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BOUNDARY CONTROL OF THE MAXWELL DYNAMICAL SYSTEM:
LACK OF CONTROLLABILITY BY TOPOLOGICAL REASONS

Mikhail Belishev
1

and Aleksandr Glasman
2

Abstract. The paper deals with a boundary control problem for the Maxwell dynamical system in
a bounbed domain Ω ⊂ R3. Let ΩT ⊂ Ω be the subdomain filled by waves at the moment T , T∗ the
moment at which the waves fill the whole of Ω. The following effect occurs: for small enough T the
system is approximately controllable in ΩT whereas for larger T < T∗ a lack of controllability is possible.
The subspace of unreachable states is of finite dimension determined by topological characteristics of
ΩT .
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Introduction

Let Ω ⊂ R3 be a bounded domain with a smooth boundary Γ. We consider the Maxwell system

εet = roth; µht = −rote in Ω× (0, T );
div εe = 0, divµh = 0 in Ω;
e|t=0 = 0, h|t=0 = 0;
ν × e|Γ×[0,T ] = f,

where ε, µ are smooth positive scalar functions (permeabilities) given in Ω, ν is a normal on Γ, f is a boundary
control; let {ef(x, t), hf(x, t)} be a solution (wave).

Permeabilities determine the velocity c = (εµ)1/2 and the optical metric

dτ2 =
|dx|2
c2

,

which turns Ω into a Riemannian manifold; we denote distc the corresponding distance. Let

ΩT := {x ∈ Ω | distc(x,Γ) < T}, T > 0
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be a near-boundary layer of optical thickness T ; the surface

ΓT := {x ∈ Γ | distc(x,Γ) = T}

is an inner component of ∂ΩT . The magnitude

T∗ := inf{T > 0 | ΩT = Ω}

coincides with time needed for waves moving into Ω from Γ to fill the whole of the domain.
Introduce the (electric) reahable set

ET :=
{
ef(·, T ) | f ∈ L2((0, T ); H1(Γ)), f · ν = 0 on Γ

}
(H1(. . . ) is the Sobolev class); let

JT :=
{
y ∈ L2(Ω) | div εy = 0 in Ω, supp y ⊂ Ω

T
}

be the space of ε-solenoidal fields localized in Ω
T

. By finiteness of c, the embedding

ET ⊂ JT , T > 0

occures. The main question under consideration is a density of this embedding. Our results are the following.
Let us say that ΩT satisfies the EP-condition (existence of potential) if any cycle (simple smooth closed

curve) lying in ΩT may be continuously deformed into a cycle lying on Γ.

Theorem 1. If ΩT satisfies the EP-condition the equality

closET = JT (∗)

holds.

In particular, for small enough T relation (∗) is valid, i.e. the electric component of the Maxwell system is
approximately controllable.

If the EP-condition is violated the unreachable subspace

NT = JT 	 ET ,

turns out to be nontrivial, i.e. the system is not controllable. The subspace N T is of a finite dimension
determined by topological characteristics of ΩT . For example, if Ω is homeomorphic to a ball and Ω \ Ω

T
is

homeomorphic to a ball with n handles then dimNT = n.
A lack of controllability described above is of purely topological nature: it is not connected with a presence of

real obstacles in Ω. In particular, if the system is not controllable at the moment t = T0, however, the equality
(∗) may be restored later for some T > T0.

1. Domains and spaces

Let Ω ⊂ R3 be a bounded domain with a boundary Γ ∈ C∞, ε, µ ∈ C∞(Ω) strictly positive functions
(permeabilities); denote c := (εµ)−1/2.

Equipe Ω with the optical metric

dτ2 =
|dx|2
c2

;
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let distc be the corresponding distance; introduce the eikonal τ(x) := distc(x,Γ), x ∈ Ω. The eikonal determines
an increasing family of subdomains

ΩT := {x ∈ Ω | τ(x) < T} , T > 0

and the level surfaces
ΓT := {x ∈ Ω | τ(x) = T} , T ≥ 0

(Γ0 = Γ); denote
T∗ := inf

{
T > 0 | ΩT = Ω

}
= max

Ω
τ(·).

