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ON THE GEOMETRY OF GOURSAT STRUCTURES

William Pasillas-Lépine
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Abstract. A Goursat structure on a manifold of dimension n is a rank two distribution D such
that dim D(i) = i + 2, for 0 ≤ i ≤ n − 2, where D(i) denote the elements of the derived flag of D,
defined by D(0) = D and D(i+1) = D(i) + [D(i),D(i)]. Goursat structures appeared first in the work of
von Weber and Cartan, who have shown that on an open and dense subset they can be converted into
the so-called Goursat normal form. Later, Goursat structures have been studied by Kumpera and Ruiz.
In the paper, we introduce a new local invariant for Goursat structures, called the singularity type, and
prove that the growth vector and the abnormal curves of all elements of the derived flag are determined
by this invariant. We provide a detailed analysis of all abnormal and rigid curves of Goursat structures.
We show that neither abnormal curves, if n ≥ 6, nor abnormal curves of all elements of the derived
flag, if n ≥ 9, determine the local equivalence class of a Goursat structure. The latter observation is
deduced from a generalized version of Bäcklund’s theorem. We also propose a new proof of a classical
theorem of Kumpera and Ruiz. All results are illustrated by the n-trailer system, which, as we show,
turns out to be a universal model for all local Goursat structures.

Résumé. Une structure de Goursat sur une variété de dimension n est une distribution D de rang
deux telle que dim D(i) = i + 2, pour i = 0, ..., n− 2, où les D(i) sont les éléments du drapeau dérivé
de D, définis par D(0) = D et D(i+1) = D(i) + [D(i),D(i)]. Les structures de Goursat sont d’abord
apparues dans les travaux de von Weber et de Cartan, qui ont montré que sur un ouvert dense elles
peuvent être transformées en la forme normale de Goursat. Ensuite, les structures de Goursat ont été
étudiées par Kumpera et Ruiz. Dans cet article, nous introduisons un nouvel invariant local pour les
structures des Goursat, appelé le type de singulatité, et montrons que le vecteur de croissance et les
courbes anormales de tous les éléments du drapeau dérivé sont déterminés par cet invariant. Nous
donnons une analyse détaillée de toutes les courbes anormales et rigides. Nous montrons que ni les
courbes anormales, lorsque n ≥ 6, ni les courbes anormales de tous les éléments du drapeau dérivé,
lorsque n ≥ 9, determinent la classe d’équivalence locale d’une structure de Goursat. Cette dernière
observation est déduite d’une version généralisée du théorème de Bäcklund. Nous proposons aussi une
nouvelle preuve d’un théorème classique de Kumpera et Ruiz. Tous nos résultats sont illustrés par le
camion avec n remorques, qui, comme nous le montrons, s’avère être un modèle universel pour toutes
les structures de Goursat.
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Introduction

Let D be a smooth rank k distribution on a smooth manifold M , that is a map that assigns smoothly to each
point p in M a linear subspace D(p) ⊂ TpM of dimension k. The derived flag of D is the sequence defined by
D(0) = D and D(i+1) = D(i) +[D(i),D(i)], for i ≥ 1. A Goursat structure on a manifoldM of dimension n ≥ 3 is
a rank two distribution D such that, for 0 ≤ i ≤ n−2, the elements of its derived flag satisfy dimD(i)(p) = i+2,
for each point p in M . Goursat structures were introduced, using the dual language of Pfaffian systems, by
von Weber in 1898. The first period of interest in this special class of distributions culminated in the work of
Cartan and Goursat. A new period was initiated by Giaro, Kumpera, and Ruiz at the end of the seventies.
A renewal of interest in Goursat structures has been observed from the mid of nineties.

There are at least three reasons explaining those one century long studies. The first reason is that any
Goursat structure on Rn can be locally converted (on an open and dense subset, as it was observed only later
by Giaro et al. [20]) into the so-called Goursat normal form, also known as chained form:(

∂

∂xn
, xn

∂

∂xn−1
+ · · ·+ x3

∂

∂x2
+

∂

∂x1

)
·

It seems that von Weber [72] was the first to exhibit this property and, indeed, Goursat [22] attributes to him
this result. In fact, the starting point of von Weber’s studies was the following question: “when is a given
distribution equivalent to Goursat normal form?”, which had led him to discover the concept of derived flag.
This question is very natural because Goursat normal form has a clear geometric interpretation. Indeed, let
us consider the space Jk(R,R) of k-jets of maps from R to R. On the one hand, a necessary condition for a
curve in Jk(R,R) to be a prolongation of a graph of a function from R to R is that it is an integral curve of a
distribution which, in the canonical coordinates of Jk(R,R), is spanned by the Goursat normal form on Rk+2.
On the other hand, a necessary and sufficient condition for a diffeomorphism of Jk(R,R) to map prolongations
of graphs of functions into prolongations of graphs of functions is to preserve the distribution spanned by the
Goursat normal form on Rk+2. Such diffeomorphisms are called contact transformations [55] of order k and
have been intensively studied by Bäcklund [2], and by Lie and Scheffers [40].

The second reason of interest in Goursat structures has been the classical problem, first considered by Monge,
of integrating underdetermined differential equations (equivalently, Pfaffian systems) without integration. To
be more precise, let D be a rank k distribution on M . The problem (see e.g. [21] and [74]) is to find k smooth
functions ϕ1, . . . , ϕk such that any integral curve γ(t) of D can be expressed as a smooth function of ϕ1, . . . , ϕk
and their time-derivatives along γ(t). The most important achievement of the first period of studies on Goursat
structures was a result of Cartan [11], who showed that a rank two distribution possesses the above described
property if and only if it is transformable into Goursat normal form.

The third reason of importance of Goursat structures is that they describe the nonholonomic constraints
of many mechanical systems. For example, the kinematical constraints of a passenger car are described by a
Goursat structure on R2× (S1)2; those of a truck by a Goursat structure on R2× (S1)3. Moreover, for Goursat
structures the nonholonomic motion planning problem can be solved explicitly; either by transforming them
into Goursat normal form, as suggested by Murray and Sastry (see e.g. [53] and [54]), or by using the concept
of flatness, introduced in control theory by Fliess, Lévine, Martin, and Rouchon, which is the above described
property of calculating the trajectories without integration (see e.g. [43] and [17]).

As we said, the second period of studies on Goursat structures began with a work of Giaro et al. [20], who
observed that there are Goursat structures which are not locally equivalent to Goursat normal form. This
observation raised the problem of classification of Goursat structures and that of finding their invariants, and
has led Kumpera and Ruiz to write their important paper [32], where they gave a complete classification, up
to dimension 7, together with a set of general results on Goursat structures.

In the nineties, research on Goursat structures was concentrated around two main topics: the classifica-
tion problem and the nonholonomic motion planning problem for mechanical systems described by Goursat
structures. Among results concerning the classification problem, Murray [53] obtained, using the concept of
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growth vector1, an easily checkable necessary and sufficient condition for a Goursat structure to be equivalent to
Goursat normal form (his condition simplifies those of Libermann [39] and Kumpera and Ruiz [32]). Gaspar [19]
and, independently, Cheaito and Mormul [12] corrected the classification proposed by Kumpera and Ruiz in
dimension 7. Complete classifications were then obtained in dimension 8, by Cheaito and Mormul [12], and in
dimension 9, by Mormul [50]. It turns out that this dimension is the highest one in which there is a finite number
of non-equivalent Goursat structures. Indeed, Cheaito et al. [13] showed that in higher dimensions there are
real continuous parameters in the classification. Note, however, that in each dimension all Goursat structures
are finitely determined, which implies that there are no functional parameters in the classification. Although
new important results have been recently obtained by Mormul [52] and Montgomery and Zhitomirskĭı [46], the
general classification problem is still open in dimensions higher that 9.

Most of the work concerning mechanical control systems described by Goursat structures has been motivated
by the study of the n-trailer system. It would be impossible to give here a complete set of references on this
subject. We have thus chosen to cite two books [36,38], and to give a few references concerning standard control
theory problems for the n-trailer system and chained systems.

The controllability of the n-trailer system has been proved by Laumond both for regular [34] and singular [35]
configurations. Improved bounds for the nonholonomy degree of the n-trailer at singular configurations have
been obtained by Sørdalen [63], Luca and Risler [42], and Jean [29]. For regular configurations, an explicit
conversion of the n-trailer system into chained form has been obtained by Sørdalen [62]; for singular configura-
tions, an explicit conversion of the n-trailer system into Kumpera-Ruiz normal form has been obtained by the
authors [57] (see also Sect. 3).

Open loop motion planning has been investigated for general nonholonomic systems by Brockett [4],
Lafferriere and Sussmann [33], and Liu [41]. For chained systems, these results have been considerably simplified
by Murray and Sastry [54] (using the special properties of chained form) and by Fliess et al. [17] (using the con-
cept of flatness). Combined with the conversion of the n-trailer into chained form obtained by Sørdalen [62], they
have led to a solution of the nonholonomic motion planning problem for the n-trailer system (see e.g. [37, 60],
and [69]).

Path tracking of non-abnormal trajectories has been studied by Fliess et al. [17], Jiang and
Nijmeijer [30], and Walsh et al. [71]. Since for chained systems constant trajectories (points) are abnormal, the
proposed path tracking strategies cannot be applied to achieve pointwise stabilization. Indeed, the lineariza-
tion of a chained system around such trajectories is not controllable. The first who observed the difficulties
of pointwise stabilization for control systems without drift was Brockett [5]. General algorithms for pointwise
stabilization of nonholonomic systems can be found in the work of Coron [14], Pomet [58], McCloskey and
Murray [44], and Morin and Samson [47]. For chained systems, improved results have been obtained by
Samson [61], Sørdalen and Egeland [64], and Teel et al. [68]. These methods have been successfully applied to
the n-trailer system (see e.g. Samson [61], Sørdalen and Wichlund [66], and the references given there).

Our paper is devoted to a study of the geometry of Goursat structures. Our first main contribution is to
introduce a new local invariant for Goursat structures, called the singularity type, whose definition is based on
the following observation, which goes back to Cartan [11] (compare [8, 13,32,43,46], and Appendix C). If D is
a Goursat structure then each element D(i) of its derived flag contains an involutive subdistribution Ci ⊂ D(i)

that has constant corank one in D(i) and is characteristic for D(i+1). The singularity type reflects the geometry
of incidence between the distributions D(i) and the distributions Ci. Although, as we prove, the singularity type
keeps the same information about a Goursat structure as the growth vector, that information is encoded in the
singularity type in a much more systematic and, what is extremely important, in a much more geometric way.
In particular, the geometric information contained in the singularity type enables us to describe completely all
abnormal curves of all elements of the derived flag. This can be summarized in the following theorem, which is
a combination of Theorem 5.6 and Theorem 6.3, and gives one of the main results of the paper.

1The Lie flag of a distribution D is the sequence defined by D0 = D and Di+1 = Di + [D0,Di], for i ≥ 1. The sequence
(dimDi(p))i≥0 is called the growth vector of D at p.
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Theorem 1. Let D and D̃ be two Goursat structures defined on two manifolds M and M̃ , respectively, of
dimension n ≥ 3. Fix two points p and p̃ of M and M̃ , respectively. The three following conditions are
equivalent:

(i) the singularity type of D at p equals the singularity type of D̃ at p̃;
(ii) the growth vector of D at p equals the growth vector of D̃ at p̃;
(iii) there exists a diffeomorphism ϕ, with p̃ = ϕ(p), between two small enough neighborhoods of p and p̃ that

transforms the abnormal curves of D(i) into the abnormal curves of D̃(i), for each i ≥ 0.

A crucial example that we will use to illustrate our results on Goursat structures is the n-trailer system, that is
a mobile robot (unicycle) towing n trailers. We will explicitly show how to transform locally the n-trailer system
into a Kumpera-Ruiz normal form, and we will prove a surprising result, which is the second main contribution
of the paper, stating that any Goursat structure is locally equivalent to the n-trailer system around a well
chosen point of its configuration space (after the paper had been submitted, we learnt that an alternative proof
of this result has been proposed by Montgomery and Zhitomirskĭı [46]). This property will enable us to use
for any Goursat structure a deep result of Jean [29] devoted to singular configurations of the n-trailer system,
in particular we will extend to all Goursat structures Jean’s formula for the growth vector of the n-trailer
system. In our work, the singularity type will replace the angles of the n-trailer system that appear in Jean’s
theorem. We will also calculate rigid curves of the n-trailer and give their natural mechanical interpretation:
they correspond to motions that fix the positions of the centers of at least two trailers.

In the paper, we propose an inductive procedure of constructing Kumpera-Ruiz normal forms of Goursat
structures based on two types of prolongations: regular and singular. This construction provides a systematic
and unifying approach to many results of the paper. In particular, it will be used to show that any Goursat
structure can be brought to a Kumpera-Ruiz normal form; to study generalized contact transformations, that
is transformations which preserve Goursat structures; and to define the above mentioned transformations that
transform locally the n-trailer system into a Kumpera-Ruiz normal form, and, conversely, that convert locally
an arbitrary Goursat structure into the n-trailer system around a well chosen point of its configuration space.

Recent studies (see [26] and [45]) show that most distributions are determined by their abnormal curves. Our
complete description of abnormal curves of Goursat structures enables us to conclude that this is not the case
for Goursat structures. Indeed, combining our study with the main theorem of [13] leads us to the following
result, which is the third main contribution of the paper: neither abnormal curves, if n ≥ 6, nor abnormal
curves of all elements of the derived flag, if n ≥ 9, determine the local equivalence class of a Goursat structure
(see Prop. 7.4 and Prop. 7.5). The latter observation is deduced from Theorem 7.3, which provides a generalized
version of Bäcklund’s theorem. In other words, the singularity type (equivalently, the growth vector) determines
completely the collection of all abnormal curves of a Goursat structure but does not characterize the collection
of all integral curves.

The paper is organized as follows. In Section 1, we introduce Goursat structures, we give some examples
in small dimension, and we define Goursat normal form. In Section 2, we provide an inductive definition of
Kumpera-Ruiz normal form. The proposed concept of prolongations enables us to give a new proof of the
Kumpera-Ruiz theorem (presented in Appendix A), which states that any Goursat structure can be converted
locally into a Kumpera-Ruiz normal form. In Section 3, we introduce the n-trailer system and we construct
transformations that bring locally the n-trailer system into a Kumpera-Ruiz normal form and, conversely, that
bring an arbitrary Goursat structure into the n-trailer system. In Section 4, we introduce our main invariant
of Goursat structures, namely, the singularity type. We also compute the singularity type for Kumpera-Ruiz
normal forms and for the n-trailer system. As we have said, the singularity type keeps the same information
about Goursat structures as the growth vector although in both invariants that information is encoded in a
different way. Section 5 is devoted to study relations between these two invariants. In particular, we give a
formula to compute the growth vector of an arbitrary Goursat structure and another to compute the singularity
type using the growth vector. In Section 6 we study abnormal curves of Goursat structures. We give a complete
description of absolutely continuous abnormal curves for all elements of the derived flag of any Goursat structure.
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We prove that the whole information about all abnormal curves is given by the singularity type. In Section 7
we study generalized contact transformations, that is transformations which preserve Goursat structures (also
called symmetries) and we give formulas to calculate them starting from first order contract transformations.
Those formulas are used to analyze examples of Goursat structures that are non-equivalent but that have
diffeomorphic abnormal curves.

In Appendix A, we give our proof of the Kumpera-Ruiz theorem. Appendix B contains proofs of results that
describe abnormal curves. Appendix C is devoted to a class of distributions that, although of rank greater than
two, are very close to Goursat structures. This class was initially studied by von Weber. In Appendix D, we
construct a normal form that we use in our study of rigidity of integral curves of Goursat structures. Finally, in
Appendix E, we illustrate through a set of figures different configurations of the n-trailer system corresponding
to various Kumpera-Ruiz normal forms in dimensions 3, 4, 5, and 6.

The authors would like to thank an anonymous reviewer for his comments, which helped to improve the presentation.

1. Goursat structures

In this section we introduce Goursat structures, the main object of our study, which form a particular class
of rank two distributions. In the successive subsections we, respectively, define Goursat structures, give simple
examples, and introduce Goursat normal form, which serves as a canonical form for any Goursat structure at a
typical point.

1.1. Derived flag and Goursat structures

A rank k distribution D on a smooth manifoldM is a map that assigns smoothly to each point p in M a linear
subspace D(p) ⊂ TpM of dimension k. In other words, a rank k distribution is a smooth rank k subbundle of
the tangent bundle TM . Such a field of tangent k-planes is spanned locally by k pointwise linearly independent
smooth vector fields f1, . . . , fk on M , which will be denoted by D = (f1, . . . , fk).

Two distributions D and D̃ defined on two manifolds M and M̃ , respectively, are equivalent if there exists a
smooth diffeomorphism ϕ between M and M̃ such that

(ϕ∗D)(p̃) = D̃(p̃),

for each point p̃ in M̃ . They are locally equivalent at two points p and p̃ that belong to M and M̃ , respectively,
if there exists two small enough neighborhoods U and Ũ of p and p̃, respectively, and a diffeomorphism ϕ
between U and Ũ such that ϕ(p) = p̃ and (ϕ∗D)(p̃) = D̃(p̃), for each point p̃ in Ũ .

The derived flag of a distribution D is the sequence D(0) ⊂ D(1) ⊂ · · · defined inductively by

D(0) = D and D(i+1) = D(i) + [D(i),D(i)], for i ≥ 0. (1)

This sequence should not be confused with the Lie flag (33), which will be introduced in Section 5.1.

Definition 1.1. A Goursat structure on a manifold M of dimension n ≥ 3 is a rank two distribution D such
that, for 0 ≤ i ≤ n − 2, the elements of its derived flag satisfy dimD(i)(p) = i+ 2, for each point p in M .

1.2. Examples of Goursat structures

A Goursat structure on a three-manifold is a contact structure, and is locally equivalent to the distribution
spanned by (

∂

∂x3
, x3

∂

∂x2
+

∂

∂x1

)
,
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which is called Pfaff-Darboux normal form. A Goursat structure on a four-manifold is an Engel structure, and
is locally equivalent to the distribution spanned by(

∂

∂x4
, x4

∂

∂x3
+ x3

∂

∂x2
+

∂

∂x1

)
,

which is called Engel normal form. Observe that, for a generic field of planes D on R3, we have dimD(1)(p) = 3,
for any point p on an open and dense subset of R3; for a generic field of planes D on R4, we have dimD(1)(p) = 3
and dimD(2)(p) = 4, for any point p on an open and dense subset of R4. Therefore, in a small enough neigh-
borhood of a typical point, a generic field of planes on a manifold of dimension three or four is a Goursat
structure. Note, however, that starting from dimension five the class of Goursat structures is of infinite codi-
mension within the class of all rank two distributions. Indeed, for a generic field of planes D on Rn, for n ≥ 5,
we have dimD(1)(p) = 3 and dimD(2)(p) = 5, for any point p on an open and dense subset of Rn.

We give now a mechanical example. For n ≥ 0, the distribution spanned by the following pair of vector fields:(
∂

∂θn
, cos(θ0)π0

∂

∂ξ1
+ sin(θ0)π0

∂

∂ξ2
+
n−1∑
i=0

sin(θi+1)πi+1
∂

∂θi

)
, (2)

where πi =
∏n
j=i+1 cos(θj) and πn = 1, is a Goursat structure on R2 × (S1)n+1 equipped with coordinates

(ξ1, ξ2, θ0, . . . , θn). This distribution is the kinematical model for the “nonholonomic manipulator” of Sørdalen
et al. [65]. Another example is the n-trailer system (see Sect. 3), which will play a fundamental role in this
article.

1.3. Goursat normal form

The concepts of derived flag and Goursat structure were introduced, using the dual language of Pfaffian
systems, by von Weber [72] in order to characterize the class of Pfaffian systems that can be converted into a
particular normal form, also introduced by him, which is now known as Goursat normal form (see (3) below;
see also Appendix C).

Although it is not clear who was the first to prove that Goursat structures can be converted locally into
Goursat normal form, at least on an open and dense subset ([72], Th. VI), compare [6, 11, 22, 32, 53, 72]; it is
clear that the foundations of this result were set by Engel and von Weber (see [9, 16, 72], and the references
given there; see also Appendix C). The importance of this result was, however, fully understood only later,
by Cartan when he solved a long standing problem of that time: the characterization of explicitly integrable
Monge equations [11] (see also [6, 20,22,23,43,74]).

Theorem 1.2 (von Weber-Cartan-Goursat). Let D be a Goursat structure defined on a manifold M of dimen-
sion n ≥ 3. There exists an open and dense subset U ⊂ M such that, for any point p in U , the distribution D
is locally equivalent at p to the distribution spanned by the following pair of vector fields:(

∂

∂xn
, xn

∂

∂xn−1
+ xn−1

∂

∂xn−2
+ · · ·+ x3

∂

∂x2
+

∂

∂x1

)
, (3)

considered on a small enough neighborhood V ⊂ Rn of zero. Moreover, if n = 3 or 4 then U = M .

In control theory, the normal form (3) is usually called chained form. In order to keep the classical name, we
will call it Goursat normal form. An elegant characterization, using the growth vector, of the above mentioned
open and dense set U was obtained by Murray [53] (see Th. 5.2). Observe that, in most of the above mentioned
references, Goursat structures are not defined by distributions but by their duals, that is by Pfaffian systems.
Note also that many other names have been given to Goursat structures: “systeme vom Charakter eins und
vom Rang zwei” [72], “systèmes de classe zéro” [11], “systèmes spéciaux” [22], “systèmes en drapeaux” [32],
“systems of Goursat type” [7], and “systems that satisfy the Goursat condition” [50].
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2. Kumpera-Ruiz’s theorem

In this section we introduce Kumpera-Ruiz normal forms, which are normal forms for Goursat structures,
at any (regular or singular) point, that generalize Goursat normal form, defined in Section 1. In Section 2.1,
we propose an inductive definition of Kumpera-Ruiz normal forms using the notion of (regular and singular)
prolongations of vector fields. In Section 2.2, we recall a theorem of Kumpera and Ruiz, which states that
any Goursat structure is locally equivalent to a Kumpera-Ruiz normal form. A new proof of that theorem,
based on the notion of prolongation of vector fields, is given in Appendix A. In Section 2.3, we give examples
of Kumpera-Ruiz normal forms in dimensions five and six and very briefly discuss the classification problem of
Goursat structures.

2.1. Kumpera-Ruiz normal forms

If at a given point a Goursat structure can be converted into Goursat normal form then this point is called
regular ; otherwise, it is called singular. The first who observed the existence of singular points were Giaro
et al. [20]. This initial observation has led Kumpera and Ruiz to write their pioneering paper [32], where they
introduced the normal forms that we will consider in this section.

We start with the Pfaff-Darboux and Engel normal forms, given respectively onR3, equipped with coordinates
(x1, x2, x3), and R4, equipped with coordinates (x1, x2, x3, x4), by the pairs of vector fields κ3 = (κ3

1, κ
3
2) and

κ4 = (κ4
1, κ

4
2), defined by

κ3
1 =

∂

∂x3

κ3
2 = x3

∂

∂x2
+

∂

∂x1

and

κ4
1 =

∂

∂x4

κ4
2 = x4

∂

∂x3
+ x3

∂

∂x2
+

∂

∂x1
·

Loosely speaking, we can write

κ4
1 =

∂

∂x4

κ4
2 = x4κ

3
1 + κ3

2.

In order to make this precise we will adopt the following natural notation. Consider a vector field

fn−1 =
n−1∑
i=1

fn−1
i (x1, . . . , xn−1)

∂

∂xi

on Rn−1 equipped with coordinates (x1, . . . , xn−1). We can lift fn−1 to a vector field, denoted also by fn−1,
on Rn equipped with coordinates (x1, . . . , xn−1, xn) by taking

fn−1 =
n−1∑
i=1

fn−1
i (x1, . . . , xn−1)

∂

∂xi
+ 0 · ∂

∂xn
·

That is, we lift fn−1 by translating it along the xn-direction.
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Notation 2.1. From now on, in any expression of the form κn2 = α(x)κn−1
1 + β(x)κn−1

2 , the vector fields κn−1
1

and κn−1
2 should be considered as the above defined lifts of κn−1

1 and κn−1
2 , respectively.

