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NONLOCAL VARIATIONAL PROBLEMS ARISING
IN LONG WAVE PROPAGATION

Orlando Lopes
1

Abstract. In this paper we study the existence of minimizer for certain constrained variational prob-
lems given by functionals with nonlocal terms. This type of functionals are first integrals of evolution
equations describing long wave propagation and the existence of minimizer gives the existence and
the stability of traveling waves for these equations. Due to loss of compactness, the major problem is
to prevent dichotomy of minimizing sequences. Our approach is an alternative to the concentration-
compactness method and it allows us to deal with some functionals for which the verification of the
strict subadditivity seems to be difficult.

AMS Subject Classification. 35J20, 49J10.

Received January 20, 2000. Revised August, 2000.

1. Introduction

In this paper we consider the following problem:

(P) Minimize V (u) subject to I(u) = λ > 0,

where V (u) and I(u) will be translation invariant functionals defined on the Hilbert space Hs
K(RN ), s ≥ 1/2,

of the vector-valued functions u : RN → RK , u(x) = (u1(x), · · · , uK(x)) such that

|u|2s=̂
∫
RN

(1 + |ξ|2s)|û(ξ)|2 dξ =
∫
RN

(1 + |ξ|2s)
(

K∑
i=1

|ûi(ξ)|2
)

dξ <∞,

where, as usual, û(ξ) denotes the Fourier transform of u(x).
A typical example is

V (u) =
1
2

∫
RN

m(ξ)|û(ξ)|2 dξ +
∫
RN

F (u(x)) dx

and

I(u) =
∫
RN

G (u(x)) dx,

F (u) and G(u) being real valued functions defined on the space RK and m(ξ) is a symbol defined for ξ ∈ RN .
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Our main motivation is to study such problems in connection with evolution equations. For instance, if

u̇(t) = K (u(t)) (1.1)

is an evolution equation in a Hilbert space X and V (u) and I(u) are conserved quantities for (1.1), then for
any real number α, V (u) + αI(u) is also a conserved quantity and then, according to a result of Lax [17], the
set of the critical points of V (u) + αI(u), that is, the set of the elements u ∈ X such that V ′(u) + αI ′(u) = 0,
is also invariant under (1.1). Such critical points give rise to special solutions of equation (1.1) (traveling waves,
standing waves, bound states). Moreover, if such critical points are minimizers of problem (P), then such special
solutions are stable with respect to (1.1) (see [10]). In some cases uniqueness of weak solutions of the Cauchy
problem for the evolution equation (1.1) is not known and, because of that, the stability of the waves is proved
for positive time only.

So, in the applications, for a given value of λ, the set of the minimizers of problem (P) is stable with respect
to (1.1) and it consists of special solutions. A more difficult question is to describe this set of minimizers. For
instance, is it made of a finite number of orbits? (see comments about this point in the introduction of [2]). The
answer to this question depends on knowing the multiplicity of the zero eigenvalue of the linearized operator
V ′′(u) + αI ′′(u) and, in general, this seems to be a difficult problem.

A different attitude is to assume that there is a smooth curve of critical points u(c) parametrized by the
speed c and to study its stability or instability by looking at the function V (u(c)) + cI(u(c)) (see [14] and [30],
among many others) (instability cannot be proved by the minimization method of [10]). In this approach, we
also have to know the multiplicity of the zero eigenvalue of the linearized operator (see [31], for instance).

If N ≥ 2 and the symbol m(ξ) is equal to some m0(|ξ|) then the functionals V (u) and I(u) are also invariant
under rotations and then we can minimize V (u) under I(u) = λ in the space Hs

K,rad(RN ) of the functions that
are radially symmetric. For instance, if s = 1, due to the compact imbedding of H1

rad(RN ) into Lp(RN ) for

2 < p < 2∗ =
2N
N − 2

, that minimization problem can be solved easily. But if we want to apply that type of result

to conclude stability of waves, then we would get stability just with respect to perturbations which are radially
symmetric. In other words, if we want to get stability of waves with respect to a large class of perturbations,
then we cannot restrict the minimization problem (P) to the class of radially symmetric functions. However,
for some types of variational problems, the radial symmetry of the minimizers can be proved [19,22].

Due to the invariance of the problem (P) with respect to translation in the space variable, the best we can ask
is if minimizing sequences are precompact except for translations in the space variable and the main difficulty
is the possibility of having dichotomy of a minimizing sequence.

This class of problems has been studied by Lions in a series of papers ([20] and [21] among many others)
and, for instance, if G(u) = |u|2, it has been proved that preventing dichotomy is equivalent to verify the strict
inequality

V (λ) < V (µ) + V (λ− µ), 0 < µ < λ (1.2)

where V (λ) is the infimum of V (u) on the admissible set {u : I(u) = λ}. This strict inequality has been verified
in many examples and that method, called concentration-compactness, has been widely used.

In [23–25] and [26] we have offered a different approach for that type of problem in the case of one constraint
(concentration-compactness works also in the case of many constraints [9,21]) and, according to that, dichotomy
is prevented provided we can show that any nontrivial solution of the Euler-Lagrange

V ′(u) + αI ′(u) = 0 (1.3)

which is the weak limit of a minimizing sequence of problem (P) has Morse index at least one (assumption H5

of Th. 2.1 in this paper). Since it can be shown very easily that the Morse index of such a limit cannot be larger
than one, that implies that the Morse index has to be exactly one.
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As we have done in simpler and more concrete situations, the main idea is to show that under assumption
H5 of Theorem 2.1, dichotomy violates a second derivative condition for minimizing sequences. In order to
carry out this program we use a lemma of Lions which is related to the so called Lieb’s lemma.

In the case of two constraints and under assumption H5, all we can show is that a minimizing sequence
of problem (P) cannot “tricotomize”, but it is not clear what are the implications of this fact. The multi-
constrained problem also arises naturally in the study of the existence and stability of traveling waves for a
fourth order wave equation [18] and of the stability of double waves for the integrable KdV [27]. This last case
shows that dichotomy may indeed occur (if we believe that the double wave is actually is a global minimizer of
the corresponding variational problem; all we know is that it is a local minimizer).

So, in the case of one constraint, we can choose between verifying (1.2) or assumption H5 of Theorem 2.1.
In several examples for which inequality (1.2) has been proved, we were also been able to verify assumptionH5

under similar conditions on the functions appearing in the functional (in general, we require more derivatives).
On the other hand, there are examples for which we can verify assumption H5 and, apparently, it would be
difficult to prove the strict inequality (1.2). Of course we cannot say that it would be impossible because (1.2)
is also a necessary condition for preventing dichotomy.

In this paper we use our alternative approach to study a class of functionals with a nonlocal term that arise
in the theory of long wave propagation and that has been studied in [2–4] and [31]. More general models have
been studied in [28] and the conservative system

∂u
∂t

+
N∑
i=1

∂

∂xi
[gradF (u) + Lu] = 0

has two first integrals V (u) and I(u) of the type we consider in this paper.
As an application of our method we will show the existence of a stable set of traveling waves of the modified

generalized intermediate long wave equation

ut + (f(u(x))x − β1M1ux − β2M2ux = 0 (1.4)

under minimal assumptions on the nonlinearity f(u), where βi > 0, i = 1, 2, Mi is the Fourier multiplier
defined by

(M̂iw)(ξ) = mi(ξ)ŵ(ξ), mi(ξ) = ξ coth(ξHi)−
1
Hi

for i = 1, 2, Hi a real number. The modified Benjamin-Ono equation can be treated in a similar way.
From the point of view of our theory, equation (1.4) is special because a sort of maximum principle maximum

is available for it and, because of that, we are able to show that assumption H5 is satisfied for a very large class
of nonlinearities f(u) and this will allow us to solve the corresponding minimization problem.

In the case of local functionals, we have developed our approach in previous papers and here we just indicate
some applications of that case to a KdV system, a Schrodinger system, the generalized Zakharov-Kuznetsov
equation [8] and the “BBM” version of it.

In order to avoid repetition of arguments in future applications and to cover some existing results, the method
will be presented as abstractly as possible. In the last section we make specific applications of our theory. The
main result of the abstract part is to show that, under asssumption H5, dichotomy is prevented and the crucial
argument is to show that, in presence of assumption H5, dichotomy violates a second derivative condition for
minimizing sequences. We also prove an abstract stability result (in the spirit of [10]) of the set where the
minimum of problem (P) is achieved.

2. The abstract theory

Notation. We will use boldface letters u,h to indicate either that u,h are vectors in RK or that they are
RK-vector valued functions. LpK(RN ) is the space of the RK-valued functions defined on RN whose components
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are in Lp(RN ). Hs
K(RN ) is the space of the functions u : RN → RK , u(x) = (u1(x), · · · , uK(x)) such that

|u|2s=̂
∫
RN

(1 + |ξ|2s)|û(ξ)|2 dξ =
∫
RN

(1 + |ξ|2s)
(

K∑
i=1

|ûi(ξ)|2
)

dξ <∞,

where û(ξ) denotes the Fourier transform of u(x); if K = 1 it will be omitted. The scalar product and the norm
in Hs

K(RN ) will be denoted by 〈, 〉s and | |s, respectively, and the scalar product and norm in RK simply by 〈, 〉
and | |, respectively.

We consider the following problem;

(P) Minimize V (u) subject to I(u) = λ > 0

where V (u) and I(u) are functionals defined on the space Hs
K(RN), s > 0, satisfying the following assumptions:

H1) V, I : Hs
K(RN ) → R are translation invariant C2 functionals whose first and second derivatives are

uniformly continuous on bounded sets, V (0) = 0 and I(0) = 0;
H2) if un ∈ Hs

K(RN ) is a sequence converging weakly in Hs
K(RN ) to u and cn ∈ RN is such that |cn| tends to

∞ then for any h,k ∈ Hs
K(RN ),

I ′(un)(h), I ′′(un)(h,h), V ′(un)(h) and V ′′(un)(h,h)

converge to
I ′(u)(h), I ′(u)(h,h), V ′(u)(h) and V ′′(u)(h,h)

respectively, and
I ′′(un)(h,kn) and V ′′(un)(h,kn)

converge to zero, where kn(x) = k(x+ cn);
H3) the admissible set {u ∈ Hs

K(RN ) : I(u) = λ} is not empty and I ′(u) 6= 0 for u 6= 0 (a manifold condition);
H4) V is bounded below on admissible set {u ∈ Hs

K(RN ) : I(u) = λ} and minimizing sequences are bounded
in Hs

K(RN );
H5) if u 6= 0 is the weak limit in Hs

K(RN ) of a minimizing sequence for problem (P) satisfying the Euler-
Lagrange equation

W ′(u) = V ′(u) + αI ′(u) = 0 (2.1)

where W (u)=̂V (u) + αI(u), then there is an element h ∈ Hs
K(RN ) such that

W ′′(u)(h,h) = V ′′(u)(h,h) + αI ′′(u)(h,h) < 0. (2.2)

Remarks.
1) In assumption H5, the fact that u solves an Euler equation is not an assumption (later we will show that

any weak limit of a minimizing sequence satisfy an Euler equation like (2.1) as it was itself a minimizer);
the assumption is the existence of an element h satisfying (2.2).

