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EXACT BOUNDARY CONTROLLABILITY OF
3-D EULER EQUATION

Olivier Glass
1

Abstract. We prove the exact boundary controllability of the 3-D Euler equation of incompressible
inviscid fluids on a regular connected bounded open set when the control operates on an open part of
the boundary that meets any of the connected components of the boundary.

Résumé. Nous prouvons la contrôlabilité exacte frontière de l’équation d’Euler des fluides parfaits
incompressibles tridimensionnels dans un domaine borné et régulier, lorsque le contrôle opère sur une
partie ouverte du bord qui en rencontre toutes les composantes connexes.

AMS Subject Classification. 93B05, 35Q30, 76C99, 93C20.

Received December 16, 1998. Revised March 29, 1999.

1. Introduction

Let Ω be a non-empty, open, connected, bounded and regular (say C∞-regular) subset of R3. Let Γ0 be
an open and non-empty subset of its boundary ∂Ω, which meets any connected component of ∂Ω. We are
interested in the exact boundary controllability of the 3-D Euler equation of inviscid incompressible fluids for
(Ω,Γ0), that is, the following question: given T > 0, given y0 and y1 two solenoidal vector fields, i.e. satisfying

div y0 = div y1 = 0 in Ω, (1.1)

regular (in this paper, C2,α for some Hölder coefficient α ∈ (0, 1)) and which satisfy

y0.n = y1.n = 0 on ∂Ω\Γ0, (1.2)

where n is the outward unit normal vector field on ∂Ω, does there exist a solution y of the Euler system

∂ty + (y.∇)y = ∇p in Ω× [0, T ], (1.3)

for some p ∈ D′(Ω× (0, T )) and

div y = 0 in Ω× [0, T ], (1.4)

Keywords and phrases: Controllability, boundary control, Euler equation for ideal incompressible fluids.
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with

y(x, t).n(x) = 0, ∀t ∈ [0, T ], ∀x ∈ ∂Ω\Γ0, (1.5)

and such that

y|t=0 = y0 in Ω, (1.6)
y|t=T = y1 in Ω? (1.7)

This problem, raised by Lions in [10], was solved by Coron in [3] and [4] in the two-dimensional case. In a
previous paper [6], we have sketched a proof of a solution to this problem in dimension 3 when Ω is simply
connected. Here we give the details of the demonstration and prove that, as announced in [7], the result still
holds when Ω is not necessarily simply connected. Actually, we prove the following result:

Theorem 1.1. Given α ∈ (0, 1), two functions y0 and y1 in C2,α(Ω;R3) satisfying (1.1) and (1.2) and T > 0,
then there exists a function y in the space C([0, T ];C1,α(Ω;R3)) ∩ L∞([0, T ];C2,α(Ω;R3)) such that (1.3) to
(1.7) hold for some p ∈ D′(Ω× (0, T )).

Remark 1.2. As noticed in [4], the condition that Γ0 meets any connected component of the boundary is
necessary for the exact controllability as a consequence of the Kelvin law.

Indeed, suppose that we choose y1 = 0 on some connected component Γ∗ of the boundary, which does not
meet Γ0. Then the existence of y and the Kelvin law for any loop γ in this connected component of the boundary
imply that ∫

γ

y0dτ =
∫
γ̃

y1dτ = 0,

where γ̃ is the loop obtained when transporting γ by the flow of y. This necessarily implies that y0|Γ∗ is a
gradient, which is not generally the case.

Now we briefly describe the method. As in [3] and [4], the steps of the proof of Theorem 1.1 are the following:
first, we prove that this question can be reduced to the problem of zero-controllability with small initial data
(that is y1 = 0 and ‖y0‖C2,α(Ω;R3) < ε) and small time T .

To be more precise, we prove in section 7 that Theorem 1.1 is a consequence of the following proposition:

Proposition 1.3. There exists ν > 0 such that if y0 ∈ C2,α(Ω;R3) satisfies (1.1), (1.2) and ‖y0‖C2,α(Ω,R3) < ν,
then there exists a function y in the space C([0, 1];C1,α(Ω;R3))∩L∞([0, 1];C2,α(Ω;R3)) and p ∈ D′(Ω× (0, 1))
satisfying (1.3) to (1.7) for y1 = 0, and T = 1, and also

y = 0 and p = 0, ∀t ∈
[

1
2
, 1
]
. (1.8)

In order to prove the last proposition, we use a method called the “return method”, used in [3] and [4] and
introduced in [2] for a stabilization problem. Precisely, – since the linearized Euler equation around y ≡ 0 is not
controllable – we consider the linearized system around other solutions of the Euler control system y satisfying
y|t=0 = y|t=1 = 0 (a kind of “loop”). If this linearized control system is controllable, then for y0 small enough,
one can hope to find y close to y answering to the general problem. In order to prove the existence of y, we use
a construction of solutions of the Euler system due to Bardos and Frisch (see [1]).

In the previous presentation of the problem, the control itself was not explicit. As a control, we can take
for example y.n on Γ0 × [0, T ] and the tangent part of the vorticity where the fluid enters, that is ω ∧ n where
y.n < 0 in Γ0 (see for that [9]).
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In the next section, we will present the different tools we need to introduce the particular solution y. This
function will be found in the particular potential form “∇θ”, in order for its flow to satisfy precise properties.
In the simply connected case, as in dimension 2, y has the property that any particle in Ω following the flow
of y must go out of Ω. The major difference is that in dimension 3, as in the 2-D case for the Navier-Stokes
equation [5], this “∇θ” can no longer be chosen stationary. In the multi-connected case, we will have to introduce
an other type of “∇θ” (which we need to append to the previous one), whose flow moves certain Jordan curves
properly.

In Section 3, we define a function F on a certain functional set, of which y will be found as a fixed point.
Given y near y, F associates the solution of a linear control problem relied to (1.3–1.7).

In Section 4, we prove Proposition 1.3, by showing that F admits a fixed point which gives a solution to the
non-linear problem.

Section 5 deduces Theorem 1.1 from Proposition 1.3.
Section 6 is devoted to the proof of Lemma 2.1, which corresponds to the first type of “∇θ”.
Section 7 corresponds to the second type of “∇θ” presented in Lemma 2.3.
In Sections 8 and 9, we give the details of the proofs of technical lemmas needed in Sections 5 and 6

respectively.

2. The particular solution of Euler system: y

We first set up the following lemma, which stands for any regular bounded open set Ω̃ such that Ω̃ contains
Ω.

Lemma 2.1. For all a in Ω, there exists θ ∈ C∞(Ω̃× [0, 1];R) satisfying:

Supp θ ⊂ Ω̃× (0, 1), (2.1)

θ = 0 in Ω̃× ([0,
1
4

] ∪ [
3
4
, 1]), (2.2)

∆θ = 0 in Ω× [0, 1], (2.3)
∂θ

∂n
= 0 on (∂Ω\Γ0)× [0, 1], (2.4)

φ∇θ(a, 0, 1) ∈ Ω̃\Ω, (2.5)

where we denote by φ∇θ : Ω̃ × [0, 1]× [0, 1] −→ Ω̃, (x, t1, t2) 7→ φ∇θ(x, t1, t2) the flow of ∇θ, i.e. the function
which satisfies

∂φ

∂t2
= ∇θ(φ, t2), (2.6)

φ(x, t1, t1) = x. (2.7)

With the help of that lemma, we will be able to single out a solution of the Euler system, which makes each
part of the fluid go out Ω (far enough), and then go back the same way.

?

In the multi-connected case, we will also need another type of “∇θ”, in order to control irrotational flows
which class in de Rham’s cohomology first space is not trivial. Let us describe these flows (we refer to [11],
Appendix I).

We introduce, in the multi-connected case, precisely when H1(Ω) = Zs with s ≥ 1, s smooth hypersurfaces
Σ1, . . . ,Σs (see for example [11]) included in Ω and with boundaries in ∂Ω, the intersection being transverse,
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and which neutral intersections (if needed) are also transverse.

