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EXACT BOUNDARY CONTROLLABILITY OF A HYBRID SYSTEM
OF ELASTICITY BY THE HUM METHOD

Bopeng Rao
1

Abstract. We consider the exact controllability of a hybrid system consisting of an elastic beam,
clamped at one end and attached at the other end to a rigid antenna. Such a system is governed by
one partial differential equation and two ordinary differential equations. Using the HUM method, we
prove that the hybrid system is exactly controllable in an arbitrarily short time in the usual energy
space.

Mathematics Subject Classification. 93C20, 35B37, 35D05, 73K50.

Received July 14, 1999. Revised August 31 and November 22, 2000.

1. Introduction

In this work we consider a hybrid system consisting of an elastic beam of length L, clamped at one end
and attached at the other end to a rigid antenna, whereon are applied the dynamical controls v0, v1. The
vibration y(x, t) of the beam is governed by the Euler-Bernoulli equation, and the oscillations y(L, t), yx(L, t)
of the antenna are described by the Newton-Euler equations through which the control dynamics are filtered:

ytt + yxxxx = 0 0 < x < L, t > 0,

y(0, t) = yx(0, t) = 0 t > 0,

ρytt(L, t)− yxxx(L, t) = v0(t) t > 0,

Jyxtt(L, t) + yxx(L, t) = v1(t) t > 0,

y(x, 0) = y0(x), yt(x, 0) = y1(x) 0 < x < L

(1.1)

where ρ > 0 is the mass and J > 0 is the moment of inertia of the antenna. For more details concerning the
descriptions of the physical structure of the system, we refer to Littman and Markus [3].

For smooth initial data: y0 ∈ H6(0, L), y1 ∈ H4(0, L), the exact controllability of the system (1.1) was
demonstrated by Littman and Markus [3]. Their method is based on the theory of semi-infinite beam. The
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existence of the smooth open-loop controllers v0, v1 for the finite beam system (1.1) follows from a constructive
cut-off approach.

But in the case of usual initial data: y0 ∈ H2(0, L), y1 ∈ L2(0, L), the regularity of weak solution is insufficient
to define the traces ytt(1, t) and yxtt(1, t). In that case following an idea of Slemrod [15], the boundary conditions
involving the dynamical terms ytt(1, t) and yxtt(1, t) can be treated as two ordinary differential equations (with
respect to the time variable t). More specifically, denoting by u(x, t) = (y(x, t), y(L, t), yx(L, t)) the state of the
system (1.1) and by v = (0, v0, v1) the control, we transform the system (1.1) into an abstract system

utt +Au = v, u(0) = u0, ut(0) = u1 (1.2)

where A is a positive definite operator in the product space L2(0, L)×R2. We obtain thus a weak formulation
of the original system (1.1). Although the system (1.2) is well posed in the sense of semi-groups of contractions,
the regularity of the weak solution is insufficient to define the traces of derivatives of higher order ytt(1, t) and
yxtt(1, t). Accordingly, the exact controllability of the hybrid system would appear to be impossible for usual
initial data (see [3], p. 223).

We know that the closed-loop system with the usual boundary feedback v1 = yt(1, t), v2 = yxt(1, t) is not
uniformly stabilizable (see [4,12]), because the usual feedback is compact in the corresponding energy space. But
this incomplete result gave a false impression that the Hilbert uniqueness method (Lions [5] and [6]) couldn’t
be adapted to such problems (see [7], p. 984). In fact, we established in [12] the uniform stability of the hybrid
system (1.1) by means of boundary feedback of higher order such that v0 = yxxxt(1, t), v1 = −yxxt(1, t) which
is necessarily non-compact. This indicates that the system (1.1) could be exactly controllable by means of
singular controllers v0, v1.

Other hybrid systems were studied in [1,2] and [8]. It was observed that the solutions of hybrid systems gain
one more degree regularity when crossing the point mass. This property allows to define the trace at the point
mass. However the controllable initial data is not the whole usual space in which the system was well-posed. It
was also remarked that the hybrid systems have non spectral cap condition and the observability inequalities
were established by means of non harmonic Fourier’s series, such as inequality of Ingham or Ulrich. In all these
works, the exact controllability was only proved for the initial data which have one more degree regularity.

In this work (the results of which were announced in Rao [13]), we will adapt the Hilbert uniqueness method
to the exact controllability of the abstract problem (1.2). The main difficulty in this approach consists in
establishing an inverse energy inequality, the direct energy inequality is easy to establish for this kind of
problem. Inspired from the uniform stability results, we look for the estimates of the traces of higher order of
the solution of the associated homogeneous problem. This allows us to establish the exact controllability of the
abstract system (1.2) for usual initial data by means of two singular controllers v0, v1.

Another interesting problem is to know whether the abstract problem (1.2) is exactly controllable using only
one control v1. We recall that this problem was open even in the case of smooth initial data. Here guided by a
uniqueness result [10], we consider a beam of limited length L < 3. We prove that the system (1.2) is exactly
controllable by only one controller v1 in an arbitrarily short time for usual initial data.

The paper is organized as follows: in Section 2 we consider the associated homogeneous problem. The
direct and inverse energy inequalities are established with the usual norm. In Section 3 we consider the exact
controllability of the abstract problem (1.1) with usual initial data. We first prove the abstract system (1.2)
is exactly controllable in an arbitrarily short time by two controls v0 ∈ L2(0, T ), v1 ∈

(
H1(0, T )

)′
for usual

initial data y0 ∈ H2(0, L), y1 ∈ L2(0, L) with compatibility conditions. Next in the case of a beam of limited
length L < 3, we establish also the exact controllability of the system(1.1) by means of only one singular
controller

(
H1(0, T )

)′. In Section 4, extend the exact controllability results to the case of more regular initial
data y0 ∈ H4(0, L), y1 ∈ H2(0, L) with compatibility conditions. We will prove that the abstract system (1.2)
is exactly controllable in an arbitrarily short time by means of two controls v0 ∈ H1(0, T ), v1 ∈ L2(0, L), or by
means of only one controller v1 ∈ L2(0, L) for a beam of limited length L < 3.
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2. Homogeneous system