2) In problem (P) we take λ > 0 just for simplicity. The case λ = 0 arises naturally in some problems when
the space dimension N is two and it could also be considered.

Our main abstract result is the following:

Theorem 2.1. Under assumptions H1 to H5, if un is a minimizing sequence for problem (P) and un converges

weakly in Hs
K(RN ) to some u 6= 0, then un converges to u strongly in LpK(RN ), 2 < p <

2N
N − 2s

(2 < p ≤ +∞
if N < 2s).
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Moreover, there are sequences of real numbers αn and γn and a sequence hn of elements of Hs
K(RN ) such

that:
i) αn is bounded and γn tends to zero;

ii) |hn|s = 1;
iii) the following approximate Euler-Lagrange equation is satisfied:

V ′(un)h + αnI
′(un)h + γn〈hn,h〉s = 0 for any h ∈ Hs

K(RN ). (2.3)

Furthermore, u satisfies the exact Euler-Lagrange equation

V ′(u) + αI ′(u) = 0 (2.4)

for some real constant α.

As we have already pointed out, the main idea of the proof of Theorem 2.1 is to show that, in the presence
of assumption H5, dichotomy violates a local condition of the second derivative of a minimizing sequence. All
the rest is an Elementary Calculus proof.

Before starting the proof of Theorem 2.1 itself, we state and prove a few lemmata that will be useful. In all
of them we suppose that assumptions H1 to H5 are satisfied.

The first is version for fractional spaces of a result of Lions ([20], Part II) which is related to the so called
Lieb’s lemma [7] and the second is a variant of the first. We start by recalling the definition and some properties
of fractional spaces of real valued functions (see [29], for details).

The Lebesgue space Hs,p(RN ), 1 ≤ p < ∞ is the set of the functions u : RN → R such that |u|s,p,RN =
|F−1{(1 + |ξ|2)s/2(Fu)(ξ)}|p <∞, where F denotes Fourier transform. If s = m+σ where m is an integer and
0 < σ < 1 then the Sobolev space W s,p(RN ) is the set of the functions u such that

‖u‖s,p =

‖u‖pm,p +
∑
|α|=m

∫
RN

∫
RN

|Dαu(x)−Dαu(y)|p
|x− y|N+σp

dxdy

1/p

<∞.

If Ω is a bounded C∞ domain of RN then Hs,p(Ω) is defined by restriction of elements of Hs,p(RN ) and
|u|s,p,Ω = inf |v|s,p,RN where the infimum is taken over the functions v that coincide with u in Ω.

If S(RN ) denotes the set of the rapidly decreasing infinitely differentiable functions defined on RN and t ≥ 0,
then Ct(RN ) denotes the completion of S(RN) under the Ct norm if t is an integer or under the Holder norm
if t is not an integer.

Whenever necessary, we use the subscript K to denote RK-vector value functions. Sometimes, when p = 2
it will omitted. For further reference we collect some important facts about the spaces defined above. Proofs
may be found in [29] at the indicated section.

Lemma 2.2. The following properties hold:
1) Hs,2(RN ) = W s,2(RN ) (Sect. 2.3.3);
2) Hs,p(RN ) = W s,p(RN ) if 1 < p <∞ and s is an integer (Sect. 2.3.3);

3) if 1 < p <∞ and u ∈ Hs,p(RN ) then
∂u

∂xi
belongs to Hs−1,p(RN ) (because

ξi
(1 + |ξ|2)1/2

is a Mp
p multiplier,

1 < p <∞) (Sect. 2.3);
4) if either A = RN or A = Ω then

[Hs1,p1(A),Hs2,p2(A)]a = Hs,p(A) 1 < p1, p2 <∞, 0 < a < 1

s = (1− a)s1 + as2
1
p

=
1− a
p1

+
a

p2
;

(Sect. 2.4.2 for A = RN and Sect. 4.3.1 for A = Ω);
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5) if either A = RN or A = Ω then Hs,r(A) is continuously imbedded in Lp(A) if 1 < r ≤ p < ∞ and
1
p
≥ 1

r
− s

N
. Moreover, Hs,r(A) is continuously imbedded in L∞(A) if

1
r
− s

N
< 0 (Sect. 2.8.1 for

A = RN and Sect. 4.6.1 for A = Ω);

6) Hs,r(Ω) is compactly imbedded in Lq(Ω) if 1 < r ≤ q ≤∞ and
1
q
>

1
r
− s

N
(Sect. 4.10.2);

7) Ht+N/p,p(RN ) is continuously imbedded in Ct(RN ), 1 < p <∞, 0 < t 6= integer (Sect. 2.8.1);
8) for 2 ≤ p <∞ and ε > 0, Hs,p(RN ) ⊂W s,p ⊂ Hs−ε,p (Sect. 2.3.3).

Lemma 2.3. Let un be a bounded sequence of Hs
K(RN) for some s > 0 such that the sequence u(x + cn)

converges to zero weakly in Hs
K(RN ) for any sequence cn of elements of RN . Then un converges to zero

strongly in LpK(RN ) for any p in the interval 2 < p <
2N

N − 2s
(2 < p ≤ ∞ if N < 2s).

Proof. Clearly we can take K = 1.
Let R > 0 be a fixed positive number and BR the ball centered at the origin and radius R. Then, according

to Lemma 2.2, Part 6, Hs(BR) = Hs,2(BR) is compactly imbedded in Lq(BR) if

• 2s ≤ N and 2 ≤ q < 2N
N − 2s

;

• 2s > N and 2 ≤ q ≤ ∞.
First we assume 2s ≤ N . In this case if

2 < p <
2N

N − 2s
, a =

2
p

and q = max
(

2,
N(p− 2)

2s

)
<

2N
N − 2s

then there is constant c1 such that:

|u|p,Ω ≤ c1|u|as,2,Ω|u|1−aq,Ω . (2.5)

That follows from the interpolation

[Lq(Ω),Hs,2(Ω)]a = Hs∗,p∗(Ω) s∗ = as
1
p∗

=
1− a
q

+
a

2

and the imbedding from Hs∗,p∗(Ω) into Lp(Ω) because due to the choice of q we have

1
p∗
− s∗

N
=

1− a
q

+ a

(
1
2
− s

N

)
≤ 1
p
·

Next we claim that there is a constant c2 such that if Bi is a sequence of disjoint balls with radius R of RN

then

∞∑
i=1

|u|2s,2,Bi ≤ c2|u|
2
s,2,RN . (2.6)

In fact, ifXi, i = 1, 2, . . . and Yi, i = 1, 2, . . . are sequences of Hilbert spaces and we define `2(X1, X2, . . . ) = {x =

(x1, x2, . . . ) :
∞∑
i=1

|xi|2 < ∞} and `2(Y1, Y2, . . . ) in a similar way, then for 0 < a < 1 we have [`2(X1, X2, . . . ),

`2(Y1, Y2, . . . )]a = `2([X1, Y1]a, [X2, Y2]a, . . . ) (see [29], Sect. 1.18.1).
Since clearly (2.6) holds if s is an integer, if we define Xi = L2(Bi) and Yi = Hm(Bi) where m ≥ s is

an integer then the map Tu = (u1, u2, · · · ) that takes a function u defined in RN into the sequence of its
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restriction to the ball Bi is continuous from L2(RN ) into `2(X1, X2, · · · ) and from Hm(RN ) into `2(Y1, Y2, · · · ),
and then (2.6) follows by interpolation and this proves the claim. This argument is a slight modification of an
argument given in [4].

So, if we take (2.5) with Ω = y + BR, raise it to the power p and we cover the entire space RN by K(N)
families of disjoint balls of radius R we see that there is a constant c3 such that

∫
RN
|u(x)|p dx ≤ c3|u|2s,2,RN sup

y∈RN

[∫
y+BR

|u(x)|q
] (1−a)p

q

. (2.7)

Finally, for any p and un satisfying the assumptions of Lemma 2.3, if q is as above, then (2.7) holds with u = un
and since supy∈RN [

∫
y+BR

|un(x)|q] goes to zero because Hs(BR) is compactly imbedded in Lq(BR), Lemma 2.3
is proved in the case 2s ≤ N .

If N > 2s and un is as in Lemma 2.3 then due to the compact imbedding from Hs(BR) into L∞(BR), we
have that supy∈RN |un|L∞(y+BR) tends to zero and this proves Lemma 2.3 in all cases. 2

Lemma 2.4. Let un be a bounded sequence of Hs
K(RN ) for some s > 0 such that for some p in the range

2 < p <
2N

N − 2s
(2 < p ≤ ∞ if N < 2s) the sequence un is not precompact in LpK(RN ). Then there is a

sequence cn ∈ RN such that some subsequence unk(x + cnk) converges weakly in Hs
K(RN ) to some u 6= 0 and

|cnk | goes to ∞.

Proof. Since for the range of p′s we are considering the sequence un is precompact in LpK on bounded sets of

RN , there must be an ε0 > 0 and a sequence Rn going to ∞ such that
∫
|x|≥Rn

|un(x)|p dx > ε0 > 0.

Let φn : RN → R be a sequence of C∞ functions such that for some integer m > s the derivatives Dαφ of φ
are uniformly bounded on RN if |α| ≤ m, φn(x) = 0 if |x| ≤ Rn − 1 and φn(x) = 1 if |x| ≥ Rn. Then φnun is
bounded in Hs

K(RN ) and |φnun|p is bounded below by ε0 > 0, Then by the previous lemma, there is a sequence
cn ∈ RN such that some subsequence unk(x+ cnk) converges weakly in Hs

K(RN ) to some u 6= 0. Clearly |cnk |
has to go to ∞ and Lemma 2.4 is proved. 2

Now let u(t), t ∈ (−δ0, δ0) be a C2 function with values in Hs
K(RN ) such that

I(u(t)) = λ (2.8)

for any t ∈ (−δ0, δ0). Such a curve is said to be admissible. Differentiating (2.8) once and twice with respect to
t we get

I ′(u(t))u̇(t) = 0
and

I ′′(u(t))(u̇(t), u̇(t)) + I ′(u(t))ü(t) = 0,
where dot means derivative with respect to t.