Let us introduce spaces and classes of R3-valued functions (fields) used in the paper:
the Sobolev classes Hs(. . . );
the space of ε-solenoidal fields J := {y ∈ L2,ε(Ω) | div εy = 0 in Ω} (with measure εdx);

the subspace JT :=
{
y ∈ J | supp y ⊂ Ω

T
}

of fields localized in Ω
T

;

the class J+ := J ∩H1(Ω) (with H1-topology) and its dual J− := (J+)′ with respect to J ;
the space of tangent fields T := {g ∈ L2(Γ) | ν · g = 0 on Γ} (ν is a normal);
the class T+ := T ∩H1(Γ) (with H1-topology) and its dual T− := (T+)′ with respect to L2(Γ);
the space of controls FT := L2 ([0, T ]; T );
the class FT+ := L2((0, T ); T+) and its dual FT− := (FT+)′ = L2((0, T ); T−) with respect to FT .

2. The Maxwell system with boundary control. Electric subsystem

Denote QT := Ω× (0, T ), ΣT := Γ× [0, T ] and consider the system

εet = roth, µht = −rot e in QT ; (2.1)
e|t=0 = 0, h|t=0 = 0; (2.2)
ν × e|ΣT = f, (2.3)

with (electric) boundary control f ; let {ef(x, t), hf(x, t)} be its solution. Note that (2.1, 2.2) imply

div εe = 0, divµh = 0 in Ω.

For f ∈ FT+ problem (2.1–2.3) is uniquely solvable in an appropriate class (see [7, 10]). The well known fact is
that solutions (waves) propagate with velocity c:

supp {ef , hf} ⊂
{

(x, t) ∈ QT | t ≥ τ(x)
}
· (2.4)

The electric component satisfies

ett +
1
ε

rot
1
µ

rote = 0 in QT ; (2.5)

e|t=0 = et|t=0 = 0 in Ω; (2.6)
ν × e|ΣT = f. (2.7)

For f ∈ FT+ the inclusion ef ∈ C([0, T ]; J) holds, and the map f → ef is continuous in corresponding norms;
this property ensures a continuity of the map WT : f → ef (· , T ) from FT+ into J .

Theorem 2. For times T < T∗ the map WT is injective.
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Proof. Choose g ∈ KerWT ; let eg, hg be the solution of (2.1–2.3). Consider the extensions:

e(·, t) :=


0 −∞ < t < 0;

eg(·, t) 0 ≤ t < T ;
−eg(·, 2T − t) T ≤ t < 2T ;

0 2T ≤ t <∞

and

h(·, t) :=


0 −∞ < t < 0;

hg(·, t) 0 ≤ t < T ;
hg(·, 2T − t) T ≤ t < 2T ;

0 2T ≤ t <∞.
By virtue of eg(·, T ) = 0, extending by oddness one doesn’t violate a continuity of eg and the pair {e, h} turns
out to be a solution of the system

εet = roth, µht = −rot e in Ω× (−∞,∞). (2.8)

Relation (2.4) implies supp {e(·, t), h(·, t)} ⊂ Ω
T

for any t that leads to

e = 0, h = 0 in (Ω \ Ω
T

)× (−∞,∞). (2.9)

Applying the Fourier transform on time to (2.8, 2.9) we get

ikε ẽ(·, k) = rot h̃(·, k), −ikµ h̃(·, k) = rot ẽ(·, k) in Ω; (2.10)

ẽ(·, k) = 0, h̃(·, k) = 0 in Ω \ Ω
T

(2.11)

for all k ∈ (−∞,∞). By virtue of div εẽ(·, k) = 0, divµh̃(·, k) = 0, system (2.10) turns out to be elliptic, its
solution vanishing on a nonvoid open subset (see (2.11)). By known uniqueness theorem (see [11], Th. 8.17)
the solution vanishes in Ω identically that implies ẽ = 0, then e = 0, eg = 0, and, finally, g = 0. Thus,
KerWT = {0}; the theorem is proved.