In this section we consider the homogeneous problem:

φtt + φxxxx = 0 t > 0, 0 < x < L, (2.1)

φ(0, t) = φx(0, t) = 0 t > 0, (2.2)

φtt(L, t)− φxxx(L, t) = 0 t > 0, (2.3)

φxtt(L, t) + φxx(L, t) = 0 t > 0. (2.4)

Since the physical constants ρ, J are strictly positive, without loss of generality, we will take ρ = J = 1
throughout this paper. We first write formally the system (2.1–2.4) into(

φ(x, t), φ(L, t), φx(L, t)
)
tt

+
(
φxxxx(x, t),−φxxx(L, t), φxx(L, t)

)
= 0. (2.5)

According to this formulation, we introduce the product space

H = L2(0, L)×R×R (2.6)

endowed with the usual norm

‖Φ‖2H =
∫ L

0

φ2dx+ ξ2 + η2, ∀Φ = (φ, ξ, η) ∈ H. (2.7)

We next define the linear operator A as follows

D(A) =
(

Φ = (φ, ξ, η) : φ ∈ H4(0, L)
φ(0) = φx(0) = 0; ξ = φ(L), η = φx(L)

)
, (2.8)

AΦ =
(
φxxxx,−φxxx(L), φxx(L)

)
, ∀Φ = (φ, ξ, η) ∈ D(A). (2.9)

Then setting

ξ(t) = φ(L, t), η(t) = φx(L, t), Φ(x, t) = (φ(x, t), ξ(t), η(t)) (2.10)

we write the equation (2.5) into an evolutionary equation

Φtt +AΦ = 0, Φ(0) = Φ0, Φt(0) = Φ1. (2.11)

Proposition 2.1. The operator A defined in (2.8, 2.9) is self-adjoint and definite positive. Moreover A−1 is
compact in H.

Proof. We first prove that A is a symmetric operator in H. A straightforward computation gives that

(AΦ, Φ̃)H =
∫ L

0

φxxφ̃xxdx = (Φ, AΦ̃)H

for any Φ = (φ, ξ, η), Φ̃ = (φ̃, ξ̃, η̃) ∈ D(A). In particular, using Poincaré’s inequality we get

(AΦ,Φ)H =
∫ L

0

φ2
xxdx ≥ C

{∫ L

0

φ2dx + φ2(L) + φ2
x(L)

}
= C‖Φ‖2H .
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Now let Φ̃ = (φ̃, ξ̃, η̃) ∈ D(A∗), then there exists Φ0 = (φ0, ξ0, η0) ∈ H such that (Φ̃, AΦ) = (Φ0,Φ) for
all Φ ∈ D(A). This means that∫ L

0

φ̃φxxxxdx− ξ̃φxxx(L) + η̃φxx(L) =
∫ L

0

φ0φdx + ξ0φ(L) + η0φx(L)

for all φ ∈ H4(0, 1) satisfying φ(0) = φx(0) = 0. Then indeed a straightforward computation shows that

φ̃ ∈ H4(0, L) : φ̃(0) = φ̃x(0) = 0, ξ̃ = φ̃(L), η̃ = φ̃x(L) .

It follows that Φ̃ ∈ D(A), therefore we obtain A∗ = A.
Finally let Φ = (φ, φ(L), φx(L)) ∈ D(A) solve the equation AΦ = Φ0 for Φ0 = (φ0, ξ0, η0) ∈ H. Then we have

φxxxx = φ0 0 < x < L,

φ(0) = φx(0) = 0,

φxx(L) = η0, φxxx(L) = −ξ0 .

There exists a unique solution φ ∈ H4(0, L) such that ‖φ‖H4(0,L) ≤ C‖Φ0‖H . We obtain thus the compactness
of A−1. The proof is complete. 2

Since A is self-adjoint and definite positive, and since A−1 is compact, using the spectral decomposition
theory, we can define the powers A2α ∈ L

(
D(Aα);D(A−α)

)
for any α ∈ R, where the domain D(Aα) is

endowed with the norm

‖Φ‖2D(Aα) = ‖AαΦ‖2H , ∀Φ ∈ D(Aα) . (2.12)

In particular, we have

D(A1/2) =

(
Φ = (φ, ξ, η) ∈ H : φ ∈ H2(0, L)

φ(0) = φx(0) = 0; ξ = φ(L), η = φx(L)

)
, (2.13)

‖Φ‖2V =
∫ L

0

φ2
xxdx, ∀Φ = (φ, ξ, η) ∈ V. (2.14)

For convenience, in the following we write V = D(A1/2).
The following result is classic (see [9]).

Proposition 2.2. Assume that (Φ0,Φ1) ∈ D(Aα+1/2) ×D(Aα). Then the equation (2.11) admits a unique
solution Φ(t) such that

Φ(t) ∈ C0
(
R, D(Aα+1/2

)
∩C1

(
R, D(Aα)

)
. (2.15)

Moreover for any t ∈ R:

‖Φ(t)‖2D(Aα+1/2) + ‖Φt(t)‖2D(Aα) = ‖Φ0‖2D(Aα+1/2) + ‖Φ1‖2D(Aα). (2.16)

Theorem 2.3. Let Φ(x, t) = (φ(x, t), φ(L, t), φx(L, t)) be the solution of the equation (2.11). Then for
any T > 0, there exist constants C1 > 0 and C2 > 0 depending only on T such that the following estimates hold

C1

∫ T

0

(
|φt(L, t)− βφt(L, 0)|2 + φ2

xtt(L, t)
)
dt ≤ ‖Φ0‖2V + ‖Φ1‖2H , (2.17)



EXACT BOUNDARY CONTROLLABILITY OF ELASTICITY OF A HYBRID SYSTEM 187

‖Φ0‖2V + ‖Φ1‖2H ≤ C2

∫ T

0

(
|φt(L, t)− βφt(L, 0)|2 + φ2

xtt(L, t)
)
dt (2.18)

where β is an arbitrary real number that will be chosen later (β = 0 in Th. 3.1 and β = 1 in Th. 4.1).