So, if we denote u(0) by u, we see that the elements ḣ and ḧ which are first and second derivatives,
respectively, at t = 0 of an admissible curve must satisfy

I ′(u)ḣ = 0 (2.9)

and

I ′′(u)(ḣ, ḣ) + I ′(u)ḧ = 0. (2.10)

We say that a pair (ḣ, ḧ) is admissible for u if ḣ and ḧ satisfy the two equations above. The calculation we
have performed show that if ḣ and ḧ are the first and second derivatives, respectively, of an admissible curve,
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then the pair (ḣ, ḧ) is admissible in the sense we have defined. We need the converse with some uniformity with
respect to a sequence un.

Lemma 2.5. Let un ∈ Hs
K(RN ) be a sequence converging weakly in Hs

K(RN ) to some u 6= 0 and (ḣn, ḧn) be
a bounded admissible sequence for un; that is, ḣn and ḧn are bounded sequences in Hs

K(RN ) satisfying

I ′(un)ḣn = 0 (2.11)

and

I ′′(un)(ḣn, ḣn) + I ′(un)ḧn = 0. (2.12)

Then there are a δ0 > 0 and a sequence of C2 functions hn : (−δ0, δ0) → Hs
K(RN ) defined for n large and

satisfying the following conditions:

i) hn(0) = 0, ḣn(0) = ḣn and ḧn(0) = ḧn;
ii) for each n, un + hn(t) is an admissible curve;

iii) hn(t), ḣn(t) and ḧn(t) are equicontinuous.

Proof. Let ψ be a smooth RK-valued function with compact support such that I ′(u)(ψ) 6= 0 and we consider
the function

Hn(σ, t) = I

(
un + σψ + tḣn +

t2

2
ḧn

)
− λ.

Using the Implicit Function theorem at (0,0) we obtain σn(t) such that Hn(σn(t), t) = 0. Clearly hn(t) =

σn(t)ψ+ tḣn +
t2

2
ḧn satisfies the conditions i, ii and iii (the fact the we can find a δ0 > 0 independent of n and

the equicontinuity of hn(t), ḣn(t) and ḧn(t) are a consequence of assumption H1 about the uniform continuity
of the derivatives of V and I on bounded sets) and this proves Lemma 2.5. 2

The proof of next lemma is elementary and it will not be given.

Lemma 2.6. Let un ∈ Hs
K(RN ) be a minimizing sequence of problem (P) converging weakly in Hs

K(RN ) to
some u 6= 0. Then:

(i) |V ′(un)| → 0 as n → +∞, where |V ′(un)| denotes actually the norm of the restriction of the derivative
to the admissible hyperplane (that is, the elements h ∈ Hs

K(RN ) such that I ′(un)h = 0);
(ii) if for some δ0 > 0, hn : (−δ0, δ0)→ Hs

K(RN) is a sequence of C2 curves such that hn(0) = 0,un + hn(t)
is admissible, ḣn(0) and ḧn(0) are bounded and hn(t), ḣn(t) and ḧn(t) are equicontinuous then

lim inf
d2

dt2
V (un + hn(t))t=0 ≥ 0. (2.13)

If u denotes a generic element of Hs
K(RN ) such that I(u) = λ, in order to calculate |V ′(u)| on the admissible

directions, we have to maximize V ′(u)h for h ∈ Hs
K(RN ) such that I ′(u)h = 0 and |h|2s = 1. Since we are in a

Hilbert space and I ′(u) 6= 0 there is a unique element h where the maximum is achieved and so there are real
numbers α and γ such that

V ′(u)h + αI ′(u)h + γ〈h,hs〉 = 0 for any h ∈ Hs
K(RN ). (2.14)

If we set h = h in (2.14) we see that |V ′(u)| = −γ.
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Moreover, if h(t) is a smooth curve with h(0) = 0 and u+h(t) is admissible and we define W = V +αI then

d2

dt2
V (u + h(t))t=0 = W ′′(u)(ḣ, ḣ)− γ〈h, ḧ〉s (2.15)

where ḣ and ḧ are the first and the second derivative of h(t) at t = 0, respectively.
Now let un and u be as in Theorem 2.1. Then from Lemma 2.6 and (2.14) we know that there are sequences

of real numbers αn and γn → 0 and hn ∈ Hs
K(RN ) with |hn|s = 1 such that

V ′(un)h + αnI
′(un)h + γn〈hn,h〉s = 0 for any h ∈ Hs

K(RN ). (2.16)

Lemma 2.7. The sequence αn is bounded.

Proof. If |αn| tends to infinity for some subsequence (for which we keep the same notation) and we divide (2.16)
by |αn| and we let n to go to infinity we get I ′(u)(h) = 0 for any h ∈ Hs

K(RN ), a contradiction in view of
assumption H3 and this proves Lemma 2.7. 2

Lemma 2.8. The following is true:
i) if ḣn is a bounded sequence of elements of Hs

K(RN ) such that I ′(un)(ḣn) = 0 then

lim inf(V ′′(un)(ḣn, ḣn) + αnI
′′(un)(ḣn, ḣn)) ≥ 0;

ii) if ḣ ∈ Hs
K(RN ) satisfies I ′(u)(ḣ) = 0 and αn tends to α then

V ′′(u)(ḣ, ḣ) + αI ′′(u)(ḣ, ḣ) ≥ 0.

Proof. Let ψ ∈ Hs
K(RN ) be such that I ′(u)ψ 6= 0 and let us define a sequence of real numbers dn such that

I ′′(un)(ḣn, ḣn)+dnI ′(un)ψ = 0. The sequence dn is well defined for n large and the pair (ḣn, dnψ) is admissible
in the sense of Lemma 2.5. If hn(t) is the sequence given by that lemma then Part i follows from Lemma 2.6,
Part ii, and (2.15) (with u = un and h(t) = hn(t)) because γn tends to zero.

In order to show part ii we have to notice that if I ′(u)ḣ = 0 and we define εn in such way that ḣn = ḣ + εnψ

satisfies I ′(un)ḣn = 0, then Part ii follows from Part i because εn tends to zero and Lemma 2.8 is proved. 2

Proof of Theorem 2.1. Argueing by contradiction, suppose that for some p ∈
(

2,
2N

N − 2s

)
(2 < p ≤ ∞ if

N < 2s), the sequence un is not precompact in LpK(RN ). From Lemma 2.4, the boundedness of αn and passing
to a subsequence if necessary, we may assume that αn converges to α and vn(x)=̂un(x+ cn) converges weakly
in Hs

K(RN ) to some v 6= 0, for some sequence cn ∈ RN such that |cn| tends to ∞.
If we pass to the limit as n tends to ∞ in (2.16) we get

V ′(u) + αI ′(u) = 0.

Similarly, if in (2.16) we replace x by x+ cn and pass to the limit we get

V ′(v) + αI ′(v) = 0.

Now from assumption H5 we know that there are elements h,k ∈ Hs
K(RN ) such that

(V ′′(u) + αI ′′(u))(h,h) < 0

and
(V ′′(v) + αI ′′(v))(k,k) < 0.
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Next we define ḣn = anh+bnkn where kn(x) = k(x−cn) and we choose an and bn in such way that a2
n+b2n = 1

and I ′(un)(ḣn) = 0. Then

(V ′′(un) + αnI
′′(un)) (ḣn, ḣn) = a2

n(V ′′(un) + αnI
′′(un))(h,h) + 2anbn (V ′′(un)

+ αnI
′′(un)) (h,kn) + b2n (V ′′(vn) + αnI

′′(vn)) (k,k)

and then and view of assumption H2

lim inf (V ′′(un) + αnI
′′(un)) (hn,hn) = lim inf a2

n (V ′′(u) + αI ′′(u)) (h,h) + b2n(V ′′(v) + αI ′′(v))(k,k) < 0,

a contradiction in view of Lemma 2.8, Part i, and Theorem 2.1 is proved. 2

Now we formulate some further assumptions that will be used in the next theorem.

H6) if u0 is an element of Hs
K(RN ), vn ∈ Hs

K(RN ) is a sequence that converges to zero weakly in Hs
K(RN )

and un = vn + u0 then lim(I(un)− I(vn)) = I(u0) and lim(V (un)− V (vn)) = V (u0).
H7) if un is bounded sequence in Hs

K(RN ) converging to u strongly in LpK(RN ), for any p in the range

2 < p <
2N

N − 2s
(2 < p ≤ ∞ if N < 2s) and lim I(un) 6= 0 then lim I ′(un)un 6= 0.

Next theorem will be useful for verifying assumption H5. Results of that type have been proved by Lions in [21].
We give a different proof because we work in a abstract framework and so we cannot use dilation arguments.

Theorem 2.9. Let un be a minimizing sequence for problem (P) and suppose un converges weakly in Hs
K(RN )

to some u0 6= 0. Then, under assumptions H1, H3, H6 and H7, u0 is a sub-minimum, that is, if we define
λ0 = I(u0) then u0 is a minimizer of problem (P) with λ = λ0.

Proof. Let us define vn = un − u0 and let us consider several cases.

First Case: λ0 6= 0.
Suppose that there is an element w ∈ Hs

K(RN ) such that I(w) = λ0 and V (w) < V (u0). Then w 6= 0
and so there is an element h ∈ Hs

K(RN ) such that I ′(w)(h) 6= 0. Since I(w + vn) converges to λ (because
I(w + vn)− I(w)− I(vn) and I(u0 + vn)− I(u0)− I(vn) tend to zero in view of H6 and I(w) = I(u0)) there
is a sequence tn of real numbers tending to zero such that I(w + tnh + vn) = λ. Then due to H1 and H6 we
have lim(V (w + tnh + vn)− V (u0 + vn)) < 0, a contradiction.

Second Case: λ0 = 0 and vn converges to zero strongly in LpK(RN ), for any p in the range 2 < p <
2N

N − 2s
(2 < p ≤∞ if N < 2s).