A simple generalization of the proof enables to obtain the following interesting result. Let us say that a
subset ω ⊂ ΩT belongs to the class DT if distc(ω, ∂ΩT ) > 0, i.e. ω is separated from Γ ∪ ΓT , and the (open)
set ΩT \ ω is connected. Put also ∅ ∈ DT by definition.

Lemma 1. Let T < T∗, {ef , hf} satisfy ( 2.1–2.3) for f ∈ FT+ . If supp ef (·, T ) ∈ DT then f = 0 and
ef = 0, hf = 0.

The analogous result for the scalar wave equation was established in [1]. Notice that Theorem 2 is a simple
corollary of Lemma 1.

3. Boundary control problem

Let us return back to the system (2.1–2.3). As Theorem 2 shows, for times T < T∗ electric component ef (·, T )
determines uniquely control f which, in turn, determines magnetic component hf (·, T ). Therefore, managing f
one cann’t control both of the components simultaneously. Thus, in the case T < T∗, the following statement
of the boundary control problem (BCP) turns out to be natural: given y ∈ JT to find control f ∈ FT+ such that
the equality

ef (·, T ) = y

holds. By virtue of Theorem 2 the BCP has no more than one solution.
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The operator WT : FT → J, DomWT = FT+ , WT f := ef (·, T ) is well defined due to Section 2; it is
injective for T < T∗. By virtue of (2.4), WT acts into the subspace JT . The set

ET := RanWT =
{
ef (·, T )

∣∣ f ∈ FT+}
is said to be reachable (at the moment t = T ). The goal of the paper is to treat the embedding ET ⊂ JT .

In the case of T < T∗ Lemma 1 shows that any nonzero y ∈ JT : supp y ∈ DT doesn’t belong to ET . Thus,
the set JT \ ET is rich enough and the equality ET = JT (exact controllability) certainly doesn’t hold. This
raises the question of whether the equality clos ET = JT (approximate controllability) holds, which is main
subject of the paper.

4. Dual system

The system

εϕt = rotψ, µψt = −rotϕ in QT ; (4.1)
ϕ|t=T = y, ψ|t=T = 0; (4.2)
ν × ϕ|ΣT = 0; (4.3)

is called dual to system (2.1–2.3); let ϕ = ϕy(x, t), ψ = ψy(x, t) be its solution. The following is something of
the properties of {ϕy, ψy} (see [9, 10]):

(i) for y ∈ J one has ϕy ∈ C([0, T ]; J); ψy ∈ C([0, T ]; L2(Ω)); divµψy = 0; ν · ψy = 0 on ΣT ;
(ii) the map y → ν · ψy|ΣT acts continiously from J into FT− ;

(iii) by finiteness of velocity of wave propagation, solution {ϕy, ψy} in the subdomain {(x, t) ∈ QT | t > τ(x)}
is determined by y|ΩT (doesn’t depend on y|Ω\ΩT );

(iv) the duality relation (
ef(·, T ), y

)
J

= − (f, ψy|ΣT )FT (4.4)

holds for any f ∈ FT+ , y ∈ J .

5. Unreachable states

The subspace
NT := JT 	 clos ET

is said to be unreachable. To describe NT let us introduce the set NT
∗ of y ∈ JT such that:

1) y is C∞-smooth in ΩT ∪ Γ;
2) ν × y = 0 on Γ;
3) rot y = 0 in ΩT .

Theorem 3. For any T > 0 the equality

NT = NT
∗ (5.0)

holds.

Proof. (i) Choose y ∈ NT
∗ ; As is easy to check, the pair {y(x), 0} satisfies (4.1–4.3) for t > τ(x) (see (iii),

Sect. 4). Therefore, by uniqueness of solution of the dual system one has

ϕy(x, t) = y(x), ψy(x, t) = 0 in {(x, t) ∈ QT | t > τ(x)};
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in particular, ψy = 0 holds on ΣT . Duality (4.4) leads to (ef (·, T ), y)J = 0 for any f ∈ FT+ ; hence y⊥ET , i.e.
y ∈ NT , and we get NT

∗ ⊂ NT . To prove the theorem one needs to check the opposite inclusion NT
∗ ⊃ NT .