Let κn−1 = (κn−1
1 , κn−1

2 ) denote a pair of vector fields on Rn−1. A regular prolongation, with parameter cn,
of κn−1, denoted by κn = Rcn(κn−1), is a pair of vector fields κn = (κn1 , κ

n
2 ) defined on Rn by

κn1 =
∂

∂xn

κn2 = (xn + cn)κn−1
1 + κn−1

2 , (4)

where cn belongs to R. The singular prolongation of κn−1, denoted by κn = S(κn−1), is the pair of vector fields
κn = (κn1 , κ

n
2 ) defined on Rn by

κn1 =
∂

∂xn

κn2 = κn−1
1 + xnκ

n−1
2 . (5)

Definition 2.2. A pair of vector fields κn on Rn, for n ≥ 3, is called a Kumpera-Ruiz normal form if κn =
σn−3 ◦ · · · ◦ σ1(κ3), where each σi, for 1 ≤ i ≤ n− 3, equals either S or Rci, for some real constants ci.

We will also call a Kumpera-Ruiz normal form the restriction of a Kumpera-Ruiz normal form to any open
subset of Rn. Most often, the coordinates x1, . . . , xn will be the elements of a coordinate chart x : M → Rn,
defined in a neighborhood of a given point p in M . If we have x(p) = 0 then we will say that the Kumpera-Ruiz
normal form is centered at p. For example, the two models considered in [20]:(

∂

∂x5
, x5

∂

∂x4
+ x4

∂

∂x3
+ x3

∂

∂x2
+

∂

∂x1

)
(

∂

∂x5
,
∂

∂x4
+ x5

(
x4

∂

∂x3
+ x3

∂

∂x2
+

∂

∂x1

))
,

defined by R0(κ4) and S(κ4), respectively, are Kumpera-Ruiz normal forms on R5, equipped with coordinates
(x1, . . . , x5), centered at zero.

2.2. Kumpera-Ruiz’s theorem

The following theorem of Kumpera and Ruiz shows clearly the importance of their normal forms. We will
prove this theorem in Appendix A because many of our results are based on a construction that also appears
in our proof. Moreover, we would like to emphasize two features of our proof. Firstly, it is quite close to the
original ideas of von Weber. Indeed, though we use distributions instead of Pfaffian systems, the two proofs
share the same fundamental lemma (compare [72], Th. V and Prop. A.1; see also Appendix C). Secondly, it is
to our knowledge the only one that does not mix the language of vector fields and differential forms (everything
is done in terms of vector fields). For alternative proofs we refer the reader to [12] and to the original work of
Kumpera and Ruiz [32].

Theorem 2.3 (Kumpera-Ruiz). Any Goursat structure on a manifold M of dimension n is locally equivalent,
at any point p in M , to a distribution spanned by a Kumpera-Ruiz normal form centered at p and defined on a
suitably chosen neighborhood U ⊂ Rn of zero.

This theorem is the cornerstone to understand the geometry of Goursat structures. On the one hand,
this result implies that locally, even at singular points, Goursat structures do not have functional invariants;
this property makes them precious but rare and distinguishes them from generic rank two distributions on
n-manifolds, which do have local functional invariants when n ≥ 5 (see [10,27,70,78]). But on the other hand,
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the real constants that appear in Kumpera-Ruiz normal forms are unavoidable; this fact has been observed only
recently and implies that Goursat structures do have real invariants (see [13,50], and Sect. 7).

Though our definition of Kumpera-Ruiz normal forms was inductive, it is possible to give the following
equivalent explicit definition (6), which will also be used in the paper. Observe that in the normal form (6),
we use a double indexation xij of coordinates, for 0 ≤ i ≤ m + 1, where the integer m gives the number of
singularities of the normal form, that is the number of singular prolongations (provided that σ1 is regular,
which can always be assumed without lose of generality).

Corollary 2.4. Any Goursat structure defined on a manifold M of dimension n ≥ 4 is locally equivalent, at
any point p in M , to a distribution spanned in a small neighborhood of zero by a pair of vector fields that has
the following form:  ∂

∂x0
1

,
m∑
i=0

i−1∏
j=0

xjkj

ki−1∑
j=1

(
xij + cij

) ∂

∂xij+1

+
∂

∂xi+1
1

 , (6)

where the coordinates xij, for 0 ≤ i ≤ m + 1 and 1 ≤ j ≤ ki, are centered at p; the integer m is such that
0 ≤ m ≤ n− 4; and the integers ki, for 0 ≤ i ≤ m + 1, satisfy k0 ≥ 1, . . . , km−1 ≥ 1, km ≥ 3, km+1 = 1 and∑m+1
i=0 ki = n. The constants cij, for 1 ≤ j ≤ ki − 1, are real constants.

2.3. Low dimensional examples

Let us recall the complete local classification of Goursat structures on manifolds of dimension five and six,
obtained by Giaro et al. (see [20] and [32]).

(i) Any Goursat structure on a five-manifold is locally equivalent to one of the two following Kumpera-Ruiz
normal forms (

∂

∂x5
, x5

∂

∂x4
+ x4

∂

∂x3
+ x3

∂

∂x2
+

∂

∂x1

)
(7)(

∂

∂x5
,
∂

∂x4
+ x5

(
x4

∂

∂x3
+ x3

∂

∂x2
+

∂

∂x1

))
, (8)

which are not locally equivalent at zero.
(ii) Any Goursat structure on a six-manifold is locally equivalent to one of the five following Kumpera-Ruiz

normal forms (
∂

∂x6
, x6

∂

∂x5
+ x5

∂

∂x4
+ x4

∂

∂x3
+ x3

∂

∂x2
+

∂

∂x1

)
(9)(

∂

∂x6
,
∂

∂x5
+ x6

(
x5

∂

∂x4
+ x4

∂

∂x3
+ x3

∂

∂x2
+

∂

∂x1

))
(10)(

∂

∂x6
, x6

∂

∂x5
+

∂

∂x4
+ x5

(
x4

∂

∂x3
+ x3

∂

∂x2
+

∂

∂x1

))
(11)(

∂

∂x6
, (x6 + 1)

∂

∂x5
+

∂

∂x4
+ x5

(
x4

∂

∂x3
+ x3

∂

∂x2
+

∂

∂x1

))
(12)(

∂

∂x6
,
∂

∂x5
+ x6

(
∂

∂x4
+ x5

(
x4

∂

∂x3
+ x3

∂

∂x2
+

∂

∂x1

)))
, (13)

which are pairwise locally non-equivalent at zero. Observe that these two results are not implied by Theorem 2.3.
Indeed, they show that in dimension five and six the constants that appear in Kumpera-Ruiz’s theorem can be
“normalized” to either 0 or 1.
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For n = 7, 8 and 9 the complete classification is more delicate, but there is still a finite number of models
(see [12, 19, 32], and [50]). For n ≥ 10, the number of local models is infinite (see [13, 50], and Sect. 7) and the
complete classification remains an open problem (see recent results in [51]).

3. The N-trailer system

This section is devoted to the n-trailer system, which will be a crucial example in our study of Goursat
structures. This system is composed of a mobile robot that towsn passive trailers. Since the n-trailer system is a
Goursat structure, it can be transformed locally into Goursat normal form, at regular points, and into Kumpera-
Ruiz normal form, at singular points. In Section 3.2, we provide an explicit construction of transformations that
bring locally the n-trailer system into a Kumpera-Ruiz normal form. In Section 3.3, we prove a surprising result,
which is one of the main contributions of the paper, stating that any Goursat structure is locally equivalent to
the n-trailer system around a well chosen point of its configuration space.

3.1. Definition of the N -trailer system

The kinematical model for a unicycle-like mobile robot towing n trailers such that the tow hook of each
trailer is located at the center of its unique axle is usually called, in control theory, the n-trailer system (see the
books [36] and [38]; the papers [17,25,29,34,60–62,68,69] and the references given there). Figures representing
this system are given in Appendix E. For simplicity, we will assume that the distances between any two
consecutive trailers are equal.

Definition 3.1. The n-trailer system is the distribution defined on R2 × (S1)n+1, for n ≥ 0, by the following
pair of vector fields: (

∂

∂θn
, π0 cos(θ0)

∂

∂ξ1
+ π0 sin(θ0)

∂

∂ξ2
+
n−1∑
i=0

πi+1 sin(θi+1 − θi)
∂

∂θi

)
, (14)

where πi =
∏n
j=i+1 cos(θj − θj−1) and πn = 1.

In the above definition, the functions ξ1, ξ2, θ0,..., θn are coordinates on the manifold R2 × (S1)n+1. The
coordinates ξ1 and ξ2 represent the position of the last trailer, while the coordinates θ0, . . . , θn represent,
starting from the last trailer, the angles between each trailer’s axle and the ξ1-axis. It is easy to check that the
n-trailer system is a Goursat structure (see e.g. [35]).

We give now an equivalent inductive definition of the n-trailer. This definition already appears in [29] and
reminds the one given in the previous section for Kumpera-Ruiz normal forms. To start with, consider the pair
of vector fields (τ0

1 , τ
0
2 ) on R2 × S1 that describe the kinematics of the unicycle-like mobile robot towing no

trailers:

τ0
1 =

∂

∂θ0

τ0
2 = cos(θ0)

∂

∂ξ1
+ sin(θ0)

∂

∂ξ2
·

The n-trailer system can be defined by applying successively a sequence of prolongations to this mobile robot.
In order to do this, suppose that a pair of vector fields τn−1 = (τn−1

1 , τn−1
2 ) on R2 × (S1)n, associated to the

mobile robot towing n − 1 trailers, has been defined. The pair of vector fields τn = (τn1 , τ
n
2 ) on R2 × (S1)n+1

corresponding to the n-trailer system is then given by

τn1 =
∂

∂θn

τn2 = sin(θn − θn−1)τn−1
1 + cos(θn − θn−1)τn−1

2 .
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Observe that this definition should be understood in the sense of Notation 2.1, and that the pair of vector fields
(τn1 , τ

n
2 ) coincides with that of Definition 3.1. Mechanically, to prolongate the n-trailer means to add one more

trailer to the system.

3.2. Conversion of the N -trailer system into a Kumpera-Ruiz normal form

Since the n-trailer is a Goursat structure, it follows directly from Kumpera-Ruiz’s theorem that, in a small
enough neighborhood of any point of its configuration space, in particular at any singular configuration, the
n-trailer can be converted into Kumpera-Ruiz normal form. In this section we describe this conversion ex-
plicitly. For regular configurations, our result gives the transformations proposed in [62] and [69]; for singular
configurations, our result gives a new kind of transformations.

Denote by ζ the coordinates of R2 × (S1)n+1, that is

ζ = (ζ1, ..., ζn+3) = (ξ1, ξ2, θ0, ..., θn).

Fix a point p of R2 × (S1)n+1 given in ζ-coordinates by ζ(p) = ζp = (ξp1 , ξ
p
2 , θ

p
0, ..., θ

p
n). In order to convert,

locally at p, the n-trailer into a Kumpera-Ruiz normal form we look for a local change of coordinates

(x1, . . . , xn+3) = φn(ξ1, ξ2, θ0, . . . , θn),

a Kumpera-Ruiz normal form (κn+3
1 , κn+3

2 ) on Rn+3, and three smooth functions νn, ηn, and µn such that

φn∗ (τ
n
1 ) = (νn ◦ ψn)κn+3

1

φn∗ (τ
n
2 ) = (ηn ◦ ψn)κn+3

1 + (µn ◦ ψn)κn+3
2 , (15)

where ψn = (φn)−1 denotes the inverse of the local diffeomorphism φn and both νn(ζp) 6= 0 and µn(ζp) 6= 0.
Observe that we do not demand the x-coordinates to be centered at p, and thus the point x(p) = (φn ◦ ζ)(p)
will be, in general, different from zero.

We construct inductively here a change of coordinates φn = (φ1, . . . , φn+3)T and three smooth functions νn,
ηn, and µn that satisfy (15). We start with n = 0. If θp0 6= ±π/2 mod 2π then define φ1 = ξ1, φ2 = ξ2, and
φ3 = tan(θ0). Moreover, take µ0 = cos(θ0), ν0 = sec2(θ0), and η0 = 0. If θp0 = ±π/2 mod 2π then define φ1 = ξ2,
φ2 = ξ1, and φ3 = cot(θ0). Moreover, take µ0 = sin(θ0), ν0 = − csc2(θ0), and η0 = 0. Denote si = sin(θi− θi−1)
and ci = cos(θi − θi−1), for 0 ≤ i ≤ n.

Now, consider the sequence of smooth functions defined locally around the point ζ(p), for 1 ≤ i ≤ n, by
either

φi+3 =
siνi−1 + ciηi−1

ciµi−1

µi = ciµi−1

νi = Lτi1φi+3

ηi = Lτi2φi+3, (16)

if θpi − θ
p
i−1 6= ±π/2 mod 2π (regular case) or by

φi+3 =
ciµi−1

siνi−1 + ciηi−1

µi = siνi−1 + ciηi−1

νi = Lτi1φi+3

ηi = Lτi2φi+3, (17)
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if θpi − θ
p
i−1 = ±π/2 mod 2π (singular case). It is easy to prove that, for 0 ≤ i ≤ n, the transformations defined

by (x1, . . . , xi+3) = φi(ξ1, ξ2, θ0, . . . , θi) are smooth changes of coordinates around pi and that, moreover, we
have both νi(ζpi) 6= 0 and µi(ζpi) 6= 0, where pi denotes the projection of p on R2× (S1)i+1, the product of R2

and the first i+ 1 copies of S1, that is ζpi = (ξp1 , ξ
p
2 , θ

p
0, . . . , θ

p
i ).

Proposition 3.2. For n ≥ 0, the local diffeomorphism φn and the smooth functions νn, ηn, and µn satisfy (15),
and thus convert locally the n-trailer system into a Kumpera-Ruiz normal form.

Proof of Proposition 3.2. We will prove that the relation (15) holds for n ≥ 0 by induction on the number n of
trailers. Relation (15) is clearly true for n = 0. Assume that it holds for n − 1 trailers, that is

φn−1
∗ (τn−1

1 ) = (νn−1 ◦ ψn−1)κn+2
1

φn−1
∗ (τn−1

2 ) = (ηn−1 ◦ ψn−1)κn+2
1 + (µn−1 ◦ ψn−1)κn+2

2 .

The inductive definition of the n-trailer gives

τn1 =
∂

∂θn

τn2 = sin(θn − θn−1)τn−1
1 + cos(θn − θn−1)τn−1

2 .

Recall (see the proof of Th. 2.3, given in Appendix A) that for a diffeomorphism φn = (φn−1, φn+3)T of Rn+3,
such that φn−1 depends on the first n + 2 coordinates only, and for a vector field f on Rn+3 of the form
f = αfn−1 + fn+3, where α is a smooth function on Rn+3, the vector field fn−1 is the lift of a vector field
on Rn+2 (see Notation 2.1), and the only non-zero component of fn+3 is the last one, we have

φn∗ (f) = (α ◦ ψn)φn−1
∗ (fn−1) + ((Lfφn+3) ◦ ψn)

∂

∂xn+3
· (18)

Note that the vector field φn−1
∗ (fn−1) is lifted along the xn+3-coordinate, which is defined by φn+3.

In the regular case, that is if θpi −θ
p
i−1 6= ±π/2 mod 2π, we take a regular prolongation and, using relations (16)

and (18), we obtain:

φn∗ (τ
n
2 ) = (sn ◦ ψn)φn−1

∗ (τn−1
1 ) + (cn ◦ ψn)φn−1

∗ (τn−1
2 ) +

(
(Lτn2 φn+3) ◦ ψn

) ∂

∂xn+3

= ((snνn−1 + cnηn−1) ◦ ψn)κn+2
1 + ((cnµn−1) ◦ ψn)κn+2

2 + (ηn ◦ ψn)κn+3
1

= (cnµn−1 ◦ ψn)
((

snνn−1 + cnηn−1

cnµn−1
◦ ψn

)
κn+2

1 + κn+2
2

)
+ (ηn ◦ ψn)κn+3

1

= (µn ◦ ψn)
(
xn+3κ

n+2
1 + κn+2

2

)
+ (ηn ◦ ψn)κn+3

1

= (ηn ◦ ψn)κn+3
1 + (µn ◦ ψn)κn+3

2 .

In the singular case, that is if θpi − θ
p
i−1 = ±π/2 mod 2π, we take the singular prolongation and, using rela-

tions (17) and (18), we obtain:

φn∗ (τ
n
2 ) = ((snνn−1 + cnηn−1) ◦ ψn)

(
κn+2

1 +
(

cnµn−1

snνn−1 + cnηn−1
◦ ψn

)
κn+2

2

)
+ (ηn ◦ ψn)κn+3

1

= (µn ◦ ψn)
(
κn+2

1 + xn+3κ
n+2
2

)
+ (ηn ◦ ψn)κn+3

1 = (ηn ◦ ψn)κn+3
1 + (µn ◦ ψn)κn+3

2 .
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Moreover, in both cases, we have:

φn∗ (τ
n
1 ) =

(
(Lτn1 φn+3) ◦ ψn

) ∂

∂xn+3
= (νn ◦ ψn)κn+3

1 .

It follows that relation (15) holds for any n ≥ 0. �

3.3. Conversion of an arbitrary Goursat structure into the N -trailer system

Reversing the construction given in the proof of Proposition 3.2 leads to the following surprising result
(already announced in [56] and proved in [57]), which states that the n-trailer system is a universal model for
all Goursat structures (after the paper had been submitted, we learnt that an alternative proof of this result
has been proposed by Montgomery and Zhitomirskĭı [46]). This theorem will play a fundamental role in this
article. Indeed, it will allow us to generalize local results known for the n-trailer, like the formula for the growth
vector obtained by Jean [29], to all Goursat structures.

Theorem 3.3. Any Goursat structure on a manifold M of dimension n+3 is locally equivalent, at any point q
in M , to the n-trailer considered around a suitably chosen point p of its configuration space R2 × (S1)n+1.

Proof of Theorem 3.3. By Theorem 2.3, our Goursat structure is, in a small enough neighborhood of any point
q in M , equivalent to a Kumpera-Ruiz normal form κn+3. Denote by y = (y1, . . . , yn+3) the coordinates of
κn+3 and put (yq1, . . . , y

q
n+3) = y(q).

Recall that, by definition, the pair of vector fields κn+3 is given by a sequence of prolongations κi = σi−3

◦ · · · ◦ σ1(κ3), where σj belongs to {Rcj , S}, for 1 ≤ j ≤ i− 3 and 3 ≤ i ≤ n + 3. We call a coordinate yi such
that κi = S(κi−1) a singular coordinate, and a coordinate yi such that κi = Rc(κi−1) a regular coordinate. It
follows from the proof of Theorem 2.3 (see Appendix A) that for all singular coordinates we have yqi = 0; but
for regular coordinates, the constants yqi can be arbitrary real numbers.

To prove Theorem 3.3, we will define a point p of R2 × (S1)n+1 whose coordinates

ζ(p) = ζp = (ξp1 , ξ
p
2 , θ

p
0, . . . , θ

p
n)

satisfy (x◦ζ)(p) = y(q), where x and ζ denote the coordinates used in the proof of Proposition 3.2. First, put the
axle of the last trailer at (yq1, y

q
2), that is (ξp1 , ξ

p
2) = (yq1, y

q
2), and take θp0 = arctan(yq3). Compute x3 = tan(θ0),

µ0 = cos(θ0), ν0 = sec2(θ0), and η0 = 0. Then, take for i = 1 up to n, the following values for the angles
θpi mod 2π. If the coordinate yi+3 is singular then put θpi = θpi−1 + π/2 and compute the coordinate xi+3 and
the smooth functions µi, νi, and ηi using (17). If yi+3 is regular then put

θpi = arctan
(
µi−1(ζpi )yqi+3 − ηi−1(ζpi)

νi−1(ζpi)

)
+ θpi−1

and compute the coordinate xi+3 and the smooth functions µi, νi, and ηi using (16). The result of this
construction is that (x ◦ ζ)(p) = y(q). By Proposition 3.2, the coordinates x ◦ ζ convert the n-trailer into
a Kumpera-Ruiz normal form. By the above defined construction, this normal form has the same singular
coordinates as κn+3 and is defined around the same point of Rn+3 (if we translate the regular coordinates
in order to center them then those two Kumpera-Ruiz normal forms have the same constants in the regular
prolongations). Hence, the diffeomorphism ζ−1 ◦ x−1 ◦ y gives the claimed equivalence. �

4. Singularity type

One of the main contributions of our paper is to introduce a new local invariant of Goursat structures.
This invariant, which we call the singularity type, is defined in Section 4.3 using the notion of characteristic
distributions, recalled in Section 4.1, and that of Jacquard’s language, defined in Section 4.2. The concept
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of singularity type is illustrated and explained in the three consecutive subsections: for Goursat structures in
small dimensions in Section 4.4, for Kumpera-Ruiz normal forms in Section 4.5, and for the n-trailer system in
Section 4.6.

4.1. Characteristic distributions

A characteristic vector field of a distribution D is a vector field f that belongs to D and satisfies [f,D] ⊂ D.
The characteristic distribution of a distribution D is the module, over the ring of smooth functions, generated
by all its characteristic vector fields. A characteristic distribution need not be of constant rank; but it follows
directly from the Jacobi identity that a characteristic distribution is always involutive. The main ingredient in
the definition of the singularity type will be the characteristic distributions Ci defined by the following result,
which is apparently due to Cartan [11], although he did not state it explicitly in his published works. Its proof
can be found in [32] and [43] (see also [8,46], and Appendix C), were slightly stronger versions are proved using
the dual language of Pfaffian systems.

Proposition 4.1 (Cartan). Consider a Goursat structure D defined on a manifold of dimension n ≥ 4. Each
distribution D(i), for 0 ≤ i ≤ n− 4, contains a unique involutive subdistribution Ci ⊂ D(i) that is characteristic
for D(i+1) and has constant corank one in D(i).

4.2. Jacquard’s language

An alphabet is a finite set A whose elements are called letters. A word over A is a finite sequence w =
(w1, . . . , wl), where each wi belongs to A for 1 ≤ i ≤ l. The integer l is called the length of the word w and we
denote it by |w|. The empty word is the only word of length 0. We denote it by ε. By abuse of notation, we will
often write w1 · · ·wl instead of (w1, . . . , wl) and al instead of (a, . . . , a), for any letter a repeated l times. Now,
call A∗ the set of all words, including the empty word, over the alphabet A. A language over A is a subset L
of A∗. The concatenation of two words v and w over A is the word vw = (v1, . . . , vl, w1, . . . , wm), where l = |v|
and m = |w|. The concatenation of a language L and a word w over A is the language

Lw = {uw : u ∈ L} ·

The shift of a word w = (w1, . . . , wl) is the word (w)′ = (w1, . . . , wl−1). By definition, we take (ε)′ = ε.
We define now a sequence of languages that will play an important role in this paper, since they will

describe all possible singularity types of a Goursat structure. For a fixed n ≥ 0, consider the alphabet
An = {a0, . . . , an−1} (note that A0 = ∅). Following [24] define, inductively, the Jacquard language Jn by
J0 = {ε}, J1 = {a0}, and

Jn = Jn−1a0 ∪ Jn−1a1 ∪ Jn−2a1a2 ∪ . . . ∪ J1a1a2 · · ·an−1,

for any integer n ≥ 2. Clearly, the elements of Jn are words over An that all have length n. For example, we
have J2 = {a0a0, a0a1} and

J3 = {a0a0a0, a0a0a1, a0a1a0, a0a1a1, a0a1a2} ·

It is easy to check, using an induction argument, that

card(Jn) = 3 card(Jn−1)− card(Jn−2),

for n ≥ 2 (see [24]).
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4.3. Definition of the singularity type

We start with the definition of a sequence of canonical submanifolds, which will lead to the definition of the
singularity type. Let D be a Goursat structure on a manifold M of dimension n. For 0 ≤ i ≤ n− 5, define the
subset S(i)

0 ⊂M by

S
(i)
0 = {p ∈M : D(i)(p) = Ci+1(p)}, (19)

where the distribution Ci denotes the characteristic distribution of D(i+1) (see Prop. 4.1). For i ≥ n− 4 define
S

(i)
0 = ∅.