Suppose that there is an element w ∈ Hs
K(RN ) such that I(w) = 0 and V (w) < V (u0). Since I(w + vn)

converges to λ, then in view of assumption H7, there is a sequence tn converging to one such that I(tn(w+vn)) =
λ and then lim(V (tn(w + vn))− V (u0 + vn)) < 0, a contradiction.

Third Case: vn does not converge to zero strongly in LpK(RN ), for some p in the range 2 < p <
2N

N − 2s
(2 < p ≤∞ if N < 2s).

According to Lemma 2.4, there is a sequence dn ∈ RN such that |dn| goes to infinity and u(x+dn) converges
weakly in Hs

K(RN ) to some v 6= 0. Let h be such that I ′(v)h 6= 0 and suppose there is an element w ∈ Hs
K(RN )

such that I(w) = I(u0) and V (w) < V (u0). If we let hn(x) = h(x+ dn) there is a sequence of real numbers tn
tending to zero such that I(w+vn+tnhn) = λ (because I ′(w+vn)hn = I ′(wn+v)h) where wn(x) = w(x−dn))
and so lim(V (w + vn + tnhn)− V (u0 + vn)) < 0, a contradiction, and this proves Theorem 2.9 in all cases.

2

Next we give a very simple sufficient condition for H5.
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Theorem 2.10. Suppose V (u) = Q(u) + F (u) where Q(u) is quadratic and Q(u) > 0 for u 6= 0 and let
H(u) = F (u) + αI(u). Then assumption H5 is satisfied provided there is β > 1 such that

H ′′(u)(u,u) ≤ βH ′(u)(u) for any u ∈ Hs
K(RN ). (2.17)

Proof. Since Q(u) is quadratic, Q′′(u)(u,u) = Q′(u)(u) = 2Q(u) and then

W ′′(u)(u,u) = 2Q(u) +H ′′(u)(u,u) ≤ 2Q(u) + βH ′(u)(u).

Moreover, V ′(u) = 0 implies V ′(u)(u) = 2Q(u) +H ′(u)(u) = 0 and then

W ′′(u)(u,u) ≤ 2(1− β)Q(u) < 0 if u 6= 0

and this proves Theorem 2.10. 2

As an example, we assume that F (u) and G(u) are sum of homogeneous terms, that is, we suppose F (u)
and I(u) can be writen in the form

F (u) = F2(u) +
L∑
i=1

Fpi(u)

I(u) = G2(u) +
M∑
j=1

Gqj (u)

where F2 and G2 are homogeneous of degree two and Fpi and Gqj are homogeneous of degree pi and qj ,
respectively, with

2 < p1 < · · · < pL and 2 < q1 < · · · < qM .

Then (2.17) becomes

2F2(u) +
L∑
i=1

pi(pi − 1)Fpi(u) +α

2G2(u) +
K∑
j=1

qj(qj − 1)Gqj (u)


≤ β

2F2u) +
L∑
i=1

piFpi(u) + α

2G2(u) +
K∑
j=1

qjGqj (u)

 · (2.18)

If we know in advance the sign of the multiplier α (and that is possible in some cases) the following result is
useful in the applications.

Theorem 2.11. If α ≥ 0 then assumption H5 is satisfied if either there is an index i0 such that

Fpi(u) ≥ 0, Gqj (u) ≥ 0 for pi < pi0 and qj < pi0

and

Fpi(u) ≤ 0, Gqj (u) ≤ 0 for pi > pi0 and qj > pi0

or there is an index j0 such that

Fpi(u) ≥ 0, Gqj (u) ≥ 0 for pi < qj0 and qj < qj0

and

Fpi(u) ≤ 0, Gqj (u) ≤ 0 for pi > qj0 and qj > qj0 .
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If α ≤ 0 then assumption H5 is satisfied if Fpi(u) ≥ 0 for any i and there is an index j0 such that pi ≤ qj0 for
any i and Gqj (u) ≥ 0 for qj > qj0 and Gqj (u) ≤ 0 for qj < qj0 .

Proof. If α ≥ 0 condition (2.18) is satisfied with β = pi0 − 1 in the first case and β = qj0 − 1 in the second.
Similarly, if α ≤ 0, condition (2.18) is satisfied with β = qj0 − 1, and this proves Theorem 2.11. 2

In the next theorem, either the sign of α is known in advance or it is irrelevant.

Theorem 2.12. Assumption H5 is satisfied if F2(u) is nonnegative, Fpi(u) ≥ 0 for any pi, G2(u) ≡ 0 and
either G(u) ≡ Gq(u) with pi ≤ q for any i, or Gqj (u) ≥ 0 for any j and pi ≤ qj for any i and j.

Proof. If G(u) = Gq(u) has a single homogeneous term then condition (2.18) is satisfied with β = q− 1. In the
second case, we see that the condition V ′(u)(u) +αI ′(u)(u) = 0 implies α ≤ 0 and then (2.18) is satisfied if we
choose β in such way that pi − 1 ≤ β ≤ qj − 1, for any i and j, and this proves Theorem 2.12. 2

If G(u) = |u|2 then we will show that, basically, α is nonnegative and then assumption H5 is satisfied if (2.17)
holds with H = F . We will come back to this point later in this paper.

We close this section proving a stability result. This type of result has been proved in [10] in case of local
functionals and assuming that the constraint is the L2 norm. In [26] we have given a proof in the case of a more
general functional V (u) but still in the case of a purely quadratic constraint. Since nonquadratic constraints
arises in some applications (in the case of BBM equation, for instance) we give here a more general result.

Lemma 2.13. Let λ0 > 0 be a real number and let V and I be given functionals on the space Hs
K(RN ) satisfying

assumptions H1,H3 and H7 and
H8) there are real numbers 0 < λ1 < λ0 < λ2 such that for any B there is a c(B) such that if λ1 ≤ I(u) ≤
λ2 and V (u) ≤ B, then |u|s ≤ c(B).

Suppose also that for problem (P) with λ = λ0, minimizing sequences are precompact in Hs
K(RN) except for

translation in the space variable and denote by V0 the minimum of that problem and by M0 the set of the
admissible elements where the minimum V0 is achieved.

If un is a sequence of elements of Hs
K(RN) such that I(un) tends to λ0 and V (un) tends to V0, then the

distance d(un,M0) from un to M0 tends to zero.

Proof. First we claim that except for translation in the space variable and passing to a subsequence if necessary,
we can assume that un converges weakly in Hs

K(RN ) to some u 6= 0. In fact, otherwise, by Lemma 2.3 un

converges to zero strongly in LpK(RN ) for 2 < p <
2N

N − 2s
(2 < p ≤ ∞ if N < 2s) and then according

to assumption H7 we have lim I ′(un)un 6= 0 and then there is sequence τn such that τn tends to 1 and
I(τnun) = λ0. Since V (τnun) converges to V0 because V is uniformly continuous on bounded sets of Hs

K(RN ),
τnun is a minimizing sequence for problem (P) with λ = λ0 and this contradicts the fact that minimizing
sequences are precompact except for translation and the claim is proved.

If h ∈ Hs
K(RN ) is such that I ′(u)h 6= 0 then there is a sequence tn that tends to zero such that I(u + tnh +

vn) = λ0 where vn = un − u. Since V (un)− V (un + tnh) tends to zero in view of assumption H1, we see that
un + tnh is a minimizing sequence for problem (P) with λ = λ0 and then d(un + tnh,M0) tends to zero and
this proves Lemma 2.13. 2

Under the notation and assumptions of Lemma 2.13 we can prove the following stability result:

Theorem 2.14. Let φ(t,u) be a map from R × Hs
K(RN ) into Hs

K(RN ) such that φ(0,u) = u, V (φ(t,u)) =
V (u), I(φ(t,u)) = I(u) and φ(t,u) commutes with translation in the space variable. Then M0 is stable
with respect to φ(t,u) in the following sense: for any ε > 0 there is δ > 0 such that if d(u,M0) < δ then
d(φ(t,u),M0) < ε for any t ∈ R.

Proof. Otherwise, there is an ε0 > 0 and a sequences un and tn such that d(un,M0) tends to zero and
d(φ(tn,un),M0) > ε0. Then we have:
• I(φ(tn,un)) = I(un) tends to λ0;
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• V (φ(tn,un)) = V (un) tends to V0;
• d(φ(tn,un),M0) > ε0.

According to Lemma 2.13 this is a contradiction and Theorem 2.14 is proved. 2

Remarks.

1) Notice that we have not used continuous dependence of φ(t,u).
2) If φ(t,u) is defined for t ≥ 0, V (φ(t,u)) ≤ V (u) and I(φ(t,u)) = I(u), then stability holds for t ≥ 0.

3. Application to a concrete class of functionals

In this section we consider the concrete problem

(CP) Minimize V (u) subject to I(u) = λ > 0

where

V (u)=̂
1
2

∫
RN

m(ξ)|û(ξ)|2 dξ +
∫
RN

F (u(x)) dx (3.1)

and

I(u)=̂
∫
RN

G(u(x)) dx (3.2)

in the space Hs
K(RN ), s ≥ 1/2. We denote by L the selfadjoint operator L : D(L) ⊂ L2

K(RN ) → L2
K(RN )

such that D(L) = H2s
K (RN ) and 〈Lu,u〉L2

K(RN ) =
∫
RN

m(ξ)|û(ξ)|2 dξ for any u ∈ H2s
K (RN ) (notice that L is a

diagonal operator, that is, L(u) = (L(u1), · · · , L(uK))) and our assumptions are the following:

HH1) the symbol m(ξ) is a continuous function of ξ, m(0) = 0, m(ξ) > 0 for ξ 6= 0 and lim
|ξ|→∞

m(ξ)
|ξ|2s = A1 > 0;

HH2) F,G : RK → R are C2 satisfying the following conditions:
i) F (0) = G(0) = 0, gradF (0) = gradG(0) = 0;
ii) the second derivatives F ′′(u), G′′(u) of F (u) and G(u) are Holder continuous in a neighborhood of

u = 0 and for some p0 <
2N

N − 2s
(no growth restriction if N < 2s), and some constant A2 and |u|

large, we have
|F ′′(u), G′′(u)| ≤ A2|u|p0−2;

HH3) G(u0) > 0 for some u0 ∈ RK and I ′(u) 6= 0 for u 6= 0 (a manifold condition);
HH4) V : Hs

K(RN ) → R is bounded below on the admissible set {u ∈ Hs
K(RN ) : I(u) = λ} and minimizing

sequences for problem CP are bounded in Hs
K(RN);

HH5) if u 6= 0 is the weak limit in Hs
K(RN ) of a minimizing sequence for problem (CP) satisfying the Euler-

Lagrange equation

W ′(u) = L(u) + gradF (u) + αgradG(u) = 0 (3.3)

where W (u)=̂V (u) + αI(u), then there is an element h ∈ Hs
K(RN ) such that

W ′′(u)(h,h) = 〈Lh,h〉+
∫
RN

F ′′(u(x))(h(x),h(x)) dx + α

∫
RN

G′′(u(x))(h(x),h(x)) dx < 0; (3.4)
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HH6) (elliptic regularity) if we define f(ξ) =
(1 + |ξ|2)s

1 +m(ξ)
then there is a constant B such that

∫
R
2 ≤|ξ|≤2R

|R|α|Dαf |2 dξ/RN ≤ B2, 0 < R <∞, |α| ≤ χ

where χ is the least integer > N/2.