Ω\(
s⋃
i=1

Σi) is simply connected. (2.8)

For i ∈ {1, ..., s}, we distinguish the two sides Σi, that we denote by Σ+
i and Σ−i . For a function f defined

in Ω\Σi, which trace on Σ+
i may differ from the one on Σ−i , one defines [f ]i := f|Σ+

i
− f|Σ−i considered as a

function on Σi.
Then using the Lax-Milgram theorem on the functional space:

Xi :=
{
p ∈ H1(Ω\

s⋃
i=1

Σi) / [p]i = constant, [pj ] = 0 for j 6= i

}
,

one easily deduces the existence of a function q′i in Xi such that:∫
Ω

∇q′i.∇p = [p]i, ∀p ∈ Xi.

This leads to the existence of a function qi ∈ Xi such that:

∆qi = 0 in Ω\Σi, (2.9)

∂nqi = 0 on ∂Ω, (2.10)

[qi]i = 1, (2.11)

[qi]j = 0 for j 6= i, (2.12)

[∂nqi]i = 0. (2.13)

By (2.11, 2.12) and (2.13), the Qi := ∇qi are in C0(Ω) and, in fact in C∞(Ω) (see [11], Appendix I, Rem. 1.3.ii).

Remark 2.2. As it is known (see again [11]), any (regular) vector field X satisfying

curl X = 0, (2.14)

can then be written as

X = ∇χ+
s∑
i=1

αiQi,

for some χ and αi, i ∈ {1, ..., s}. If we add to (2.14) the conditions:

divX = 0 in Ω, X.n = 0 on ∂Ω,

then the previous χ is zero, and we describe only the first cohomology space.

Let us emphasize that curlX = 0, divX = 0 in Ω and X.n = 0 on ∂Ω does not imply that X = 0. Indeed,
for all i ∈ {1, ..., s}, we have curlQi = 0, divQi = 0 in Ω and Qi.n = 0 on ∂Ω, but Qi 6= 0. This fact will
oblige us to set up a second lemma to define our particular solution y and to get rid of the terms “Qi”. It is
in particular necessary to treat the problem with (for instance) y0 = Qi and y1 = 0. Roughly speaking, the
following lemma solves this precise case.
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Lemma 2.3. There exists ν > 0, such that for i in {1, ..., s}, there exists θi ∈ C∞(Ω̃ × [0, 1];R) and ℵi ∈
C∞(Ω̃;R3) satisfying:

Supp θi ⊂ Ω̃× (0, 1), (2.15)

θi = 0 in Ω̃× ([0,
1
4

] ∪ [
3
4
, 1]), (2.16)

∆θi = 0 in Ω× [0, 1], (2.17)

∂θi

∂n
= 0 on ∂Ω\Γ0 × [0, 1], (2.18)

Supp ℵi ⊂ Ω̃\Ω, (2.19)

and such that for any f ∈ C([0, 1], C2,α(Ω̃;R3)) with

‖f −∇θi‖
C([0,1]×Ω̃)

< ν, (2.20)

if we define wi ∈ C∞(Ω̃× [0, 1];R3) by

wi(·, 0) = curl(ℵi) on Ω̃, (2.21)

∂tw
i + (f.∇)wi = (wi.∇)f − wi div f on Ω̃× [0, 1], (2.22)

and if we define the function ζi in C∞(Ω̃× [0, 1];R3) by

curl ζi = wi in Ω× [0, 1], (2.23)

div ζi = 0 in Ω× [0, 1], (2.24)

ζi.n = ∂nθ
i on ∂Ω× [0, 1], (2.25)∫

Ω

ζi(0).Qjdx = 0, (2.26)∫
Ω

(∂tζi + f ∧ curl(ζi)).Qjdx = 0, ∀j ∈ {1, ..., s}, (2.27)

then we have

Supp wi(·, 1) ⊂ Ω̃\Ω, (2.28)

and

ζi(1) = Qi. (2.29)

As we will see in Section 6, y := ∇θ in this lemma will be chosen, not in terms of the flow of points, but in
terms of the flow of certain Jordan curves.

We can now present what our particular solution to Euler system y will be.
We denote by B(xi, ri) the open ball of center xi and of radius ri, and by B(xi, ri) its closure. By Lemma 2.1,

one can find by compactness of Ω a positive integer k, k points xi in Ω, k real numbers ri > 0 and k smooth
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functions θi ∈ C∞(Ω̃ × [0, 1],R), i ∈ {1, ..., k}, satisfying (2.1–2.4), and an open bounded regular set Ω2 with
Ω ⊂ Ω2 and also Ω2 such that

B(xi, ri) ⊂ Ω̃, (2.30)

Ω ⊂
i=k⋃
i=1

B(xi, ri), (2.31)

φ∇θi(B(xi, ri), 0, 1) ∩ Ω2 = ∅. (2.32)

Let us split the time-segments [1/4, 1/2] and [1/2, 3/4] as follows:

ti =
1
4

+ i
1
4k
, ∀i ∈ {0, ..., k}, (2.33)

ti+ 1
2

=
1
4

+
(
i+

1
2

)
1
4k
, ∀i ∈ {0, ..., k − 1}, (2.34)

ti =
1
2

+ (i− k)
1
4s
, ∀i ∈ {k, ..., k + s}· (2.35)

We can now define θ in C∞(Ω̃× [0, 1/2],R) by

θ(x, t) = 0, ∀(x, t) ∈ Ω̃×
[
0,

1
4

]
, (2.36)

θ(x, t) = 8kθj(x, 8k(t − tj−1)), ∀j ∈ {1, ..., k}, and ∀(x, t) ∈ Ω̃ ×
[
tj−1, tj− 1

2

]
, (2.37)

θ(x, t) = −8kθj(x, 8k(tj − t)), ∀j ∈ {1, ..., k}, and ∀(x, t) ∈ Ω̃ ×
[
tj− 1

2
, tj
]
. (2.38)

During the interval of time [1
2 , 1], we define θ by

θ(x, t) = 4sθj−k+1(x, 4s(t− tj)), ∀j ∈ {k, ..., k + s− 1}, (2.39)

and ∀(x, t) ∈ Ω̃× [tj , tj+1].

Let y := ∇θ. We remark that y restricted to Ω × [0, 1] is a C∞ solution of (1.3–1.7) with T = 1, y0 = y1 = 0
and with p(x, t) = ∂θ/∂t+ |∇θ|2/2.

3. The application F

3.1. Introduction

In this section,we use this particular solution to single out the application F , the fixed point of which gives
a solution for Proposition 1.3. For that purpose we first introduce a certain functional set Xν .
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Let µ : [0, 1]→ [0, 1] C∞-regular, such that 0 ≤ µ ≤ 1 in [0, 1],
µ = 1 in [0, 1/8],
µ = 0 in [1/4, 1].

(3.1)

Then the set Xν for ν > 0 small enough, is defined as:

Xν =
{
u ∈ C0([0, 1], C2,α(Ω;R3))/ divu = 0, in Ω ‖u− y‖C0(Ω×[0,1]) < ν,

u(x, t).n(x) = µ(t)y0(x).n(x) + y.n on ∂Ω× [0, 1]
}
· (3.2)

The value of F will be a solution to a certain linear controllability problem in C([0, 1], C2,α(Ω)).
We introduce a linear operator π which extends functions defined on Ω to functions defined on Ω̃, and with

support in Ω2. We will require also for it to send continuously C[λ],λ−[λ](Ω;R3) into C[λ],λ−[λ](Ω̃;R3), for all
λ ∈ [0, 3)\N.

Now we define the application F . For u ∈ Xν , we set

ũ = y + π(u− y). (3.3)

Then F (u) will be a solution of the following problem:

F (u)(·, 0) = y0 in Ω, (3.4)

F (u)(·, ·).n = 0 on [0, 1]× (∂Ω\Γ0), (3.5)

divF (u) = 0 in [0, 1]× Ω, (3.6)

and if we set ω := curl(F (u)), then it should satisfy∫
Ω

(∂tF (u) + ũ ∧ ω).Qi = 0 in [0, 1], ∀i ∈ {1, . . . , s}, (3.7)

∂tω + (ũ.∇)ω = (ω.∇)ũ in [0, 1]× Ω. (3.8)

The controllability problem is to find a F (u) such that

F (u)(1, ·) = 0 in Ω. (3.9)

Of course, this linear problem becomes “close” to the Euler problem as ω approaches curlu.