Proof. Since D(A∞) ×D(A∞) is dense in V ×H, we can assume that φ is sufficiently smooth. Then indeed,
we have

‖Φt(t)‖2H =
∫ L

0

φ2
t (x, t)dx + φ2

t (L, t) + φ2
xt(L, t). (2.19)

Therefore using (2.16) and (2.19), it is easy to verify that the direct inequality (2.17) is equivalent to the
following one

C1

∫ T

0

φ2
xtt(L, t)dt ≤ ‖Φ0‖2V + ‖Φ1‖2H . (2.20)

Now multiplying the equation (2.1) by 2xφx and integrating by parts, we obtain that∫ L

0

∫ T

0

(
φ2
t (x, t) + 3φ2

xx(x, t)
)
dxdt =− 2

∫ L

0

[
φtxφx

]T
0
dx+ L

∫ T

0

(
φ2
t (L, t) + φ2

xx(L, t)
)
dt

+ 2
∫ T

0

(
φxx(L, t)− Lφxxx(L, t)

)
φx(L, t)dt. (2.21)

Using the boundary conditions (2.3)-(2.4), it follows that∫ T

0

(
φxx(L, t)− Lφxxx(L, t)

)
φx(L, t)dt = −

∫ T

0

(
φxtt(L, t) + Lφtt(L, t)

)
φx(L, t)dt

= −
[(
φxt(L, t) + Lφt(L, t)

)
φx(L, t)

]T
0

+
∫ T

0

(
φxt(L, t) + Lφt(L, t)

)
φxt(L, t)dt. (2.22)

Inserting (2.22) into (2.21) and noting (2.4), we obtain

L

∫ T

0

(
φ2
t (L, t) + φ2

xtt(L, t)
)
dt =

∫ T

0

∫ L

0

(
φt(x, t)2 + 3φ2

xx(x, t)
)
dxdt− 2

∫ T

0

(
Lφt(L, t)φxt(L, t) + φ2

xt(L, t)
)
dt

+ 2
∫ L

0

[
φtxφx

]T
0
dx+ 2

[(
φxt(L, t) + Lφt(L, t)

)
φx(L, t)

]T
0
. (2.23)

Using Cauchy-Schwartz inequality in (2.23), we deduce easily the direct inequality (2.20). We next write (2.23) into∫ T

0

∫ L

0

(
φt(x, t)2 + 3φ2

xx(x, t)
)
dxdt +

∫ T

0

(
φ2
t (L, t) + φ2

xt(L, t)
)
dt =

∫ T

0

(
(L+ 1)φ2

t (L, t) + Lφ2
xtt(L, t)

)
dt

+
∫ T

0

(
3φ2

xt(L, t) + 2Lφt(L, t)φxt(L, t)
)
dt

− 2
∫ L

0

[
φtxφx

]T
0
dx− 2

[(
φxt(L, t) + Lφt(L, t)

)
φx(L, t)

]T
0
. (2.24)
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On the other hand, a direct computation gives∫ T

0

(
3φ2

xt(L, t) + 2Lφt(L, t)φxt(L, t)
)
dt =

[(
2Lφ(L, t) + 3φx(L, t)

)
φxt(L, t)

]T
0

−
∫ T

0

(
3φx(L, t) + 2Lφ(L, t)

)
φxtt(L, t)dt. (2.25)

Inserting (2.25) into (2.24) gives∫ T

0

∫ L

0

(
φ2
t (x, t) + 3φ2

xx(x, t)
)
dxdt +

∫ T

0

(
φ2
t (L, t) + φ2

xt(L, t)
)
dt =

∫ T

0

(
(L+ 1)φ2

t (L, t) + Lφ2
xtt(L, t)

)
dt

−
∫ T

0

(
3φx(L, t) + 2Lφ(L, t)

)
φxtt(L, t)dt− 2

∫ L

0

[
φtxφx

]T
0
dx

+
[(

2Lφ(L, t) + φx(L, t)
)
φxt(L, t)− 2Lφx(L, t)φt(L, t)

]T
0
. (2.26)

Now applying Cauchy-Schwartz inequality, we obtain that∣∣∣∣∣
∫ T

0

(
3φx(L, t) + 2Lφ(L, t)

)
φxtt(L, t)dt

∣∣∣∣∣ ≤
∫ T

0

φ2
xtt(L, t)dt+ C‖φ‖2L∞(0,T ;Hs(0,L)). (2.27)

∣∣∣∣∣
∫ L

0

φtxφxdx

∣∣∣∣∣ ≤ ε‖Φt(t)‖2H + Cε‖φ‖2L∞(0,T ;Hs(0,L)), (2.28)

∣∣(2Lφ(L, t) + φx(L, t))φxt(L, t)− 2Lφt(L, t)φx(L, t)
∣∣ ≤ ε‖Φt(t)‖2H + Cε‖φ‖2L∞(0,T ;Hs(0,L)) (2.29)

provided 3/2 < s < 2.
Finally inserting (2.27–2.29) into (2.26) gives that

‖Φ(t)‖2V + ‖Φt(t)‖2H ≤ C
(∫ T

0

(
φ2
t (L, t) + φ2

xtt(L, t)
)
dt+ ‖φ‖2L∞(0,T ;Hs(0,L))

)
(2.30)

provided 0 < 6ε < T and 3/2 < s < 2.
We will use a compactness-uniqueness argument of Zuazua [16] to prove that the term of lower order

‖φ‖2L∞(0,T ;Hs(0,L)) can be absorbed. Assume that (2.18) fails, then there exists a sequence (Φn0 ,Φ
n
1 ) ∈ D(A∞)

×D(A∞) such that

‖Φn(t)‖2V + ‖Φnt (t)‖2H = 1, ∀t ∈ R, (2.31)