(ii) Choose y ∈ NT ; let {ϕy, ψy} be the corresponding solution of (4.1–4.3). Boundary condition (4.3),
duality (4.4) and property (i), Section 4 lead to

ν × ϕy = 0, ψy = 0 on ΣT , (5.1)

the latter equality being understood in accordance with (ii), Section 4.
Extending the solution as follows

ϕ(·, t) :=
{

ϕy(·, t), 0 ≤ t < T,
ϕy(·, 2T − t), T ≤ t < 2T ;

ψ(·, t) :=
{

ψy(·, t), 0 ≤ t < T,
−ψy(·, 2T − t), T ≤ t < 2T ;

and taking into account (5.1) one can check that ϕ,ψ satisfy

ε ϕt = rotψ, µψt = −rotϕ, in Q2T ; (5.2)

ν × ϕ = 0, ψ = 0 on Σ2T . (5.3)

(iii) To deal with classical solutions we apply smoothing with respect to time. Choose a scalar function
χ ∈ C∞0 (−∞,∞):

χ(−t) = χ(t), χ(t) ≥ 0, suppχ ⊂ [−1, 1],

1∫
−1

χ(t)dt = 1,

and denote χδ(t) := 1
δχ
(
t
δ

)
(δ > 0), so that χδ converges to the Dirac function as δ tends to zero. The vector

valued functions
ϕδ(·, t) := χδ(t) ∗ ϕ(·, t), ψδ(·, t) := χδ(t) ∗ ψ(·, t)

are defined in Q2T
δ := Ω× (δ, 2T − δ) and satisfy

ε ϕδt = rotψδ, µ ψδt = −rotϕδ, in Q2T
δ ; (5.4)

ν × ϕδ = 0 on Σ2T
δ (5.5)

ψδ = 0 on Σ2T
δ (5.6)

where Σ2T
δ := Γ×[δ, 2T−δ]. A peculiar feature of the Maxwell system is that time smoothing leads to smoothing

with respect to space variables. This may be justified, for instance, by means of the Fourier method expanding
ϕ(·, t), ψ(·, t) over the eigenbasis of the Maxwell operator associated with system (2.1–2.3) (see [11]). Smoothed
solutions turns out to be classical: ϕδ, ψδ ∈ C∞(Q

2T

δ ).
(iv) A simple fact of the vector analysis is that relation (5.6) implies

ν · rotψδ = 0 on Σ2T
δ . (5.7)

Multiplying (5.4) by ν on Γ we get

ν · ϕδt =
1
ε
ν · rotψδ = 0 on Σ2T

δ (5.8)

in view of (5.7). Relations (5.5, 5.8) lead to

ϕδt = 0 on Σ2T
δ ; (5.9)
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(5.9) and (5.4) give

rotψδ = 0 on Σ2T
δ . (5.10)

We omit the proof of the following auxiliary result.

Proposition 5.1. If η ∈ C1(Ω
ξ
) satifies divµη = 0 in Ωξ and η = rot η = 0 on Γ then ∂η

∂ν = 0 on Γ.

The equality

∂ψδ

∂ν
= 0 on Σ2T

δ (5.11)

follows from (5.6, 5.10) and the proposition.
(v) Separating ψδ in (5.4) one obtains the equation

ψδtt +
1
µ

rot
1
ε

rotψδ = 0 in Q2T
δ

that may be written in the form

ψδtt −
1
c2

∆ψδ + . . . = 0 in Q2T
δ (5.12)

taking into account div µψδ = 0 (the low order terms are omitted). So ψδ turns out to be a solution of the
hyperbolic system (5.12) with zero Cauchy data (5.6, 5.11) on the time-like noncharacteristic hypersurface Σ2T

δ .
Applying the vectorial version [8] of the Holmgren-John-Tataru uniqueness theorem [16] and using the Russell’s
scheme [14] (see also [2]) one can conclude that ψδ is continued by zero from Σ2T

δ into the subdomain

K2T
δ :=

{
(x, t) ∈ Q2T

δ

∣∣ τ(x) + δ < t < 2T − τ(x) − δ
}

bounded by characteristic surfaces:
ψδ = 0 in K2T

δ .