3.2. Preliminaries

Before making F explicit, we introduce some notations.
For a regular open bounded subset E of R3, we denote by ‖ · ‖i,α,E for i ∈ N and α ∈ (0, 1), the usual norm

for Ci,α(E) and by ‖ · ‖i,E the usual norm for Ci(E).
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We introduce a partition of unity adapted to the open covering of Ω by the open sets B(xi, ri) (described in
(2.30–2.32)), that is some functions κi ∈ C∞0 (Ω̃; [0, 1]) such that

Supp κi ⊂ B(xi, ri), (3.10)
i=k∑
i=1

κi ≡ 1 in Ω. (3.11)

In this section, we will frequently use the following lemma, of which we postpone the demonstration to
Section 3.4.

Lemma 3.1. Let U be a function in C0([0, T ], C2,α(Ω̃,R3)), and W0 be a function in C1,α(Ω̃,R3). Let W be a
function in C0([0, T ], C1,α(Ω̃,R3)) defined by the following system{

W (·, 0) = W0 in Ω̃,
∂tW + (U.∇)W = (W.∇)U − (divU)W in Ω̃× [0, T ].

(3.12)

Then for all t ∈ [0, T ], one has

divW (·, t) = 0. (3.13)

Moreover, if divU = 0 in Ω and W0 = curlV0 in Ω, then there exists V ∈ C0([0, T ], C2,α(Ω̃,R3)) such that for
all t ∈ [0, T ]

W (t) = curlV (t) in Ω. (3.14)

3.3. Construction of F

We now give an explicit formulation of F (u). Let u ∈ Xν for ν small enough (say ν < ν0 with ν0 < ν). We
associate ũ defined by (3.3).

We define F (u) by its curl ω in Ω and by “coordinate” λi with respect to the functions Qi. We define the
functions ω and λi in a first step, during the times [0, 1/2], and then we define them in the interval [1/2, 1].

Along the construction of F , we will allow ourselves to reduce ν0 in order to make F correctly defined.

We introduce a first function ω∗ in C0([0, 1], C1,α(Ω̃;R3)). We define ω∗ by the relations{
ω∗(·, 0) = curl

(∑k
i=1(κiπ(y0))

)
in Ω̃,

∂tω
∗ + (ũ.∇)ω∗ = (ω∗.∇)ũ− (div ũ)ω∗ in Ω̃× (0, 1).

(3.15)

By Lemma 3.1, ω∗(·, 1/4) is a curl in Ω: let us say

ω∗(·, 1/4) = curlW in Ω, (3.16)

with W ∈ C2,α(Ω̃).
We define then the functions wl in C0([1/4, 1/2], C1,α(Ω̃;R3)) by the equations:{

wl(·, 1/4) = curl(κlπ(W)) in Ω̃,
∂tw

l + (ũ.∇)wl = (wl.∇)ũ− (div ũ)wl in Ω̃× [1/4, 1/2].
(3.17)
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Of course, we have the relation for t ∈ [1/4, 1/2]

ω∗ =
l=k∑
l=1

wl. (3.18)

Let us now build ω : Ω̃ × [0, 1] −→ R3, continuous in the variable t from [0, 1]\{ti−1
2
, i ∈ {1, . . . , k}} into

C1,α(Ω̃;R3), continuous at the right of each ti− 1
2

and with a limit in C1,α(Ω̃;R3) at the left of each ti− 1
2

(for
i ∈ {1, ..., k}). We will extract F (u) from this ω.

Let us define ω this way :

ω(x, t) = ω∗(x, t) in Ω̃×
[
0,

1
4

]
, (3.19)

then for t ∈ [1/4, 1/2]:

∂tω + (ũ.∇)ω = (ω.∇)ũ − (div ũ)ω, in
{[

1
4
, t 1

2

]
i=k−1⋃
i=1

(
ti− 1

2
, ti+ 1

2

)
∪
[
tk− 1

2
,

1
2

]}
× Ω̃. (3.20)

Thus to define ω properly, we have yet to define it at times ti− 1
2
. We do it in order that at time ti only∑k

l=i+1 w
l(x, ti) stays on Ω, instead of ω∗(x, ti). For that, we simply have to consider ω at time t−

i− 1
2
. Let us

suppose by induction that, one has

ω(·, t−
i− 1

2
) =

k∑
l=i

wl(·, ti− 1
2
). (3.21)

Relations (2.32) and (3.3) imply that for ‖u− y‖C0(Ω×[0,1]) small enough (that is, for a suitable choice of ν0),
one has

φũ
(
B(xi, ri), 0, ti− 1

2

)
∩ Ω = ∅.

But by (3.10) and (3.17), at time 0, the support of wi is included in B(xi, ri). It follows from the form (3.17)
that the support of wi follows the flow of ũ. We deduce that

Supp wi
(
ti− 1

2
, ·
)
∩ Ω = ∅.

Then, we just have to define

ω
(
x, t+

i− 1
2

)
=

k∑
l=i+1

wl
(
·, ti− 1

2

)
, (3.22)

with the convention

ω(x, t+
k− 1

2
) = 0. (3.23)

So (3.20) and (3.22) do completely define ω for t in [1/4, 1/2]. Note that by (3.17, 3.20) and (3.22), one gets

ω(·, t) =
k∑

l=i+1

wl(·, t), ∀t ∈
[
ti− 1

2
, ti+ 1

2

]
. (3.24)
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This way, we get that the restriction of ω to Ω× [0, 1
2 ] is C([0, 1

2 ], C1,α(Ω))-regular and that we have in Ω× [0, 1
2 ]

the relation

∂tω + (ũ.∇)ω = (ω.∇)ũ. (3.25)

Furthermore, by Lemma 3.1, ω stays divergence-free in Ω̃× [0, 1
2 ].

We want to define v in C([0, 1
2 ], C1,α(Ω;R3)) by

curl v = ω in Ω×
[
0,

1
2

]
, (3.26)

div v = 0 in Ω×
[
0,

1
2

]
, (3.27)

v.n = µ(t)y0.n+ y.n in ∂Ω×
[
0,

1
2

]
, (3.28)∫

Ω

v.Qidx = 0, ∀t ∈
[
0,

1
2

]
· (3.29)

But to prove that it is possible, let us point out that, for the existence of such a v, we need, in addition to
divω = 0, the fact that ω is a curl in Ω. This is proved also by Lemma 3.1.

By the way, we remark that the relation (3.29) is necessary to obtain the unicity of v.

Now, we can see that any

v′ := v +
s∑
j=1

λj(t)Qj(x), (3.30)

still satisfies (3.26, 3.27) and (3.28), for any choice of λi. We choose λi, and hence v′ such that∫
Ω

v′(0).Qidx =
∫

Ω

y0.Qidx, (3.31)

∫
Ω

(∂tv′ + ũ ∧ ω).Qidx = 0, ∀i ∈ {1, ..., s},∀t ∈
[
0,

1
2

]
. (3.32)

Note that this is made possible because the matrix(∫
Ω

Qi.Qjdx
)

1≤i≤s, 1≤j≤s
,

is invertible, as the (Qi) is a free family.

We are now able to define ω in the time-interval (1
2 ,

3
4 ). We consider i ∈ {k, . . . , k + s − 1}. Let w̃i ∈

C([ti, ti+1], C1,α(Ω;R3)) be defined by

w̃i(ti) = curlℵi, (3.33)

∂tw̃
i + (ũ.∇)w̃i = (w̃i.∇)∇ũ− ũ(div w̃i) in Ω̃× [ti, ti+1], (3.34)
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where ℵi is defined in Lemma 2.3 (see (2.21)). Here precisely, will be needed the fact that ν0 < ν, in such a
way that

Supp w̃i(·, ti+1) ⊂ Ω̃\Ω. (3.35)

Then, we define the applications ζi (which differ from those in Lemma 2.3 by the time intervals only), for
i = 1, . . . , s, respectively on the intervals [ti+k−1, ti+k] by the relations:

curl ζi = w̃i in Ω× [ti+k−1, ti+k], (3.36)

div ζi = 0 in Ω× [ti+k−1, ti+k], (3.37)

ζi.n = ∂nθ
i on ∂Ω× [ti+k−1, ti+k], (3.38)∫

Ω

ζi(tk+i−1).Qjdx = 0, (3.39)∫
Ω

(∂tζi + u ∧ curl(ζi)).Qjdx = 0, ∀j ∈ {1, ..., s}, ∀t ∈ [ti+k−1, ti+k]. (3.40)

We can then define:

ω(x, t) = −λi
(

1
2

)
w̃i(x, t) in [ti, ti+1)× Ω̃, ∀i ∈ {1, ..., s}· (3.41)

