)

)
w dxdt+

∫
Ω

θw(T )Ψ(T ) dx =
∫ T

0

∫
ω

θΦΨ dxdt

so that ∫
Ω

θw(T )Ψ(T ) dx =
∫ T

0

∫
ω

θΦΨ dxdt.

By replacing Ψ(T ) by ψ0 and using Remark 6.3 we have∣∣∣∣θ ∫
Ω

w(T )ψ0 dx− θ
∫

Ω

(
w1 − v(T )

)
ψ0 dx

∣∣∣∣ ≤ α√θ‖ψ0‖L2(Ω).

Thus,

‖w(T )−
(
w1 − v(T )

)
‖L2(Ω) ≤

α√
θ
,

which gives (3.15), since u(T ) = w(T ) + v(T ).

Proof of Corollary 3.7. Observe that the function ζε = uε − zε solves the problem
ζ′ε − div (Aε∇ζε) = ρε in Ωε × (0, T ),

ζε = 0 on ∂Ω× (0, T ),

Aε∇ζε · ν = 0 on ∂Sε × (0, T ),

ζε(x, 0) = 0 in Ωε,

where ρε = χ
ωε

(Φε − Φ). On the other hand, Corollary 6.2 gives the convergences{
(i) ρ̃ε ⇀ 0 weakly in L2(Ω)× (0, T )),

(ii) lim
ε→0
‖ρε|L2(0,T ;L2(Ωε)) = 0.

(7.2)
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Hence, convergences (3.16) follow from Theorem 2.1. Finally, convergences (3.16)ii together with the
estimate (3.7), imply (3.17).
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