From the assumptions we have made we see that the 〈Lu,u〉+
∫
RN
|u(x)|2 dx is a norm equivalent to the norm

of Hs
K(RN ) and the minimization problem is well defined on this space. As an application of our abstract theory

we can prove the following:

Theorem 3.1. Under assumptions HH1 to HH6, if un is a minimizing sequence for problem (CP) and un

converges weakly in Hs
K(RN ) to some u 6= 0, then un converges to u strongly in LpK(RN ), 2 < p <

2N
N − 2s

(2 < p ≤ ∞ if N < 2s) and

〈L(un − u), (un − u)〉L2
K(RN ) =

∫
RN

m(ξ)|ûn(ξ) − û(ξ)|2 dξ

tends to zero.
Moreover, there are sequences of real numbers αn and γn and a sequence hn of elements of Hs

K(RN ) such
that

i) αn is bounded and γn tends to zero;
ii) |hn|s = 1;

iii) the following approximate Euler-Lagrange equation is satisfied:

L(un + γnhn) + gradF (un(x)) + αngradG(un(x)) + γnun = 0. (3.5)

Furthermore for some real α, u satisfies the exact Euler-Lagrange equation

L(u)(x) + gradF (u(x)) + αgradG(u(x)) = 0 (3.6)

and u ∈ H2s+1−ε,r
K (RN), 2 ≤ r <∞, ε > 0.

In particular, u is C1 and together with its first derivatives tends to zero at infinity.

Before proving the Theorem 3.1 we prove a few preliminary results. In all of them we assume that assumptions
HH1 −HH6 are satisfied.

We start by showing that assumptions HH1 and HH2 imply assumptions H1 and H2 of Theorem 2.1. The

fact that the map that takes u ∈ Hs
K(RN ) into

∫
RN

F (u(x)) dx has first and second derivatives follows exactly

as in the case of integer Sobolev spaces (see [16]). We will show only that the second derivative is uniformly
continuous on bounded sets. The other statements of assumptions H1 and H2 follow from imbedding results
(Lem. 2.2, Part 5).

Lemma 3.2. Under assumption HH2, the second derivative of the map that takes u ∈ Hs
K(RN ) into∫

RN
F (u(x)) dx is uniformly continuous on bounded sets of Hs

K(RN ).

Proof. Let φ(u) be a quadratic form on RK defined for u ∈ RK depending continuously on u and satisfying

the growth condition |φ(u)| ≤ k1 + k2|u|r, r <
4s

N − 2s
(no growth assumption if N < 2s) where k1 and k2 are
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constants. We have to show that for any C > 0 and any ε > 0 there is a δ > 0 such that if u,v,h,k ∈ Hs
K(RN ),

|u− v|s < δ and |h|s, |k|s ≤ 1 then∣∣∣ ∫
RN

(φ(u(x)) − φ(v(x))(h(x),k(x)) dx
∣∣∣ < ε. (3.7)

Suppose 2s < N .
Let us define A = {x ∈ RN : |u(x)| ≥ M} and B = {x : |v(x)| ≥ M}, where M will be chosen. Since∫

RN
|u(x)|2 dx ≤ C, we have meas(A) ≤ C

M2
; similarly, meas(B) ≤ C

M2
. In view of the growth assumption on

φ(u) we have∣∣∣∣∫
A∪B

(φ(u(x)) − φ(v(x))) (h(x),k(x)) dx
∣∣∣∣ ≤ ∫

A∪B
(2k1 + k2|u(x)|r + k2|v(x)|r)|h(x)||k(x)|dx. (3.8)

Next notice that if a function g ∈ Lq(RN ) for some q > 1 then
∣∣∣ ∫
A

g(x) dx
∣∣∣ ≤ (meas(A)q/q−1|g|Lq and then∫

A

g(x) dx goes to zero with the measure of the set A.

Using Holder’s inequality and the imbedding of Hs
K(RN ) into LpK(RN ) spaces, we can show very easily that

for some q > 1 the LqK(RN ) norm of each integrand in (3.8) is uniformly bounded and then we can find M such
that ∣∣∣ ∫

A∪B
(φ(u(x)) − φ(v(x)))(h(x),k(x)) dx

∣∣∣ ≤ ε/4. (3.9)

Since φ(u) is uniformly continuous on bounded sets of RK and |h(.)|L2
K(RN ), |k(.)|L2

K(RN ) ≤ 1 there is a δ1 > 0
such that ∣∣∣ ∫

C

(φ(u(x)) − φ(v(x)))(h(x),k(x)) dx
∣∣∣ ≤ ε/4 (3.10)

where C = {x ∈ RN : |u(x)− v(x)| ≤ δ1, |u(x)|, |v(x)| ≤M}.
Moreover, if we define D = {x ∈ RN : |u(x)|, |v(x)| ≤M, |u(x)−v(x)| > δ1} then there is a constant K such

that |φ(u(x)) − φ(v(x))| ≤ K|u(x) − v(x)| for x ∈ D and then using the imbedding of Hs
K(RN ) into LpK(RN )

for 2 ≤ p ≤ 2N
N − 2s

and Holder’s inequality together with r <
4s

N − 2s
we conclude that there is 0 < δ2 ≤ δ1

such that if |u− v|s < δ2 then ∣∣∣ ∫
D

(φ(u(x)) − φ(v(x)))(h(x),k(x)) dx
∣∣∣ < ε/4. (3.11)

(3.9, 3.10) and (3.11) imply (3.7).
The case N < 2s is treated in a similar way and Lemma 3.2 is proved. 2

Lemma 3.3.

i) Let M : D(M) ⊂ X → X be a selfadjoint operator in a Hilbert space X and suppose there is a continuous
linear functional g such that 〈Mh,h〉 ≥ 0 for any h ∈ D(M) such that g(h) = 0. Then the spectrum
σ(M) cannot have two elements on the negative half line (−∞, 0);

ii) if an operator of the form Lh + Bh where L is as above and B is a symmetric K ×K matrix, has no
spectrum on the negative half-line then all the eigenvalues of B are nonnegative.
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Proof. Part i is well known (see [11,21] or [24]). In order to prove the second part all we have to do is to notice
that the eigenvalue problem Lh +Bh = λh becomes a diagonal problem if we make the change h = Pk where
P is as orthogonal matrix that diagonalizes B and this proves the lemma because the spectrum of L is [0,+∞).

2

Lemma 3.4. (Elliptic regularity). If u ∈ Hs
K(RN ) solves the Euler-Lagrange equation (3.6) then u belongs to

H2s+1−ε,r
K 2 ≤ r <∞, ε > 0. In particular u is C1 and together with its first derivatives tends to zero at ∞.

Proof. From assumption HH6 and Theorem 2.5 of [15], we know that for any 1 < r < ∞ there is a constant
C(r) such that if h ∈ LrK(RN ),u ∈ Hs

K(RN) and L(u) + u = h (this equality is understood in the weak sense)
then u ∈ H2s,r

K (RN ). If we rewrite (3.6) as

L(u)(x) + u(x) = u(x)− gradF (u(x)) − αgradG(u(x)) (3.12)

then a bootstrap argument shows that if u solves (3.6) then u belongs to H2s,r
K 2 ≤ r < ∞; in particular,

u ∈ L∞K (RN ). Since s ≥ 1/2 the right hand side of (3.12) belongs to W 1,r
K (RN ), 1 < r < ∞, and from

Lemma 2.2, Part 8, we conclude that the right hand side of (3.12) belongs to H1−ε,r
K (RN ) for any ε > 0. If we

denote by k(x) the right hand side of (3.12) we have

(1 + |ξ|2)
2s+1−ε

2 û(ξ) =
(1 + |ξ|2)s

1 +m(ξ)
(1 + |ξ|2)

1−ε
2 k̂(ξ)

and using HH6 and Theorem 2.5 of [15] again we conclude that u belongs to H2s+1−ε,r
K 2 ≤ r <∞, ε > 0 and

this proves Lemma 3.4. 2

Remark. If N ≤ 2s and F (u) and G(u) have more derivatives, then we can get smoothness of the solutions u
of (3.6) using only the L2 theory and then assumption HH6 is not needed (see [2] and [3], for instance).

Lemma 3.5. If a : RN → R is continuous and tends to zero as |x| tends to infinity then the operator S :
L2
K(RN )→ L2

K(RN ) defined by Sf = (L + I)−1a(.)f is compact.

Proof. It follows immediately from the fact that S∗f = a(.)(L + I)−1f is compact.

Lemma 3.6. Let us write F (u) and G(u) as F (u) =
1
2
〈Au,u〉+F1(u) and G(u) =

1
2
〈A0u,u〉+G1(u), where

A and A0 are symmetric K ×K matrices and F ′′1 (0) = G′′1 (0) = 0. If u 6= 0 is the weak limit in Hs
K(RN ) of

a minimizing sequence and u satisfies the Euler-Lagrange equation (3.6), then all eigenvalues of A + αA0 are
nonnegative.