As in [1
4 ,

1
2 ], ω is continuous in variable t from

⋃k+s−1
i=k (ti, ti+1) to C1,α(Ω̃);R3, and with a limit in (C1,α(Ω̃);R3)

at the left and at the right of each ti (for i ∈ {k+ 1, ..., s+ k − 1}). Moreover, also as in [1
4 ,

1
2 ], it is continuous

from [1/2, 3/4] into C1,α(Ω);R3.
Now we extend formula (3.26–3.29) to the whole interval [0, 1]:

curl v = ω in Ω× [0, 1],
div v = 0 in Ω× [0, 1],
v.n = µ(t)y0.n+ y.n in ∂Ω× [0, 1],∫

Ω
v.Qidx = 0, ∀t ∈ [0, 1],

(3.42)

and also extend formula (3.32) (and hence extend the functions λi), in addition to (3.31):

∫
Ω

(∂tv +
j=s∑
j=1

λ′j(t)Qj + ũ ∧ ω).Qidx = 0, ∀i ∈ {1, ..., s}, ∀t ∈ [0, 1]. (3.43)

We can now define F (u) from Ω× [0, 1] into R3:

F (u) :=


v +

∑s
i=1 λi(t)Qi(x) in Ω×

[
0,

3
4

]
,

0 in Ω×
[

3
4
, 1
]
.

(3.44)

By this way, the function F is correctly defined.
By (3.24) and (3.35) we get that

curlF (u) ∈ C0([0, 1];C1,α(Ω);R3). (3.45)
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By (3.36–3.40, 3.41) and (3.43), we get that

λi

(
3
4

)
= 0.

Together with (3.45), this proves that

F (u) ∈ C([0, 1], C2,α(Ω);R3) (3.46)

and that the relation (3.25) holds in Ω × [0, 1]. Moreover, F (u) is obviously a solution to the controllability
problem (3.9).

3.4. Proof of Lemma 3.1

As it can be seen from (3.12), divW satisfies the equation

∂t(div W ) + (U.∇)(div W ) = −(div U)(div W ). (3.47)

The point (3.13) is hence clear.
To get the second point (3.14), we need more that (3.13). Let us indeed introduce the following family of

special functions of Ω. Let us consider, when ∂Ω has many connected components (that is in the case where
H2(Ω) 6= 0), the set of functions Pj constructed as follows. We note the connected components of ∂Ω: γ0, . . . ,
γs, and we define Pj := ∇pj for any j ∈ {1, .., s} where pj is defined by the relations ∆pj = 0 in Ω,

p|∂Ω = 0 on (∂Ω\γj),
p|∂Ω = 1 on γj .

(3.48)

It is well known that a solenoidal vector field on Ω can be written as the sum of the curl of a vector field and
of a linear combination of the Pj .

Consequently, if Ω is an open set such that H2(Ω) 6= 0, in order that (3.14) occurs, we need, besides the
divergence free condition, the following relations to hold:∫

Ω

W (·, t).Pjdx = 0, ∀t ∈ [0, T ], ∀j ∈ {1, .., s}, (3.49)

where we defined s and Pj in (3.48). These relations (3.49) are true for t = 0, since W (·, 0) = curlV0. We want
to show this property stays true after t = 0. To prove it, we compute (indices j for Pj are dropped),

d

dt

∫
Ω

W.∇pdx =
∫

Ω
{(U.∇)W}.∇pdx−

∫
Ω
{(W.∇)U}.∇pdx =

∫
Ω
U iW j

i pjdx−
∫

Ω
W i.U ji pjdx,

where we denote derivations by lower indices and vector coordinates by upper exponents. Then, integrating by
parts, we obtain, since div U = divW = 0,

d
dt

∫
Ω W.∇pdx =

∫
∂Ω

(W iU jpjn
i −W jpjU

ini)dσ. (3.50)

As p is constant on each connected component of ∂Ω,∇p is normal to the boundary everywhere on the boundary.
We can deduce from this fact, that (W.n)(U.∇p) = (W.∇p)(U.n) on the boundary. The term on the right hand
side of (3.50) is thus 0, so (3.49) stays true for all times. From that, we deduce that W (·, t) is a curl in Ω.
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4. Proof of Proposition 1.3

4.1. Introduction

The goal of this section is to prove that F admits a fixed point, and then to prove that it gives a proper
solution to Proposition 1.3.

The first part of this proof is thus to find a set invariant by F .
We denote by B(B) the ball in C0([0, 1], C2,α(Ω;R3)) with radius B and center 0. Then this invariant set

will be found as a certain Xν ∩ B(B), for proper B and ν.
In a first step, we prove the following proposition:

Proposition 4.1. For any B > 0, there exists ν0 and ν1, such that if one has ‖y0‖1,α,Ω < ν1, then for all
ν < ν0, for all u ∈ Xν ∩ B(B), one has F (u) ∈ Xν.

In a second step we prove this proposition:

Proposition 4.2. There exists ν2 > 0, such that if ‖y0‖C2,α(Ω;R3) ≤ ν2, and if we define the sequences of
functions (ym)m≥0 ∈ (C0([0, 1], C2,α(Ω;R3)))N and (ωm)m≥0 ∈ (C0([0, 1], C1,α(Ω;R3)))N as follows:

y0(x, t) = µ(t)y0(x) + y(x, t),
ym+1 = F (ym),
ωm+1 defined as previously on Ω̃× [0, 1],

(4.1)

then the sequence (ym)m≥0 is bounded in C0([0, 1], C2,α(Ω;R3)), the bound depending only on Ω and ν2.

A fortiori, we will be able to find B and ν such that

F (Xν ∩ B(B)) ⊂ Xν ∩ B(B).

The last step of the proof of Proposition 1.3 is then to establish that F has a fixed point solution to the
non-linear controllability problem.

The proofs of these propositions will require a technique introduced by Bardos and Frisch in [1]. Particularly,
we will use the following lemma:

Lemma 4.3. ([1], Lem. 1) Let u, v and g be three functions of regularity C0([0, T ], C1,α(Ω̃,R3)), satisfying the
relations

∂u

∂t
+ (v.∇)u = g, v.n|∂Ω̃×[0,T ] = 0. (4.2)

Then we have on [0, T ]

d

dt+
‖u‖0,α,Ω̃ ≤ ‖∂tu‖0,α,Ω̃ ≤ ‖g‖0,α,Ω̃ + α‖∇v‖0,α,Ω̃.‖u‖0,α,Ω̃. (4.3)

4.2. Proof of Proposition 4.1

In the sequel, we will denote by C, C′, C1 and C2 different positive constants depending only on Ω.
In this section, we will mark each object introduced in the previous section and corresponding to the m-th

iteration of the operator F in the construction of the sequence (ym)m≥0 by a lower index m.
As previously, we will first consider t in the set [0, 1/2], and then t in the interval [1/2, 1].
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When considering the wm introduced in Section 3, we will no longer use the upper index l (corresponding to
the l-th ball B(xl, rl)) in order not to confuse with the index m corresponding to this m-th iteration. All the
assertions about w will be valid for any upper index. We will do the same with the index “i” in λi. Also, when
considering a time-dependent function f := f(x, t), we will make no difference between ‖f(·, t)‖ and ‖f‖(t),
whatever spatial norm we use.