Furthermore, starting from S
(i)
0 define, for 1 ≤ j ≤ i, a sequence of subsets M ⊃ S

(i)
0 ⊃ · · · ⊃ S

(i)
j−1 ⊃ S

(i)
j

⊃ · · · ⊃ S(i)
i by

S
(i)
j = {p ∈ S(i)

j−1 : D(i−j)(p) ∩ TpS(i)
j−1 6= Ci−j(p)} · (20)

For j ≥ i + 1 define S(i)
j = ∅. The above definition is correct since, for any non-negative integers i and j, the

subset S(i)
j ⊂ M is a smooth submanifold of M (we consider an empty set as smooth). Indeed, we have the

following result, which will be proved later, in Section 4.5.

Proposition 4.2. Let D be a Goursat structure on a manifold M .
(i) For any non-negative integers i and j, the subset S(i)

j ⊂M defined by the relations (19) and (20) is either
empty or a smooth submanifold of M that has codimension j + 1 in M .

(ii) For any non-negative integers i, j and k such that k 6= j we have the following relation: S(i+j)
j ∩S(i+k)

k = ∅.

The fact that a point p belongs to some submanifolds S(i)
j , for two given non-negative integers i and j, is

invariantly related to the Goursat structure at this point p. This information, however, is in general redundant.
For example, if p belongs to S(i)

j we know, by definition, that p belongs also to S(i)
j−k, for 0 ≤ k ≤ j, and that, by

Proposition 4.2, it does not belong to S(i+k)
j+k , for k 6= 0. In the following definition we propose a way to encode

the essential part of this information in a word of the Jacquard language (see Cor. 4.8, at the end of Sect. 4.5).

Definition 4.3. Let D be a Goursat structure defined in a neighborhood of a fixed point p in a manifold of
dimension n. The singularity type of D at p is the word

δD(p) = wn−4 · · ·w0

defined as follows: for 0 ≤ i ≤ n − 4, we take wi = aj+1 if there exists some integer j ≥ 0 such that p belongs
to S(i+j)

j ; we take wi = a0 otherwise.

The correctness of this definition is assured by Proposition 4.2, which states that if there exists an integer
j ≥ 0 such that p belongs to S

(i+j)
j then this integer is unique. For some readers this definition may seem

rather abstract at a first glance; but it appears quickly, once computed for concrete Goursat structures, that
the singularity type really encodes essential geometric information. In fact, we will see that the growth vector
and the abnormal curves of a Goursat structure are given by its singularity type (see Sects. 5 and 6).

The singularity type should not be confused with the codes used in [12] and [50] to label Kumpera-Ruiz
normal forms. Indeed, the singularity type is, by construction, an invariant of a given Goursat structure; while
the codes of [12] and [50] are not invariant: a given Goursat structure can have different codes, depending on
how it is represented by a Kumpera-Ruiz normal form.
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4.4. Low dimensional examples

For any Goursat structure on a manifold of dimension three or four the singularity type is equal, at any point,
to ε or a0, respectively. That is, the singularity type of a contact or an Engel structure does not depend on the
point at which the distribution is considered. This should be compared with the singularity type of a Goursat
structure on a five-manifold, which can be either a0a0 or a0a1 at a given point p, depending on whether or not
the Goursat structure can be converted into Goursat normal form in a small enough neighborhood of p. Indeed,
for the Goursat structure spanned by the regular Kumpera-Ruiz normal form (7), the canonical submanifold
S

(0)
0 is empty, and thus the singularity type equals a0a0 at each point of R5; for the Goursat structure spanned

by the singular Kumpera-Ruiz normal form (8) we have S(0)
0 = {x5 = 0}, and thus the singularity type equals

a0a1 if x5 = 0; and a0a0 if x5 6= 0.
Let us give one more example, in dimension six. Consider the distribution D spanned by the following

Kumpera-Ruiz normal form on R6:(
∂

∂x6
, (x6 + c6)

∂

∂x5
+

∂

∂x4
+ x5x4

∂

∂x3
+ x5x3

∂

∂x2
+ x5

∂

∂x1

)
,

where the constant c6 is either equal to 0 or 1. For both values of c6, we have S(0)
0 = ∅ and S

(1)
0 = {x5 = 0}.

For c6 = 1 the submanifold S
(1)
1 is empty (in a small enough neighborhood of zero); for c6 = 0 we have

S
(1)
1 = {x5 = x6 = 0}. Therefore, the singularity type of D at zero equals a0a1a0 if c6 = 1; and equals a0a1a2

if c6 = 0.

4.5. Singularity type of Kumpera-Ruiz normal forms

Let κn be a Kumpera-Ruiz normal form on Rn obtained by the inductive procedure described in Section 2.
We define inductively the word δκn of Jn−3 by δκ3 = ε, δκ4 = a0, and, for n ≥ 5, by the relations

δκn = δκn−1 a1 if κn = S(κn−1);

δκn = δκn−1 ai+1 if κn = R0(κn−1) and δκn−1 = δκn−2 ai, i ≥ 1;

δκn = δκn−1 a0 otherwise;

(21)

where the maps S and Rc denote respectively the singular and regular prolongations defined in Section 2. This
definition leads to a characterization of the singularity type in the coordinates of the Kumpera-Ruiz normal form
(see Cor. 4.6 below). We start with a proposition that will allow us to prove the results that were announced,
without proof, in Section 4.3.

Proposition 4.4. Consider the distribution defined on Rn by a Kumpera-Ruiz normal form κn. For any pair
of integers i and j such that 0 ≤ j ≤ i and for any pair of words w1 and w2 such that w = w1a1a2 · · ·aj+1w2

belongs to Jn−3 and |w2| = i−j, we have δκn = w if and only if zero belongs to S(i)
j . Moreover, if a submanifold

S
(i)
j contains zero then, in the coordinates (x1, . . . , xn) of the Kumpera-Ruiz normal form κn, we have

S
(i)
j = {xn−i = 0, . . . , xn−i+j = 0}, (22)

where 0 ≤ i ≤ n− 5 and 0 ≤ j ≤ i.

The proof of Proposition 4.4 will be based on the following lemma, which is a direct consequence of the
definition of Kumpera-Ruiz normal forms given in Section 2 (see Def. 2.2); its proof is straightforward. Note
that below all vector fields κn−i2 should be considered as vector fields on Rn, obtained from κn−i2 by i successive
lifts, as defined by Notation 2.1 (see Sect. 2).
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Lemma 4.5. Let D be a Goursat structure on Rn spanned by a Kumpera-Ruiz normal form κn = (κn1 , κ
n
2 ).

Suppose that κn = σn−3 ◦ · · ·◦ σ1(κ3) and denote κn−i = σn−3−i ◦ · · ·◦ σ1(κ3). The derived flag of D is given by

D(i) =
(

∂

∂xn
, . . . ,

∂

∂xn−i
, κn−i2

)
, for 0 ≤ i ≤ n− 3. (23)

The characteristic distribution Ci ⊂ D(i) of D(i+1) is given by

Ci =
(

∂

∂xn
, . . . ,

∂

∂xn−i

)
, for 0 ≤ i ≤ n − 4. (24)

Moreover, if δκn = w1a1a2 · · ·ajaw2, where |w2| = i− j and a ∈ {a0, a1, aj+1}, then we have

κn−i+l2 =
l∑

k=1

xn−i+k
∂

∂xn−i+k−1
+

∂

∂xn−i−1
+ xn−iκ

n−i−1
2 , (25)

for 0 ≤ l ≤ j − 1.

Proof of Proposition 4.4. For any fixed integer i such that 0 ≤ i ≤ n − 5, we will prove the proposition by
induction on the integer j, for 0 ≤ j ≤ i. We start with j = 0. Assume that δκn = w1aw2, where |w2| = i and
a ∈ An−1. If a 6= a1 then the definition of δκn implies

κn−i2 = (xn−i + cn−i)
∂

∂xn−i−1
+ κn−i−1

2 ;

and it follows from relation (23) that

D(i) =
(

∂

∂xn
, . . . ,

∂

∂xn−i
, (xn−i + cn−i)

∂

∂xn−i−1
+ κn−i−1

2

)
.

Together with relation (24) this expression implies that, for any point p ∈ Rn, we have D(i)(p) 6= Ci+1(p), which
implies that S(i)

0 is empty. In particular 0 /∈ S(i)
0 . Otherwise a = a1, and then the definition of δκn implies

κn−i2 =
∂

∂xn−i−1
+ xn−iκ

n−i−1
2 ;

and it follows, again from relation (23), that

D(i) =
(

∂

∂xn
, . . . ,

∂

∂xn−i
,

∂

∂xn−i−1
+ xn−iκ

n−i−1
2

)
.

Hence, for any point p ∈ Rn, we have D(i)(p) = Ci+1(p) if and only if xn−i(p) = 0. In particular 0 ∈ S(i)
0 . It

follows that Proposition 4.4 is true when j = 0.
Now, assume that Proposition 4.4 is true up to the integer j − 1 and that

δκn = w1a1a2 · · ·ajaw2,

where |w2| = i− j and a ∈ {a1, a0, aj+1}. Since

S
(i)
j−1 = {xn−i = · · · = xn−i+j−1 = 0},
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we have

TpS
(i)
j−1 =

{
∂

∂xn
, . . . ,

∂

∂xn−i+j
,

∂

∂xn−i−1
, . . . ,

∂

∂x1

}
·

Observe that relation (23) gives

D(i−j) =
(

∂

∂xn
, . . . ,

∂

∂xn−i+j
, κn−i+j2

)
· (26)

Moreover, it follows from relation (25), taken for l = j − 1, that

κn−i+j−1
2 =

j−1∑
k=1

xn−i+k
∂

∂xn−i+k−1
+

∂

∂xn−i−1
+ xn−iκ

n−i−1
2 . (27)

If a = a1 then the definition of δκn implies

κn−i+j2 =
∂

∂xn−i+j−1
+ xn−i+jκ

n−i+j−1
2 .

Therefore the vector field κn−i+j2 that appears in the relation (26) is, using (27), given by

κn−i+j2 =
∂

∂xn−i+j−1
+ xn−i+j

(
j−1∑
k=1

xn−i+k
∂

∂xn−i+k−1
+

∂

∂xn−i−1
+ xn−iκ

n−i−1
2

)
.

Hence, for any p ∈ S(i)
j−1, we have D(i−j)(p) ∩ TpS(i)

j−1 = Ci−j(p), which implies that S(i)
j is empty. In particular

0 /∈ S(i)
j . If a = a0 then the definition of δκn implies

κn−i+j2 = (xn−i+j + c)
∂

∂xn−i+j−1
+ κn−i+j−1

2 ,

where c 6= 0. Therefore the vector field κn−i+j2 that appears in the relation (26) is, using (27), given by

κn−i+j2 = (xn−i+j + c)
∂

∂xn−i+j−1
+
j−1∑
k=1

xn−i+k
∂

∂xn−i+k−1
+

∂

∂xn−i−1
+ xn−iκ

n−i−1
2 .

Thus for any p ∈ S(i)
j−1 we have D(i−j)(p)∩TpS(i)

j−1 = Ci−j(p), which implies that S(i)
j is empty (at least in small

enough neighborhood of zero). In particular 0 /∈ S(i)
j . Finally, if we have a = aj+1 then the definition of δκn

implies

κn−i+j2 = xn−i+j
∂

∂xn−i+j−1
+ κn−i+j−1

2 .

Therefore the vector field κn−i+j2 that appears in the relation (26) is, using (27), given by

κn−i+j2 =
j∑
k=1

xn−i+k
∂

∂xn−i+k−1
+

∂

∂xn−i−1
+ xn−iκ

n−i−1
2 .
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Thus for any p ∈ S(i)
j−1 we have D(i−j)(p) ∩ TpS(i)

j−1 6= Ci−j(p) if and only if

xn−i(p) = · · · = xn−i+j(p) = 0.

In particular, we have 0 ∈ S(i)
j , which ends the proof. �

Proof of Proposition 4.2. Consider a Goursat structure D defined on a smooth manifold M of dimension n.

First Item: Item (i) of Proposition 4.2 follows directly from Proposition 4.4, which states that, in the coordinates
of a Kumpera-Ruiz normal form, the restriction of each set S(i)

j to a small enough neighborhood of zero is either
empty or smooth. Indeed, by Theorem 2.3, the Goursat structure D is locally equivalent, at any point p in
M , to a Kumpera-Ruiz normal form centered at p; and hence the restriction of each set S(i)

j to a small enough

neighborhood of any point p in M is either empty or smooth. This obviously implies that the whole set S(i)
j is

either empty or smooth.

Second Item: We will prove Item (ii) by contradiction. Let D be a Goursat structure such that at a point p
we have p ∈ S(i+j)

j ∩ S(i+k)
k for a given triple of non-negative integers i, j, and k, such that k < j. Take a

Kumpera-Ruiz normal form κn, centered at p, that is locally equivalent to D at p. In the coordinates of κn,
we have 0 ∈ S(i+j)

j ∩ S(i+k)
k . Let w = δκn be the word uniquely attached to κn by (21), and denote the letters

of w by w = wn−4 · · ·w0. By Proposition 4.4, we have both wi+l = aj−l+1, for 0 ≤ l ≤ j, and wi+l = ak−l+1,
for 0 ≤ l ≤ k. In particular, we have wi = aj+1 and wi = ak+1, which is impossible since the inequality k < j
implies that ak+1 6= aj+1. �

The three Corollaries listed below follow directly from Proposition 4.4 and from the definition of the singu-
larity type.

Corollary 4.6. Let D be the Goursat structure spanned on Rn by a Kumpera-Ruiz normal form κn. We have

δD(0) = δκn ,

that is the singularity type at zero of κn is given by δκn .

Corollary 4.7. Let D be a Goursat structure defined in a neighborhood of a fixed point p of a manifold of
dimension n. For any integers such that 0 ≤ j ≤ i, the point p belongs to S(i)

j if and only if the singularity type
of D at p is of the form δD(p) = w1a1a2 · · ·aj+1w2, with |w2| = i− j.

Corollary 4.8. The singularity type of any Goursat structure on a manifold of dimension n belongs to the
Jacquard language Jn−3. Conversely, any word of Jn−3 is the singularity type of some Goursat structure.

4.6. Singularity type of the N -trailer system

In this section, we come back to the n-trailer system, for which we compute the singularity type. Our study
stays very close to that of Jean [29]. For the n-trailer system τn at a configuration p = (ξ1, ξ2, θ0, . . . , θn)
of R2 × (S1)n+1, we define inductively, following [29], a word δτn (p) = w1 · · ·wn of Jn by w1 = a0 and, for
i = 2, . . . , n, by the relations wi = a1 if θi − θi−1 = ±π2 ;

wi = ak+1 if wi−1 = ak, for k ≥ 1, and tan(θi − θi−1) = sin(θi−1 − θi−2);
wi = a0 otherwise.

(28)

This definition leads to a characterization of the singularity type in the coordinates of the n-trailer system,
which coincides with the stratification of the singular locus given in [29].
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Proposition 4.9. Let D be the Goursat structure spanned by the n-trailer system τn on R2 × (S1)n+1. For
any point p of R2 × (S1)n+1, we have

δD(p) = δτn (p).

Moreover, in the coordinates (ξ1, ξ2, θ0, . . . , θn) of the n-trailer system, we have

S
(i)
j =

{
p ∈ R2 × (S1)n+1 : θn−i − θn−i−1 = ±π

2
and tan(θn−i+k − θn−i+k−1) = sin(θn−i+k−1 − θn−i+k−2),

for 1 ≤ k ≤ j
}
, (29)

for 0 ≤ i ≤ n− 2 and 0 ≤ j ≤ i.

Like in Section 3, for a fixed point p = (ξ1, ξ2, θ0, . . . , θn) of R2 × (S1)n+1, we will use the notation si =
sin(θi − θi−1) and ci = cos(θi − θi−1). Moreover, we define the product πl kn i by the relation πl kn i =

∏l
j=kcn−i+j,

if 0 ≤ k ≤ l, and by πl kn i = 1, if k > l.
The proof of Proposition 4.9 will use the two following lemmas. The first one is analogous to Lemma 4.5,

of Section 4.5, it shows that the characteristic distributions of the n-trailer are rectified in (ξ1, ξ2, θ0, . . . , θn)
coordinates. Its proof is straightforward and left to the reader.

Lemma 4.10. Let D be the distribution spanned by the n-trailer system (τn1 , τ
n
2 ). The derived flag of D is

given by

D(i) =
(

∂

∂θn
, . . . ,

∂

∂θn−i
, sn−i

∂

∂θn−i−1
+ cn−iτ

n−i−1
2

)
, for 0 ≤ i ≤ n. (30)

The characteristic distributions Ci of D(i+1) are given by

Ci =
(

∂

∂θn
, . . . ,

∂

∂θn−i

)
, for 0 ≤ i ≤ n− 1. (31)

Moreover, we have

D(i−j) =

(
∂

∂θn
, . . . ,

∂

∂θn−i+j
,

j+1∑
k=1

(sn−i+k−1)(πj kn i )
∂

∂θn−i+k−2
+ πj 0

n iτ
n−i−1
2

)
(32)

for 0 ≤ i ≤ n− 1 and 0 ≤ j ≤ i.

The lemma below is essentially a trigonometric identity and its proof, based on an induction argument, is
also straightforward. We also leave it to the reader.

Lemma 4.11. Let (ξ1, ξ2, θ0, . . . , θn) ∈ R2× (S1)n+1 be a fixed point of the configuration space of the n-trailer.
If θn−i − θn−i−1 = ±π2 and tan(θn−i+k − θn−i+k−1) = sin(θn−i+k−1 − θn−i+k−2), for 1 ≤ k ≤ j − 1, then

j∑
k=1

(sn−i+k−1)(πj kn i )
∂

∂θn−i+k−2
= sn−i+j−1cn−i+j

(
j∑
k=1

∂

∂θn−i+k−2

)
·

Proof of Proposition 4.9. To start with, let us prove relation (29). For any fixed i we will prove the result by
induction on j. The relations (30) and (31) imply that D(i)(p) = Ci+1(p) if and only if cn−i = 0. That is, if and
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only if θn−i − θn−i−1 = ±π2 , which implies that the proposition is true for j = 0. Now, assume the proposition
true up to j − 1. Relation (32) implies that D(i−j) is given by(

∂

∂θn
, . . . ,

∂

∂θn−i+j
,

j+1∑
k=1

(sn−i+k−1)(πj kn i )
∂

∂θn−i+k−2
+ πj 0

n iτ
n−i−1
2

)
.

The induction assumption, together with Lemma 4.11, implies that for any point p that belongs to S(i)
j−1 the

linear subspace D(i−j)(p) is equal to(
∂

∂θn
, . . . ,

∂

∂θn−i+j
, sn−i+j

∂

∂θn−i+j−1
+ (sn−i+j−1cn−i+j)

(
j∑

k=1

∂

∂θn−i+k−2

))
·

The induction assumption says that

S
(i)
j−1=

{
p :θn−i − θn−i−1 =±π

2
and tan(θn−i+k − θn−i+k−1) = sin(θn−i+k−1 − θn−i+k−2), for 1 ≤ k ≤ j − 1

}
·

Since

TpS
(i)
j−1 =

(
∂

∂θn
, . . . ,

∂

∂θn−i+j
,

j+1∑
k=1

∂

∂θn−i+k−2
,

∂

∂θn−i−2
, . . . ,

∂

∂θ0
,
∂

∂ξ2
,
∂

∂ξ1

)
,

we have D(i−j)(p) ∩ TpS(i)
j−1 6= Ci−j(p) if and only if sn−i+j = sn−i+j−1 cn−i+j. That is, we have p ∈ S(i)

j if and

only if p ∈ S(i)
j−1 and tan(θn−i+j − θn−i+j−1) = sin(θn−i+j−1 − θn−i+j−2), which ends the induction argument.

Now, the form of S(i)
j obtained in the previous paragraph together with the definitions of δD and δτn , imply

directly that δD(p) = δτn(p). �

5. Growth vector

Perhaps the most elementary invariant of distributions is the growth vector. The aim of this section is to
study relations between two invariants: the growth vector and the singularity type. We recall the definition of
the growth vector in Section 5.1, where we also give a very elegant characterization, due to Murray, of Goursat
structures equivalent to Goursat normal form. In Section 5.2 we provide another important result, due to
Jean, which gives the growth vector of the n-trailer system. Next we will show that the growth vector and the
singularity type are equivalent as local invariants: in Section 5.3 we show that the growth vector is a function
of the singularity type while in Section 5.4 we prove the converse, namely, that the growth vector determines
the singularity type. The definition of the singularity type given in Section 5.1 is geometric and independent
of a particular representation of the Goursat structure. We can, however, hardly use it to calculate this new
invariant. For this reason, we give in Section 5.5 a formula to calculate the singularity type in terms of the
growth vector.

5.1. Lie flag and growth vector

The Lie flag of a distribution D is the sequence of modules of vector fields D0 ⊂ D1 ⊂ · · · defined induc-
tively by

D0 = D and Di+1 = Di + [D0,Di] , for i ≥ 0. (33)

This sequence should not be confused with the derived flag (1), introduced at the beginning of the article. In
general these two sequences are different. Nevertheless, for any point p in the underlying manifold M , the
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inclusion Di(p) ⊂ D(i)(p) holds, for i ≥ 0. Note that for a Goursat structure, unlike the elements of the derived
flag, the elements of the Lie flag are not necessarily distributions of constant rank.

A distribution D is completely nonholonomic if, for each point p in M , there exists an integer N(p) such
that DN(p)(p) = TpM . The smallest such integer is called the nonholonomy degree of D at p and we denote it
by Np. For a Goursat structure on a manifold of dimension n, the inequality Np ≤ 2n−3 holds for each point p
in M (see e.g. [35]). For the n-trailer system, sharper bounds were obtained in [29, 42, 63]. It follows from our
Theorem 3.3, which states that any Goursat structure is locally equivalent to the n-trailer system, that they
hold also for any Goursat structure.

Definition 5.1. Let D be a completely nonholonomic distribution. Put di(p) = dimDi(p), for 0 ≤ i ≤ Np.
The growth vector at p of the distribution D is the finite sequence (d0(p), . . . , dNp(p)).

Recall that if at a given point a Goursat structure can be converted into Goursat normal form (3) then this
point is called regular and that otherwise it is called singular (see Sect. 2). The set of singular points is called
the singular locus. An elegant characterization of this set, that emphasizes the importance of the growth vector
in the study of Goursat structures, has been obtained by Murray [53]. A different characterization can be found
in [32] and [39].

Theorem 5.2 (Murray). Let p be a point in a manifold M of dimension n. A Goursat structure on M can
be converted into Goursat normal form in a small enough neighborhood of p if and only if Di(p) = D(i)(p), for
0 ≤ i ≤ n − 2.

5.2. Growth vector of the N -trailer system

Let d = (d0, . . . , dN) be a finite sequence of integers such that d0 = 2, dN = n, and di ≤ di+1 ≤ di + 1, for
0 ≤ i ≤ N − 1. The dual of the sequence d is the sequence d∗ = (d∗2, . . . , d

∗
n) defined by

d∗i = card{j ≥ 0 : dj < i} + 1 for 2 ≤ i ≤ n.