∫ T

0

(
|φnt (L, t)− βφnt (L, 0)|2 + |φnxtt(L, t)|2

)
dt→ 0 (2.32)

where Φn(x, t) =
(
φn(x, t), φn(L, t), φnx(L, t)

)
is the solution of the following equation

Φntt + AΦn = 0, Φn(0) = Φn0 , Φnt (0) = Φn1 . (2.33)
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Since |φnt (L, 0)| ≤ ‖Φn1‖H ≤ 1 therefore there exists a subsequence φnt (L, 0), still indexed by n for convenience,
that converges to a constant c as n→ +∞. Hence it follows from (2.32)∫ T

0

(
|φnt (L, t)|2 + |φnxtt(L, t)|2

)
dt→ β2c2T . (2.34)

On the other hand, from (2.31) it follows that

‖φn‖2L∞(0,T ;H2(0,L)) + ‖φnt ‖2L∞(0,T ;L2(0,L)) ≤ 1 . (2.35)

Thanks to the compact embedding (see Simon [14]), there exists a subsequence φn, still indexed by n for
convenience such that

φn(t)→ φ(t) (2.36)

strongly in L∞(0, T ;Hs(0, L)) for 3/2 < s < 2. Then using (2.34) and (2.36) in (2.30), we see that
(
Φn(t),Φnt (t)

)
is a Cauchy sequence in the space L∞(0, T ;V ×H). This implies that(

Φn(t),Φnt (t)
)
→
(
Φ(t),Φt(t)

)
strongly in L∞(0, T ;V×H). Then indeed passing n→∞ in (2.31–2.33), we deduce that Φ(x, t) = (φ(x, t), φ(L, t),
φx(L, t)) solves the equation

Φtt(t) +AΦ(t) = 0, Φ(0) = Φ0, Φt(0) = Φ1 , (2.37)

and satisfies the following supplementary conditions

φt(L, t) = βc, φxtt(L, t) = 0 , (2.38)

‖Φ(t)‖2V + ‖Φt(t)‖2H = 1, ∀t ∈ R . (2.39)

From (2.37, 2.38), a straightforward computation gives
φtt + φxxxx = 0 t > 0, 0 < x < L,

φ(0, t) = φx(0, t) = 0 t > 0,
φtt(L, t) = φxxx(L, t) = 0 t > 0,
φxtt(L, t) = φxx(L, t) = 0 t > 0.

(2.40)

Now setting w = φtt in (2.40), we find that w solves, in the sense of distributions, the following equation:
wtt + wxxxx = 0 t > 0, 0 < x < L,

w(0, t) = wx(0, t) = 0 t > 0,

w(L, t) = wx(L, t) = wxx(L, t) = wxxx(L, t) = 0, t > 0.

Applying Holmgren’s theorem (Lions [5]), we deduce φtt = 0. This implies in turn that
φxxxx = 0 t > 0, 0 < x < L,

φ(0, t) = φx(0, t) = 0 t > 0,
φxx(L, t) = φxxx(L, t) = 0 t > 0.

(2.41)
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Multiplying (2.41) by φ and integrating by parts, we deduce that φ ≡ 0, this contradicts (2.39). The proof is
thus complete.

Theorem 2.4. Let Φ(x, t) = (φ(x, t), φ(L, t), φx(L, t)) be the solution of the equation (2.11). Assume that
L < 3. Then for any T > 0, there exist constants C2 depending only on T,L such that the following estimate
holds

‖Φ0‖2V + ‖Φ1‖2H ≤ C2

∫ T

0

φ2
xtt(L, t)dt. (2.42)

Proof. Multiplying the equation (2.1) by φ and integrating by parts, it follows that

∫ T

0

∫ L

0

(
φ2
t (x, t) − φ2

xx(x, t)
)
dxdt +

∫ T

0

(
φ2
t (L, t) + φ2

xt(L, t)
)
dt

=
∫ L

0

[
φφt
]T
0
dx+

[
φ(L, t)φt(L, t) + φx(L, t)φxt(L, t)

]T
0
. (2.43)

Combining (2.26) and (2.43), we get

(1 + δ)
∫ T

0

∫ L

0

φ2
t (x, t)dxdt + (3− δ)

∫ T

0

∫ L

0

φ2
xx(x, t)dxdt + (δ − L)

∫ T

0

φ2
t (L, t)dt+ (1 + δ)

∫ T

0

φ2
xt(L, t)dt

=
∫ T

0

(
Lφ2

xtt(L, t)− (3φx(L, t) + 2Lφ(L, t))φxtt(L, t)
)
dt

+
∫ L

0

[
(δφ− 2xφ)φt

]T
0
dx+

[(
2Lφ(L, t) + (1 + δ)φx(L, t)

)
φxt(L, t)

]T
0

+
[(
δφ(L, t)− 2Lφx(L, t)

)
φt(L, t)

]T
0
. (2.44)

Setting L < δ < 3 and using the same computation as in (2.27–2.29), we deduce from (2.44) the following
estimate

‖Φ(t)‖2V + ‖Φt(t)‖2H ≤ C
(∫ T

0

φ2
xtt(L, t)dt+ ‖φ‖2L∞(0,T ;Hs(0,L))

)
. (2.45)

Using the same compactness-uniqueness argument as in Theorem 2.3, we prove easily that the term of lower
order ‖φ‖2L∞(0,T ;Hs(0,L)) can be absorbed. In fact, if (2.42) fails, then the limit function φ satisfies the following
equation: 

φtt + φxxxx = 0 t > 0, 0 < x < L,

φ(0, t) = φx(0, t) = 0 t > 0,
φtt(L, t)− φxxx(L, t) = 0 t > 0,
φxtt(L, t) = φxx(L, t) = 0 t > 0.

(2.46)

Following an uniqueness result in Rao [10], we get that φ ≡ 0. The proof is thus complete. 2
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3. Exact controllability for usual initial data

In this section, we consider the exact controllability of the hybrid system (1.1) with usual initial data. We
first give the following direct and inverse inequalities.