We first get an estimate on ω∗m+1. By (3.15) and Lemma 4.3, one easily gets for t ∈ [0, 1]

d

dt+
‖ω∗m+1‖0,α,Ω(t) ≤ (2 + α)‖ỹm‖1,α,Ω̃(t)‖ω∗m+1‖0,α,Ω(t). (4.4)

With Gronwall’s lemma, we deduce from (4.4) that for t ∈ [0, 1]

‖ω∗m+1‖0,α,Ω(t) ≤ ‖ω∗m+1‖0,α,Ω(0)e(2+α)t‖ ˜ym‖C0([0,1],C1,α(Ω);R3) . (4.5)

We do the same with the equation (3.17), and get by Lemma 4.3 the estimate for t ∈ [1/4, 1/2]

d

dt+
‖wm+1‖0,α,Ω(t) ≤ (2 + α)‖ỹm‖1,α,Ω̃‖wm+1‖0,α,Ω(t). (4.6)

We easily deduce from that and from Gronwall’s lemma that for t ∈ [1/4, 1/2]

‖wm+1‖0,α,Ω(t) ≤ ‖wm+1‖0,α,Ω
(

1
4

)
e(2+α)(t− 1

4 )‖ỹm‖C0([0,1],C1,α(Ω);R3) , (4.7)

from which we get, with (3.24), that for t ∈ [1/4, 1/2]

‖ωm+1‖0,α,Ω(t) ≤ k‖ωm‖0,α,Ω
(

1
4

)
e3(t− 1

4 )‖ỹm‖C0([0,1],C1,α(Ω);R3) , (4.8)

from what we deduce with (3.15) and (4.5) that for t ∈ [0, 1/2]

‖ωm+1‖0,α,Ω(t) ≤ k‖y0‖1,α,Ωe3t‖ỹm‖C0([0,1],C1,α(Ω);R3) . (4.9)

We now want to get (4.9) for the rest of the time [1/2, 1], and by the way obtain an estimate on the λmi . By
(3.42) and (3.43) we have on [0, 1]

d

dt+
|λmi | ≤ C‖ωm+1‖0,Ω‖ym‖0,Ω. (4.10)

We deduce that for t ∈ [0, 1/2]

|λm+1
i (t)| ≤ C1‖y0‖1,α,Ω‖ym‖C0([0,1],C1(Ω);R3)e

3‖ỹm‖C0([0,1],C1(Ω);R3) . (4.11)

As for (4.5), one can deduce that for all i ∈ {k, . . . , k + s− 1} and for all t ∈ [ti, ti+1), one has

‖ωm+1‖0,α,Ω(t) ≤ ‖ωm+1‖0,α,Ω(ti)e(2+α)(t−ti)‖ỹm‖C0([0,1],C1,α(Ω);R3) .

With (3.41) and (4.11), we get that for t ∈ [1/2, 3/4]

‖ωm+1‖0,α(t) ≤ C2‖y0‖1,α,Ω‖ym‖C0([0,1],C1(Ω))e
3‖ỹm‖C0([0,1],C1(Ω);R3) . (4.12)
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We can deduce from it, with (3.42–3.44, 4.9, 4.11) and that for t ∈ [0, 1]

‖F (u)− y‖0,Ω(t) ≤ C(‖ym‖1,α,Ω)‖y0‖1,α,Ω, (4.13)

where C(·) is an increasing, positive real-valued, numerical function.
So we have proved that F is well defined on Xν and that for any B > 0, there exists ν1 = ν1(B) > 0 such

that for any y0 satisfying ‖y0‖2,α,Ω < ν < ν1, one has

F (Xν ∩ BC([0,1],C1,α(Ω;R3))(B)) ⊂ Xν ,

where we have denoted by BC([0,1],C1,α(Ω;R3))(B) the 0-centered open ball in C([0, 1], C1,α(Ω;R3)) with radius
B, at least if ν0 and ν1 (depending on B) are small small enough.

4.3. Proof of Proposition 4.2

Let us consider the sequence (ym)m≥0 ∈ (C0([0, 1], C2,α(Ω;R3)))N by (4.1).
In a first step, we just deal with the boundedness of the sequence (ym) in the space C0([0, 1], C1,α(Ω;R3)).

We will come back to the boundedness in C0([0, 1], C2,α(Ω;R3)) at the end of this section.
Let us denote by Ci, i ≥ 1, various constants which do not depend on m. Combining (4.9) and (4.12), one

can get for any t ∈ [0, 1] that

‖ωm+1‖0,α,Ω ≤ C3‖y0‖1,α,Ωe3‖ym‖C0([0,1],C1,α(Ω);R3)

(
1 + ‖ym‖C0([0,1],C1,α(Ω);R3)

)
. (4.14)

By (4.10) and (4.12), one as also in [0, 1]

|λm+1
i | ≤ C4‖y0‖1,α,Ωe3‖ym‖C0([0,1],C1,α(Ω);R3)

(
1 + ‖ym‖2

C0([0,1],C1,α(Ω);R3)

)
. (4.15)

On another side, by (3.42) and (3.44), one can find some constants such that, for any t ∈ [0, 1],

‖ym+1‖1,α,Ω(t) ≤ C7‖y0‖1,α,Ω + C8‖ωm+1‖0,α(t) + C9

∑
i

‖λi‖C0([0,1]). (4.16)

We deduce from (4.14, 4.15) and (4.16) that for every t ∈ [0, 1]

‖ym+1‖1,α,Ω(t) ≤ C10‖y0‖1,α,Ω
(

1 + e3‖ym‖C0([0,1],C1,α(Ω);R3)

)(
1 + ‖ym‖2

C0([0,1],C1,α(Ω);R3)

)
. (4.17)

Note that this is made valid in [3/4, 1] because of the trivial form of ym in this time segment.

We want to deduce from (4.17) that, reducing ν0 if necessary, one can get

‖ym‖C0([0,1],C1,α(Ω);R3) ≤ 2‖y‖C0([0,1],C1,α(Ω);R3), ∀m ∈ N. (4.18)

The proof of (4.18) is done by induction.
We check (4.18) for m = 0. As y0 = µ(t)y0 + y, (4.18) is satisfied if ν0 < ‖y‖1,α.
We now suppose that (4.18) is satisfied for a fixed m, and show it is still valid at rank m+ 1.
We impose ν0 in order that

C10ν0

(
1 + e6‖y‖C0([0,1],C1,α(Ω);R3)

)(
1 + 4‖y‖2

C0([0,1],C1,α(Ω);R3)

)
< 2‖y‖C0([0,1],C1,α(Ω);R3). (4.19)
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Using (4.17) and the induction hypothesis, we get (4.18) at rank m+ 1. Consequently, we have a bound on the
sequence (‖ym‖1,α)m≥0. Hence, we can choose a “universal” ν1 so that actually ym belongs to Xν at each step.

?

Now we prove the boundedness of the sequence (ym) in C0([0, 1], C2,α(Ω);R3).
The proof is quite the same as for the C1,α bound. It consists in the majoration of ‖ym+1‖C2,α by a factor

of the form ‖y0‖2,αC(‖ym‖2,α).
We already have this type of bound on the λi. It is hence sufficient to have such a bound for ‖ωm‖C2,α .
As previously, it is consequently sufficient to get a C0([0, 1], C2,α(Ω̃);R3) bound for the (wm). But con-

sidering the derivatives of the relation (3.17) and using Lemma 4.3, we get terms in the right hand side all
majored either by a certain ‖ỹm‖2,α‖wm+1‖1,α, or by a constant because we know that (ym) is bounded in
C0([0, 1], C1,α(Ω̃);R3).

Hence, the same demonstration works again, if ‖y0‖2,α is chosen small enough.

4.4. Proof of Proposition 1.3

Now we prove the convergence of the sequences (ym) and (ωm). We first show the convergence on the interval
[0, 1/2]. We still follow [1], and aim at proving that the sequence (ωm, λm) satisfies the Cauchy criterion in
∩i=ki=0C

0([ti− 1
2
, ti+ 1

2
], C0,α(Ω̃);R3 × Rs).

For all times except ti+ 1
2
, i ∈ {0, . . . , k − 1}, we have

∂t(ωp − ωm) + (ỹm−1.∇)(ωp − ωm) = [(ỹp−1 − ỹm−1).∇]ωp + [(ωp − ωm).∇]ỹp−1

+ (ωm.∇)(ỹp−1 − ỹm−1)− (div ỹp−1)(ωp − ωm)− (div ỹm−1 − div ỹp−1)ωm.
(4.20)

Any term at the right of this equality can be bounded in norm ‖ ·‖0,α,Ω̃ (within a multiplicative constant) either
by the norm ‖ωp − ωm‖0,α,Ω̃(t), or by the norm ‖ỹp−1 − ỹm−1‖1,α,Ω̃(t).

With the help of lemma 4.3, we deduce that for t ∈ [1
4 ,

1
2 ], except at times ti+ 1

2
, one has

‖∂t(ωp − ωm)‖0,α,Ω̃(t) ≤ C(‖ỹp−1 − ỹm−1‖0,α,Ω̃(t) + ‖ωp − ωm‖0,α,Ω̃(t)),

and consequently

‖∂t(ωp − ωm)‖0,α,Ω̃(t) ≤ C(‖yp−1 − ym−1‖1,α,Ω(t) + ‖ωp − ωm‖0,α,Ω̃(t)),

which gives finally

‖∂t(ωp − ωm)‖0,α,Ω̃(t) ≤ C(‖ωp − ωm‖0,α,Ω̃(t) + ‖ωp−1 − ωm−1‖0,α,Ω̃(t) + |λm−1 − λp−1|(t)). (4.21)

As the expression (4.20) is also valid when replacing w by ω∗, one can get that (4.21) is valid in fact in [0, t 1
2
].