In other words, the integer d∗i indicates the first position, starting from the left, where the integer i appears
in d. We obviously have d∗2 = 1 and d∗n = N + 1. It is trivial to check that each sequence d is uniquely
defined by its dual d∗. For example, we have the following dual sequences: (2, 3, 4, 5, 6)∗ = (1, 2, 3, 4, 5),
(2, 3, 4, 5, 5, 5, 6)∗ = (1, 2, 3, 4, 7), and (2, 3, 4, 4, 5, 5, 5, 6)∗ = (1, 2, 3, 5, 8).

Now, following [29], we define a set of functions that will allow us to obtain a formula that gives the growth
vector of an arbitrary Goursat structure at an arbitrary point, as a function of its singularity type at this point.
We start with Jean’s formula [29] for the n-trailer. Recall that Jn denotes the Jacquard language (see Sect. 4)
and that the shift of a word is defined by (w1 · · ·wn)′ = w1 · · ·wn−1 and (ε)′ = ε (we will denote (w′)′ by w′′).

For any i ≥ 2, we define functions βi :
⋃
n≥i−3Jn → N. We take β2(w) = 1, β3(w) = 2, and β4(w) = 3, for

any word w in
⋃
n≥i−3Jn. If i ≥ 5 then we define inductively, for any word w in

⋃
n≥i−3Jn,


βi(w) = βi−1(w′) + βi−2(w′′) if w = (w′)a1

βi(w) = 2 βi−1(w′)− βi−2(w′′) if w = (w′)ak and k ≥ 2;

βi(w) = βi−1(w′) + 1 if w = (w′)a0.

For example, for the word a0a1a0, we have:

β5(a0a1a0) = β4(a0a1) + 1 = 3 + 1 = 4

β6(a0a1a0) = β5(a0a1) + 1 = (β4(a0) + β3(ε)) + 1 = (3 + 2) + 1 = 6.
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Another example is given for the word a0a1a2, for which we have:

β5(a0a1a2) = β4(a0a1) + 1 = 3 + 1 = 4

β6(a0a1a2) = 2β5(a0a1) − β4(a0) = 2(β4(a0) + β3(ε)) − 3 = 7.

Having recalled the functions βi we are now able to recall the formula, obtained by Jean [29], that gives the
growth vector of the n-trailer system.

Theorem 5.3 (Jean). Consider the n-trailer system at a given point p of its configuration space R2 × (S1)n+1

at which it has singularity type δτn (p). The sequence of integers (d∗2(p), . . . , d∗n+3(p)) dual to the growth vector
of the n-trailer system at p is given by d∗i (p) = βi(δτn (p)).

5.3. Growth vector of Goursat structures

The following result is fundamental. It shows that the growth vector of any Goursat structure is a function
of its singularity type.

Theorem 5.4. Let D be a Goursat structure on a manifold M of dimension n ≥ 3, defined in a neighborhood
of a given point p in M that has singularity type δD(p). The sequence of integers (d∗2(p), . . . , d∗n(p)) dual to its
growth vector at p is given by d∗i (p) = βi(δD(p)).

Proof of Theorem 5.4. Let D be a Goursat structure on a manifold M of dimension n ≥ 3, defined in a
neighborhood of a given point p in M . By Theorem 3.3, the Goursat structure D is locally equivalent at p
to the n-trailer system, considered around a well chosen point q of its configuration space. By Theorem 5.3,
the sequence of integers (d∗2(q), . . . , d∗n+3(q)) dual to the growth vector of the n-trailer system at q is given by
d∗i (q) = βi(δτn (q)). By Proposition 4.9, the singularity type of the n-trailer system at q equals δτn (q). Since
the singularity type is invariant under diffeomorphisms, we have δD(p) = δτn (q). Since the growth vector is
invariant under diffeomorphisms, the sequence of integers (d∗2(p), . . . , d∗n+3(p)) dual to the growth vector of D
at p is given by d∗i (p) = βi(δτn (q)) = βi(δD(p)). �

The latter result obviously implies the following one, which gives the formula for the growth vector of an
arbitrary Kumpera-Ruiz normal form.

Corollary 5.5. Let κn be a Kumpera-Ruiz normal form on Rn, for n ≥ 3. The sequence (d∗2, . . . , d
∗
n) dual to

its growth vector at zero is given by d∗i = βi(δκn ).

5.4. Growth vector and singularity type

We proved in the previous section (Th. 5.4) that the singularity type of any Goursat structure at a given
point determines its growth vector at this point. Now, we will prove the converse of this fact.

Theorem 5.6. Two Goursat structures have the same growth vector at a given point if and only if they have
the same singularity type at this point.

The proof of Theorem 5.6 will be based on two lemmas:

Lemma 5.7. Let i and k be two integers such that i ≥ 1 and 0 ≤ k ≤ i − 1. For any word w in
⋃
n≥1Jn we

have the following relations:
(i) βi+4(wa1a2 · · ·ai) = 2 i+ 3;
(ii) βi+4(wa1a2 · · ·ai−kak0) = 2 i− k + 3;
(iii) βi+4(wc1 · · ·ci) = i+ 3;

where cj, for 1 ≤ j ≤ i, are any letters satisfying cj 6= a1.

Proof of Lemma 5.7. First Item. Item (i) is true if i = 1 because, for any word w in
⋃
n≥1Jn, we have

β5(wa1) = β4(w) + β3(w′) = 3 + 2 = 2 · 1 + 3.
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It is also true if i = 2 because, for any word w in
⋃
n≥1Jn, we have

β6(wa1a2) = 2 · β5(wa1)− β4(w) = 2 · 5− 3 = 2 · 2 + 3.

Now proceed by induction on i ≥ 3. Assume that Item (i) is true up to i− 1. Then, for any word w in
⋃
n≥1Jn,

we have

βi+4(wa1a2 · · ·ai) = 2 · β(i−1)+4(wa1a2 · · ·ai−1)− β(i−2)+4(wa1a2 · · ·ai−2)

= 2 · (2 · (i− 1) + 3)− (2 · (i− 2) + 3) = 2 i+ 3.

Second Item. Let us proceed by induction on i. It follows from Item (i) that, for i ≥ 1, Item (ii) is true for i = 1
and k = 0. Assume that Item (ii) is true up to i− 1 for any 0 ≤ k ≤ i− 2. Then we have, for 1 ≤ k ≤ i− 1 and
for any w in

⋃
n≥1Jn, the following relation:

βi+4(wa1a2 · · ·ai−kak0) = β(i−1)+4(wa1a2 · · ·a(i−1)−(k−1)a
k−1
0 ) + 1

= 2 · (i− 1)− (k − 1) + 3 = 2 i− k + 3.

Since, by Item (i), Item (ii) is true for k = 0, it follows that Item (ii) holds for any i ≥ 1 and any 0 ≤ k ≤ i− 1.

Third Item. Item (iii) is true if i = 1 because β5(wc1) = 4 for any word w in
⋃
n≥1Jn (recall that c1 6= a1). It

is also true if i = 0. Now proceed by induction on i. Assume that this Item is true up to i− 1, then we have
either

βi+4(wc1 · · · ci) = 2 · β(i−1)+4(wc1 · · ·ci−1)− β(i−2)+4(wc1 · · · ci−2)

= 2 · ((i− 1) + 3)− ((i− 2) + 3) = i+ 3

or

βi+4(wc1 · · · ci) = β(i−1)+4(wc1 · · ·ci−1) + 1 = ((i− 1) + 3) + 1 = i+ 3,

which ends the proof. �
Lemma 5.8. Let i be an integer such that i ≥ 5. Consider two words w1 and w2 of the Jacquard language Jl,
with l ≥ i− 3, such that:

(i) βi(w1) > βi(w2);
(ii) βi−1(w′1) ≥ βi−1(w′2);
(iii) βi(w1)− βi−1(w′1) ≥ βi(w2)− βi−1(w′2).

Then, for any integer k ≥ 1 and for any word w such that w1w and w2w belong to Jk+l, we have βi+k(w1w) >
βi+k(w2w).

Proof of Lemma 5.8. Consider two words w1 and w2 in Jl, with l ≥ i− 3, that satisfy conditions (i)–(iii). Let
a be any letter such that w1a and w2a belong to Jl+1. Then we have the three following cases:

If a = a0 then

βi+1(w1a0) = βi(w1) + 1

βi+1(w2a0) = βi(w2) + 1.

If a = a1 then

βi+1(w1a1) = βi(w1) + βi−1(w′1)

βi+1(w2a1) = βi(w2) + βi−1(w′2).
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If a = aj, for j ≥ 2, then

βi+1(w1aj) = βi(w1) + βi(w1)− βi−1(w′1)

βi+1(w2aj) = βi(w2) + βi(w2)− βi−1(w′2).

Therefore, in any case, the words w1a and w2a satisfy the three conditions (i–iii); and in particular, we have
βi+1(w1a) > βi+1(w2a). Hence the lemma is true for k = 1. An induction argument on the length of w, based
on the same relations as for k = 1, ends the proof. �

Proof of Theorem 5.6. By Theorem 5.4, if two Goursat structures have the same singularity types at p and p̃,
respectively, then they have the same growth vector at p and p̃, respectively. Now, we will prove the converse.
Suppose that w and w̃ are the singularity types of two distributions D and D̃ at p and p̃, respectively, that is
w = δD(p) and w̃ = δD(p). We will show that if w 6= w̃ then there exists an integer i0 such that βi0(w) 6= βi0(w̃).

It is easy to check that if w and w̃ are two words of the Jacquard language Jn such that w 6= w̃ then there
exists (after a permutation of w and w̃, if necessary) three words z, v, and ṽ such that both w = vz and w̃ = ṽz,
and which satisfy either {

v = ua1a2 · · ·ai−kak0
ṽ = ũc1c2 · · · ci,

where 0 ≤ k ≤ i− 1 and cj 6= a1 for 1 ≤ j ≤ i, or{
v = ua1a2 · · ·ai−kak0
ṽ = ũa1a2 · · ·ai−lal0,

where k 6= l.
For each of these two cases we can apply Lemma 5.7. In the first case we have βi+4(v) = 2 i− k + 3; while

βi+4(ṽ) = i+3. Since k ≤ i−1 we have βi+4(v) 6= βi+4(ṽ). In the second case we have βi+4(v) = 2 i−k+3; while
βi+4(ṽ) = 2 i−l+3. Since k 6= l we have βi+4(v) 6= βi+4(ṽ). Therefore, in both cases, we have βi+4(v) 6= βi+4(ṽ);
but βi+3(v) = βi+3(ṽ), since by the Item (iii) of Lemma 5.7 they are both equal to i+ 2. Put i0 = (i+ 4) + |z|.
By Lemma 5.8, we have βi0(w) 6= βi0(w̃). �

5.5. Computing the singularity type

Up to now, we have worked with a definition of the singularity type that uses the submanifolds S(i)
j . Although

being geometric, that is independent of a description of the Goursat structure in particular coordinates, it does
not tell us how to compute this invariant (unless we know how to compute all S(i)

j explicitly). In order to fill
this gap we give the following proposition, which yields to a constructive procedure to compute the singularity
type of any Goursat structure in terms of its growth vector. Its proof is straightforward.

Proposition 5.9. Let D be a Goursat structure considered in a neighborhood of a point p that belongs to a
manifold of dimension n ≥ 5. For 0 ≤ i ≤ n − 5 and 1 ≤ j ≤ i, the point p belongs to S

(i)
j if and only if the

growth vector at p of the distribution D(i−j) starts with

(i− j + 2, i− j + 3, . . . , i+ 2, i+ 3, i+ 4, . . . , i+ 4, i+ 5),

where the integer i+ 4 is repeated j + 2 times.



ON THE GEOMETRY OF GOURSAT STRUCTURES 145

6. Abnormal curves

We proved in the last section that the singularity type and the growth vector contain the same information
about a given Goursat structure. That information is, however, encoded in the singularity type in a more
systematic and much more geometric way. An illustration of the latter claim is this section in which we study
abnormal curves of Goursat structures and we show that the submanifolds S(i)

j , used to define the singularity
type, determine all abnormal curves of any element of the derived flag of a Goursat structure. A precise
statement of that result is given as Theorem 6.2 and is followed by a description of the geometry of abnormal
curves and by an illustrative example in R7. A proof of Theorem 6.2 is given in Appendix B. In Section 6.3, we
prove that two Goursat structures have the same singularity type at a given point if and only if the distributions
of their derived flags have the same abnormal curves, up to a local diffeomorphism. Our study of abnormal
curves (Th. 6.6) and our analysis, performed in Section 5, of the growth vector and singularity type (Th. 5.6) are
summarized in the Introduction as Theorem 1, which gives one of the main contributions of the paper. Roughly
speaking, this theorem says that the local information about a Goursat structure encoded in the growth vector,
in the singularity type, and in abnormal curves, of all elements of the derived flag, coincide. In the two last
sections we study rigid curves of Goursat structures. Although rigid curves are always abnormal, abnormal
curves are not always rigid. We will prove that in the case of Goursat structures these two concepts coincide
(for C1 immersed curves). In the last subsection we will calculate rigid curves of the n-trailer and give their
natural mechanical interpretation: they correspond to motions that fix the positions of the centers of at least
two trailers.

6.1. Integral and abnormal curves

Let M be a smooth manifold of dimension n and let A be a set-valued map A : M → TM such that
A(p) ⊂ TpM , for each point p in M . Note that we do not ask A(p) to be a linear subspace of TpM , but just
a subset of TpM . Neither we ask A to be smooth. An integral curve of A is an absolutely continuous map
x : I → M , from an interval I ⊂ R to M , such that ẋ(t) belongs to A(x(t)) for almost all t in I. A nontrivial
lift of x(·) is an absolutely continuous map P : I → T ∗M such that P (t) belongs to T ∗x(t)M and P (t) 6= 0 for
each t in I.

Locally, all integral curves of a rank k distribution D = (f1, . . . , fk) can be described as solutions of an
(underdetermined) ordinary differential equation. Indeed, for any given integral curve x(·) of D we can clearly
find k real-valued measurable functions ui, for 1 ≤ i ≤ k, such that

ẋ(t) =
k∑
i=1

fi(x(t))ui(t) (34)

holds for almost all t in I. These functions ui are called controls. Observe that the controls associated to
an integral curve are not uniquely defined. In control theory, an overdetermined differential equation of the
form (34), where the functions ui for 1 ≤ i ≤ k can be taken as arbitrary measurable functions, is called a
control system. Informally, the system (34) can be seen as a “parametrization” of the set of all integral curves
of D by k real-valued measurable functions.

Roughly speaking, a solution x(·) of (34) is abnormal if it is a singular point of the end-point mapping or,
equivalently, if the linearization of the control system along x(·) is not controllable. Many equivalent definitions
of the concept of abnormal curves are available (see e.g. the papers [1, 3, 7, 67,77], the survey article [45], and
the references given there). The definition that we will use is the one that appears in Pontryagin’s Maximum
principle [59]. For further details, we refer the reader to the above mentioned works.

Since the results of this section will be local we can work in a coordinate chart x : M → Rn. Denote by
(x, p) the corresponding coordinates on T ∗M . In these coordinates, the Hamiltonian of the control system (34)
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associated to a distribution D = (f1, . . . , fk) is the function defined on Rn ×Rn × Rk by

H(x, p, u) =

〈
p,

k∑
i=1

fi(x)ui

〉
,

where both x and p belong to Rn and u = (u1, . . . , uk) belongs to Rk and 〈·, ·〉 denotes the pairing between
vector fields and differential forms.

Definition 6.1. An integral curve x : I → Rn, corresponding to a measurable control u : I → Rk, of the
control system (34) is called abnormal if it admits a nontrivial lift (x(·), p(·)) such that

ẋ(t) =
∂H(x(t), p(t), u(t))

∂p

ṗ(t) = −∂H(x(t), p(t), u(t))
∂x

and

∂H(x(t), p(t), u(t))
∂u

= 0

for almost all t in I.

By definition, an integral curve of a distribution D = (f1, . . . , fk) is abnormal if it is an abnormal curve of
the corresponding control system. It is well known that the abnormal curves of D depend neither on the choice
of coordinates nor on the vector fields f1, . . . , fk chosen to span the distribution.

Let I ⊂ R be an interval. For any t0 ∈ I and for any ε > 0, denote by Iε(t0) the intersection I ∩ [t0−ε, t0 +ε].
An integral curve x : I → M is locally abnormal if for each t0 in I there exists a small enough ε > 0 such that
the restriction of x(·) to Iε(t0) is abnormal.

6.2. Abnormal curves of Goursat structures

Let D be a Goursat structure on a manifold M of dimension n ≥ 3. Recall that its singularity type can be
computed using the sequence of canonical manifolds defined, for 0 ≤ i ≤ n− 5, by

S
(i)
0 = {q ∈ M : D(i)(q) = Ci+1(q)}

and, for 1 ≤ j ≤ i, by

S
(i)
j = {q ∈ S(i)

j−1 : D(i−j)(q) ∩ TqS(i)
j−1 6= Ci−j(q)},

where the distributions Ci are the canonical distributions of Proposition 4.1 (see Sect. 4). Assume that for two
given non-negative integers i and j, such that 0 ≤ i+ j ≤ n− 5 we have S(i+j)

j 6= ∅. In this case, we can define

on S(i+j)
j a smooth distribution A(i)

j by taking

A(i)
j (q) = D(i)(q) ∩ TqS(i+j)

j ,

for each point q in S(i+j)
j . It is easy to check, using a Kumpera-Ruiz normal form, that A(i)

j is indeed a smooth

distribution and that its rank is i+1. Although each A(i)
j is defined only on S(i+j)

j , we can extend the definition

of A(i)
j to M by taking A(i)

j (q) = 0 for all points q that do not belong to S
(i+j)
j and thus consider A(i)

j as a
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set valued map defined everywhere on M . This extension allows us to define, for any 0 ≤ i ≤ n − 5, a subset
A(i) ⊂ TM by

A(i)(q) = Ci(q) ∪

 ⋃
0≤j≤n−i−5

A(i)
j (q)

 ,

for each point q in M . Note that, usually, the subset A(i) ⊂ TM is not a distribution.
By definition, we take A(n−4) = Cn−4. Moreover, we define A(n−3) as the characteristic distribution of

D(n−3), which is equal to Cn−4 if n ≥ 4 and equal to {0} if n = 3. Finally, we take A(n−2) = ∅. Observe that
the set-valued maps A(n−3) = {0} and A(n−2) = ∅ are different. Indeed, the first one has trivial integral curves
(points); while the second one has no integral curves at all.

Theorem 6.2. Consider a Goursat structure D defined on a manifold of dimension n and fix an integer i such
that 0 ≤ i ≤ n− 2. An integral curve of D(i) is locally abnormal if and only if it is an integral curve of A(i).

For i = n−4, n−3, and n−2, the distribution D(i) is of rank n−2, n−1, and n, respectively, and the proof
of Theorem 6.2 follows easily from well known results. Indeed, if i = n− 4 then the distribution D(i), which is
of rank n−2, can be transformed into a direct generalization of Engel’s normal form ([32,43,76], and [78]) given
by Theorem C.4 (see Appendix C), where we have to take k = n − 2 and m = 2. In this case, the abnormal
curves of D(n−4) are clearly the integral curves of Cn−4 (see Lem. B.1 below). If i = n− 3 then the distribution
D(i), which is of rank n − 1, is annihilated locally by a 1-form ω such that dω ∧ ω 6= 0 and (dω)2 ∧ ω = 0.
This property is equivalent to the fact that the characteristic distribution of D(n−3) is of corank 2 in D(n−3)

(see [6]), and it implies that D(n−3) is locally given by the normal form of Theorem C.4, where k = n − 1 and
m = 1. Note, however, that this form does not follow from Theorem C.4 whose condition, when m = 1, is only
necessary but not sufficient. In this case, it is straightforward to see that the abnormal curves of D(n−3) are
the integral curves of the characteristic distribution of D(n−3), which is an involutive distribution that has rank
n− 3. Finally, if i = n− 2 then the situation is even simpler because D(n−2) = TM , which implies that D(n−2)

has no abnormal curves at all. Hence the only values of i that will be considered in the proof of Theorem 6.2
are 0 ≤ i ≤ n− 5.

In order to explain further the meaning of Theorem 6.2 we would like to emphasize the following points,
relative to the geometric structure of A(i) and its integral curves. These facts follow directly from our study of
the singularity type (see Sect. 4) and will be used in the proof of Theorem 6.2.

(i) Although for each point q in M we have, by definition,

A(i)(q) = Ci(q) ∪

 ⋃
0≤j≤n−i−5

A(i)
j (q)

 ,

the relations S(i+k)
k ∩ S(i+j)

j = ∅ for k 6= j (see Prop. 4.2) imply that, for a fixed point q, only two possibilities
can occur. Indeed, we have either

A(i)(q) = Ci(q) or A(i)(q) = Ci(q) ∪A(i)
j (q),

for a unique integer j such that 0 ≤ j ≤ n− i− 5. In other words, for each point q the subset A(i)(q) ⊂ TqM is
the union (not the sum!) of either one or two linear subspaces of TqM . Note that if i ≥ 1 then Ci(q)∩A(i)

j (q) =
Ci−1(q).

(ii) For 0 ≤ i ≤ n− 5, we define the set Ki =
⋃n−5
j=i S

(j)
0 ; for any other value of i we take Ki = ∅. We will call

this set the singular locus of D(i). If i = n− 4, n − 3, or n− 2 then, by definition, the singular locus is empty,
which explains why these cases are simpler. If i = 0 then this definition agrees with the one given in Section 5
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for the singular locus of D. It follows directly from the properties of the submanifolds S(j)
0 (see Prop. 4.4) that

Ki is a stratified manifold. In fact, in Kumpera-Ruiz normal form coordinates, this set is an algebraic variety
defined by a single polynomial equation of the form

∏m−1
r=0 x

r
kr

= 0, where the integer m corresponds to the
number of singularities of D(i), which is, in general, smaller than the number of singularities of D. For any
point q that does not belong to Ki we clearly have A(i)(q) = Ci(q). Note, however, that there exist points of
Ki for which we also have A(i)(q) = Ci(q).

(iii) For 0 ≤ i ≤ n − 5, define the set Li =
⋃n−i−5
j=0 S

(i+j)
j . Since for any j we have S(i)

j ⊂ S
(i)
0 , it follows

that Li ⊂ Ki. For 0 ≤ i ≤ n − 5, the set of points such that A(i)(q) 6= Ci(q) is precisely Li. In other words,
the set A(i)(q) is a linear subspace of TqM if and only if q does not belong to Li. Unlike Ki, the set Li is
always a smooth submanifold of M . Note, however, that Li can have several connected components and that
the dimensions of these components can be different. Nevertheless, in a small enough neighborhood U of any
of its points, the submanifold Li is connected and coincides with one and only one of the smooth manifolds
S

(i+j)
j ∩ U .

For example, in the case of a distribution spanned by a Kumpera-Ruiz normal form on Rn, the set Li is
connected. If non-empty, the set Li is a codimension j + 1 linear subspace of Rn, where j is the only integer
such that S(i+j)

j is non-empty. In the case of the n-trailer system, the situation is quite different. For example,
for the two-trailer system, the submanifold L0 has two connected components, given by {θ2 − θ1 = π/2} and
{θ2 − θ1 = −π/2}. Each of them has codimension 1. For the three-trailer system, the submanifold L0 has six
connected components given, respectively, by {θ3−θ2 = π/2}, {θ3−θ2 = −π/2}, {θ3−θ2 = π/4; θ2−θ1 = π/2},
{θ3 − θ2 = −3π/4; θ2 − θ1 = π/2}, {θ3 − θ2 = −π/4; θ2 − θ1 = −π/2}, {θ3 − θ2 = 3π/4; θ2 − θ1 = −π/2}. Two
of them have codimension 1; four of them have codimension 2.