Therefore, by (5.4) we get

rotϕδ = 0 in K2T
δ . (5.13)

(vi) As δ → 0, the convergence ϕδ → ϕ occures in C([δ0, 2T − δ0]; J) for any fixed δ0 > 0; in particular, one
has ϕδ(·, T )→ ϕ(·, T ) = y in J .

Choose any field ρ ∈ C∞(Ω), supp ρ ⊂ Ω
ξ

for ξ < T . By virtue of (5.5) and (5.13) the equalities

0 = (rotϕδ(·, T ), ρ)L2(Ω) = (ϕδ, rotρ)L2(Ω) (5.14)

are valid. The limit passage δ → 0 gives
(y, rotρ)L2(Ω) = 0,

which means that y satisfies

rot y = 0 in ΩT , ν × y = 0 on Γ (5.15)

in a weak sense (see e.g. [7]). Since the boundary Γ is smooth (5.15) and div εy = 0 lead to C∞-smoothness of
y in ΩT up to Γ by standard elliptic theory. Thus, we get y ∈ NT that proves the theorem.
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6. Approximate controllability

We continue to study the subspace NT . Let us say that subdomain ΩT satisfies the EP-condition (existence
of potential) if any cycle (a simple smooth closed curve) in ΩT may be continuously deformed into a cycle lying
on Γ.

Theorem 4. If time T > 0 is such that ΩT satisfies the EP-condition then

NT = {0}·

Proof. Choose y ∈ NT . In accordance with Theorem 3 one has

rot y = 0 in ΩT ; ν × y = 0 on Γ. (6.1)

Due to the EP-condition (6.1) ensures existence of a scalar function (potential) p, such that

∇p = y in ΩT , p = 0 on Γ; (6.2)

the inclusion y ∈ JT implies

div ε∇p = 0 in ΩT . (6.3)

Since supp y ⊂ Ω
T

and div εy = 0 in the whole of Ω, the equality ν · y = 0 holds on ΓT in appropriate (weak)
sence that implies

∂p

∂ν
= 0 on ΓT . (6.4)

Let Br(x0) :=
{
x ∈ Ω | distc(x, x0) ≤ r

}
be a “ball”; representing

ΩT =
⋃
γ∈Γ

BT (γ)

one can easily show that subdomain ΩT satisfies the cone condition (see e.g. [12]).
In this case the elliptic equation (6.3) has a unique solution p ∈ H1(ΩT ) satisfying boundary conditions (6.2,

6.4). Hence, p = 0 and y = ∇p = 0 that proves the theorem.
As a corollary, we conclude: for time T > 0 such that ΩT satisfies the EP-condition the relation

clos ET = JT (6.5)

holds, i.e. electric subsystem of the Maxwell system turns out to be approximately controllable.

The EP-condition is realized for small enough T or in the case of Ω \ ΩT =
m⋃
j=1

Bj where Bi ∩Bj = ∅, each

Bj is homeomorphic to a closed ball. In both cases approximate controllability occures.

7. Lack of controllability

Comparing controllability properties of the Maxwell system with ones of the system gouverned by the wave
equation (2) the following pecularity could be noted. In the case of the wave equation, the Holmgren-John-
Tataru uniqueness theorem gives the implication

y ∈ { unreachable subspace } ⇒ y = 0,
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whereas for system (2.1–2.3) it leads to conditions

rot y = 0, div εy = 0 in ΩT ; (7.1)
ν × y = 0 on Γ; (7.2)

ν · y = 0 on ΓT . (7.3)

The known fact is that, depending on topology of ΩT , problem (7.1–7.3) may have nontrivial solutions (see [6,
15]). Consider an example, assuming for simplicity ε = µ = 1.

Lemma 2. Let Ω be homeomorphic to a ball, Ω \ ΩT homeomorphic to a torus; then

dimNT = 1.

Proof. At first, let us note that the case under consideration is realizable. As example, one can consider a
rotation body Ω having dumbbell shaped cross-section and take large enough T .

Denote D := {(x1, x2) ∈ R2 | (x1)2 + (x2)2 ≤ 1}, S := ∂D; let D×S be the torus, ϕ a homeomorphism from
D × S onto Ω \ ΩT . The curve γ := ϕ[{(0, 0)} × S] is a cycle lying in Ω \ ΩT .