Proof. According to Lemma 3.3, Part i, and Lemma 2.8, Part ii, the spectrum of the selfadjoint operator
L +F ′′(u(x)) +αG′′(u(x)) cannot have two elements on the halfline (−∞, 0) and since in view of Lemmata 3.4
and 3.5, F ′′1 (u(x))+αG′′1 (u(x)) is a compact perturbation of L+A+αA0 and this operator has only continuous
spectrum, we see that this operator has the same property and then the conclusion follows from the second part
of Lemma 3.3, and this proves Lemma 3.6. 2

Proof of Theorem 3.1. According to Theorem 2.1 and Lemma 3.2, all is left is to show that 〈L(un −u), (un −
u)〉L2

K(RN ) tends to zero.
The first thing to notice is that we can write the aproximate Euler-Lagrange equation in the form (3.5)

because when we calculate the norm of V ′(u) on the admissible elements (Eq. (2.16)), we can take in Hs
K(RN )

the equivalent norm 〈Lu,u〉L2
K(RN ) + |u|2

L2
K(RN )

. So, passing to a subsequence if necessary, we can assume that
αn converges to some α. Moreover, the approximate Euler-Lagrange equation (3.5) can be writen as

L(un + γnhn) +Aun + αnA0un + gradF1(un(x)) + αngradG1(un(x)) + γnun = 0 (3.13)
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and passing to the limit as n tends to infinity we see that u satisfies the Euler-Lagrange equation

Lu +Au + αA0u + gradF1(u(x)) + αgradG1(u(x)) = 0. (3.14)

Using the imbedding of Hs
K(RN ) in LrK(RN ) for 2 ≤ r ≤ 2N

N − 2s
(2 ≤ r <∞ if 2s = N , 2 ≤ r ≤ ∞ if N < 2s)

the strong convergence of un to u in LpK(RN ) for 2 < p <
2N

N − 2s
(2 < p ≤ ∞ if N < 2s), the assumptions on

F and G and Holder’s inequality, we see that the integrals∫
RN
〈gradF1(un(x)) − gradF1(u(x)),un(x)− u(x)〉dx

and ∫
RN
〈gradG1(un(x)) − gradG1(u(x)),un(x)− u(x)〉dx

tend to zero and then, if we subtract (3.14) from (3.13), take the scalar product with un(x)−u(x) and integrate
on RN we conclude that

〈L(un − u), (un − u)〉L2
K(RN ) +

∫
RN
〈(A+ αA0)(un − u), (un − u)〉dx (3.15)

tends to zero and this proves the theorem because, according to Lemma 3.6, the matrix A+ αA0 positive. 2

So, after having proved Theorem 3.1, what is left is
• to give sufficient condtions for HH3, HH4 and HH5 (besides the ones given in Ths. 2.10, 2.11 and 2.12);
• to give sufficient conditions to prevent vanishing of minimizing sequences un, that is, to guarantee that

except for translation in the space variable, there is a subsequence (for which we keep the same notation)
converging weakly in Hs

K(RN ) to a nonzero element u; once this is done, by Theorem 3.1 we know that

the subsequence un converges to u strongly in LpK(RN ), 2 < p <
2N

N − 2s
(2 < p ≤ ∞ if N < 2s) and∫

RN
m(ξ)|ûn(ξ) − û(ξ)|2 dξ

tends to zero;
• to give sufficient conditions to guarantee that the convergence takes place in L2

K(RN ) also (this will give
the convergence of un to u strongly in Hs

K(RN ), which is our goal).
Next we discuss assumption HH3. Trivially the manifold condition HH3 is satisfied if gradG(u) 6= 0 if u 6= 0,
but in some cases we can allow gradG(u) to vanish. For instance, if s ≥ 1 then the manifold condition is
satisfied if gradG(u) 6= 0 for u 6= 0 and |u| small. This is a consequence of the following result (see [5],
Appendix E.2): if u ∈ H1(RN), the sets {x : u(x) ≤ a}, {x : u(x) ≥ b} have positive measure and a < b, then
the set {x : a < u(x) < b} also has positive measure.

The next result gives a manifold condition in a more delicate case that arises in an application we will make.

Theorem 3.7. If s = 1/2, N = 1,K = 1 then assumption HH3 is satisfied if G′(u) has a finite number of
zeroes.

Theorem 3.7 is a consequence of the next lemmata.

Lemma 3.8. Let E ⊂ [a, b] be a measurable set contained in the interval [a, b] such that 0 < m(E) < b − a.
Then there is a point c ∈ [a, b] such that

0 < lim inf
h→0

m(E ∩ [c− h, c+ h])
2h

≤ lim sup
h→0

m(E ∩ [c− h, c+ h])
2h

< 1 (3.16)
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and

0 < lim inf
h→0

m(Ec ∩ [c− h, c+ h])
2h

≤ lim sup
h→0

m(Ec ∩ [c− h, c+ h])
2h

< 1. (3.17)

In particular

lim inf
h→0

m(E ∩ [c− h, c+ h])
2h

m(Ec ∩ [c− h, c+ h])
2h

> 0. (3.18)

Proof. For x ∈ [a, b] let us define the function

G(x) = m(E ∩ [a, x])− x− a
b− am(E ∩ [a, b]).

Since G(a) = G(b) = 0 there is an interior point c ∈ (a, b) where G(x) achieves either its maximum or its
minimum. Let us assume it achieves its maximum at c. The other case is treated similarly. Since

lim sup
h→0+

G(c+ h)−G(c)
h

≤ 0 and lim inf
h→0+

G(c)−G(c− h)
h

≥ 0

we conclude that
lim sup
h→0+

m(E ∩ [c, c+ h])
h

≤ m(E ∩ [a, b])
b− a

and
lim inf
h→0+

m(E ∩ [c, c+ h])
h

≥ m(E ∩ [a, b])
b− a

and then

m(E ∩ [a, b])
2

≤ lim inf
h→0

m(E ∩ [c− h, c+ h])
2h

≤ lim sup
h→0

m(E ∩ [c− h, c+ h])
2h

<
1 +m(E ∩ [a, b])

2

and this proves (3.16). (3.17) follows from (3.16) and this proves Lemma 3.8. 2

Lemma 3.9. Let E1, · · ·Em be a finite number of disjoint measurable sets of R such that 0 < m(Ei) < +∞,
i = 1, · · · ,m and let a1 < a2 · · · < am be a sequence of nonzero real numbers. If we denote by Ii the caracteristic

function of the set Ei, then the function u(x) =
m∑
i=1

aiIi(x) does not belong to the space H1/2(R).

Proof. According Lemma 2.2, Part 1 , we have to show that the integral∫
R2

|u(x)− u(y)|2
|x− y|2 dxdy

diverges and so it suffices to show, for instance, that the integral∫
E1×Ec1

|u(x)− u(y)|2
|x− y|2 dxdy

diverges. Since outside E1 the function u(x) assumes a finite number of values none of them being equal to a1,
all we have to do is to show that the integral∫

E1×Ec1

1
|x− y|2 dxdy
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diverges. Let us assume by contradiction that it converges and let c the number given by Lemma 3.8 . Then
we must have

lim
h→0+

∫
(E1∩[c−h,c+h])×(Ec1∩[c−h,c+h])

1
|x− y|2 dxdy = 0.

However, that integral is bounded below by m(E ∩ [c − h, c+ h])m(E1 ∩ [c − h, c+ h])/h2 and then this limit
has to be zero and this is a contradiction in view of Lemma 3.8 and Lemma 3.9 is proved. 2

Notice that the characteristic function of a bounded interval belongs to Hs(R) for s < 1/2 and so Theorem 3.7
deals with a critical case.

Now we discuss how to prevent vanishing of a minimizing sequences as well as its convergence in L2
K(RN ).

The final argument of the proof Theorem 3.1 together with (3.15) shows that if the matrix A+ αA0 is positive
definite, then the convergence takes place in L2

K(RN ) also. In order to give sufficient conditions for A + αA0

to be positive definite, we have to consider two cases according to the form of the quadratic part of F (u) and
G(u). In each case we also give a sufficient condition for HH3.

We use the decomposition F (u) =
1
2
〈Au,u〉+ F1(u) and G(u) =

1
2
〈A0u,u〉+G1(u) as in Lemma 3.6.

First case: A0 is positive definite.
In that case, following [25], in view of the constraint we can replace F (u) by F (u)+βG(u) and the quadratic

part of the new F (u) will be A+βA0. Then, choosing β properly, we can assume that the following normalization
condition is satisfied:

(NC) the symmetric matrix A has at least one zero eigenvalue and all the others are nonnegative.

Theorem 3.10. If G1(u) ≥ 0 and

lim
|u|→+∞

F−(u)
|u|γ = 0 (3.19)

where γ = 2 +
4s
N

and F−(u) denotes the negative part of F (u) then assumption HH4 is satisfied.

Proof. The proof follows very closely the proof given in [20], Part II, for s = 1. Using the interpolation

[L2
K(RN ),Hs,2

K ]a = Has,2
K a = 2/γ

and the imbedding of Has,2
K (RN ) into LγK(RN ) because

1
γ

=
1
2
− as
N

we see that there is a constant c7 such that

|u|γ
γ,RN

≤ c7|u|2s,2,RN |u|
(1−a)γ

2,RN

and this proves Theorem 3.10 because we have an a priori bound for the L2
K(RN ) norm of un. 2

Lemma 3.11. Under the normalization condition (NC), any minimizing sequence un of problem (CP) has
a subsequence converging weakly (modulo translation in the space variable) in Hs

K(RN ) to a nonzero element
u ∈ Hs

K(RN ) if and only V (λ) < 0, where V (λ) is the infimum of V on the admissible set.

Proof. If w ∈ RK is an eigenvector of A associated to the zero eigenvalue, let φ : RN → R be a smooth function
such that v(x) = φ(x)w is admissible. It is easy to see that there is a c(σ) that tends to 1 as σ tends to zero
such that vσ(x) = c(σ)σN/2v(σx) is also admissible. Moreover

V (vσ) =
c2(σ)

2

∫
RN

m(σξ)|v̂(ξ)|2 dξ + σ−N
∫
RN

F1(σN/2v(x)) dx
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where F1 is as in Lemma 3.6 because Aw = 0. Due to Lebesgue theorem, the first term of last equality tends
to zero (because m(0) = 0). Furthermore, since the sup norm of σN/2v(x) tends to zero as σ tends to zero and
F1(v) is of order higher than two at v = 0, the second term also tends to zero and then V (vσ) tends to zero as
σ tends to zero.

Conversely, suppose V (λ) < 0 and, argueing by contradiction, suppose there is a bounded minimizing se-
quence un such that un(· + cn) tends weakly to zero in Hs

K(RN ) for any sequence cn. Then according to

Lemma 2.3, un converges to zero strongly in LpK(RN ), 2 < p <
2N

N − 2s
(2 < p ≤ ∞ if N < 2s) and then

lim inf V (un) ≥ 0 (because the quadratic part of V (u) is nonnegative in view of the normalization condition),
a contradiction and this proves the lemma. 2

Next we give two sufficient conditions for V (λ) being negative.