6.3. An illustrative example

We consider now a more detailed example. Let D be the distribution spanned by the following Kumpera-Ruiz
normal form on R7:(

∂

∂x7
, (x7 + c7)

∂

∂x6
+

∂

∂x5
+ x6

(
∂

∂x4
+ x5

(
x4

∂

∂x3
+ x3

∂

∂x2
+

∂

∂x1

)))
,

where c7 is either equal to 0 or 1. When c7 = 1, the singularity type of D at zero is a0a1a1a0 and the growth
vector at zero is (2, 3, 4, 5, 5, 6, 6, 6, 7); while when c7 = 0, the singularity type is a0a1a1a2 and the growth vector
(2, 3, 4, 5, 5, 5, 6, 6, 6, 6, 7).

In both cases, we have

S
(0)
0 = ∅, S(1)

0 = {x6 = 0}, and S
(2)
0 = {x5 = 0} ·

Therefore, the singular loci of the distributions D(0), D(1), and D(2) are given respectively by

K0 = {x6x5 = 0}, K1 = {x6x5 = 0}, and K2 = {x5 = 0} ·

If c7 = 1 then, in a small enough neighborhood of zero, we have S
(1)
1 = ∅; but if c7 = 0 then we have

S
(1)
1 = {x7 = x6 = 0}. In both cases we have S(2)

1 = ∅.
If c7 = 1 then, in a small enough neighborhood U of zero, we have A(0) = C0 =

(
∂
∂x7

)
, which is a smooth

distribution on U ; but if c7 = 0 then the subset A(0) coincides with the smooth distribution C0 =
(

∂
∂x7

)
outside

L0 = {x7 = x6 = 0} while for any point p of L0 we have

A(0)(p) =
(

∂

∂x7

)
(p) ∪

(
∂

∂x5

)
(p),
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which is clearly not a distribution. In both cases, we have A(1) = C1 =
(

∂
∂x7

, ∂
∂x6

)
outside L1 = {x6 = 0} while

for any point p of L1 we have

A(1)(p) =
(

∂

∂x7
,
∂

∂x6

)
(p) ∪

(
∂

∂x7
,
∂

∂x5

)
(p).

Finally, we have A(2) =
(

∂
∂x7

, ∂
∂x6

, ∂
∂x5

)
outside L2 = {x5 = 0} while for any point p of L2 we have

A(2)(p) =
(

∂

∂x7
,
∂

∂x6
,
∂

∂x5

)
(p) ∪

(
∂

∂x7
,
∂

∂x6
,
∂

∂x4

)
(p).

6.4. Abnormal curves and singularity type

Theorem 6.3. Let D and D̃ be two Goursat structures defined respectively on two manifolds M and M̃ , both
of dimension n. Fix two points p and p̃ of M and M̃ , respectively. There exists a diffeomorphism ϕ, with
p̃ = ϕ(p), between two small enough neighborhoods of p and p̃ that transforms, for 0 ≤ i ≤ n− 4, the abnormal
curves of D(i) into the abnormal curves of D̃(i) if and only if the singularity type of D at p equals the singularity
type of D̃ at p̃.

Proof of Theorem 6.3. Necessity: Consider two distributions D and D̃, defined on two manifolds M and M̃ ,
respectively, that have different singularity types w and w̃ at p and p̃, respectively, that is w = δD(p) and
w̃ = δD̃(p̃). We have already pointed out (see the proof of Th. 5.6) that if w and w̃ are two words of the
Jacquard language Jn such that w 6= w̃ then there exists (after a permutation of w and w̃, if necessary) three
words z, v, and ṽ such that both w = vz and w̃ = ṽz, and which satisfy either{

v = ua1a2 · · ·ai−kak0
ṽ = ũc1c2 · · · ci,

where 0 ≤ k ≤ i− 1 and cj 6= a1 for 1 ≤ j ≤ i, or{
v = ua1a2 · · ·ai−kak0
ṽ = ũa1a2 · · ·ai−lal0,

where k < l.
In both cases, consider the abnormal curves of D(i0+k) and D̃(i0+k), where i0 = |z|. It follows directly from

the definition of the singularity type (see Def. 4.3) that for D we have p ∈ S(i0+i−1)
i−k−1 while for D̃ the point p̃ does

not belong to any submanifold S(i0+k+j)
j . Therefore, the subset A(i0+k)(p) is not a linear subspace of TpM while

the subset Ã(i0+k)(p̃) is a linear subspace of Tp̃M̃ . For each vector τp of A(i0+k)(p) there exists an abnormal
curve of D(i0+k) that is tangent to τp; for each vector τ̃p of Ã(i0+k)(p̃) there exists an abnormal curve of D̃(i0+k)

that is tangent to τ̃p. It follows that no diffeomorphism can transform the abnormal curves of D(i0+k) into the
abnormal curves of D̃(i0+k), locally at p and p̃.

Sufficiency: Now, assume that the singularity type δD(p) of D at p and δD̃(p̃) of D̃ at p̃ coincide and are equal
to w. The distribution D (respectively D̃) can be converted into a Kumpera-Ruiz normal form κn (respectively
κ̃n) centered at p (respectively p̃) via a diffeomorphisms φ (respectively φ̃). Let x = (x1, . . . , xn) (respectively
x̃ = (x̃1, . . . , x̃n)) denote the coordinates in which κn (respectively κ̃n) is expressed. By Corollary 4.6 and
the invariance of the singularity type we have δκn = δκ̃n = w. Moreover, by Proposition 4.4, a submani-
fold S

(i+j)
j contains zero if and only if the submanifold S̃

(i+j)
j contains zero, which is the case if and only if
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w = w1a1 · · ·aj+1w2, for some words w1 and w2 such that |w2| = i. If those manifolds contain zero then, once
again by Proposition 4.4, they are respectively given by

S
(i+j)
j = {xn−i−j = 0, . . . , xn−i = 0} and S̃

(i+j)
j = {x̃n−i−j = 0, . . . , x̃n−i = 0} ·

Now, for each integer i, we must distinguish two cases. First case: If for each integer j the submanifolds S(i+j)
j

and S̃
(i+j)
j are empty, in a small enough neighborhood of zero, then, by Theorem 6.2, the abnormal curves

of D(i) (respectively D̃(i)) are, in a small enough neighborhood of zero, the integral curves of Ci (respectively C̃i).
Moreover, we have

Ci =
(

∂

∂xn
, . . . ,

∂

∂xn−i

)
and C̃i =

(
∂

∂x̃n
, . . . ,

∂

∂x̃n−i

)
·

Second case: If for some integer j the submanifolds S(i+j)
j and S̃

(i+j)
j contain zero then, by Proposition 4.2,

this integer j is unique. By Theorem 6.2, the abnormal curves of D(i) (respectively D̃(i)) are, in a small enough
neighborhood of zero, the integral curves of A(i)

j (respectively Ã(i)
j ). Moreover, we have

A(i)
j (q) =

(
∂

∂xn
, . . . ,

∂

∂xn−i

)
(q) and Ã(i)

j (q̃) =
(

∂

∂x̃n
, . . . ,

∂

∂x̃n−i

)
(q̃),

for each point q (respectively q̃) that does not belong to S(i+j)
j (respectively S̃

(i+j)
j ), and

A(i)
j (q) =

(
∂

∂xn
, . . . ,

∂

∂xn−i+1
,

∂

∂xn−i−j−1

)
(q) ∪

(
∂

∂xn
, . . . ,

∂

∂xn−i

)
(q)

Ã(i)
j (q̃) =

(
∂

∂x̃n
, . . . ,

∂

∂x̃n−i+1
,

∂

∂x̃n−i−j−1

)
(q̃) ∪

(
∂

∂x̃n
, . . . ,

∂

∂x̃n−i

)
(q̃),

for each point q (respectively q̃) that belongs to S(i+j)
j (respectively S̃

(i+j)
j ).

Let Φ be the local diffeomorphism of Rn defined by x̃i = xi, for 1 ≤ i ≤ n. In both cases, the diffeomorphism

ϕ = φ−1 ◦ Φ ◦ φ

transforms the integral curves of A(i) into the integral curves of Ã(i), and thus, by Theorem 6.2, the abnormal
curves of D(i) into the abnormal curves of D̃(i). �

6.5. Rigid curves of Goursat structures

The concept of rigidity for integral curves of distributions was introduced by Bryant and Hsu [7]. Rigid
curves are always abnormal but there exist abnormal curves that are not rigid (see e.g. [1, 7, 77]). Nevertheless,
we will prove that in the case of Goursat structures these two concepts coincide (for C1 immersed curves).

Definition 6.4. Let D be a completely nonholonomic distribution defined on a manifold M . Fix a closed
interval [a, b] and two points p and q in M . Denote by Op,q the space of all C1 integral curves x : [a, b]→ M
of D such that x(a) = p and x(b) = q, endowed with the C1-topology. An integral curve x(·) that belongs to
Op,q is rigid if there exists a small enough neighborhood V of x(·) in Op,q such that any curve x̃ : [a, b]→ M
contained in V is a reparametrization of x(·).

Roughly speaking, a curve x : [a, b]→M is rigid if it is an isolated point of Ox(a),x(b). Our study of abnormal
curves leads easily to the following result, which characterizes immersed rigid curves. This result gives also, for
Goursat structures, a more intuitive view of the concept of abnormal curve.
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Let I ⊂ R be a closed interval. For any t0 ∈ I and for any ε > 0, denote by Iε(t0) the intersection
I ∩ [t0−ε, t0 +ε]. An integral curve x : I →M of D is locally rigid if for each t0 in I there exists a small enough
ε > 0 such that the restriction of x(·) to Iε(t0) is rigid.

Theorem 6.5. Let x(·) be a C1 immersed integral curve of a Goursat structure D, defined on a manifold of
dimension n. The three following conditions are equivalent:

(i) the curve x(·) is locally abnormal;
(ii) the curve x(·) is locally rigid;
(iii) the curve x(·) is either an integral curve of C0 or an integral curve of A(0)

k0−1, for some 1 ≤ k0 ≤ n− 4.

We supposed in this theorem that the integral curve is immersed, which means that its velocity (defined
everywhere, since the curve is C1) never vanishes. This assumption is fundamental. Indeed, an immersed rigid
curve can loose its rigidity if we change its parametrization in such a way that it is not immersed anymore (see
e.g. [73]). Observe also that the theorem is stated for integral curves of D(0) but not for those of D(i), if i ≥ 1.
In fact, the abnormal curves of D(i) such that their velocity does not belong to Ci−1 have only a weaker form
of rigidity: all curves that are close enough to them in the C1 topology stay in a submanifold of the original
manifold. We will consider this situation in a forthcoming work.

Our proof of Theorem 6.5 is mainly based on the ideas introduced by Bryant and Hsu [7] and Zhitomirskĭı [77].
In particular, it is a direct consequence of Zhitomirskĭı’s work that the immersed integral curves of C0 are rigid.

To prove the rigidity of the integral curves of A(0)
k0−1 we follow the main ideas of [77]. Note, however, that the

statement for A(0)
k0−1 is not implied by any of the results of [1,7,67], or [77] because Goursat structures are highly

non-generic and do not fit into the large categories of (generic) rank two distributions studied in those papers.
We would like to point out that, in the particular case of dimension five, the rigidity of the immersed integral
curves of A(0)

0 was already observed in [49]. Moreover, the equivalence of Items (ii) and (iiii) of Theorem 6.5
has already been announced in [56].

Our proof of Theorem 6.5 will use the following lemma, which will be proved later in Appendix D. The
normal form that we introduce in it is analogous to the one used in [77] to prove that the integral curves of C0
are rigid.

Lemma 6.6. Let D be a Goursat structure on a manifold M of dimension n ≥ 5. If the singularity type of D
at p is equal to δD(p) = wa1 · · ·ak0 for some 1 ≤ k0 ≤ n − 4, where w is an arbitrary word of Jn−k0−4, then D
is locally equivalent at p to the distribution spanned by a pair of vector fields that has the following form:

ξ1 =
∂

∂y1

ξ2 = y1
∂

∂y2
+ · · ·+ yk0

∂

∂yk0+1
+

∂

∂yk0+2
+

1
2
y2
k0+1

∂

∂yk0+3
+

n∑
i=k0+4

ϕi(y)
∂

∂yi
,

where the coordinates y1, . . . , yn are centered at p. In these coordinates, the canonical submanifold S
(k0−1)
k0−1 is

given by

S
(k0−1)
k0−1 = {y1 = 0, . . . , yk0 = 0} ·

Moreover, we have C0 = (ξ1), for any point p of Rn, and A(0)
k0−1(p) = (ξ2)(p), for any point p of S(k0−1)

k0−1 .

Proof of Theorem 6.5. It is well known that rigidity implies abnormality (see [1, 7, 77]) and thus, that (ii)
implies (i). By Theorem 6.2, any abnormal curve of D(0) is an integral curve of A(0). Recall that A(0)(p) =
C0(p) ∪ A(0)

k0−1(p), for a unique 1 ≤ k0 ≤ n − 4, and that C0(p) ∩ A(0)
k0−1(p) = 0. Therefore any C1 immersed

abnormal curve of D(0) is either an integral curve of C0 or an integral curve of A(0)
k0−1. Hence (i) implies (iii).
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What remains to prove is that if a C1 immersed integral curve y : Iε(t0)→ Rn of D(0) is an integral curve of
either C0 or A(0)

k0−1 then it is rigid. This result is known [77] for the integral curves of C0. We can thus assume

that y(·) is an immersed integral curve of A(0)
k0−1 (which then, by definition, stays in S

(k0−1)
k0−1 ). It follows from

Lemma 6.6 that we can find coordinates such that y(·) satisfies y(t0 − ε) = 0 and is a solution of the following
control system:

ẏ1 = u1

ẏ2 = y1u2

...

ẏk0+1 = yk0u2 (35)
ẏk0+2 = u2

ẏk0+3 = 1
2y

2
k0+1u2

ẏi = ϕi(y)u2 for k0 + 4 ≤ i ≤ n,

with u1(t) = 0 (because y1(t) = 0 on S(k0−1)
k0−1 ) and u2(t) 6= 0 for each t in Iε(t0) (because the curve is immersed).

Since the coordinates of Lemma 6.6 are chosen to be centered at y(t0 − ε) = 0, from yk0(t) = 0 we conclude
that yk0+1(t) = 0, and thus that yk0+3(t) = 0, for each t in Iε(t0).

Now, consider a C1 immersed integral curve ỹ : Iε(t0)→ Rn of D(0) that has the same end-points as the curve
y(·). In particular, we have ỹk0+3(t0 − ε) = 0 and ỹk0+3(t0 + ε) = 0. By taking a small enough neighborhood
of y(·) in Oy(t0−ε),y(t0+ε) (which is not the same as taking a smaller ε > 0), we can assume that ũ2(t) 6= 0
for each t in Iε(t0), where ũ1 and ũ2 denote the controls for which ỹ(·) is a solution of (35). Without loss of
generality, we can assume that ũ2(t) > 0 (the proof for ũ2(t) < 0 is identical). Since we have 1

2 ỹ
2
k0+1ũ2(t) ≥ 0

for each t in Iε(t0) and both ỹk0+3(t0 − ε) = 0 and ỹk0+3(t0 + ε) = 0, we must have ỹ2
k0+1(t) = 0, for each t

in Iε(t0). Together with ũ2 > 0, the latter relation implies that, for 1 ≤ i ≤ k0 + 1, we have ỹi(t) = 0 for each
t in Iε(t0), which clearly implies ũ1(t) = 0 for each t in Iε(t0). Hence, the curve ỹ(·) is a reparametrization of
the original curve y(·). Indeed, these two curves are C1 immersed integral curves of ξ2 and have the same end
points (see [77] for more details about this last point). �

6.6. Rigid curves of the N -trailer system

Let us illustrate Theorem 6.5 by applying it to the n-trailer system. Let D be the Goursat structure spanned
by the n-trailer system τn on R2 × (S1)n+1. By Proposition 4.9, we have

S
(i)
j =

{
p ∈ R2 × (S1)n+1 : θn−i − θn−i−1 = ±π

2
and tan(θn−i+k − θn−i+k−1) = sin(θn−i+k−1 − θn−i+k−2),

for 1 ≤ k ≤ j
}
,

for 0 ≤ i ≤ n− 2 and 0 ≤ j ≤ i (recall that n is the number of trailers, not the dimension of the configuration
space!). It obviously follows that

S
(j)
j =

{
p ∈ R2 × (S1)n+1 : θn−j − θn−j−1 = ±π

2
and tan(θn−j+k − θn−j+k−1) = sin(θn−j+k−1 − θn−j+k−2),

for 1 ≤ k ≤ j
}
,
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for 0 ≤ j ≤ n− 2. Each submanifold S(j)
j has clearly codimension j+ 1. Moreover, these manifolds are pairwise

disjoint. Thus a given point p is either in none of the submanifold S(j)
j at all or in one and only one of them.

Recall also that A(0)
j (p) = D(i)(p) ∩ TpS(j)

j and that A(0)(p) = C0(p) ∪ A(0)
j (p), for a unique 0 ≤ j ≤ n − 2.

The canonical line field C0 is given on R2 × (S1)n+1 by ( ∂
∂θn

). A simple computation shows that, on each

submanifold S(j)
j , the line field A(0)

j is given by A(0)
j = ( ∂

∂θn
+ · · ·+ ∂

∂θn−j−1
).

By Theorem 6.5, a C1 motion of the n-trailer for which the velocity never vanishes is rigid if and only if:
(i) it is an integral curve of C0 or (ii) it is an integral curve of A(0)

j . In the second case, the motion lies in S(j)
j .

In fact, there is an easy way to visualize these rigid trajectories:

Corollary 6.7. An immersed motion of the n-trailer system is locally rigid if and only if it fixes the positions
in the (ξ1, ξ2)-plane of the centers of the axles of at least two trailers.

For example, there passes through any configuration of R2 × (S1)n+1 an integral curve of C0. The corre-
sponding motion fixes the positions in the (ξ1, ξ2)-plane of all trailers (we just turn the front wheels). If a
configuration is such that θn− θn−1 = ±π2 (it belongs to S(0)

0 ) then, besides the motions associated to C0, there
is an additional motion given by A(0)

0 for which the positions in the (ξ1, ξ2)-plane of all trailers, excepted the
first one, are fixed. For these motions, the center of the first trailer moves on a circle around the center of the
second trailer, which turns with its center fixed (see e.g. Fig. 4). Observe that such a motion is possible if and
only if θn − θn−1 = ±π2 .

7. Contact transformations

In this section we study transformations preserving Goursat structures. Clearly, at regular points, they are
contact transformations. Theorem 7.3 describes such transformations in the case of arbitrary points (regular
or singular). In Section 7.2, we study the fundamental question of whether Goursat structures are locally
determined by their abnormal curves, a property which is shared by most distributions. Using the description
of abnormal curves obtained in Section 6, we will show that in the world of Goursat structures this property
does not hold if the dimension of the underlying manifold is at least six. Then, we will study the question of
whether Goursat structures are determined by abnormal curves of all distributions of their derived flags. In
view of the results of Sections 5 and 6, the latter problem turns out to be that of whether Goursat structures are
determined by the singularity type or, equivalently, by the growth vector. It was announced in [18] by Cheaito
et al. that the growth vector is not a complete local invariant for Goursat structures if the dimension of the
underlying manifold is at least nine. We give a proof of this result in Section 7.2. An alternative proof can be
found in [60]. Then we will construct on R11 a continuous family (parametrized by a real number) of locally
non-equivalent Goursat structures that have the same singularity type, and thus diffeomorphic collections of
abnormal curves for all elements of their derived flags. An analogous example of a continuous family of locally
non-equivalent Goursat structures on R10, all of them having the same growth vector, was given in [60]. Our
method of proving non-equivalence is based on the characterization of singular contact transformations, given
in Section 7.1, and it seems to apply, in general, to different cases than the method of [60].

7.1. A singular version of Bäcklund’s theorem

Let D and D̃ be two Goursat structures defined on two manifoldsM and M̃ , respectively, of dimension n ≥ 3.
A (generalized) contact transformation (of order n− 2) is a smooth diffeomorphism φ between M and M̃ such
that (φ∗D)(p̃) = D̃(p̃), for each point p̃ in M̃ . Such transformations are called automorphisms in the work of
Kumpera and Ruiz [32] (see also [19] and [51]). In a neighborhood of a regular point our definition coincides
with the classical definition of a contact transformation on the space Jn−2(R,R) of (n−2)-jets of functions that
have one dependent and one independent variable (see [6] and [55]). From now on, unless we want to distinguish
generalized contact transformations from the classical ones, we will omit the word “generalized”.
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Fix two points p and p̃ of M and M̃ , respectively. Let φ be a local contact transformation between D and D̃
such that φ(p) = p̃. Fix two small enough neighborhoods U and Ũ of p and p̃, respectively, such that Ũ = φ(U)
and such that D on U and D̃ on Ũ are equivalent to two Kumpera-Ruiz normal forms κn and κ̃n centered at p
and p̃, respectively, and defined on two open subsets x(U) and x̃(Ũ) of Rn, where x and x̃ denote coordinates
that transform the Goursat structures D and D̃ into their Kumpera-Ruiz normal forms κn and κ̃n, respectively.
We can assume, without loss of generality, that the first prolongation (in the sequence of prolongations that
define κn and κ̃n) is regular. Namely κ4 = R0(κ3) and κ̃4 = R0(κ̃3). Once such a pair of Kumpera-Ruiz
charts (x, U) and (x̃, Ũ) has been fixed, we can associate to the contact transformation φ a unique contact
transformation Φ, between κn on x(U) and κ̃n on x̃(Ũ ), by taking

Φ = x̃ ◦ φ ◦ x−1.

In other words x̃ = (Φ ◦ x) ◦ ψ, where ψ denotes the inverse of the diffeomorphism φ. Observe that, since the
Kumpera-Ruiz charts x and x̃ are centered at p and p̃, respectively, we have Φ(0) = 0. We will denote by Φi
the ith component of Φ.

In the next two propositions we will assume that all the above defined data (the Goursat structures D and D̃,
the diffeomorphism φ, the coordinates x and x̃, and the Kumpera-Ruiz normal forms κn and κ̃n) have been
fixed and, therefore, that the diffeomorphism Φ is uniquely defined. The following result is a direct consequence
of the obvious relations

φ∗(Ci) = C̃i,

for 0 ≤ i ≤ n− 4, where Ci ⊂ D(i) denotes the characteristic distribution of D(i+1) and C̃i ⊂ D̃(i) that of D̃(i+1)

(see Prop. 4.1).

Proposition 7.1. For each 1 ≤ i ≤ 3 we have Φi(x) = Φi(x1, x2, x3). For each 4 ≤ i ≤ n we have Φi(x) =
Φi(x1, . . . , xi).

Decompose Rn into a direct product Rn = Ri × Rn−i. It follows directly from Proposition 7.1 that for each
3 ≤ i ≤ n we can build a diffeomorphism Φ(i), between the projection of x(U) on Ri and the projection of x̃(Ũ)
on Ri, by taking the components Φj, for 1 ≤ j ≤ i, as the components of Φ(i). Denote by Ψ(i) the inverse
of Φ(i). We obviously have Φ(n) = Φ. The following result is a direct consequence of Proposition 7.1 and the
obvious relations

φ∗(D(i)) = D̃(i),

which hold for 0 ≤ i ≤ n − 2. Recall that, by definition, the two Kumpera-Ruiz normal forms κn and κ̃n

are given by two sequences of prolongations. We will denote by κ3, . . . , κn and κ̃3, . . . , κ̃n, respectively, the
Kumpera-Ruiz normal forms obtained as intermediate steps of these successive prolongations.

Proposition 7.2. There exist four smooth functions, denoted by ν3, η3, µ3, and λ3, that depend on the coor-
dinates x1, x2, and x3 only, such that

Φ(3)
∗ (κ3

1) = (ν3 ◦Ψ(3))κ̃3
1 + (λ3 ◦Ψ(3))κ̃3

2

Φ(3)
∗ (κ3

2) = (η3 ◦Ψ(3))κ̃3
1 + (µ3 ◦Ψ(3))κ̃3

2.