Choose a cycle l ⊂ ΩT which envelopes Ω \ Ω
T

and cann’t be deformed into a cycle lying on Γ. Define the
circulation of a field y:

Cl[y] :=
∫
l

y · dl.

The Biot-Savart field

b(x) := α

∫
γ

(x− ξ)× dlξ
|x− ξ|3

(α = const) satisfies (7.1) and has nonzero circulation; assume α to be such that

Cl[b] = 1. (7.4)

For any cycle λ ⊂ Γ one has
Cλ[b] = Cλ[bθ] = 0,

where bθ := b − (b · ν)ν; therefore, the field bθ has a surface potential on Γ: there exists smooth π such that
∇Γπ = bθ on Γ.

Find p as a (unique) solution of the Neumann-Dirichlet problem:

∆p = 0 in ΩT ;
∂p

∂ν
= b · ν on ΓT ;

p = π on Γ.

As is easy to check, the field
a := b−∇p

satisfies (7.1–7.3) and is nontrivial due to (7.4); thus, a ∈ NT , and dimNT ≥ 1.
Take y ∈ NT and denote g = y − Cl[y]a. For any cycle l lying in ΩT one has Cl[g] = 0. This, together with

rot g = 0, leads to existence of a potential q: ∇q = g in ΩT . By (7.1–7.3), we obtain:

∆q = 0 in ΩT ;
∂q

∂ν
= 0 on ΓT ;

q = const on Γ,
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that implies q = const and g = 0. Hence, y = Cl[y]a that leads to dimNT = 1. The lemma is proved.
Note that idea of the proof is taken from [6].
The obtained result may be simply generalized as follows: if Ω is homeomorphic to a ball whereas Ω \ΩT is

homeomorphic to a ball with n handles then dimNT = n.
Denote HT := {y ∈ JT | rot y = 0 in ΩT }, GT := {y ∈ JT | y = ∇p, p ∈ H1(ΩT )}. A simple analisys of the

proof of Lemma 3 and its generalization mentioned above leads to the equality

dimNT = dimHT /GT ;

relations of this kind are well-known in the Hodge Theory (see [15]).
In conclusion let us consider an example demonstrating a curious behaviour of subspace N T . Let Ω1 be a

rotation body with a dumbbell crossection, Ω2 a big ball, Ω3 a narrow cylindric channel connecting Ω1 with Ω2,
so that the domain Ω := Ω1 ∪ Ω2 ∪ Ω3 is homeomorphic to a ball.

(i) If T is small enough, ΩT satisfies the EP-condition; hence, NT = {0};
(ii) if T is such that Ω3 ⊂ ΩT (the channel is captured by waves) but Ω \Ω

T
contains a torus lying in Ω1, we

have NT 6= {0};
(iii) for large enough T < T∗ one has Ω1 ∪ Ω3 ⊂ ΩT (Ω1 and the channel are captured) whereas ΩT turns out

to be homeomorphic to a spherical layer satisfying the EP-condition; hence, N T = {0} holds again.

8. Remarks and acknowledgments

(i) The version of the BCP studied in the paper differs from traditional ones (see e.g. [9,13,17]). A reason of
our interest is that it is the version which works in an approach to the inverse problems based upon their
relations to the boundary control theory (the BC-method [2, 3, 5]).

(ii) Lack of controllability discussed above was first noticed in [4] and mentioned in [3] in connection with the
inverse problem for system (2.1–2.3): the presence of nontrivial NT creates complications there.

(iii) We are grateful to our colleagues for fruitful discussions and kind help: control problems for the Maxwell
system were discussed with C. Bardos; S. Kichenassamy explains the relationship between problem (7.1–
7.3) and the Hodge theory.

(iv) We would like to thank Referee 1 for very useful criticism: the paper has been thoroughly revised under
his recommendations.

(v) In the paper [17] by N. Weck an analogous effect (lack of controllability) is exhibited and studied. The
author deals with more delicate problem of exact controllability, a description of an unreachable subspace
being given in natural topological terms (the Betti numbers of Ω).
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