Theorem 3.12. V (λ) < 0 if either

• there is a u0 ∈ RK such that F (u0) < 0, G(u0) > 0 and λ is large, or

• lim
σ→0+

V (uσ) = −∞ where γ0 = 2+
4s0

N
and s0 > 0 is the largest number such that

|m(ξ)|
|ξ|2s0 remains bounded

as |ξ| goes to zero.

Proof. In the first case, if u is a smooth function with compact support such that
∫
RN

F (u(x)) dx < 0 and∫
RN

G(u(x)) dx > 0 and we define uσ(x) = u(σx) then

V (uσ) =
1

2σn

∫
RN

m(σξ)|û(ξ)|2 dξ +
1
σn

∫
RN

F (u(x)) dx.

Moreover, for any ε > 0 there is a K(ε) such that m(ξ) ≤ ε+K(ε)|ξ|2s and then

V (uσ) ≤ 1
2σn

∫
RN

(ε+K(ε)σ2s|ξ|2s)(|û(ξ)|2 dξ +
1
σn

∫
RN

F (u(x)) dx.

If we fix ε small in such way that

ε

2

∫
RN
|û(ξ)|2 dξ +

∫
RN

F (u(x)) dx < 0

then lim
σ→0+

V (uσ) = −∞ (because s > 0) and I(uσ) =
1
σN

I(u) tends to +∞.

In the second case, let u ∈ Hs
K(RN ) be such that û(ξ) has compact support A and

∫
RN
〈Au(x),u(x)〉dx = λ.

Then there is c(σ) tending to 1 as σ tends to zero such that uσ(x)=̂c(σ)σN/2u(σx) admissible.
Moreover, since u(x) is bounded, if B is an arbitrarily large positive number, then for σ small enough we

have F (σN/2u(x)) ≤ −BσγN/2|u(x)|γ and then for some constant K1 we have

V (uσ) ≤ K1σ
2s0

∫
A

|ξ|2s0 |û(ξ)|2 dξ −Bσ−N
∫
RN

σγN/2|u(x)|γ dx

and this expression is negative if σ is small enough and this proves Theorem 3.12. 2

In order to discuss the convergence in the L2 norm we make a further assumption HH7. Let us recall that
we are assuming the normalization condition (NC) is satisfied.
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HH7) If u is a nontrivial solution of the Euler equation

Lu + gradF (u) = 0 (3.20)

then V (u) ≥ 0

Theorem 3.13. Under assumptions HH1 −HH6, the Normalization Condition (NC) and assumption HH7

any minimizing sequence of problem (CP) is precompact in Hs
K(RN ) except for translation if and only if the

infimum V (λ) of V on the admissible set is negative. Moreover any minimizer satisfies the Euler-Lagrange
equation (3.6) with α > 0.

Proof. As we have seen, under (NC) there is a sequence un of admissible functions whose L∞K (RN ) tends to zero
and V (un) tends to zero. So, the condition V (λ) < 0 is necessary for precompactness of minimizing sequences
except for translation.

If V (λ) < 0 then according to Theorems 3.1 and 3.11, if un is a minimizing sequence for problem (CP) then
except for translation and passing to a subsequence for which we keep the same notation, un converges to some

u 6= 0 strongly in LpK(RN) for 2 < p <
2N

N − 2s
(2 < p ≤ ∞ if 2s > N),

∫
RN

m(ξ)|ûn(ξ) − û(ξ)|2 dξ tends to

zero and u satisfies the Euler-Lagrange equation (3.6). Moreover, the normalization condition (NC) implies
that the quadratic part of the functional V is convex and then we must have V (u) ≤ 0. We also have α ≥ 0
because A+ αA0 is positive according to Lemma 3.6 and A has zero as an eigenvalue. From assumption HH7

we conclude that α > 0 and then, in view of (3.15), this implies convergence in the L2
K(RN ) norm because the

matrix A+ αA0 is positive definite and this proves Theorem 3.13. 2

Next we give two sufficient conditions of HH7.

Theorem 3.14. Assumption HH7 is satisfied if either
i) there is a number β > 2 such that 〈gradF (u),u〉 ≤ βF (u)
or
ii) 〈m′(ξ), ξ〉 > 0 for ξ 6= 0.

Proof. In the first case if we take the scalar product of (3.20) with u and integrate we have
∫
RN
〈Lu(x),u(x)〉+∫

RN
gradF (u(x)),u(x)〉dx = 0 and then

V (u) =
1
2

∫
RN
〈Lu(x),u(x)〉dx +

∫
RN

F (u(x)) dx ≥ 1
2

∫
RN
〈Lu(x),u(x)〉dx +

1
β

∫
RN

F (u(x)),u(x)〉dx

≥
(

1
2
− 1
β

)∫
RN
〈Lu(x),u(x)〉 > 0.

In the second case, as we will see later in this paper (Eq. (3.21)), for solutions of (3.20) we have

V (u) =
1

2N

∫
RN
〈gradm(ξ), ξ〉|û(ξ)|2 dξ

and this proves Theorem 3.14. 2

Remark. Notice that condition assumption i of Theorem 3.13 is compatible with condition (2.17) of
Theorem 2.10.

Second case: A0 = 0 and A1 is positive definite.

Theorem 3.15. Under assumptions HH1 −HH6 and except for translation, any minimizing sequence is pre-
compact in Hs

K(RN ).
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Proof. If un is a minimizing sequence and un converges to zero strongly in in LpK(RN ), 2 < p <
2N

N − 2s
(2 < p ≤ ∞ if N < 2s) then the constraint is violated for large n. Then, in view of Lemma 2.3 and except for
translation in the x variable, we can assume that un converges weakly in Hs

K(RN ) to a nonzero element u and
so, according to Theorem 3.1 all is left is to prove the convergence of un in L2

K(RN ) but this follows immediately
from (3.15) because A0 = 0 and A1 is positive definite and this proves Theorem 3.15. 2

In order to give other sufficient conditions for HH5 (besides the one given by Ths. 2.10, 2.11 and 2.12) we
start by recalling a result known as Derrick’s theorem [13] that says the following: if N ≥ 3 and u ∈ H1

K(RN )
is a nontrivial critical point of the functional

W (u) =
1
2

∫
RN
|gradu(x)|2 dx+

∫
RN

H(u(x)) dx,

then under appropriate smoothness and growth assumptions on H(u), there is an element h ∈ H1
K(RN ) such

that

W ′′(u)(h,h) =
∫
RN
|grad h(x)|2 dx+

∫
RN

H ′′(u(x))(h(x),h(x)) dx < 0.

The argument is the following: if we define the curve uk(x) = u(x/k) then

W (k) = W (uk) =
kN−2

2

∫
RN
|gradu(x)|2 dx+ kN

∫
RN

H(u(x)) dx.

Moreover, since u is a critical point of W we must have

W ′(1) =
(N − 2)

2

∫
RN
|grad u(x)|2 dx+N

∫
RN

H(u(x)) dx = 0

(which is the so called Pohozaev identity) and then

W ′′(1) =
(N − 2)(N − 3)

2

∫
RN
|grad u(x)|2 dx+N(N − 1)

∫
RN

H(u(x)) dx = (2−N)
∫
RN
|grad u(x)|2 dx < 0

and this shows that W ′′(u)(h,h) < 0 where h(x) =
N∑
i=1

xi
∂h(x)
∂xi

.

Of course we have to be carefull because, in general, we do not know if the function h(x) =
N∑
i=1

xi
∂h(x)
∂xi

is

an element of H1
K(RN ). That can be fixed by constructing a sequence hn(x) = φn(x)h(x), where φn(x) is a

sequence of truncation, so that W ′′(u)(hn,hn) < 0 if n is large.

If N = 2 we can also prove that statement by perturbing and truncating h(x) =
N∑
i=1

xi
∂h(x)
∂xi

(see [25]).

All this together means that if we are dealing with functionals

V (u) =
1
2

∫
RN
|gradu(x)|2 dx+

∫
RN

F (u(x)) dx, I(u) =
∫
RN

G(u(x) dx

and N ≥ 2 then assumption HH5 is always satisfied and that is independent of assuming that the critical point
u is the weak limit of a minimizing sequence.
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The same argument works for functionals of the type

V (u) =
1
2

∫
R3

(div E(x))2 dx+ γ

∫
R3
|curl E(x)|2 dx+

∫
RN

F (E(x)) dx γ > 0.

It works also in the presence of a nonlocal term
∫
RN×RN

F (u(x))F (u(y))
|x− y|σ dxdy with homogeneous kernel.

If N = 1 then the argument above fails but if we restrict ourselves to critical points which are weak limits
of minimizing sequences (and this is all we need to consider), then we can show that assumtpion HH5 is
also satisfied for that type of functionals. The reason is that such critical points are sub-minima according to
Theorem 2.9 and due to a result of symmetry of minimizers, they will be even functions of x and this allows us
to prove what we need (see [25]).

So, for functionals of the type

V (u) =
1
2

∫
RN
|gradu(x)|2 dx+

∫
RN

F (u(x)) dx, I(u) =
∫
RN

G(u(x) dx

assumption HH5 is always satisfied (notice that we are dealing with vector value functions u(x)) and then we
can show the existence of minimizer for very general nonlinearities F (u) and G(u) (see [25]).

In order to try to use use Derrick’s argument in the case of the functional

W (u) =
1
2

∫
RN

m(ξ)|û(ξ)|2 dξ +
∫
RN

H(u(x)) dx

we define uk(x) = u(x/k) and since ûk(x) = kN û(kξ), we have

W (k) = W (uk) =
kN

2

∫
RN

m(ξ/k)|û(ξ)|2 dξ + kN
∫
RN

H(u(x)) dx

and then

W ′(1) =
N

2

∫
RN

m(ξ)|û(ξ)|2 dξ − 1
2

∫
RN
〈m′(ξ), ξ〉|û(ξ)|2 dξ +N

∫
RN

H(u(x)) dx

and

W ′′(1) =
N(N − 1)

2

∫
RN

m(ξ)|û(ξ)|2 dξ + (1−N)
∫
RN
〈m′(ξ), ξ〉|û(ξ)|2 dξ

+
1
2

∫
RN
〈m′′(ξ)ξ, ξ〉|û(ξ)|2 dξ +N(N − 1)

∫
RN

H(u(x)) dx.