Moreover, for each i ≥ 4, there exist three smooth functions, denoted by νi, ηi, and µi, that depend on the
coordinates x1, . . . , xi only, such that

Φ(i)
∗ (κi1) = (νi ◦Ψ(i))κ̃i1

Φ(i)
∗ (κi2) = (ηi ◦Ψ(i))κ̃i1 + (µi ◦Ψ(i))κ̃i2.
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The functions νi, ηi, µi, and λi are uniquely defined, for each i ≥ 3, once the diffeomorphism Φ has been fixed.
They obviously satisfy (ν3µ3 − λ3η3)(0) 6= 0 and (νiµi)(0) 6= 0, for i ≥ 4.

The following result can be considered as a singular version of Bäcklund’s theorem [2] (see [55] for a modern
approach). It shows that any contact transformation is the “prolongation” of a first order contact transformation.
Though the case n = 4 is classical [7], it seems that our result for n ≥ 5 is new. Notice that a weaker version
of Theorem 7.3 has already been announced in [13]. Independently, an infinitesimal version of Theorem 7.3 has
been announced in [48] and proved in [51].

Theorem 7.3. Let φ be a local (generalized) contact transformation between two Goursat structures D and D̃,
defined locally at p and p̃, respectively. Let x and x̃ be local coordinates that transform D and D̃ into their
Kumpera-Ruiz normal forms κn and κ̃n, respectively, and let δD(p) = w0 · · ·wn−4 be the singularity type of D
at p, which equals δD̃(p̃) since D at p and D̃ at p̃ are locally equivalent. The constants ci and c̃i that appear
in κn and κ̃n, respectively, and the contact transformation Φ associated to φ and to the coordinates x and x̃
fulfill the following relations:

(i) the diffeomorphism Φ(3) is a first order contact transformation and the functions ν3, η3, µ3, and λ3 are
uniquely determined by Φ(3);

(ii) the diffeomorphism Φ(4) is uniquely defined by

Φ4(x) =
ν3 + x4η3

µ3 + x4λ3

µ4 = µ3 + x4λ3

ν4 = Lκ4
1
Φ4 = (µ3η3 − λ3ν3)/(ν3 + x4η3)2

η4 = Lκ4
2
Φ4;

(iii) if i ≥ 5 and wi−4 6= a1 then Φ(i) is uniquely defined by

c̃i = ci
νi−1(0)
µi−1(0)

+
ηi−1(0)
µi−1(0)

Φi(x) =
1

µi−1
((xi + ci)νi−1 + ηi−1)− c̃i

µi = µi−1

νi = Lκi1Φi = νi−1/µi−1

ηi = Lκi2Φi;

(iv) if i ≥ 5 and wi−4 = a1 then Φ(i) is uniquely defined by

Φi(x) =
xiµi−1

νi−1 + xiηi−1

µi = νi−1 + xiηi−1

νi = Lκi1Φi = (µi−1νi−1)/(νi−1 + xiηi−1)2

ηi = Lκi2Φi.

Therefore, the (generalized) contact transformation Φ is uniquely determined by the first order contact
transformation Φ(3).

This theorem says that any (generalized) contact transformation between two Goursat structures is uniquely
defined by a first order contact transformation Φ(3), and by the singularity type and constants of the chosen
Kumpera-Ruiz normal forms. In fact, the component Φ4 of Φ(4) is a linear fractional transformation (Möbius
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transformation) whose coefficients are uniquely determined by the components of Φ(3) (compare [7]). For i ≥ 5,
successively, the component Φi of Φ(i) is either, in the case of a singular prolongation, a zero preserving linear
fractional transformation with xi = 0 being fixed by the fact that Φ(i) preserves the hypersurface {xi = 0}
or, in the case of a regular prolongation, by an affine transformation. In both cases, the coefficients of the
linear fractional transformation or of the affine transformation are uniquely determined by Φ(i−1) and by the
singularity type and constants of the chosen Kumpera-Ruiz normal forms.

Proof of Theorem 7.3. If n = 3 then there is nothing to prove. If n = 4 then the result is well known (see
e.g. [7]). Therefore, we can proceed by induction on the integer n ≥ 5. Assume that the theorem is true for
n− 1. By Proposition 7.2, we have

Φ(n−1)
∗ (κn−1

1 ) = (νn−1 ◦Ψ(n−1))κ̃n−1
1

Φ(n−1)
∗ (κn−1

2 ) = (ηn−1 ◦Ψ(n−1))κ̃n−1
1 + (µn−1 ◦Ψ(n−1))κ̃n−1

2 .

In other words, the restriction of Φ to x(U) ∩ Rn−1, equipped with coordinates x1, . . . , xn−1, is a contact
transformation between κn−1 and κ̃n−1. Since the theorem is assumed to be true for n−1, each component Φi,
for 1 ≤ i ≤ n − 1, satisfies the relations given by the theorem, as do, for 3 ≤ i ≤ n − 1, the smooth functions
νi, µi, λi, and ηi, given by Proposition 7.2. What remains to check is that Φn, νn, µn, and ηn satisfy our
conditions.

Recall that for any diffeomorphism Φ(n) = (Φ(n−1),Φn)> of Rn, such that Φ(n−1) depends on the first n− 1
coordinates x1, . . . , xn−1 only, and for any vector field f = αfn−1 + fn on Rn, where α is a smooth function
on Rn, the vector field fn−1 is the lift of a vector field on Rn−1, and the only non-zero component of fn is the
last one, we have:

Φ(n)
∗ (f) = (α ◦Ψ(n))Φ(n−1)

∗ (fn−1) +
(

(LfΦn) ◦Ψ(n)
) ∂

∂x̃n
· (36)

Observe that the vector field Φ(n−1)
∗ (fn−1) is lifted (see Notation 2.1) along the coordinate x̃n, which is given

by Φn.

Regular case: If wn−4 6= a1 then we have κn2 = (xn + cn)κn−1
1 + κn−1

2 . This relation, together with (36) and the
induction hypothesis leads to:

Φ(n)
∗ (κn2 ) =

(
(xn + cn) ◦Ψ(n)

)
Φ(n−1)
∗ (κn−1

1 ) + Φ(n−1)
∗ (κn−1

2 ) +
(

(Lκn2 Φn) ◦Ψ(n)
)
κ̃n1

=
(

((xn + cn)νn−1 + ηn−1) ◦Ψ(n)
)
κ̃n−1

1 +
(
µn−1 ◦Ψ(n)

)
κ̃n−1

2 +
(

(Lκn2 Φn) ◦Ψ(n)
)
κ̃n1

=
(
µn−1 ◦Ψ(n)

)((
(xn+cn)νn−1+ηn−1

µn−1
◦Ψ(n)

)
κ̃n−1

1 + κ̃n−1
2

)
+
(

(Lκn2 Φn) ◦Ψ(n)
)
κ̃n1 .

By Proposition 7.2, we know that there exist two smooth functions µn and ηn (with µn 6= 0) such that

Φ(n)
∗ (κn2 ) =

(
ηn ◦Ψ(n)

)
κ̃n1 +

(
µn ◦Ψ(n)

)
κ̃n2 .

Comparing the last two relations and taking into account that κ̃n1 = ∂
∂x̃n

while κ̃n−1
1 , κ̃n−1

2 , and κ̃n2 have zeros as
components multiplying ∂

∂x̃n
we see that ηn = Lκn2 Φn. From the inductive definition of Kumpera-Ruiz normal

forms (regular prolongation) given in Section 2, we have

κ̃n2 = (x̃n + c̃n)κ̃n−1
1 + κ̃n−1

2 .
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We can now conclude that µn = µn−1 and that

Φn(x) =
1

µn−1
((xn + cn)νn−1 + ηn−1) − c̃n,

where

c̃n = cn
νn−1(0)
µn−1(0)

+
ηn−1(0)
µn−1(0)

·

Now consider κn1 . Relation (36) gives Φ(n)
∗ (κn1 ) =

(
(Lκn1 Φn) ◦Ψ(n)

)
κ̃n1 , which implies νn = Lκn1 Φn. This

obviously gives νn = νi−1/µi−1.

Singular case: If wn−4 = a1 then we have κn2 = κn−1
1 + xnκ

n−1
2 . Together with relation (36) and with the

induction hypothesis, this relation leads to:

Φ(n)
∗ (κn2 ) = Φ(n−1)

∗ (κn−1
1 ) + (xn ◦Ψ(n))Φ(n−1)

∗ (κn−1
2 )

+
(

(Lκn2 Φn) ◦Ψ(n)
)
κ̃n1

=
(

(νn−1 + xnηn−1) ◦Ψ(n)
)
κ̃n−1

1 +
(
xnµn−1 ◦Ψ(n)

)
κ̃n−1

2

+
(

(Lκn2 Φn) ◦Ψ(n)
)
κ̃n1

=
(

(νn−1 + xnηn−1) ◦Ψ(n)
)(

κ̃n−1
1 +

(
xnµn−1

νn−1 + xnηn−1
◦Ψ(n)

)
κ̃n−1

2

)
+
(

(Lκn2 Φn) ◦Ψ(n)
)
κ̃n1 .

By Proposition 7.2, we know that there exist two functions µn and ηn such that

Φ(n)
∗ (κn2 ) =

(
ηn ◦Ψ(n)

)
κ̃n1 +

(
µn ◦Ψ(n)

)
κ̃n2 .

The same argument as in the regular case implies ηn = Lκn2 Φn, µn = νn−1 + xnηn−1, and

Φn(x) =
xnµn−1

νn−1 + xnηn−1
·

Moreover, like in the regular case, the relation

Φ(n)
∗ (κn1 ) =

(
(Lκn1 Φn) ◦Ψ(n)

)
κ̃n1

implies νn = Lκn1 Φn = (µi−1νi−1)/(νi−1 + xiηi−1)2. �

7.2. Are Goursat structures locally determined by their abnormal curves?

In this section we will be interested, in the case of Goursat structures, in the following question asked by
Jakubczyk: “are nonholonomic distributions determined by their abnormal curves?”. Several results have
been obtained giving a positive answer to this question: for stable degenerations of Engel structures by
Zhitomirskĭı [75], for singular contact structures by Jakubczyk and Zhitomirskĭı [28], for generic distributions
of corank at least equal to three, at typical points, by Montgomery [45]. Recently, Jakubczyk [26] has proved
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that the answer is positive if we consider abnormal curves of the complexified problem, for all distributions with
the exception of a small subclass. We will show in this section that this subclass contains Goursat structures.

To start with, let us be more precise on what we mean by the statement that distributions are determined
by their abnormal curves. We will follow the definitions given in [45]. Distributions that belong to a class
Q of distributions are strongly determined by their abnormal curves if, for any pair of distributions D and
D̃ that belong to Q, any local diffeomorphism that transforms each abnormal curve of D into an abnormal
curve of D̃, and the other way around, transforms also D into D̃. It is clear that Goursat structures are not
strongly determined by their abnormal curves because they have very few abnormal curves. For example,
contact structures do not have any non-trivial abnormal curve.

A weaker property can be defined as follows. Distributions that belong to a class Q of distributions are
weakly determined by their abnormal curves if, for any pair of distributions D and D̃ that belong to Q, the
existence of a local diffeomorphism that transforms each abnormal curve of D into an abnormal curve of D̃, and
the other way around, implies the local equivalence of D and D̃.

Proposition 7.4. Goursat structures on n-manifolds are not weakly determined by their abnormal curves if
n ≥ 6.

Proof of Proposition 7.4. Consider the two following Kumpera-Ruiz normal forms defined on R6 by(
∂

∂x6
, x6

∂

∂x5
+ x5

∂

∂x4
+ x4

∂

∂x3
+ x3

∂

∂x2
+

∂

∂x1

)
and (

∂

∂x6
, (x6 + 1)

∂

∂x5
+

∂

∂x4
+ x5

(
x4

∂

∂x3
+ x3

∂

∂x2
+

∂

∂x1

))
.

On the one hand, by Theorem 6.2, the distributions spanned by these two Kumpera-Ruiz normal forms have
the same abnormal curves, locally at zero. Indeed, for each of them, the submanifolds S(j)

j , for j = 0 and 1,
are empty in a small enough neighborhood of zero (see Prop. 4.4); and thus their abnormal curves are given, in
both cases, by A(0) = C0 =

(
∂
∂x6

)
, in a small enough neighborhood of zero. But on the other hand, it has been

shown by Kumpera and Ruiz [32] that these two distributions are not locally equivalent at zero. Indeed, the
first one has singularity type a0a0a0 at zero while the second one has singularity type a0a1a0 at zero. Analogous
examples can be constructed for any n ≥ 6. �

Our study of relations between abnormal curves and their singularity type shows that the geometry of a
Goursat structure is reflected by abnormal curves of all elements of the derived flag. It is thus natural to
introduce the following definition. Distributions that belong to a class Q of distributions are weakly determined
by abnormal curves of their derived flags if, for any pair of distributions D and D̃ that belong to Q, the existence
of a local diffeomorphism that transforms each abnormal curve of D(i) into an abnormal curve of D̃(i), and the
other way around, for each i ≥ 0, implies the local equivalence of D and D̃. It is a direct consequence of
Theorem 6.2 and of the classification obtained in [12,19], and [32], that Goursat structures on Rn, for 3 ≤ n ≤ 8
are determined by abnormal curves of their derived flags. It is surprising that in higher dimensions it is not
the case. Indeed, we have the following result which is a direct consequence of Theorem 6.2 and the theorem
announced in [13].

Proposition 7.5. Goursat structures on n-manifolds are not weakly determined by abnormal curves of their
derived flags if n ≥ 9.

It has already been announced in [13] that the growth vector is not a complete invariant for Goursat structures
on Rn, for n ≥ 9 (which, together with Th. 6.2, implies the above result). We will give in this section our
proof of this latter fact. An alternative proof, together with a complete classification, can be found in [50].
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It is important to stress that the method used in [50] and the method that we will present in this section are
different. It seems that both methods apply, in general, to different cases of non-equivalence.

Our aim now is to prove Proposition 7.5. This will be done by giving an example (Prop. 7.6) of two Goursat
structures D and D̃ that are locally non-equivalent but that have the same singularity type (which, by Th. 6.2,
implies the existence of a diffeomorphism between the abnormal curves ofD(i) and those of D̃(i), for i ≥ 0). Then,
this example will be improved (Prop. 7.7) by constructing, instead of a pair of distributions, a continuous family
(parametrized by a real number) of locally non-equivalent Goursat structures that have the same singularity
type, and thus diffeomorphic collections of abnormal curves for all elements of their derived flags.

Consider two Kumpera-Ruiz normal forms (κn1 , κ
n
2 ) and (κ̃n1 , κ̃

n
2 ), defined on Rn, centered at zero, and given,

respectively, in coordinates x = (x1, . . . , xn) and x̃ = (x̃1, . . . , x̃n). Assume that they have been obtained from
(κi1, κi2) and (κ̃i1, κ̃i2), respectively, by a sequence of regular prolongations, for i ≥ 3. Suppose, moreover, that the
Goursat structures spanned by (κn1 , κn2 ) and (κ̃n1 , κ̃n2 ) are locally equivalent and let x̃ = Φ(x) be a (generalized)
contact transformation, of order n − 2, that establishes this equivalence. We have x̃j = Φj(x), for 1 ≤ j ≤ n.
We are going to prove that the components Φj, for i+ 1 ≤ j ≤ n, can be obtained by a sequence of derivations
(with respect to a well chosen vector field) from the component Φi. To start with, apply Theorem 7.3 to the
component Φi+1. We have

Φi+1 =
1
µi

((xi+1 + ci+1)νi + ηi)− c̃i+1.

In follows also from Theorem 7.3 (regular case) that this expression can be written in the following form:

Φi+1 =
1
µi

(
(xi+1 + ci+1)Lκi1Φi + Lκi2Φi

)
− c̃i+1

=
1
µi

L(xi+1+ci+1)κi1+κi2
Φi − c̃i+1

= L 1
µi
κi+1

2
Φi − c̃i+1.

But since Φi is a function of x1, . . . , xi only, the latter expression can be rewritten as

Φi+1 = L 1
µi
κn2

Φi − c̃i+1.

Theorem 7.3 implies, moreover, that µj = µi, for i+ 1 ≤ j ≤ n. Thus, the previous argument can be repeated
to obtain, for 1 ≤ k ≤ n− i, the following relations:

Φi+k = Lk1
µi
κn2

Φi − c̃i+k,

which imply that

c̃i+k =
(

Lk1
µi
κn2

Φi

)
(0)

because the coordinates are centered. Therefore, in the case of a sequence of regular prolongations, the constants
c̃i+k can be obtained by computing the successive derivatives Lk(1/µi)κn2 Φi of the component Φi (that defines the
coordinate x̃i) and by taking their values at zero.

The following definition is natural and will simplify the proofs of next results given in this section. Let γ
be a smooth function defined on Rn and let g be a smooth vector field, also defined on Rn. The degree of the
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function γ, with respect to the vector field g, is the smallest integer k (maybe infinite) such that Lkg(γ)(0) 6= 0.
Note that if the degree of γ1 is i1 and the degree of γ2 is i2 then the degree of γ1γ2 is obviously i1 + i2.

Proposition 7.6. Consider the two following Kumpera-Ruiz normal forms defined on R9 by

κ9
1 =

∂

∂x9

κ9
2(c9) = (x9 + c9)

∂

∂x8
+ (x8 + 1)

∂

∂x7
+ x7

∂

∂x6
+

∂

∂x5
+ x6

(
x5

∂

∂x4
+ x4

∂

∂x3
+ x3

∂

∂x2
+

∂

∂x1

)
,

where c9 = 0 or 1. They are locally non-equivalent at zero, although both of them have the same singularity type
a0a0a1a2a0a0 at zero.

Proof of Proposition 7.6. Denote by κ9 the Kumpera-Ruiz normal form given by (κ9
1, κ

9
2(0)), in (x1, . . . , x9)-

coordinates, and denote by κ̃9 the Kumpera-Ruiz normal form given by (κ9
1, κ

9
2(c̃9)), in (x̃1, . . . , x̃9)-coordinates.

We are going to show that if a (generalized) contact transformation x̃ = Φ(x) converts the Goursat structure
generated by κ9 into the one generated by κ̃9 then we must have c̃9 = 0.

Denote by κ4, . . . , κ9 and by κ̃4, . . . , κ̃9 the elements of the two sequences of Kumpera-Ruiz normal forms
used to construct, via prolongations, the normal forms κ9 and κ̃9, respectively. Since κ5 = R0(κ4) we have, by
the regular case of Theorem 7.3, the following relations:

µ5 = µ4 and ν5 =
ν4

µ4
·

Hence µ5 and ν5 are functions of x1, . . . , x4 only. Denote µ = µ4, ν = ν4, and η = η5. Since κ6 = S(κ5) we
have, by the singular case of Theorem 7.3, the following relations:

Φ6(x) =
x6µ

ν
µ + x6η

µ6 =
ν

µ
+ x6η.

Denote α = 1/µ6 and g = ακ9
2. Since both κ9 and κ̃9 are obtained by a sequence of regular prolongations

from κ6 and κ̃6, respectively, it follows from the discussion given at the beginning of this section that the new
constant c̃9 can be calculated by computing the successive derivatives of Φ6, in the direction of the vector field
g = (1/µ6)κ9

2. Namely

c̃9 =
(
L3
gΦ6

)
(0).

Instead of computing the successive derivatives of Φ6 directly, take the Taylor series expansion of Φ6. The
terms of this expansion that contain coordinate functions of degree d ≥ 4, with respect to g, can obviously be
discarded. To this aim, we will start by computing the degree, with respect to g, of the functions x1, . . . , x6,
that is of the variables on which Φ6 depends.

For x6, we have:

Lgx6 = αx7

L2
gx6 = α2(x8 + 1) + (Lgα)x7

L3
gx6 = α3x9 + 3α (Lgα) (x8 + 1) +

(
L2
gα
)
x7.
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Since
(
L2
gx6

)
(0) = α2(0) = (µ(0)/ν(0))2 6= 0, the degree of x6 is 2. We have Lgx5 = α. Therefore the degree

of x5 is 1. We have Lgx4 = αx6x5. Thus the degree of x4 is 4. Analogously, the degree of x3 is 7, the degree
of x2 is 10, and the degree of x1 is 3.

Now observe that Φ6(x) = x6ϕ(x1, . . . , x6), for a suitable function ϕ. This implies that each term of the
Taylor series expansion of Φ6 is of the form x6x

k1
1 · · ·xk6

6 , for some integers k1, . . . , k6. Since c̃9 =
(
L3
gΦ6

)
(0),

we consider only terms of degree d ≤ 3 with respect to g. Therefore we have:

Φ6(x) = Ax6 +Bx6x5,

up to terms of degree d ≥ 4 with respect to g. Recall that neither µ nor ν depend on the variables x5 and x6.
Hence

∂Φ6

∂x6
=

ν(
ν
µ + x6η

)2

∂2Φ6

∂x5∂x6
=
−2x6ηx5(
ν
µ + x6η

)3 ·

Thus A = µ(0) and B = 0. This implies that Φ6(x) = µ(0)x6, up to terms of degree d ≥ 4. Since we have
already computed the successive derivatives of x6, it is easy to obtain that:

(LgΦ6) (0) = 0(
L2
gΦ6

)
(0) = µ(0)α2(0)(

L3
gΦ6

)
(0) = 3µ(0)α(0) (Lgα) (0).

But (Lgα) (0) = 0. Hence, since c̃9 =
(
L3
gΦ6

)
(0), we have c̃9 = 0. �

Proposition 7.7. Consider the following family of Kumpera-Ruiz normal forms defined on R11 by

κ11
1 =

∂

∂x11

κ11
2 (c11) = (x11 + c11)

∂

∂x10
+ (x10 + 1)

∂

∂x9
+ (x9 + 1)

∂

∂x8
+ x8

∂

∂x7

+ x7
∂

∂x6
+

∂

∂x5
+ x6

(
x5

∂

∂x4
+ x4

∂

∂x3
+ x3

∂

∂x2
+

∂

∂x1

)
where c11 is an arbitrary real constant. Two Kumpera-Ruiz normal forms that belong to this family are locally
equivalent at zero if and only if they have the same constant c11, although all of them have the same singularity
type a0a0a1a2a3a0a0a0 at zero.

Proof of Proposition 7.7. Denote by κ11 the Kumpera-Ruiz normal form given by (κ11
1 , κ

11
2 (c11)), in coordi-

nates (x1, . . . , x11), and denote by κ̃11 the Kumpera-Ruiz normal form given by (κ11
1 , κ

11
2 (c̃11)), in coordinates

(x̃1, . . . , x̃11). We are going to show that if a (generalized) contact transformation x̃ = Φ(x) converts the
Goursat structure generated by κ11 into the one generated by κ̃11 then we must have c̃11 = c11.

Denote by κ4, . . . , κ11 and by κ̃4, . . . , κ̃11 the elements of the two sequences of Kumpera-Ruiz normal forms
used to construct, via prolongations, the normal forms κ11 and κ̃11, respectively. Since κ5 = R0(κ4) we have,
by the regular case of Theorem 7.3, the following relations:

µ5 = µ4 and ν5 =
ν4

µ4
·
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Hence µ5 and ν5 are functions of x1, . . . , x4 only. Denote µ = µ4, ν = ν4, and η = η5. Since κ6 = S(κ5) we
have, by the singular case of Theorem 7.3, the following relations:

Φ6(x) =
x6µ

ν
µ

+ x6η

µ6 =
ν

µ
+ x6η.

Denote α = 1/µ6 and g = ακ11
2 . Since both κ11 and κ̃11 are obtained by a sequence of regular prolongations

from κ6 and κ̃6, respectively, it follows from the discussion given at the beginning of this section that the new
constant c̃11 can be obtained by computing the successive derivatives of Φ6, in the direction of the vector field g.
Namely

c̃11 =
(
L5
gΦ6

)
(0).