Theorem 3.1. Let Φ(x, t) = (φ(x, t), φ(L, t), φx(L, t)) be the solution of the homogeneous equation (2.11).
Then for any T > 0, there exist constants C1 > 0 and C2 > 0 depending only on T such that the following
estimates hold

C1

∫ T

0

(
φ2(L, t) + φ2

xt(L, t)
)
dt ≤ ‖Φ0‖2H + ‖Φ1‖2V ′ , (3.1)

‖Φ0‖2H + ‖Φ1‖2V ′ ≤ C2

∫ T

0

(
φ2(L, t) + φ2

xt(L, t)
)
dt. (3.2)

Proof. Because of the density, we consider only (Φ0,Φ1) ∈ D(A∞)×D(A∞). Defining

Φ̃0 = −A−1Φ0, Φ̃1 = Φ0, (3.3)

we have

‖Φ̃0‖2V + ‖Φ̃1‖2H = ‖Φ0‖2H + ‖Φ1‖2V ′ . (3.4)

Now let Φ̃(x, t) =
(
φ̃(x, t), φ̃(L, t), φ̃x(L, t)

)
be the solution of the equation

Φ̃tt +AΦ̃ = 0, Φ̃(0) = Φ̃0, Φ̃t(0) = Φ̃1 . (3.5)

Then applying the inequalities (2.17, 2.18) (with β = 0) to the solution Φ̃ of the equation (3.5), it follows that

C1

∫ T

0

(
φ̃2
t (L, t) + φ̃2

xtt(L, t)
)
dt ≤ ‖Φ̃0‖2V + ‖Φ̃1‖2H , (3.6)

‖Φ̃0‖2V + ‖Φ̃1‖2H ≤ C2

∫ T

0

(
φ̃2
t (L, t) + φ̃2

xtt(L, t)
)
dt . (3.7)

On the other hand, since Φ̃t(0) = Φ̃1 = Φ0, Φ̃tt(0) = −AΦ̃(0) = Φ1, it follows that Φ̃t = Φ. Then replacing
φ̃t by φ in (3.6, 3.7) and using (3.4) gives the inequalities (3.1, 3.2). The proof is thus complete. 2

Theorem 3.2. Let Φ(x, t) = (φ(x, t), φ(L, t), φx(L, t)) be the solution of the homogeneous equation (2.11).
Assume that L < 3. Then for any T > 0, there exist constants C2 > 0 depending only on T,L such that the
following estimate holds

‖Φ0‖2H + ‖Φ1‖2V ′ ≤ C2

∫ T

0

φ2
xt(L, t)dt. (3.8)

Proof. The proof is the same as that of Theorem 3.1. It is sufficient to apply the inverse inequality (2.42) to
the solution Φ̃ of the equation (3.5).
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Now we consider the following controlled problem

ytt + yxxxx = 0, 0 < x < L,

y(0, t) = yx(0, t) = 0,
ytt(L, t)− yxxx(L, t) = v0(t),
yxtt(L, t) + yxx(L, t) = v1(t),
y(x, 0) = y0(x), yt(x, 0) = y1(x).

(3.9)

Setting

u(x, t) =
(
y(x, t), y(L, t), yx(L, t)

)
, v = (0, v0, v1) (3.10)

we write the system (3.9) into the following form:

utt +Au = v, u(0) = u0, ut(0) = u1. (3.11)

Let Φ be a solution of the homogeneous problem (2.11). Multiplying the equation (3.11) by Φ and integrating
by parts so that we obtain formally

(u0,Φ1)H − (u1,Φ0)H +
∫ t

0

(
v0(s)φ(L, s) + v1(s)φx(L, s)

)
ds = (u(t),Φt(t))H − (ut(t),Φ(t))H . (3.12)

Next defining the linear form L by setting

L(Φ0,Φ1) = 〈u0,Φ1〉V×V ′ − 〈u1,Φ0〉H×H +
∫ t

0

(
v0(s)φ(L, s) + v1(s)φx(L, s)

)
ds, (3.13)

we obtain a weak formulation of the equation (3.11).

L(Φ0,Φ1) = 〈(−ut(t), u(t)), S(t)(Φ0,Φ1)〉H×V,H×V ′ (3.14)

where S(t) denotes the group of isometrics associated to the homogeneous problem (2.11).

We first consider the exact controllability of the equation (3.11) for usual initial data (Φ0,Φ1) ∈ V ×H. We
choose the controls as follows:

v0 ∈ L2(0, T ), v1 = − d

dt
ṽ1 ∈

(
H1(0, 1)

)′ (3.15)

where the derivative
d

dt
is defined in the sense of

(
H1(0, 1)

)′
∫ T

0

d

dt
ṽ1(t)χ(t)dt = −

∫ T

0

ṽ1(t)χt(t)dt, ∀χ ∈ H1(0, T ). (3.16)

Theorem 3.3. For any (u0, u1) ∈ V ×H and (v0, v1) ∈ L2(0, T )×
(
H1(0, T )

)′, the controlled equation (3.11)
admits a unique weak solution u such that

u ∈ C0([0, T ];V ) ∩ C1([0, T ];H) (3.17)
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defined in the sense that the equation (3.14) is satisfied for all (Φ0,Φ1) ∈ H × V ′ and all 0 < t < T . Moreover
the linear application

(u0, u1, v0, v1)→ (u, ut) (3.18)

is continuous for the corresponding topologies.

Proof. First using the definition (3.15) and the direct inequality (3.1), a straightforward computation gives that∣∣∣∣∫ t

0

(
v0(s)φ(L, s) + v1(s)φx(L, s)

)
ds

∣∣∣∣ =
∣∣∣∣∫ t

0

(
v0(s)φ(L, s) + ṽ1(s)φxt(L, s)

)
ds

∣∣∣∣ ≤ C(‖v0‖L2(0,T )

+‖ṽ1‖L2(0,T )

)(
‖φ(L, ·)‖L2(0,T ) + ‖φxt(L, ·)‖L2(0,T )

)
≤ C

(
‖v0‖L2(0,T ) + ‖v1‖H1(0,T )′

)(
‖Φ0‖H + ‖Φ1‖V ′

)
.