We do the same for λmi − λ
p
i and get the same way, using (3.43), that

|∂t(λp − λm)|(t) ≤ C(‖ωp − ωm‖1,α,Ω̃(t) + ‖yp−1 − ym−1‖1,α,Ω)(t),

and hence that

|∂t(λp − λm)|(t) ≤ C(‖ωp − ωm‖1,α,Ω̃(t) + ‖ωp−1 − ωm−1‖1,α,Ω(t) + |λp−1 − λm−1|(t)). (4.22)

Let us denote by Km,p(t) := ‖ωp − ωm‖1,α,Ω̃(t) + |λp − λm|(t).
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Putting together (4.21) and (4.22), one gets

d

dt+
Km,p(t) ≤ C(Km,p(t) +Km−1,p−1(t)). (4.23)

By Gronwall’s lemma, one gets, for t ∈ [0, t 1
2
]

Km+1,p+1(t) ≤ C
∫ t

0

Km,p(t1)eCt1dt1, (4.24)

and then by induction

Km+k,p+k(t) ≤ Ck
∫ t

0

∫ t1

0

· · ·
∫ tk−1

0

Km,p(tk)eCt1+···+Ctkdt1 . . . dtk.

Finally, one gets on [0, t 1
2
]:

Km+k,p+k(t) ≤ KekCt

k!
max
s∈[0,t 1

2
]
Km,p(s), (4.25)

from what we get the convergences of ωm and λm to some w and some λ for times in [0, t 1
2
] (to be more

precise, the convergence are to be understood respectively in C0([0, t 1
2
], C0,α(Ω̃;R3)) and in C0([0, t 1

2
],Rs)).

Furthermore, these convergences determine those of ym and wmi respectively in C0([0, t 1
2
], C1,α(Ω;R3)) and

C0([0, t 1
2
], C0,α(Ω̃;R3)).

Consequently, we get the convergence of ωm(t+1
2
) also, and we can repeat the same method during the interval

[t 1
2
, t 3

2
]: instead of (4.24), we get

Km+1,p+1(t) ≤ C
∫ t

t 1
2

Km,p(t1)eCt1dt1 +Km+1,p+1
(
t+1

2

)
−Km,p

(
t+1

2

)
,

which leads, for t ∈ [t+1
2
, t 3

2
], to

Km+k,p+k(t) ≤ KekCt

k!
max

s∈
�
t+1

2
,t 3

2

�Km,p(s) +Km+k,p+k
(
t+1

2

)
−Km,p

(
t+1

2

)
.

We get the convergence on the interval [t 1
2

+ , t 3
2
], and then step by step we get the convergences

in C0([t 3
2
, t 5

2
], C0,α(Ω̃;R3)) and in C0([t 3

2
, t 5

2
],Rs), etc.

Remains the problem of convergence in [1/2, 3/4].
Clearly, the convergence of (ωm) and the one of (ym) on the interval [0, 1/2] determine the one of the λmi (1/2)

to a certain s-uplet λ(1/2) ∈ Rs.
As ω and λ are governed by the same equations as during [0, 1

2 ], the result (4.23) is also valid for t ∈ [1
2 , 1],

except at times ti, with i ∈ {k+1, k+s+1}. One consequently deduces the same convergence result in intervals
[ti, ti+1] for i in {k + 1, k + s+ 1}. Finally, ym and ωm do converge to some y and w in C0([0, 1], C1,α(Ω;R3))
and C0([0, 1], C0,α(Ω;R3)).

Let us now prove the fixed point y is a solution to our controllability problem.
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From (3.25, 3.42) and (3.44), we get that
div y = 0 in Ω× [0, 1]
y.n = 0 on (∂Ω\Γ0)× [0, 1]
curl y = w in Ω× [0, 1]
∂tw + (y.∇)w = (w.∇)y in Ω× [0, 1].

(4.26)

With (3.44, 3.32) and (4.26), we get (1.3) for some p ∈ D′(Ω× (0, 1)). From (3.22) (with (3.23)), we get

w(·, 1) = 0.

Together with (3.41), this leads to

y(·, 1) = 0.

As (1.6) is obviously satisfied by y, we get a solution for Proposition 1.3.

5. End of the proof of Theorem 1.1

Here we deduce Theorem 1.1 from Proposition 1.3. Let us consider y0 and y1 two divergence-free elements
of C2,α(Ω;R3). We use Proposition 1.3 and we obtain a certain ν by this proposition. For y0, we choose ε in
](0, T/2[) small enough so that |εy0|2,α < ν. Proposition 1.3 for εy0 give us a couple (y, p). Then (ỹ, p̃) defined
by

ỹ(x, t) = ε−1y(x, ε−1t) ∀ t ∈ [0, ε],

p̃(x, t) = ε−2p(x, ε−1t) ∀ t ∈ [0, ε],

ỹ(x, t) = 0 ∀ t ∈ [ε, T/2],

p̃(x, t) = 0 ∀ t ∈ [ε, T/2],

is still solution of the Euler system with ỹ|t=0 = y0. We operate similarly for −y1, so that we obtain (ỹ′, p̃′).
Then (−ỹ′(T − t), p̃′(T − t)) is again solution of Euler equation. The function chosen equal to ỹ′ on [0, T/2] and
to ỹ′(T − t) on [T/2, T ], associated to the pressure function equal to p̃ on [0, T/2] and to p̃′(T − t) on [T/2, T ],
gives an answer to the problem.

6. Proof of Lemma 2.1

The proof is quite the same as the one of ([5], Lem. A.1), which proves the result for interior points.
Let us recall the lemma in [5]:

Lemma 6.1. ([5], Lem. A.2) For any x in Ω,{
∇θ(x); θ ∈ C∞(Ω;R), ∆θ = 0 in Ω and

∂θ

∂n
= 0 on ∂Ω\Γ0

}
= R3. (6.1)

(The proof of Coron in [5] still holds for dimension 3 with Ω# of [5] defined as in Fig. 1.)

In this paper, we prove this result holds for a point x of the boundary as well:



EXACT BOUNDARY CONTROLLABILITY OF 3-D EULER EQUATION 19

���������
���������
���������

���������
���������
���������

������������������ ��
��
��
�� Ω#

Ω

Γ0

Figure 1. The enhanced domain.

Lemma 6.2. For any x in ∂Ω, the set{
∇θ(x); θ ∈ C∞(Ω;R) s. t. ∆θ = 0 in Ω and

∂θ

∂n
= 0 on ∂Ω\Γ0

}
(6.2)

is equal to the tangent plane to ∂Ω at the point x, which we will denote by Tx(∂Ω).

We will prove this lemma in section 8.
We then follow [5]. We fix x in ∂Ω (the case when x ∈ Ω has already been treated in [5]) and y ∈ Ω̃\Ω. We

choose some F in C∞([0, 1], Ω̃), such that

F (t) = x, ∀t ∈
[
0,

1
4

]
,

F (t) = y, ∀t ∈
[

3
4
, 1
]
,

dF (t)
dt

∈ TF (t)∂Ω for F (t) ∈ ∂Ω\Γ0.

It follows from the previous lemma that one can find h1, ..., hl and ξ1, ..., ξl, 2l functions respectively in
C∞([0, 1],R) and in C∞0 (Ω̃) such that

Supp hi ⊂ [
1
4
,

3
4

], ∀i ∈ {1, ..., l},

∆ξi = 0 in Ω, ∀i ∈ {1, ..., l},
∂nξ

i = 0, on ∂Ω\Γ0, ∀i ∈ {1, ..., l},
and φ∇ξ(x, 0, t) = F (t), ∀t ∈ [0, 1],

where

ξ(x′, t) =
l∑
i=1

hi(t)ξi(x′), ∀(x′, t) ∈ Ω̃× [0, 1].