Let us consider the Taylor series expansion of Φ6. Again, the terms of this expansion that contain coordinate
functions of degree d ≥ 6, with respect to g, will be discarded. The successive derivatives of x6 are given by:

Lgx6 = αx7

L2
gx6 = α2x8 + (Lgα)x7

L3
gx6 = α3(x9 + 1) + 3α(Lgα)x8 + (L2

gα)x7

L4
gx6 = α4(x10 + 1) + 6α2(Lgα)(x9 + 1) +

(
3(Lgα)2 + 4α(L2

gα)
)
x8 + (L3

gα)x7

L5
gx6 = α5(x11 + c11) + 10α3(Lgα)(x10 + 1) +

(
15α(Lgα)2 + 10α2(L2

gα)
)

(x9 + 1)

+
(
10(Lgα)(L2

gα) + 5α(L3
gα)
)
x8 + (L4

gα)x7.

Since
(
L3
gx6

)
(0) = α3(0) = (µ(0)/ν(0))3 6= 0, the degree of x6 is 3. The degree of x5 is 1, the degree of x4 is 5,

the degree of x3 is 9, the degree of x2 is 13, and the degree of x1 is 4 (all degrees are with respect to g).
Now observe that Φ6(x) = x6ϕ(x1, . . . , x6), for a suitable function ϕ. The Taylor series expansion of Φ6, up

to terms of degree d ≤ 5 with respect to g, is given by:

Φ6(x) = Ax6 + Bx6x5 + Cx6x
2
5.

Recall that neither µ nor ν depend on the variable x5. Therefore

∂Φ6

∂x6
(0) = µ(0)

∂2Φ6

∂x5∂x6
(0) =

∂3Φ6

∂2x5∂x6
(0) = 0.

Hence A = µ(0) and both B and C are equal to 0. This implies that Φ6(x) = µ(0)x6, up to terms of degree
d ≥ 6. Since we have already computed the successive derivatives of x6, it is easy to obtain that:

(LgΦ6) (0) = 0(
L2
gΦ6

)
(0) = 0(

L3
gΦ6

)
(0) = µ(0)α3(0)(

L4
gΦ6

)
(0) = µ(0)α4(0)(

L5
gΦ6

)
(0) = µ(0)α5(0)c11.
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Since Φ transforms κ11 into κ̃11, we must have both c̃9 = 1 and c̃10 = 1. But c̃9 =
(
L3
gΦ6

)
(0) and c̃10 =(

L4
gΦ6

)
(0). Therefore, µ4(0)/ν3(0) = 1 and µ5(0)/ν4(0) = 1. This obviously implies µ(0) = ν(0) = 1. Hence,

since c̃11 = c11µ
6(0)/ν5(0), we have c̃11 = c11. �

Appendix A. Proof of Kumpera-Ruiz theorem

Our proof of Theorem 2.3 will be based on the following classical result, which was originally formulated in
the dual language of Pfaffian systems ([72], Th. V) (see also [11,22,32], and Appendix C).

Proposition A.1 (von Weber). Let D be a Goursat structure on a manifold M of dimension n ≥ 4. In a small
enough neighborhood of any point p in M , the distribution D is equivalent to a distribution spanned on Rn by
a pair of vector fields that has the following form:(

∂

∂yn
, ynζ

n−1
1 + ζn−1

2

)
(37)

where ζn−1
1 and ζn−1

2 are the lifts of a pair of vector fields that span a Goursat structure on Rn−1 and the
coordinates y1, . . . , yn are centered at p.

Proof of Proposition A.1. It is well known (see e.g. [7,67], and [77]) that any Goursat structure D on a manifold
of dimension n ≥ 4 admits a canonical line field L ⊂ D uniquely defined by [L,D(1)] ⊂ D(1). Observe that in
the preliminary normal form (37) of Proposition A.1 this line field is given by L =

(
∂
∂yn

)
.

It is clear that, applying around p the flow-box theorem to a vector field that spans L, we can chose local
coordinates (z1, . . . , zn), centered at p, such that D is locally equivalent to a distribution spanned on Rn by a
pair of vector fields that has the following form:(

∂

∂zn
,
n−1∑
i=2

αi(z)
∂

∂zi
+

∂

∂z1

)
,

where L =
(

∂
∂zn

)
. Since dimD(1)(p) = 3 there exists an integer i such that ∂αi

∂zn
(p) 6= 0. We can assume that

i = n− 1 and, moreover, that αn−1(0) = 0. Otherwise, replace the coordinate zn−1 by zn−1− z1αn−1(0). Now,
if we define yn = αn−1(z) and yi = zi, for 1 ≤ i ≤ n − 1, we get that D is locally equivalent to a distribution
spanned on Rn by a pair of vector fields that has the following form:(

∂

∂yn
, yn

∂

∂yn−1
+
n−2∑
i=2

βi(y)
∂

∂yi
+

∂

∂y1

)
·

But the inclusion [L,D(1)] ⊂ D(1) clearly implies ∂2βi
∂y2
n
≡ 0 for 2 ≤ i ≤ n − 2. That is βi(y) = ai(yn−1)yn +

bi(yn−1), where yn−1 = (y1, . . . , yn−1). Define

ζn−1
1 =

∂

∂yn−1
+
n−2∑
i=2

ai(yn−1)
∂

∂yi
and ζn−2

2 =
n−2∑
i=2

bi(yn−1)
∂

∂yi
+

∂

∂y1
·

We conclude thatD is equivalent to
(

∂
∂yn

, ynζ
n−1
1 + ζn−1

2

)
, where both ζn−1

1 and ζn−1
2 are lifts (see Notation 2.1)

of vector fields defined on Rn−1. Put F = (ζn−1
1 , ζn−1

2 ). Clearly dimD(i+1) = dimF (i) + 1, for 0 ≤ i ≤ n− 3.
It follows that the distribution F is a Goursat structure on Rn−1 . �
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Proof of Theorem 2.3. On three-manifolds, Theorem 2.3 is obviously true. Indeed, it is the solution of the Pfaff
problem (see [15] and [18]; see also [6] for a modern approach). We will proceed by induction on n ≥ 4, showing
that if any Goursat structure on an (n−1)-manifold can be converted locally into a Kumpera-Ruiz normal form
then the same is true for any Goursat structure on a manifold of dimension n.

Let D be a Goursat structure on a manifold M of dimension n ≥ 4 and let p be an arbitrary point in M .
It follows from Proposition A.1 that D is equivalent, in a small enough neighborhood of p, to a distribution
spanned on Rn by a pair of vector fields (ζn1 , ζ

n
2 ) that has the following form:

ζn1 =
∂

∂yn

ζn2 = ynζ
n−1
1 + ζn−1

2 .

In the rest of the proof we will assume that D = (ζn1 , ζn2 ). Note that the y-coordinates are centered at zero.
Our aim is to build a local change of coordinates

(x1, . . . , xn) = φn(y1, . . . , yn),

a Kumpera-Ruiz normal form (κn1 , κn2 ) on Rn, and three smooth functions µn, νn, and ηn such that

φn∗ (ζ
n
1 ) = (νn ◦ ψn)κn1

φn∗ (ζ
n
2 ) = (ηn ◦ ψn)κn1 + (µn ◦ ψn)κn2 , (38)

where ψn = (φn)−1 denotes the inverse of the local diffeomorphism φn and both µn(0) 6= 0 and νn(0) 6= 0.
Moreover, we will impose the x-coordinates to be centered at zero. That is φn(0) = 0. Observe that the
triangular form in (38) appears because both ζn1 and κn1 span the canonical line fields of the distributions
spanned by (ζn1 , ζ

n
2 ) and (κn1 , κ

n
2 ), respectively.

By Proposition A.1, the distribution spanned by (ζn1 , ζn2 ) is defined by the lifts of a pair of vector fields
(ζn−1

1 , ζn−1
2 ) that span a Goursat structure on Rn−1. Since the theorem is assumed to be true on Rn−1,

the distribution spanned by (ζn−1
1 , ζn−1

2 ) is locally equivalent to a Kumpera-Ruiz normal form (κn−1
1 , κn−1

2 )
defined on Rn−1 and centered at zero. It follows that there exists a local diffeomorphism (x1, . . . , xn−1) =
φn−1(y1, . . . , yn−1) and four smooth functions νn−1, λn−1, ηn−1, and µn−1 such that:

φn−1
∗ (ζn−1

1 ) = (νn−1 ◦ ψn−1)κn−1
1 + (λn−1 ◦ ψn−1)κn−1

2

φn−1
∗ (ζn−1

2 ) = (ηn−1 ◦ ψn−1)κn−1
1 + (µn−1 ◦ ψn−1)κn−1

2 , (39)

where ψn−1 = (φn−1)−1 denotes the inverse of the local diffeomorphism φn−1 and (νn−1µn−1−λn−1ηn−1)(0) 6= 0.
Let φn = (φn−1, φn)T be a diffeomorphism of Rn such that φn−1 depends on the first n− 1 coordinates only.

Moreover, let f be a vector field on Rn of the form f = αfn−1 + fn, where α is a smooth function on Rn, the
vector field fn−1 is the lift of a vector field on Rn−1 (see Notation 2.1), and the only non-zero component of fn
is the last one. A direct computation shows that:

φn∗ (f) = (α ◦ ψn)φn−1
∗ (fn−1) + ((Lfφn) ◦ ψn)

∂

∂xn
· (40)

Note that the vector field φn−1
∗ (fn−1) is lifted along the xn-coordinate, which is defined by φn.
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Regular case: If µn−1(0) 6= 0 then we can complete φn−1 to a zero-preserving local diffeomorphism of Rn by
taking φn = (φn−1, φn)T , where

φn(y) =
νn−1yn + ηn−1

λn−1yn + µn−1
− ηn−1(0)
µn−1(0)

·

In this case, we define cn = (ηn−1/µn−1)(0) and

νn = Lζn1 φn, ηn = Lζn2 φn, and µn = λn−1yn + µn−1.

Observe that νn(0) = Lζn1 φn(0) = (νn−1µn−1 − λn−1ηn−1)(0) 6= 0 and that µn(0) = µn−1(0) 6= 0. Thus the
right hand side of (38) defines a locally invertible transformation. Moreover, the Kumpera-Ruiz normal form
(κn1 , κ

n
2 ) is defined to be the regular prolongation, with parameter cn, of (κn−1

1 , κn−1
2 ).

Let us check that, in this case, relation (38) holds. Together, relations (39) and (40) give:

φn∗ (ζ
n
2 ) = (yn ◦ ψn)φn−1

∗ (ζn−1
1 ) + φn−1

∗ (ζn−1
2 ) +

(
(Lζn2 φn) ◦ ψn

) ∂

∂xn

= ((νn−1yn + ηn−1) ◦ ψn)κn−1
1 + ((λn−1yn + µn−1) ◦ ψn)κn−1

2 + (ηn ◦ ψn)κn1

= ((λn−1yn + µn−1) ◦ ψn)
((

νn−1yn + ηn−1

λn−1yn + µn−1
◦ ψn

)
κn−1

1 + κn−1
2

)
+ (ηn ◦ ψn)κn1

= (µn ◦ ψn)
(
(xn + cn)κn−1

1 + κn−1
2

)
+ (ηn ◦ ψn)κn1

= (ηn ◦ ψn)κn1 + (µn ◦ ψn)κn2 .

Moreover, we have

φn∗ (ζn1 ) =
(
(Lζn1 φn) ◦ ψn

) ∂

∂xn
= (νn ◦ ψn)κn+3

1 .

It follows that, in the regular case, relation (38) holds.

Singular case: If µn−1(0) = 0 then we can complete φn−1 to a zero-preserving local diffeomorphism of Rn by
taking φn = (φn−1, φn)T , where

φn(y) =
λn−1yn + µn−1

νn−1yn + ηn−1
·

Observe that µn−1(0) = 0 implies φn(0) = 0. Additionally, since µn−1(0) = 0 and (νn−1µn−1 − λn−1ηn−1)(0)
6= 0, we have λn−1(0) 6= 0 and ηn−1(0) 6= 0. In this case, we define

νn = Lζn1 φn, ηn = Lζn2 φn, and µn = νn−1yn + ηn−1.

Observe that νn(0) = Lζn1 φn(0) = (λn−1ηn−1 − νn−1µn−1)(0) 6= 0 and that µn(0) = ηn−1(0) 6= 0. Thus the
right hand side of (38) defines a locally invertible transformation. Moreover, the Kumpera-Ruiz normal form
(κn1 , κ

n
2 ) is defined to be the singular prolongation of (κn−1

1 , κn−1
2 ).
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Let us check that, again, relation (38) holds. Together, relations (39) and (40) give:

φn∗ (ζ
n
2 ) = (yn ◦ ψn)φn−1

∗ (ζn−1
1 ) + φn−1

∗ (ζn−1
2 ) +

(
(Lζn2 φn) ◦ ψn

) ∂

∂xn

= ((νn−1yn + ηn−1) ◦ ψn)κn−1
1 + ((λn−1yn + µn−1) ◦ ψn)κn−1

2 + (ηn ◦ ψn)κn1

= ((νn−1yn + ηn−1) ◦ ψn)
(
κn−1

1 +
(
λn−1yn + µn−1

νn−1yn + ηn−1
◦ ψn

)
κn−1

2

)
+ (ηn ◦ ψn)κn1

= (µn ◦ ψn)
(
κn−1

1 + xnκ
n−1
2

)
+ (ηn ◦ ψn)κn1

= (ηn ◦ ψn)κn1 + (µn ◦ ψn)κn2 .

Like in the previous case, we have

φn∗ (ζn1 ) =
(
(Lζn1 φn) ◦ ψn

) ∂

∂xn
= (νn ◦ ψn)κn+3

1 .

It follows that relation (38) holds in both cases. �

Appendix B. Proof of Theorem 6.2 (abnormal curves)

We proceed now to the proof of Theorem 6.2, which states that an integral curve of D(i) is locally abnormal
if and only if it is an integral curve of A(i). The proof will be based on the three following lemmas.

Lemma B.1. Consider a Goursat structure D defined on a manifold of dimension n, and fix an integer i such
that 0 ≤ i ≤ n− 4. An integral curve of D(i) that has an empty intersection with the singular locus Ki is locally
abnormal if and only if it is an integral curve of Ci, and thus of A(i).

Proof of Lemma B.1. Let γ : I →M be an integral curve of D(i) that does not intersect the singular locus Ki.
Since we are outside Ki it is easy to show, using a direct generalization of Goursat’s normal form (see [32]
and [43]), given by Theorem C.4, that for any fixed t0 in I we can find a local coordinate chart x : U → Rn
centered at γ(t0) and such that:

D(i) =
(

∂

∂x1
, . . . ,

∂

∂xi+1
, xi+1

∂

∂xi+2
+ · · ·+ xn−2

∂

∂xn−1
+

∂

∂xn

)
·

Recall that Iε(t) = I ∩ [t0 − ε, t0 + ε]. Chose a small enough ε > 0 such that the restriction of γ to Iε(t0) is
completely contained in the open set U . Then, the curve x ◦ γ : Iε(t0) → Rn, which will be denoted shortly
by x(·), is almost everywhere a solution of the following control system

ẋ1 = u1

...
ẋi = ui

ẋi+1 = ui+1

ẋi+2 = xi+1ui+2

...
ẋn−1 = xn−2ui+2

ẋn = ui+2. (41)
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Since the coordinate chart is centered at γ(t0), we have x(t0) = 0. The Hamiltonian of this system is given by

H(x, p, u) =
i+1∑
k=1

pkuk +
n−1∑
k=i+2

pkxk−1ui+2 + pnui+2.

Therefore, the curve x(·) is abnormal if and only if there exists a non-trivial lift (x(·), p(·)) that satisfies, almost
everywhere, the following differential equation

ṗ1 = 0
...

ṗi = 0
ṗi+1 = −pi+2ui+2

...
ṗn−2 = −pn−1ui+2

ṗn−1 = 0
ṗn = 0 (42)

and, moreover, is such that pk = 0, for 1 ≤ k ≤ i + 1, and pn = −
∑n−1
k=i+2pkxk−1. The latter condition is a

consequence of ∂H
∂u = 0.

Necessity. Assume that x(·) is not an integral curve of Ci. We will prove that x(·) is not abnormal. In
the coordinates of (41) we have Ci =

(
∂
∂x1

, . . . , ∂
∂xi+1

)
. Since x(·) is not an integral curve of Ci, there ex-

ists a measurable subset I0 ⊂ Iε(t0) such that the Lebesgue measure of I0 is not zero and ui+2(t) 6= 0 for
each t in I0. If x(·) is abnormal then p(·) is such that pi+1(t) = 0 for each t in Iε(t0). Therefore, we have
ṗi+1 = 0 almost everywhere on I0. Indeed, note that if an absolutely continuous function f on I0 is such that
f(t) = 0 for almost all t in I0 then f ′(t) = 0 for almost all t in I0. But ṗi+1 = −pi+2ui+2 and ui+2 6= 0 imply
pi+2 = 0 almost everywhere on I0, which gives ṗi+2 = 0 almost everywhere on I0. We can repeat the previous
argument to obtain pk = 0, for 1 ≤ k ≤ n− 1, almost everywhere on I0. Since pn = −

∑n−1
k=i+2pkxk−1, we have

also pn = 0 almost everywhere on I0. This gives pk = 0, almost everywhere on I0, for 1 ≤ k ≤ n, which is
impossible since p must be non-trivial.

Sufficiency. Now, assume that x(·) is an integral curve of Ci. In order to prove that x(·) is abnormal, we will
consider the lift defined by pk = 0 for 1 ≤ k ≤ n, with the exception of pn−1, for which any non-zero real
constant can be taken. Since x(·) is an integral curve of Ci we must have ui+2(t) = 0 almost everywhere on
Iε(t0), which implies that p(·) satisfies (42). Moreover, since x(t0) = 0, we have xk(t) = xk(t0) = 0, for each t in
Iε(t0) and for i+ 2 ≤ k ≤ n. Thus pn, which was taken to be zero, satisfies pn = −

∑n−1
k=i+2pkxk−1 (recall that

pi+2 = 0). In other words p(·) satisfies ∂H
∂u = 0. Finally, since pn−1 6= 0, our lift is non-trivial, which implies

that x(·) is abnormal. �
Lemma B.2. Consider a Goursat structure D defined on a manifold of dimension n and fix an integer i such
that 0 ≤ i ≤ n − 5. Let x(·) be the restriction of an integral curve of D(i) to the interval Iε(t0), where ε > 0.
If a fixed measurable subset I0 ⊂ R is such that for each t in I0 ∩ Iε(t0) we have ẋ(t) /∈ A(i)(x(t)) then, for a
small enough ε > 0, we have x(t) /∈ Ki for almost all t in I0 ∩ Iε(t0).

Proof of Lemma B.2. Let x : Iε(t0) → Rn be the restriction to the interval Iε(t0), where ε > 0, of an integral
curve of D(i). Firstly, if x(t0) /∈ Ki then there exists a small enough ε such that x(·) does not intersect Ki

and thus, in this case, the lemma is trivially true. Secondly, if the Lebesgue measure of I0 is 0 then the lemma
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is also trivially true. Finally, if the closure of I0 does not contain t0 then for a small enough ε the Lebesgue
measure of I0 ∩ Iε(t0) will be 0 and thus the lemma will be, once more, trivially true. Hence, from now on, we
will only consider curves such that x(t0) belongs to Ki, the Lebesgue measure of I0 is not 0, and the closure of
I0 contains t0. Moreover, once a small enough ε > 0 has been fixed, we will denote also by I0 the intersection
I0 ∩ Iε(t0). That is, we will assume that I0 ⊂ Iε(t0).

For any such integral curve x(·) of D(i) it is easy to prove, using a direct generalization of Kumpera-Ruiz’s
normal form, given by Theorem C.5 (with a double indexation of coordinates, like in Cor. 2.4), that there exist
coordinates on Rn in which x(·) is a solution of the following control system:

ẋ0
1 = u1

ẋ0
2 = u2

...

ẋ0
i = ui

ẋ0
i+1 = ui+1

ẋpq =

 ∏
0≤r≤p−1

xrkr

 (xpq−1 + cpq−1)ui+2
for i+ 2 ≤ q ≤ k0 if p = 0 and
for 2 ≤ q ≤ kp if 1 ≤ p ≤ m

ẋp+1
1 =

 ∏
0≤r≤p−1

xrkr

ui+2 for 0 ≤ p ≤m, (43)

where x = (x0
1, x

0
2, . . . , x

0
k0
, x1

1, . . . , x
m
km
, xm+1

1 ) and x(t0) = 0 (recall that we assume that x(t0) belongs to the
singular locus, which means that m ≥ 1). Moreover, the integers ki that appear in (43) satisfy i+1 ≤ k0 ≤ n−4
and k1 ≥ 1, . . . , km−1 ≥ 1, km ≥ 3, km+1 = 1 and

∑m+1
r=0 kr = n. Observe that the number m ≥ 1 is the number

of singularities of D(i), which can be smaller than the number of singularities of D. In these coordinates, the
singular locus is given by

Ki =

{
m−1∏
r=0

xrkr = 0

}
·

If c0q = 0, for all i+ 1 ≤ q ≤ k0− 1, then the only integer j such that S(i)
j contains zero is j = k0− (i+ 1). Thus

Li is given (see Prop. 4.4) by

Li = S
(k0−1)
k0−1−i =

{
x0
i+1 = x0

i+2 = · · · = x0
k0

= 0
}
·

Note that if for some i+ 1 ≤ q ≤ k0 − 1 we have c0q 6= 0 then the submanifold Li does not contain zero (it is
locally empty at zero).

For each point p of Rn, we have

Ci(p) =
(

∂

∂x0
1

, . . . ,
∂

∂x0
i+1

)
(p).

If c0q = 0, for i+ 1 ≤ q ≤ k0 − 1, then we have

A(i)(p) =
(

∂

∂x0
1

, . . . ,
∂

∂x0
i+1

)
(p) ∪

(
∂

∂x0
1

, . . . ,
∂

∂x0
i

,
∂

∂x1
1

)
(p),
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for each point p in Li and A(i)(p) = Ci(p), outside Li. If for some i+ 1 ≤ q ≤ k0 − 1 we have c0q 6= 0 then, in a
small enough neighborhood U of zero, we have A(i)(p) = Ci(p) for each point p in U .

Recall that the integral curve x : Iε(t0) → Rn of D(i) is such that x(t0) = 0. Assume that, at a given t of
Iε(t0), the velocity ẋ(t) exists and satisfies (43). Then, if ε is small enough, we have by the above analysis that
the velocity ẋ(t) belongs to A(i)(x(t)) if and only if we have ui+2(t) = 0 or the three following conditions hold:
(i) ui+1(t) = 0 and (ii) x0

q(t) = 0, for i+ 1 ≤ q ≤ k0, and (iii) c0q = 0, for i+ 1 ≤ q ≤ k0 − 1.
Now, suppose that for each t in I0 ⊂ Iε(t0) the velocity ẋ(t) exists and is such that ẋ(t) /∈ A(i)(x(t)). Recall

that we can assume that the Lebesgue measure of I0 is not 0 and the closure of I0 contains t0. For each t in I0
we have ui+2(t) 6= 0. Additionally: (a) If c0q = 0 for i+ 1 ≤ q ≤ k0 − 1 then we can represent the subset I0 as
I0 = I1 ∪ I2 (with, in general, a non empty intersection of I1 and I2), where I1 is the set of points where (i) is
not satisfied and I2 is the set of points where (ii) is not satisfied. (b) If there exists an integer i+1 ≤ q ≤ k0−1
such that c0q 6= 0 then I0 = {t ∈ Iε(t0) : ui+2(t) 6= 0}, provided that ε is small enough. We are going to show
that, in both cases, we have x(t) /∈ Ki, for almost all t in I0.

Case (a): Subset I1. For each t in I1 we have both ui+2(t) 6= 0 and ui+1(t) 6= 0. Therefore, we have ẋ0
i+1 6= 0

almost everywhere on I1, which implies that x0
i+1 6= c0i+1 almost everywhere on I1. Indeed, note that if an

absolutely continuous function f on I1 is such that f ′(t) 6= 0 for almost all t in I1 then, for any constant c, the
measure of the set {t ∈ I1 : f(t) = c} is zero.