This implies that the linear form L is continuous in the space H × V ′. Moreover we have

‖L‖ ≤ C
(
‖u0‖V + ‖u1‖H + ‖v0‖L2(0,T ) + ‖v1‖H1(0,T )′

)
. (3.19)

From Riesz’s representation theorem, there exists a unique (U(t), Ut(t)) ∈ V ×H such that

L(Φ0,Φ1) = 〈(−Ut(t), U(t)), (Φ0,Φ1)〉H×V,H×V ′

for all (Φ0,Φ1) ∈ H × V ′. Then indeed setting

(−ut(t), u(t)) := S(t)(−Ut(t), U(t))

we obtain the equation (3.14). Moreover from (3.19) it follows that

‖u(t)‖V + ‖ut(t)‖H ≤ C
(
‖u0‖V + ‖u1‖H + ‖v0‖L2(0,T ) + ‖v1‖H1(0,T )′

)
. (3.20)

Now let v0 ∈ C∞([0, T ]), v1 ∈ C∞([0, T ]). We know that the equation (2.11) admits a smooth solution u
possessing the regularity (3.17). Since C∞([0, T ]) is dense in L2(0, T ) and in H1(0, T )′, by virtue of (3.20) we see
that the weak solution u satisfies also the regularity (3.17). The continuous dependence of the application (3.18)
follows also from (3.20). The proof is complete. 2

Theorem 3.4. Let T > 0. Then for all (u0, u1) ∈ V × H, there exist two controllers v0 ∈ L2(0, T ) and
v1 ∈ H1(0, T )′ such that the weak solution u of the controlled problem (3.11) satisfies the final conditions

u(T ) = ut(T ) = 0. (3.21)

Proof. Let Φ be the solution of homogeneous system (2.11) with the initial data (Φ0,Φ1) ∈ H × V ′. We define
the semi-norm

‖(Φ0,Φ1)‖2F =
∫ T

0

(
φ2(L, t) + φ2

xt(L, t)
)
dt. (3.22)

Thanks to the inequalities (3.1, 3.2), we know that (3.22) defines an equivalent norm in the space F = H × V ′.
Choosing the controllers v0, v1 as follows

v0(t) = φ(L, t), v1(t) = − d

dt
φxt(L, t). (3.23)
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According to the direct inequality (3.1), we have

‖v0‖2L2(0,T ) + ‖v1‖2H1(0,1)′ ≤ C
(
‖Φ0‖2H + ‖Φ1‖2V ′

)
. (3.24)

Next we solve the backward problem

utt +Au = v, u(T ) = ut(T ) = 0. (3.25)

Thanks to Theorem 3.2 we see that (3.25) admits a unique weak solution possessing the regularity (3.17). In
particular, we have

‖u(t)‖V + ‖ut(t)‖H ≤ C
(
‖v0‖L2(0,T ) + ‖v1‖H1(0,T )′

)
. (3.26)

Now defining the operator Λ as

Λ(Φ0,Φ1) = (ut(0),−u(0)), ∀(Φ0,Φ1) ∈ H × V ′ (3.27)

by virtue of the inequalities (3.26) and (3.24) we obtain that

‖Λ(Φ0,Φ1)‖V×H ≤ C
(
‖v0‖L2(0,T ) + ‖v1‖H1(0,T )′

)
≤ C‖(Φ0,Φ1)‖H×V ′ .

This proves that Λ is a linear continuous operator from H × V ′ into V ×H.
Now multiplying the backward equation (3.25) by Φ and integrating by parts so that we obtain that

−(u0,Φ1)H + (u1,Φ0)H =
∫ t

0

(
φ2(L, s) + φ2

xt(L, s)
)
ds. (3.28)

Interpreting (3.28) into the following form

〈Λ(Φ0,Φ1), (Φ0,Φ1)〉H×V,H×V ′ = ‖(Φ0,Φ1)‖2F (3.29)

and using Lax-Milgram’s theorem, we deduce that Λ is an isomorphism from H × V ′ onto H × V . Therefore
given any (u1,−u0) ∈ H × V , there exists a unique (Φ0,Φ1) ∈ H × V ′ such that

Λ(Φ0,Φ1) = (ut(0),−u(0)) = (u1,−u0). (3.30)

This means precisely that the weak solution u of the backward problem (3.25), with the right-hand side v given
by (3.23), satisfies the initial value conditions

u(0) = u0, ut(0) = u1. (3.31)

In other words, we have proved that the system (3.11) is driven to rest by the singular controls v0, v1 given
in (3.23). The proof is thus complete. 2

In the following, we consider the exact controllability of (3.11) by means of only one controller. We first give
the following inverse inequality.

Theorem 3.5. Let L < 3 and T > 0. Then for any (u0, u1) ∈ V ×H there exists a control v1 ∈ H1(0, 1)′

such that the solution u of the controlled problem (3.11) satisfies the final conditions (3.21).
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Proof. We first solve the homogeneous system (2.11) for (Φ0,Φ1) ∈ H × V ′. Defining the semi-norm

‖(Φ0,Φ1)‖2F =
∫ T

0

φ2
xt(L, t)dt, (3.32)

then thanks to the inequalities (3.1) and (3.8) we know that (3.32) defines an equivalent norm in the space
F = H × V ′.

Choosing the controllers v0, v1 as follows

v0 = 0, v1(t) = − d

dt
φxt(L, t). (3.33)

According to the direct inequality (3.1), we have

‖v1‖2H1(0,1)′ ≤ C
(
‖Φ0‖2H + ‖Φ1‖2V ′

)
. (3.34)

Now we solve again the backward problem (3.25) with the control chosen in (3.33). Recall that in that case
Theorem 3.3 remains valid. In particular, we have

‖u(t)‖V + ‖ut(t)‖H ≤ C‖v1‖H1(0,T )′ . (3.35)

Next we define the operator Λ as in (3.25). Then from the inequalities (3.34) and (3.35) we deduce that

‖Λ(Φ0,Φ1)‖V×H ≤ C‖v1‖H1(0,T )′ ≤ C‖(Φ0,Φ1)‖H×V ′ .