So we found the desired function.
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7. Proof of Lemma 2.3

In order to prove Lemma 2.3, we will use vortex located on loops which we move around in the domain.
Note that, reducing Γ0 if necessary, we can suppose it is a ball drawed in ∂Ω and which does not contain a

loop which is non trivial in ∂Ω.
We fix a certain i in {1, . . . , s}. For that i, we will construct a certain yi, and a certain ωi

0 such that finally
the matrix

M =
(∫

Ω

ζi(1).Qjdx
)
i=1...s,j=1...s

(7.1)

satisfies (2.29) where the functions ζi are defined by (2.23–2.27).

We introduce a hypersurface Σ′i in Ω, equivalent to Σi (in the sense that there exists a part Σ′′i of ∂Ω such
that Σi∪Σ′i∪Σ′′i is topologically a sphere) and which boundary cuts Γ0. In fact, we could have required directly
from Σi to cut Γ0.

In a first step, let us define a certain smooth vector field on R3, with compact support in time, which we will
denote by yi(x, t). Then we will define actually yi of the required form, so that it will be close enough to yi.

We consider a Jordan curve J0 in Ω#\Ω, where Ω# is defined as previously (in Sect. 6). The vector field yi

will be chosen according to the trajectory of J0 (or more precisely, of a part of J0) inside Ω.
Along the construction of yi, we will denote by J(t) the Jordan curve obtained as the image of J0 by the

flow of yi between times 0 and t.
To clarify the required motion of J0 by the flow of yi, we will represent it in the cross-section Σ′i of Ω described

in Figure 2 (in the case of a simple torus).
We divide the time interval [ 1

4 ,
3
4 ] in three stages.

In a first step yi makes J0 partially enter inside Ω by the “hole” Γ0 as described in the Figure 3 and such
that J ∩ Ω stays close to Σ′i.

At the end of this first stage, J(t) cuts Γ0 at two points a and b, and we will denote J̃ the part of J(t) inside
Ω at this moment.

In the second step, we demand that a stays fixed, and make b describe ∂Σ′i and also that J̃ “nearly” describes
Σ′i. We make this process continue until b belongs again to Γ0 such as described in Figure 4.

The last step of the movement consists in making J̃ leave Ω, staying close to Σ′i, and taking care that J(1)
does no longer cut ∂Ω\Γ0 (so that at the end of the processes, J(1) “describes a loop around” Ω). This step is
described in Figure 5.

In conclusion, we could say that we have chosen yi so that inside Ω, J(t) describes a surface Σ̃i equivalent to
Σi.

In fact, the process described in Figures 3-5 may be more complicated than it appears in the previous
presentation. Indeed, there can be some obstacles “on the way” back of the vortex filament, during the step
described by Figure 5. For example, one can think of a plain torus, inside which one has cut out another plain

Figure 2. The cross-section from which the next figures are viewed.
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Figure 3. Entering Ω.

Figure 4. Describing Σ′i (or nearly it).

Figure 5. Leaving Ω.

torus which winds around the “hole” of the first one (that is precisely, such that there is a generator – or a
non-trivial element – of the fundamental group of the first torus represented in the second one). Then the
filament must meet the internal torus during the process described by Figures 3-5. One can also think of the
same domain, where one has “glued” the two tori by means of a cylinder. This domain raises the same problem,
and moreover has a connected boundary. Let us denote it by T .
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It appears that this kind of obstacle can be passed during the process, the same way as the filament passes
the torus in Figures 3-5. This is made possible because the control zone encounters any connected component
of the boundary.

We give in the following Figures 6-8 the example of a torus T, in which one has cut out an other plain torus
T1 and a domain of type T , which both wind around the hole of T (that is there exists in T1 and in T some
loops, non-trivial in T). The obtained domain is represented in color according to the section Σ′i.

Figure 6. After the preceedings steps.

Figure 7. Once eliminated the first obstacle.

Figure 8. Eliminating the second obstacle.
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The same way as described in these figures, the vortex can “cross” any obstacle in its way in the general case
(at each step, one repeats the process described by Figs. 3-5).

Our goal is now to find yi in the form ∇θ(x, t) with θ satisfying (2.15–2.18) and such that the flow of J0

along yi is approximately the same as the one along yi.
This is a consequence of the following lemma:

Lemma 7.1. Given J̃ a curve such as described above, and v ∈ C∞(R3 × [0, 1],R3), for all ε > 0, there exists
θ ∈ C∞0 ([0, 1]× R3,R3) satisfying (2.15–2.18), and such that for any t ∈ [0, 1], one has

|φv(x, 0, t)− φ∇θ(x, 0, t)| < ε, ∀x ∈ J̃ . (7.2)

Moreover, we have the same result on the whole curve J0, under the additional assumption that∫
φv(J0,0,t)

v.dτ = 0, ∀t ∈ [0, 1]. (7.3)

We delay the proof of this lemma till the end of the paper. For v = yi, it directly gives us the wanted yi,
because it suffices then to define yi := ∇θi

, where θ
i

is given to us by Lemma 7.1. Precisely, we apply the first
statement of this lemma for the second stage, and the second one for stages 1 and 3.

Before presenting the exact form of ℵi, let us make the computation of curl ζi(1) when for wi(0) we take a
vortex filament along the position of J at the time 0. That is, we take a linear repartition of Dirac measure on
J0, say M, and then we set

wi(·, 0) =Mτ, (7.4)

where τ is the unit tangent vector on J0 (which sense does not matter much for the moment). Then we will
consider a more regular vortex repartition, which will work all the same.

We consider some f as in the statement of Lemma 2.3. Let us prove that, with that choice of wi(·, 0), a
solution of (2.22) (in the distribution sense) is given by

wi(·, t) =Mγ(t)τγ(t), (7.5)

where γ(t) is defined as the curve obtained by the flow of f on J0 at time t, Mγ(t) and τγ(t) are respectively
the linear Dirac repartition and the unit tangent vector on γ(t) (also following the flow of f).

Let us fix a row-vector valued test function φ ∈ C∞0 (Ω̃× (0, 1),R3). Then the function wi described in (7.5)
is defined by

〈wi, φ〉 =
∫
γ(t)

φ(M) ~dM. (7.6)

In other terms, one can write

〈wi, φ〉 =
∫

[0,1]

φ(γt(v))γ′t(v)dv. (7.7)

Let us prove that wi satisfies (2.22). In this part, we denote by a prime the derivative with respect to the
variable v and by a point the derivative with respect to the variable t. One has

∂t〈wi, φ〉 =
∫

[0,1]

∂t(φ(γt(v)γ′t(v))dv, (7.8)
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∂t〈wi, φ〉 =
∫

[0,1]

∂t(φ(γt(v)))γ′t(v)dv +
∫

[0,1]

φ(γt(v))∂t(γ′t(v))dv. (7.9)

We denote by Z1 the first integral, and by Z2 the second one. We compute Z1 the following way (we put j in
upper index for the coordinates)

Z1 =
∫

[0,1]

(dφ)γt(v)γ
′
t(v)

·
γt(v)dv.

Then one has

Z1 =
∫

[0,1]

(dφ)γt(v)(f(γt(v)))γ′t(v)dv =
〈
wi, dφ(·)(f)

〉
=

〈
wi,
∑
j

∂φ

∂xj
f j

〉
=
∑
j

〈
wif

j,
∂φ

∂xj

〉

= −
∑
j

〈
∂

∂xj
(wif

j), φ
〉

= −
〈∑

j

f j
∂

∂xj
wi + wi

∑
j

∂

∂xj
f j , φ

〉
·

So one finally gets

Z1 = 〈−(f.∇)wi − wi div f, φ〉· (7.10)

We now compute Z2 (we denote by ej the j-th vector of the canonical basis of R3)

Z2 =
∫

[0,1]

φ(γt(v))(df)γt(v)(γ′t(v))dv =
∑
j,k

∫
[0,1]

φk(γt(v))
∂fk

∂xj
γ′
j
t (v)dv =

∫
[0,1]

γ′t(v).
∑
j,k

φk(γt(v))
∂fk

∂xj
ejdv

=

〈
wi,
∑
j,k

φk
∂fk

∂xj
ej

〉
=
∑
j

〈
wji ,

(∑
k

φk
∂fk

∂xj

)〉
=
∑
j,k

〈
wji
∂fk

∂xj
, φk
〉

= 〈(wi.∇)f, φ〉 · (7.11)

We easily deduce from (7.9, 7.10) and (7.11) that

wi satisfies (2.22) in the distribution sense. (7.12)

We come back to the proof of (7.1). For that, we compute, using (2.19),∫
Ω

ζi(1).Qjdx =
∫

Ω×[0,1]

∂tζ
i(t).Qjdxdt.