Now, using an induction argument we will show, successively, that x0
i+1 6= c0i+1, x0

i+2 6= c0i+2,..., x0
k0−1 6=

c0k0−1, x0
k0
6= 0, x1

1 6= c11,..., x1
k1−1 6= c1k1−1, x1

k1
6= 0,..., xm−1

km−1
6= 0, almost everywhere on I1. Suppose that

this assumption is true up to xpq−1. We have two cases: either q ≤ kp or q = kp + 1. If q ≤ kp then
ẋpq =

∏
0≤r≤p−1(xrkr)(x

p
q−1 + cpq−1)ui+2. Since xrkr 6= 0, for 0 ≤ r ≤ p−1, and xpq−1 6= cpq−1 and ui+2 6= 0, almost

everywhere on I1, we have ẋpq(t) 6= 0 for almost all t in I1. This implies, almost everywhere on I1, that xpq 6= cpq
if q ≤ kp − 1 or that xpq 6= 0 if q = kp. Otherwise q = kp + 1 and in this case ẋp+1

1 =
∏

0≤r≤p−1(xrkr)ui+2. Since
xrkr 6= 0, for 0 ≤ r ≤ p− 1, and ui+2 6= 0, almost everywhere on I1, we have ẋp+1

1 (t) 6= 0 for almost all t in I1,
which implies xp+1

1 6= cp+1
1 almost everywhere on I1. This ends the induction argument. In particular, we have

proved that xrkr(t) 6= 0 for almost all t in I1, for each 0 ≤ r ≤ m−1. Now, recall that the singular locus is given
by the relation

∏m−1
r=0 x

r
kr

= 0. It thus follows that we have x(t) /∈ Ki for almost all t in I1.

Case (a): Subset I2. We can represent the subset I2 as I2 = Ii+1
2 ∪ · · · ∪ Ik0

2 , where Iq2 = {t ∈ I0 : x0
q(t) 6= 0}.

Observe that, in general, the intersection of these subsets will be non empty. Now on each subset Iq2 , of positive
Lebesgue measure, we can follow the same proof as for the subset I1, starting the induction argument with x0

q.
For each one of these subsets the conclusion is the same: we have x(t) /∈ Ki for almost all t in Iq2 .

Case (b): We have ui+2(t) 6= 0 for each t in I0 and, moreover, there exists q such that c0q 6= 0, where i+1 ≤ q ≤
k0 − 1. Since c0q 6= 0, we can take a smaller ε > 0, if necessary, in order to have ẋ0

q+1(t) = (x0
q(t) + c0q)ui+2 6= 0

for each t in I0. This implies that x0
q+1 6= c0q+1 almost everywhere on I0. The rest of the proof follows like for

the subset I1 and the conclusion is the same: we have x(t) /∈ Ki for almost all t in I0. The only difference being
that the induction argument starts with x0

q+1 instead of x0
i+1. �

Lemma B.3. Consider a Goursat structure D defined on a manifold of dimension n and fix an integer i such
that 0 ≤ i ≤ n − 5. An integral curve of A(i) that intersects the singular locus Ki is locally, in a small enough
neighborhood of any point of intersection, an abnormal curve of D(i).

Proof of Lemma B.3. Let x : Iε(t0) → Rn be the restriction to the interval Iε(t0), where ε > 0, of an integral
curve of D(i) that intersects the singular locus at x(t0). It is easy to prove (see Lem. D.2) that, for a small
enough ε > 0, there exist coordinates such that the integral curve x(·) is a solution of the following control
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system:

ẋ1 = u1

...
ẋi = ui

ẋi+1 = ui+1

ẋi+2 = (xi+1 + ci+1)ui+2

...

ẋk0 = (xk0−1 + ck0−1)ui+2

ẋk0+1 = xk0ui+2

ẋk0+2 = ui+2

ẋk0+3 = xk0xk0+2ui+2

ẋk0+4 = xk0xk0+3ui+2

ẋj = xk0φj(xk0+3)ui+2 for k0 + 5 ≤ j ≤ n, (44)

where x = (x1, x2, . . . , xn) and xk0+3 = (xk0+3, xk0+4, . . . , xn). Since x(t0) belongs to Ki, we can assume that
x(t0) = 0. Moreover, like in the proof of the previous lemma, we have i+ 1 ≤ k0 ≤ n− 4.

The Hamiltonian of this system is given by

H(x, p, u) =
i+1∑
j=1

pjuj +
k0∑

j=i+2

pj(xj−1 + cj−1)ui+2 + pk0+1xk0ui+2 + pk0+2ui+2

+

pk0+3xk0+2 + pk0+4xk0+3 +
n∑

j=k0+5

pjφj(xk0+3)

 xk0ui+2,

which implies that any abnormal lift (x(·), p(·)) of x(·) must satisfy

ṗj = 0 for 1 ≤ j ≤ i
ṗj = −pj+1ui+2 for i+ 1 ≤ j ≤ k0 − 1

ṗk0 =

−pk0+1 − pk0+3xk0+2 − pk0+4xk0+3 −
n∑

j=k0+5

pjφj(xk0+3)

ui+2

ṗk0+1 = 0

ṗj = −ψj(xk0+3, p)xk0ui+2 for k0 + 2 ≤ j ≤ n, (45)

where the ψj ’s are some functions of xk0+3, xk0+4, . . . , xn and pk0+3, pk0+4, . . . , pn, for k0 + 2 ≤ j ≤ n. The
exact form of these functions is irrelevant for our purpose. Any abnormal lift (x(·), p(·)) of x(·) must also satisfy
the relation ∂H

∂u = 0, which implies pj = 0, for 1 ≤ j ≤ i+ 1, and

pk0+2 = −
k0∑

j=i+2

pj(xj−1 + cj−1) +−

pk0+1 + pk0+3xk0+2 + pk0+4xk0+3 +
n∑

j=k0+5

pjφj(xk0+3)

xk0 .

Recall that x(·) is an integral curve of D(i). Like in the proof of Lemma B.2, if for a given t the velocity ẋ(t)
exists and satisfies (44) then we have ẋ(t) ∈ A(i)(x(t)) if and only if ui+2(t) = 0 or the three following conditions
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hold: (i) ui+1(t) = 0 and (ii) xj(t) = 0, for i+ 1 ≤ j ≤ k0, and (iii) cj = 0, for i+ 1 ≤ j ≤ k0 − 1. Now, assume
that x(·) is an integral curve of A(i), that is ẋ(t) ∈ A(i)(x(t)) for almost all t in Iε(t0). In order to prove that x(·)
is abnormal we must construct a non-trivial abnormal lift (x(·), p(·)) of x(·). Take pj = 0, for 1 ≤ j ≤ n, with
the exception of pk0+4, for which we take any non-zero real constant. It is straightforward to check that our lift
satisfies (45). Indeed, the coordinate xk0+3 is constant because we have ẋk0+3 = xk0xk0+2ui+2; and ui+2(t) = 0
or xk0(t) = 0 for almost all t. Moreover, since x(0) = 0, we have xk0+3(t) = 0, for each t in Iε(t0). It is also
trivial to check that our lift satisfies ∂H

∂u = 0. Since pk0+4 6= 0 our lift in non-trivial. It follows that the integral
curve x(·) is abnormal. �

Proof of Theorem 6.2. Let x : Iε(t0)→ Rn be the restriction to the interval Iε(t0) of an integral curve of D(i).
For ε > 0 small enough, we can apply both Lemma B.1 and Lemma B.3, which imply that if the curve x(·) is
such that ẋ(t) belongs to A(i)(x(t)) for almost all t in Iε(t0) then x(·) is abnormal. In other words, the integral
curves of A(i) are locally abnormal.

Now assume that, for a fixed interval Iε(t0), the curve x(·) is abnormal. Define the subset I0 ⊂ Iε(t0) by

I0 =
{
t ∈ Iε(t0) : ẋ(t) exists and ẋ(t) /∈ A(i)(x(t)

}
·

We will show that if ε is small enough then the Lebesgue measure of I0 is zero. We can decompose I0 into
I0 = I1 ∪ I2, where

I1 = {t ∈ I0 : x(t) ∈ Ki} and I2 = {t ∈ I0 : x(t) /∈ Ki} ·

On the one hand, the measure of I1 is equal to zero. Indeed, since for each t in I0 we have ẋ(t) /∈ A(i)(x(t)),
for ε small enough Lemma B.2 implies that we have x(t) /∈ Ki for almost all t in I0. But, on the other hand,
the measure of I2 is also equal to zero. To see this, let us write I2 as I2 = I0 ∩ I3, where

I3 = {t ∈ Iε(t0) : x(t) /∈ Ki} ·

Since Ki is closed (see the discussion following the statement of Th. 6.2) and x(·) is continuous, it is clear that
we can decompose I3 into a union of disjoint open intervals I3 =

⋃
Jα such that, on each of them, the curve

x(·) has an empty intersection with the singular locus Ki. Moreover, since the set I3 is an open subset of R
the union can be taken to be countable. Now Lemma B.1 implies that, for each α, we have ẋ(t) ∈ A(i)(x(t))
for almost all t in Jα because x(·) is abnormal and we are outside the singular locus. Hence, since the measure
of I2 is the sum of the measures of the sets I0 ∩ Jα (the union is countable) and the measure of each of these
sets is zero, the measure of I2 equals zero. �

Appendix C. Weber’s problem

Our proof of Kumpera-Ruiz’s theorem was based on the following fact: if a rank two distribution D on a
manifoldM of dimension n ≥ 4 satisfies dimD(1)(p) = 3 and dimD(2)(p) = 4, for each point p in M , then there
exists a canonical line field L ⊂ D that satisfies [L,D(1)] ⊂ D(1). This observation has a natural generalization:
if a rank k ≥ 2 distribution D on a manifold M of dimension n ≥ k + 2 satisfies dimD(1)(p) = k + 1 and
dimD(2)(p) = k + 2, for each point p in M , then there exists (i) a canonical involutive distribution L1 ⊂ D(0)

that has rank k−1 and is uniquely characterized by [L1,D(1)] ⊂ D(1); and (ii) a canonical involutive distribution
L0 ⊂ D(0) that has rank k−2 and is uniquely characterized by [L0,D(0)] ⊂ D(0) (see [76], as well as [32] and [43]
for an approach based on Pfaffian systems; see also [31] and Prop. 4.1).

Though the above observation appears more or less clearly in the work of Cartan (see e.g. [11]; see also [22]),
its origin can be found in the pioneering work of Engel [16], for n = k + 2, and von Weber [72], for n ≥ k + 2
(see also [9]). This observation is closely related to the following result, which is clearly stated in Weber’s
article ([72], Th. V) (using the dual language of Pfaffian systems).
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Theorem C.1 (von Weber). Let D be a rank k ≥ 2 distribution on a manifold M of dimension n = m+ k− 2
≥ 4. Assume that dimD(1)(p) = k + 1 and dimD(2)(p) = k + 2, for each point p in M . Then, in a small
enough neighborhood of any point p in M , the distribution D is equivalent to a distribution spanned by a family
of vector fields that has the following form:(

∂

∂xm+k−2
, . . . ,

∂

∂xm+1
,
∂

∂xm
, xm

∂

∂xm−1
+
m−2∑
i=2

ϕi(xm−1)
∂

∂xi
+

∂

∂x1

)
, (46)

where the functions ϕi, for 2 ≤ i ≤ m− 2, depend on the variables x1, . . . , xm−1 only.

The following result is a direct consequence of Theorem C.1.

Proposition C.2. Any Goursat structure on a manifold M of dimension n ≥ 4 is equivalent, in a small enough
neighborhood of any point p in M , to a distribution spanned by a pair of vector fields that has the following
form: (

∂

∂xn
, xn

∂

∂xn−1
+ xn−1

∂

∂xn−2
+
n−3∑
i=2

ϕi(xn−1)
∂

∂xi
+

∂

∂x1

)
, (47)

where the coordinates x1, . . . , xn are centered at p and the functions ϕi, for 2 ≤ i ≤ n − 3, depend on the
variables x1, . . . , xn−1 only.

In the particular case of four-manifolds the last result gives:

Corollary C.3 (Engel’s theorem). Any Goursat structure on a four-manifold M is equivalent, in a small
enough neighborhood of any point p in M , to the distribution spanned by the following pair of vector fields
(Engel’s normal form): (

∂

∂x4
, x4

∂

∂x3
+ x3

∂

∂x2
+

∂

∂x1

)
,

where the x-coordinates are centered at p.

The following theorem can be considered as a rigorous version of Weber’s result ([72], Th. VI), it is a direct
consequence of the work of Kumpera and Ruiz [32], Martin and Rouchon [43], Murray [53], and Zhitomirskĭı [76]
(see also [46]).

Theorem C.4 (Weber’s problem). A rank k ≥ 2 distribution D on a manifold M of dimension n = m+ k− 2
≥ 4 is equivalent, in a small enough neighborhood of a given point p in M , to the distribution spanned by the
following family of vector fields (Weber’s normal form)(

∂

∂xm+k−2
, . . . ,

∂

∂xm+1
,
∂

∂xm
, xm

∂

∂xm−1
+ · · ·+ x3

∂

∂x2
+

∂

∂x1

)
(48)

if and only if dimDi(p) = dimD(i)(p) = k + i, for 0 ≤ i ≤ m− 2, in a small enough neighborhood of p.

If we have dimD(i)(p) = k + i, for 0 ≤ i ≤ n− 2, but we do not impose any condition on dimDi(p) then we
still have the following result (see also [46]), which is a direct consequence of Theorem C.1 and Theorem 2.3,
applied to the last two vectors fields of (46).

Theorem C.5 (Kumpera-Ruiz). Let D be a rank k ≥ 2 distribution on a manifold M of dimension n =
m + k − 2 ≥ 4, such that for any point p in M we have dimD(i)(p) = k + i, for 0 ≤ i ≤ m − 2. Then, the
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distribution D is equivalent, in a small enough neighborhood of any point p in M, to the distribution spanned by
the following family of vector fields: (

∂

∂xm+k−2
, . . . ,

∂

∂xm+1
, κm1 , κ

m
2

)
,

where the pair of vector fields (κm1 , κm2 ) denotes a Kumpera-Ruiz normal form on Rm.

Appendix D. Additional normal forms

Let ξm = (ξm1 , ξm2 ) be a pair of vector fields defined on Rm that has the following form:(
∂

∂xm
, xm

∂

∂xm−1
+ xm−1

∂

∂xm−2
+
m−3∑
i=2

ϕi(xm−1)
∂

∂xi
+

∂

∂x1

)
· (49)

A pair of vector fields ξm+l = (ξm+l
1 , ξm+l

2 ) defined on Rm+l, for l ≥ 0, is called a prolongation of order l of ξm

if we have ξm+l = σl ◦ · · ·◦σ1(ξm), where each σi, for 1 ≤ i ≤ l, equals either S or Rci , for some real constants ci
(recall that the singular and regular prolongations S and Rci have been defined in Sect. 2).

The following lemma is a natural generalization of Proposition C.2.

Lemma D.1. Let D be a rank k ≥ 2 distribution on a manifold M of dimension n = m+ l+ k− 2 ≥ 4, where
l and m are two non-negative integers. Assume that for each point p in M we have dimD(i)(p) = k + i, for
0 ≤ i ≤ l + 2. Then, in a small enough neighborhood of any point p in M , the distribution D is equivalent to a
distribution spanned by a family of vector fields that has the following form:(

∂

∂xm+l+k−2
, . . . ,

∂

∂xm+l+1
, ξm+l

1 , ξm+l
2

)
, (50)

where the pair of vector fields (ξm+l
1 , ξm+l

2 ) is a prolongation of order l of a pair of vector fields (ξm1 , ξm2 ) of the
form (49).

The proof of Lemma D.1 is left to the reader. For generic points, the lemma is stated and proved in the
work of Cartan [11] and Goursat [22]. For singular points, the lemma is a direct consequence of the results
obtained by Kumpera and Ruiz [32] and its proof is almost the same as that of Theorem 2.3 but there are
essentially two differences. The first difference is that instead of using Proposition A.1, as it is done in the proof
of Theorem 2.3, one uses Theorem C.1; the second difference is that instead of starting the induction argument,
for l = 0, with the Pfaff-Darboux normal form, as it is done in the proof of Theorem 2.3, one starts it with
Weber’s preliminary normal form (49).

Let D be a rank k ≥ 2 distribution on a manifold M of dimension n = m + k − 2 ≥ 4, such that for any
point p in M we have dimD(i)(p) = k + i, for 0 ≤ i ≤ m − 2. It is easy to check that each distribution D(i),
for 0 ≤ i ≤ m− 4, contains a unique involutive subdistribution Ci ⊂ D(i) that has constant corank one in D(i)

and is characteristic for D(i+1). We can generalize the canonical submanifolds S(i)
0 of Section 4 by the following

definition:

S
(i)
0 = {p ∈M : D(i)(p) = Ci+1(p)},

where 0 ≤ i ≤ m− 5. We say that a point p of M is singular if there exists an integer 0 ≤ i ≤ m− 5 such that
p ∈ S(i)

0 . For a singular point p, we denote by k0 the smallest integer 1 ≤ k0 ≤ m− 4 such that p ∈ S(k0−1)
0 .

Lemma D.2. Let D be a rank k ≥ 2 distribution on a manifold M of dimension n = m+ k0 + k− 2 ≥ 4, such
that for any point p in M we have dimD(i)(p) = k + i, for 0 ≤ i ≤ k0 + 2. Assume, moreover, that k0 is the
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smallest integer such that D(k0−1)(p) = Ck0(p). Then, in a small enough neighborhood of p, the distribution D
is equivalent to a distribution spanned by a family of vector fields that has the following form:

(
∂

∂xm+k0+k−2
, . . . ,

∂

∂xm+k0+1
, ξm+k0

1 , ξm+k0
2

)
, (51)

where the pair of vector fields ξm+k0 = (ξm+k0
1 , ξm+k0

2 ) is a prolongation of order k0 of a pair of vector fields
ξm = (ξm1 , ξ

m
2 ) of the form (49). Moreover, we have ξm+k0 = σk0 ◦ · · · ◦ σ1(ξm), where σ1 = S and each σj, for

2 ≤ j ≤ k0, equals Rcj , for some real constants ci.

The proof of Lemma D.2 follows the same line as that of Proposition 4.4. Though instead of considering a
Kumpera-Ruiz normal form we consider now a family of vector fields of the form (51), the idea is the same.
Firstly, we compute the distributions D(i) and Ci, and the submanifolds S(i)

0 . Secondly, we observe that if
σ1 = Rc, for some real constant c, then p /∈ S

(k0−1)
0 ; since p ∈ S

(k0−1)
0 we must have σ1 = S. Thirdly, we

observe that if σj = S for some 2 ≤ j ≤ k0 then p ∈ S(k0−j)
0 ; since k0 is by definition the smallest integer such

that p ∈ S(k0−1)
0 we must have σj = Rcj , for 2 ≤ j ≤ k0.

For Goursat structures, using the singularity type leads to the following stronger result, which states that if
the singularity type is of the form wa1a2 · · ·ak0 then the constants that appear in all regular prolongations in
the above lemma equal zero.

Lemma D.3. Let D be a Goursat structure on a manifold M of dimension n ≥ 5 and let p be a point in M .
If the singularity type of D at p is of the form wa1a2 · · ·ak0, for some 1 ≤ k0 ≤ n− 4, where w is an arbitrary
word of Jn−k0−3, then D is locally equivalent to a distribution spanned by a pair of vector fields that has the
following form:

ξ1 =
∂

∂x1

ξ2 = x1
∂

∂x2
+ · · ·+ xk0

∂

∂xk0+1
+

∂

∂xk0+2

+ xk0

(
xk0+2

∂

∂xk0+3
+ xk0+3

∂

∂xk0+4
+

n∑
i=k0+5

ϕi(x) ∂
∂xi

)
,

where the coordinates x1, . . . , xn are centered at p.

The proof of the last lemma follows also the same line as the proof of Proposition 4.4. Again, we leave details
to the reader. The main interest of the last lemma is that it gives directly the proof of Lemma 6.6.

Proof of Lemma 6.6. It is straightforward to check that, in the coordinates of Lemma D.3, the canonical
submanifold S(k0−1)

k0−1 is given by

S
(k0−1)
k0−1 = {x1 = 0, . . . , xk0 = 0}

and that, moreover, we have C0 = (ξ1) on M and A(0)
k0−1(p) = (ξ2)(p) for each point p on S

(k0−1)
k0−1 . In order to

obtain the required normal form, we only have to change two coordinates. For 1 ≤ i ≤ k0 +2 and k0 +5 ≤ i ≤ n,
take yi = xi. Moreover, take yk0+4 = xk0+3 and yk0+3 = xk0+4 − xk0+3xk0+1 + 1

2
xk0+2x

2
k0+1. �
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Appendix E. Figures of low-dimensional trailer systems

E.1. The unicycle and the car

0 5

0

0.5

1

ẋ1 = u1

ẋ2 = x1 u2

ẋ3 = u2

Figure 1. The unicycle and its normal form. Growth vector: (2, 3). Singularity type: ε.

0 5

0

0.5

1

1.5

ẋ1 = u1

ẋ2 = x1 u2

ẋ3 = x2 u2

ẋ4 = u2

Figure 2. The car and its normal form. Growth vector: (2, 3, 4). Singularity type: a0.
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E.2. The two-trailer system
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0.5

1

1.5

2

2.5

ẋ1 = u1

ẋ2 = x1 u2

ẋ3 = x2 u2

ẋ4 = x3 u2

ẋ5 = u2

Figure 3. A two-trailer and its normal form. Growth vector: (2, 3, 4, 5). Singularity type: a0a0.
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0.5

1

1.5

2

2.5

ẋ1 = u1

ẋ2 = u2

ẋ3 = x1 x2 u2

ẋ4 = x1 x3 u2

ẋ5 = x1 u2

Figure 4. A two-trailer and its normal form. Growth vector: (2, 3, 4, 4, 5). Singularity type: a0a1.
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E.3. The three-trailer system
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1
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3.5

ẋ1 = u1

ẋ2 = x1 u2

ẋ3 = x2 u2

ẋ4 = x3 u2

ẋ5 = x4 u2

ẋ6 = u2

Figure 5. A two-trailer and its normal form. Growth vector: (2, 3, 4, 5, 6). Singularity type: a0a0a0.
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1.5
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ẋ1 = u1

ẋ2 = u2

ẋ3 = x1 x2 u2

ẋ4 = x1 x3 u2

ẋ5 = x1 x4 u2

ẋ6 = x1 u2

Figure 6. A two-trailer and its normal form. Growth vector: (2, 3, 4, 4, 5, 5, 6). Singularity
type: a0a0a1.
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Figure 7. A two-trailer and its normal form. Growth vector: (2, 3, 4, 5, 5, 6). Singularity type: a0a1a0.
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Figure 8. A two-trailer and its normal form. Growth vector: (2, 3, 4, 5, 5, 5, 6). Singularity
type: a0a1a2.
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Figure 9. A two-trailer and its normal form. Growth vector: (2, 3, 4, 4, 5, 5, 5, 6). Singularity
type: a0a1a1.
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[23] D. Hilbert, Über den Begriff der Klasse von Differentialgleichungen. Math. Ann. 73 (1912) 95–108.
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[57] W. Pasillas-Lépine and W. Respondek, Conversion of the n-trailer into Kumpera-Ruiz normal form and motion planning
through the singular locus, in Proc. of the IEEE Conference on Decision and Control. Phoenix, Arizona (1999) 2914–2919.

[58] J.-B. Pomet, Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift. Systems
Control Lett. 18 (1992) 147–158.
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[77] M. Zhitomirskĭı, Rigid and abnormal line subdistributions of 2-distributions. J. Dynam. Control Systems (1) (1995) 253–294.
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