Therefore Λ is a linear continuous operator from H × V ′ into V ×H.
Now multiplying the equation (3.25) by Φ and integrating by parts, we obtain that

−(u0,Φ1)H + (u1,Φ0)H =
∫ T

0

φ2
xt(L, s)ds. (3.36)

Interpreting (3.36) into the following form

〈Λ(Φ0,Φ1), (Φ0,Φ1)〉H×V,H×V ′ = ‖(Φ0,Φ1)‖2F (3.37)

and using Lax-Milgram’s theorem we deduce that Λ is an isomorphism from H × V ′ onto H × V . Therefore
given any (u1,−u0) ∈ H × V , there exists a unique (Φ0,Φ1) ∈ H × V ′ such that

Λ(Φ0,Φ1) = (ut(0),−u(0)) = (u1,−u0). (3.30)

This means precisely that the weak solution u of the backward problem (3.25), with the right-hand side v given
by (3.23), satisfies the initial value conditions

u(0) = u0, ut(0) = u1. (3.31)

In other words, we have proved that the system (3.11) is driven to rest by the singular controls v0, v1 given
in (3.23). The proof is thus complete. 2



196 B. RAO

4. Exact controllability for smooth initial data

In the last section, we will consider the exact controllability of the system (3.11) using regular controls. To
this end, we will choose a weaker norm ‖ · ‖F (see [5], pp. 122-127). We first give the following estimates.

Theorem 4.1. Let Φ(x, t) = (φ(x, t), φ(L, t), φx(L, t)) be the solution of the equation (2.11). Then for any
T > 0, there exist constants C1 > 0 and C2 > 0 depending only on T such that the following estimates hold

C1

∫ T

0

{(∫ t

0

φ(L, s)ds
)2

+ φ2
x(L, t)

}
dt ≤ ‖Φ0‖2V ′ + ‖Φ1‖2D(A)′ , (4.1)

‖Φ0‖2V ′ + ‖Φ1‖2D(A)′ ≤ C2

∫ T

0

{(∫ t

0

φ(L, s)ds
)2

+ φ2
x(L, t)

}
dt. (4.2)

Proof. The proof is similar to that of Theorem 3.1. For the sake of completeness, we give a sketch of the proof.
In fact, because of the density we consider only the initial data (Φ0,Φ1) ∈ D(A∞)×D(A∞). Then indeed we
define

Φ̂0 = −A−1Φ0, Φ̂1 = −A−1Φ1 .

It is easy to see that

‖Φ̂0‖2V + ‖Φ̂1‖2H = ‖Φ0‖2V ′ + ‖Φ1‖2D(A)′ . (4.3)

Let Φ̂ solve the equation

Φ̂tt +AΦ̂ = 0, Φ̂(0) = Φ̂0, Φ̂t(t) = Φ̂1(0). (4.4)

Applying the inequalities (2.17, 2.18) (with β = 1) to the solution Φ̂, we obtain that

C1

∫ T

0

(
|φ̂t(L, t)− φ̂t(L, 0)|2 + φ̂2

xtt(L, t)
)
dt ≤ ‖Φ̂0‖2V + ‖Φ̂1‖2H , (4.5)

‖Φ̂0‖2V + ‖Φ̂1‖2H ≤ C2

∫ T

0

(
|φ̂t(L, t)− φ̂t(L, 0)|2 + φ̂2

xtt(L, t)
)
dt . (4.6)

On the other hand, since

Φ̂tt(0) = −AΦ̂(0) = Φ0, Φ̂ttt(0) = −AΦ̂t(0) = Φ1

then we have Φ̂tt = Φ. It follows that

φ̂xtt(L, t) = φx(L, t), φ̂t(L, t)− φ̂t(L, 0) =
∫ t

0

φ(L, s)ds . (4.7)

Inserting (4.7) into (4.5, 4.6) and using (4.3), we obtain the inequalities (4.1, 4.2). The proof is complete. 2
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Theorem 4.2. Let Φ(x, t) = (φ(x, t), φ(L, t), φx(L, t)) be the solution of the equation (2.11). Assume that
L < 3. Then for any T > 0, there exists constant C2 > 0 depending only on L, T such that the following
estimate holds

‖Φ0‖2V ′ + ‖Φ1‖2D(A)′ ≤ C2

∫ T

0

φ2
x(L, t)dt. (4.8)

Proof. The proof is similar to that of Theorem 4.1. It is sufficient to apply the inequality (2.42) to the solution Φ̂
of the equation (4.4).

Now we consider the exact controllability of the equation (3.11) by means of regular controls

v0 = −
∫ t

T

ṽ0(s)ds ∈ H1(0, T ), v1(t) ∈ L2(0, T ). (4.9)

For the wellposedness of the equation (3.11) with the controls (4.9), we first interpret (3.14) into the following
form

L(Φ0,Φ1) = 〈(−ut(t), u(t)), S(t)(Φ0,Φ1)〉V×D(A),V ′×D(A)′ (4.10)

where the linear form L is defined by

L(Φ0,Φ1) =
∫ t

0

ṽ0(s)
(∫ s

0

φ(L, τ)dτ
)
ds+

∫ t

0

v1(s)φx(L, s)ds+ 〈u0,Φ1〉D(A)×D(A)′ − 〈u1,Φ0〉V×V ′ . (4.11)

Theorem 4.3. Let v0, v1 be chosen in (4.9). Then for any (u0, u1) ∈ D(A) × V and (v0, v1) ∈ H1(0, T )
×L2(0, T ), the equation (3.11) admits a unique weak solution u such that

u ∈ C0([0, T ];D(A)) ∩C1([0, T ];V ) (4.12)

defined in the sense that the equation (4.10) is satisfied for all 0 < t < T and all (Φ0,Φ1) ∈ V ′ × D(A)′.
Moreover the linear application

(u0, u1, v0, v1)→ (u, ut) (4.13)

is continuous for the corresponding topologies.