So, if u is a critical point of W we have W ′(1) = 0,

W (u) =
1

2N

∫
RN
〈m′(ξ), ξ〉|û(ξ)|2 dξ (3.21)

and

W ′′(1) =
1
2

[
−(N − 1)

∫
RN
〈m′(ξ), ξ〉|û(ξ)|2 dξ +

∫
RN
〈m′′(ξ)ξ, ξ〉|û(ξ)|2 dξ

]
and so W ′′(1) < 0 if we assume that

−(N − 1)〈m′(ξ), ξ〉 + 〈m′′(ξ)ξ, ξ〉 < 0 for ξ 6= 0. (3.22)
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Notice that if N = 1 and, for instance, K = 1, then (3.22) imposes that m′′(ξ) ≤ 0 and this is not compatible
with the other assumptions we have made on m(ξ). So, as in the case of local integrals, in the case of space
dimension N = 1, Derrick’s argument can never be used to show that assumption HH5 is satisfied.

Fortunately, at least in the case K = 1 (that is, u(x) is real valued), if a maximum principle is available,
then assumption HH5 is satisfied. For instance, if u ∈ H2(RN ) is a nontrivial solution of the equation

−∆u(x) + h(u(x)) = 0

then v(x) =
∂u(x)
∂xi

satisfies

−∆v(x) + h′(u(x))v(x) = 0
and this means that v(x) is an eigenfunction associated to the zero eigenvalue of the linear operator−∆+h′(u(x))
and, since v(x) changes sign, it cannot be the principal eigenfunction. So, there is a negative eigenvalue and

this gives another proof for K = 1 that assumption HH5 is satisfied for V (u) = 1/2
∫
RN
|gradu(x)|2 dx +∫

RN
F (u(x)) dx and I(u) =

∫
RN

G(u(x) dx.

For functionals V of the form

V (u) =
1
2

∫
RN
|gradu(x)|2 dx+

∫
RN

F1(u(x)) dx−
∫
RN×RN

k(x− y)F2(u(x))F2(u(y)) dxdy

then we can show that a maximum principle holds (and hence, assumption HH5 is satisfied) if k(z) ≤ 0 (the
atractive case) and the derivative f2(u) of F2(u) satisfied f2(u) ≥ 0 [23]. If k(z) is radial and nonincreasing,
symmetrization can be used [19].

In the class of problems we are dealing with here and under some assumptions on the multiplier m(ξ), a
maximum principle can be proved and, as a consequence of it, assumption HH5 can be verified for a very large
class of nonlinearities. This will be done next.

Theorem 3.16. Suppose K = 1 (u(x) is scalar) and that for µ large we have K(x) > 0, where K(x) is defined

by K̂(ξ) =
1

µ+m(ξ)
. Then assumptions HH5 is satisfied.

Proof. In fact, from Lemma 3.4 we see that we can differentiate (3.3) with respect to, say, x1 and then we
conclude that zero is an eigenvalue of corresponding to an eigenfunction that changes sign. Moreover, according
to Theorem 2.9 and Lemma 3.6, the essential spectrum of the operator L +F ′′(u(x)) +αG′′(u(x)) is a half-line
[C,+∞) where C ≥ 0. Then the proof given in [3] for Proposition 2 (p. 355) applies and Theorem 3.16 is
proved. 2

4. Applications to stability of waves

In this last section we show how we can combine Theorems 2.14, 3.12–3.14 and 3.15 to show the existence
and the stability of a set of solitary waves for some differential and integro-differential equations.

First example. We consider generalized intermediate long-wave equation

ut + (f(u(x))x − β1M1ux − β2M2ux = 0 (4.1)

where βi > 0, i = 1, 2, Mi is the Fourier multiplier defined by

(M̂iw)(ξ) = mi(ξ)ŵ(ξ) mi(ξ) = ξ coth(ξHi)−
1
Hi
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for i = 1, 2, Hi a real number. Equation (4.1) has the following two first integrals:

V (u) =
1
2

∫
R

m(ξ)|û(ξ)|2 dξ +
∫
R

F (u(x)) dx I(u) =
∫
R

u2(x) dx

where m(ξ) = β1m1(ξ) + β2m2(ξ), F ′(u) = f(u) and F (0) = 0. In [4] it has been proved that assumption HH1

is satisfied for s = 1/2 and that the assumption K(x) > 0 of Theorem 3.16 is also satisfied. An elementary
calculation shows that condition ii of Theorem 3.14 is also satisfied. All this together with Theorems 3.12
and 3.13 allow us to conclude that if F (u) satisfies the normalization condition F ′′(0) = 0 and we want
to minimize V (u) under I(u) = λ > 0, then minimizing sequences are precompact in H1/2(R) except for
translation if

lim
|u|→+∞

F−(u)
|u|4 = 0

where F−(u) denotes the negative part of F (u), and
• either

i) lim
|u|→0

F (u)
|u|6 = −∞ (and λ is any positive number)

or

ii) F (u0) < 0 for some u0 and λ > 0 and large.
If we define J(u) = 〈Lu, u〉s, then J(|u|) ≤ J(u) (see [4]) and then making an even extension of F (u) we can
show the existence of positive minimizers. The symmetry of the minimizer can also be proved using a lemma
of Riesz (see [4]).

For the generalized BO we have m(ξ) = |ξ| and the conclusion is the same as above because the condition
K(x) > 0 of Theorem 3.16 is satisfied (see [3], p. 364), and condition ii of Theorem 3.14 is also satisfied (the
lack of differentiability of m(ξ) at ξ = 0 does not cause serious problems).

Second example. We consider the generalized KdV:

ut − uxxx + (f(u))x = 0. (4.2)

The functionals V (u) =
∫
R(
u2
x(x)
2

+ F (u(x)) dx and I(u) =
∫
R u

2(x) dx are first integrals of (4.2) and if the

normalization condition F ′′(0) = 0 is satisfied and we want to minimize V (u) under I(u) = λ > 0 in the space
H1(R) then according to theory we have presented, minimizing sequences are precompact in H1(R) except for
translation if

lim
|u|→+∞

F−(u)
|u|6 = 0

where F−(u) denotes the negative part of F (u), and
• either

i) lim
|u|→0

F (u)
|u|6 = −∞ (and λ is any positive number)

or

ii) F (u0) < 0 for some u0 and λ > 0 and large.
In the next two examples we study BBM type equations

ut − Lut + (f(u))x = 0 (4.3)
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where L is given by L̂u(ξ) = m(ξ)û(ξ). Equation (4.3) has the following two first integrals

V (u) =
∫
R

(Lu(x)u(x) + u2(x)) dx, I(u) =
∫
R

F (u(x)) dx

where F (0) = 0 and F ′(u) = f(u). We assume that m(ξ) satisfies the assumption HH1 and we consider
the problem of minimizing V (u) under I(u) = λ > 0 in the space Hs(R). Clearly, V is bounded below and
minimizing sequences are bounded in Hs(R). We also assume that the number of zeroes of f(u) is finite (so
that, according to Th. 3.7, the manifold condition is satisfied if s = 1/2) and we make the decomposition
F (u) = u2 + F1(u) as in Lemma 3.6 and then the normalized functional (for which we keep the same notation)

is V (u) =
∫
R

(Lu(x)u(x) − F1(u(x)) dx. In order to be more specific we consider two separate cases.

Third example. In (4.3) we take m(ξ) as in the first example.
If we want to minimize V (u) under I(u) = λ > 0, then according to the theory we have presented, minimizing

sequences are precompact in H1/2(R) if

• either

i) lim
|u|→0

F1(u)
|u|6 = +∞ (and λ is any positive number)

• or

ii) F1(u0) > 0 for some u0 and λ > 0 and large.

Fourth example. In (4.3) we take L(u) = −uxx. In this case if we want to minimize V (u) under I(u) = λ > 0,
then minimizing sequences are precompact in H1(R) if

• either

i) lim
|u|→0

F1(u)
|u|6 =∞ (and λ is any positive number)

• or

ii) F1(u0) > 0 for some u0 and λ > 0 and large.

In this last case, if f(u) = |u|p with p > 6 and λ > 0 is small, then the infimum of the normalized V (u) under
I(u) = λ is equal to zero and it is not achieved (because using interpolation inequalities we see that V (u) > 0
if u is admissible and λ is small).

It is easy to see that the equation −uxx + cu + (c − 1)u|u|p−2 = 0 for critical points of the constrained
variational problem has a nontrivial solution uc(x) for any 0 < c < 1 but, if c < 1 is close to one then this
solution cannot be global minimizers of the variational problem above because I(uc) tends to zero as c tends
to 1. This fact is consistent with a conjecture of Weinstein [31] according to which for p > 6 the traveling waves
of the BBM equation with small speed are unstable.

Notice that if F (u) has no quadratic term and f(u) has a finite number of zeroes, then according to
Theorem 3.15, then for any level λ 6= 0, there is a stable set of traveling waves.

We finish this paper indicating further applications of our method. In [25] we have shown the existence of
minimizer for the problem

V (u, v) =
∫
R

(
1
2
u2
x +

1
2
v2
x + F (u(x), v(x))

)
dx

under ∫
R

(u2(x) + v2(x)) dx = λ
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for very general nonlinearities F (u, v) and this gives us existence and stability of traveling waves for the KdV
system

ut = −uxxx +
d

dx
Fu(u, v)

vt = −vxxx +
d

dx
Fv(u, v).

In [25] we have also made an application to a Schrodinger system and a Klein-Gordon equation. As a further
application, we can minimize the energy of the system:

i
∂E
∂t

+ curl curl E + γgrad div E + f(|E|2)E = 0

for a given value of the charge
∫
RN
|E|2 dx. For certain nonlinearities it has been proved that the minimizer is

not the gradient of a radial function [12].
The Zakharov-Kuznetsov equation and its BBM version [8] have first integrals of the type we have considered

and so our theory can be used to show the existence and the stability of a set of traveling waves for those
equations.
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Théor. 65 (1996) 57–79.
[13] G.H. Derrick, Comments on Nonlinear Wave Equations as Models for Elementary Particles. J. Math. Phys. 5, 9 (1964)

1252–1254.
[14] M. Grillakis, J. Shatah and W. Strauss, Stability of Solitary Waves in the Presence of Symmetry I. J. Funct. Anal. 74 (1987)

160–197.
[15] L. Hormander, Estimates for translation invariant operators in Lp spaces. Acta Math. 104 (1960) 93–140.
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