Proof. First using the direct inequality (4.1), a straightforward computation gives that∣∣∣∣∫ t

0

(
ṽ0(s)

∫ s

0

φ(L, τ)dτ
)
ds +

∫ t

0

v1(s)φx(L, s)ds
∣∣∣∣2

≤
(
‖v̂0‖2L2(0,T ) + ‖ṽ1‖2L2(0,T )

) ∫ T

0

(∫ s

0

|φ(L, τ)|2dτ + |φx(L, s)|2
)
ds

≤ C
(
‖v0‖H1(0,T ) + ‖v1‖L2(0,1)

)(
‖Φ0‖V ′ + ‖Φ1‖D(A)′

)
.

This implies that the linear form L is continuous in the space V ′ ×D(A)′. Moreover we have

‖L‖ ≤ C
(
‖u0‖D(A) + ‖u1‖V + ‖v0‖H1(0,T ) + ‖v1‖L(0,1)

)
. (4.14)
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From Riesz’s representation theorem, there exists a unique (U(t), Ut(t)) ∈ D(A) × V such that

L(Φ0,Φ1) = 〈(−Ut(t), U(t)), (Φ0,Φ1)〉H×V,H×V ′ (4.15)

for all (Φ0,Φ1) ∈ H × V ′. Then indeed setting

(−ut(t), u(t)) := S(t)(−Ut(t), U(t))

we get the equation (4.10). Moreover we have

‖u(t)‖D(A) + ‖ut(t)‖V ≤ C
(
‖u0‖D(A) + ‖u1‖V + ‖v0‖H1(0,T ) + ‖v1‖L(0,1)

)
. (4.16)

Using the same argument as that at the end of the proof of Theorem 3.1, we prove the regularity (4.11) of the
weak solution and the continuous dependence of the application (4.13).

Theorem 4.3. Let T > 0. Then for all (u0, u1) ∈ D(A) × V , there exist two controls v0 ∈ H1(0, T ) and
v1 ∈ L2(0, T ) such that the weak solution u of the problem (3.11) satisfies the final conditions (3.21).

Proof. Let Φ be the weak solution of the homogeneous equation (2.11) with the initial data (Φ0,Φ1) ∈ V ′×D(A)′.
Defining the semi-norm

‖(Φ0,Φ1)‖2F =
∫ T

0

{(∫ t

0

φ(L, s)ds
)2

+ φ2
x(L, t)

}
dt, (4.17)

then thanks to the inequalities (4.1, 4.2) we know that (4.17) defines an equivalent norm in the space
F = V ′ ×D(A)′.

Taking the controllers v0, v1 as follows

v0(t) = −
∫ t

T

∫ s

0

φ(L, τ)dτds, v1(t) = φx(L, t) (4.18)

from the direct inequality (4.1), we have

‖v0‖2H1(0,T ) + ‖v1‖2L2(0,T ) ≤ C
(
‖Φ0‖2V ′ + ‖Φ1‖2D(A)′

)
. (4.19)

Next we solve the backward problem (3.25) with the right-hand side given by (4.18), and define the operator Λ
as in (3.25). By virtue of (4.12, 4.16) and (4.19) we see that Λ is a linear continuous operator from V ′ ×D(A)′

into D(A)× V ′.
Now multiplying the equation (3.25) by Φ and integrating by parts, we obtain that

−(u0,Φ1)H + (u1,Φ0)H =
∫ T

0

{(∫ t

0

φ(L, s)ds
)2

+ φ2
x(L, t)

}
dt. (4.20)

Interpreting (4.20) into the following form

〈Λ(Φ0,Φ1), (Φ0,Φ1)〉V×D(A),V ′×D(A)′ = ‖(Φ0,Φ1)‖2F (4.21)

and using Lax-Milgram’s theorem we deduce that Λ is an isomorphism from V ′ × D(A)′ onto V × D(A).
Therefore given any (u1,−u0) ∈ H × V , there exists a unique (Φ0,Φ1) ∈ H × V ′ such that

Λ(Φ0,Φ1) = (ut(0),−u(0)) = (u1,−u0). (4.22)
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This means precisely that the weak solution u of the backward problem (3.25), with the right-hand side v given
by (4.18), satisfies the initial value conditions (3.31). On other word, we have proved that the system (3.11) is
driven to rest by the singular controls v0, v1 given in (4.18). The proof is thus complete. 2

Theorem 4.4. Let L < 3 and T > 0. Then for any (u0, u1) ∈ D(A)×V there exists a controller v1 ∈ L2(0, T )
such that the weak solution u of the controlled problem (3.11) satisfies the final conditions (3.21).

Proof. Let Φ(t) be the solution of the homogeneous equation (2.11). We define the semi-norm

‖(Φ0,Φ1)‖2F =
∫ T

0

|φxt(L, t)|2dt. (4.21)

Thanks to the inequalities (4.1) and (4.8), we know that (4.21) defines an equivalent norm in the space
F = V ′ ×D(A)′.

We next solve the the backward problem (3.25) with the following controls

v0 = 0, v1(t) = φx(L, t) ∈ L2(0, T ). (4.22)

Defining the operator Λ as in (3.25), then by virtue of (4.16) and (4.19) we see that Λ is a linear continuous
operator from V ′ ×D(A)′ into V ×D(A).

Multiplying the equation (3.25) by Φ and integrating by parts so that we obtain that

〈Λ(Φ0,Φ1), (Φ0,Φ1)〉V×D(A),V ′×D(A)′ = ‖(Φ0,Φ1)‖2F . (4.23)

Therefore Λ is an isomorphism from V ′ ×D(A)′ onto D(A)× V . Using the principle of the HUM, we conclude
that for any (u1,−u0) ∈ V ×D(A) there exists a controller v1 ∈ L2(0, T ) such that the weak solution u of the
backward problem (3.11) satisfies the final conditions (3.21). The proof is thus complete. 2
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