The equations (2.22, 2.23) and (2.27) imply

∂tζ
i + f ∧ wi = ∇p,

from which we deduce ∫
Ω

ζi(1).Qjdx = −
∫

Ω×[0,1]

f ∧ wi.Qjdxdt.

Then, we have ∫
Ω

ζi(1).Qjdx = −
∫
t∈[0,1]

∫
J̃(t)

f ∧ τ.Qjdσ = −
∫

Σ̃i

~n.QjdΣ,
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where n is the unit normal vector on Σ̃i with an orientation which depends on the sense chosen for ωi
0 along J .

Indeed the function σ : [0, 1]2 → R3, defined by σ(s, t) := γ(t)(s) describes the surface Σ̃i with elementary
area given by

∂tJ ∧ ∂sJ = yi ∧ τ. (7.13)

As Σ̃i is equivalent to Σi, we have finally the following result∫
Ω

ζi(1).Qjdx = −
∫

Σi

~n.QjdΣ. (7.14)

We deduce from the definition of the functions Qi that∫
Ω

Qi.Qjdx =
∫

Ω\Σi

∇qi.∇qjdx = −
∫

Σi

(Qj .n)dΣ.

Therefore, we get ∫
Ω

ζi(1).Qjdx =
∫

Ω

Qi.Qjdx. (7.15)

As by construction of yi and wi,

curl ζi(1) = 0,

the previous equality implies

ζi(1) = Qi. (7.16)

Now we want to have an equivalent result, but with a more regular vortex repartition. Instead of (7.4), we take
here, for ε < 1,

wi(·, 0) =M∗ ρετ, (7.17)

where ρε is a regularisation kernel with support in the ball with center 0 and radius ε in R3, positive and which
moreover satisfies ∫

R3
ρεdx = 1. (7.18)

Let us take in (7.17) ε small enough, in such a way that, if we consider the solution of (2.22), then one has

Supp wi(·, 1) ⊂ Ω̃\Ω. (7.19)

Then by (7.12) we get as a solution of (2.22)

wi(·, t) =
∫
B(0,ε)

Mφf (0,t,−x+γ)τφf (0,t,−x+γ)ρε(x)dx. (7.20)

In particular, one gets that wi is solenoidal. Moreover, using the previous calculus on the linear repartition and
(7.18), one deduces that we still get the result that for any x ∈ B(0, ε)∫

t∈[0,1]

Qj .f ∧Mφf (0,t,−x+γ)τφf (0,t,−x+γ) = −
∫

Ω

Qi.Qj ,
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so after integration in variable x, with (7.18), one gets the same way as previously that∫
t∈[0,1]

f ∧ wi = −
∫

Ω

Qi.Qj ,

which leads all the same to

ζi(1) = Qi,

which completes the proof.

8. Proof of Lemma 6.2

We argue by contradiction. If this proposition was not true, then for some x ∈ ∂Ω, there would exist a vector
V ∈ Tx(∂Ω)\{0}, such that for any φ in C∞(Ω;R), with

∆φ = 0 in Ω,
∂φ

∂n
= 0 on Γ0,

stands

V.∇φ(x) = 0.

In particular, for Ω# as in Figure 1, we will consider functions φa,a defined for a, a ∈ Ω# by
∆φa,a = 4π(δa − δa) in Ω ∪Ω#,

∂nφ
a,a = 0 in ∂(Ω ∪ Ω#),∫

Ω

φa,a = 0.
(8.1)

Because of the analyticity in a ∈ Ω ∪ Ω#\∂(Ω ∪ Ω#) of V.∇φa,a(x), the relation

V.∇φa,a(x) = 0, (8.2)

which holds for a ∈ Ω#, remains true when a ∈ Ω.
Let a be constant in Ω#, so we will note simply φa := φa,a. We want to prove that (8.2) is false, by making

a approach x.
Let us denote by S the orthogonal symmetry with respect to Tx(∂Ω).
We now consider the functions φ̂a defined by

φ̂a(x) =
1

|x− a| +
1

|x−S(a)| −
1

|x− a| in R3. (8.3)

This corresponds to the 3D-potential created by 3 particles placed in a, S(a) and a, with respective charge 1,
1 and −1. We also have

∆φ̂a = 4π(δa + δS(a) − δa) in R3. (8.4)

Let N(a) := |a− x|2. We normalize our functions φa and φ̂a by setting{
ψa := N(a)φa/2,
ψ̂a := N(a)φ̂a/2.

(8.5)
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We now want to prove that for a “close” to x, ∇ψa(x) is “close”’ to ∇ψ̂a(x), and that, if wanted, ∇ψ̂a(x).V is
close to ‖V ‖.

This last point is easy to see. Indeed,

∇ψ̂a(x) = N(a)
(

a− x
|x− a|3 +

S(a)− x
|x−S(a)|3 −

a− x
|x− a|3

)
in R3, (8.6)

so at the point x we get, as a→ x,

∇ψ̂a(x) =
x− P (a)
|x− a| + o(1), (8.7)

where P is the orthogonal projector on Tx(∂Ω). So we can approach by ∇ψ̂a(x) any unit vector of the tangent
plane, in particular V

‖V ‖ .
?

In the rest of the proof, a will converge to x along straight lines passing through x and non tangent to ∂Ω at
point x, in such a way that

d(a, ∂Ω) ≥ cd(a, x), (8.8)

when a→ x, for a certain c > 0, which depends on the chosen direction.
Now to prove Lemma 6.2, we have left to prove that ∇ψa(x) is “close”’ to ∇ψ̂a(x).
This property relies on the fact that ∂nψ̂a is small for a close to x in an Hölder norm C0,α with α small

enough (for example α < 1
6 ).

Indeed, we clearly have

∆(φa − φ̂a) = 0 in Ω̃.

Hence we can bound (φa − φ̂a) the following way, using an elliptic regularity property with C0,α Neumann
boundary condition (for which we refer to [8]):

‖∇ψa −∇ψ̂a‖C0,α(Ω) ≤ C‖∂nψ̂a‖C0,α(∂Ω),

and consequently

‖∇ψa −∇ψ̂a‖C0,α(∂Ω) ≤ C‖∂nψ̂a‖C0,α(∂Ω).

Let us now prove that

∂nψ̂
a C

0,α(∂Ω)−→ 0, (8.9)

as a→ x.
We denote by ua(x) the unit vector (x− a)/|x− a| and by ρa(x) the scalar function (1/|x− a|2). Hence, we

have

∂nφ̂
a(x) = (ρa(x)ua(x) + ρS(a)(x)uS(a)(x)).n(x) on ∂Ω.

From the previous equation, we deduce:

‖∂nφ̂a‖0,α,X ≤ ‖ρa‖0,α,X .‖(ua.n)‖0,X + ‖ρa‖0,X .‖(ua.n)‖0,α,X + ‖ρS(a)‖0,α,X .‖(uS(a).n)‖0,X
+ ‖ρS(a)‖0,X .‖(uS(a).n)‖0,α,X ,

(8.10)
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for any open part X of the boundary. Equation (8.10) will be useful for points far from x.
We consequently estimate ‖ρa‖0,X and ‖ρa‖0,α,X .
It is quite clear that

‖ρa‖0,X ≤ C
1

d2(a,X)
·

We now estimate ‖ρa‖0,α,X and ‖ρS(a)‖0,α,X . It is clear that it is sufficient to estimate the first norm, because
the same estimate will hold also for the second one.

We introduce the functions, defined for any x ∈ X (in fact for any x such that d(x, a) ≥ d(X, a)) as follows

U
x
y =

ρa(x)− ρa(y)
|x− y|α , ∀y 6= x. (8.11)

Let d := d(X, a). We now want to estimate Uxy . For x with d(x, a) ≥ d(X, a), the value

max
{y / |x−y|=h, d(y,a) ≥d/2}

(
1

|x− a|2 −
1

|y − a|2
)

is less or equal than the maximum of the value obtained for

y = x− d/2(x− a)/|x− a|

(for h > d/2), and of the one obtained for

y = x− h(x− a)/|x− a|

(for h ≤ d/2). Consequently, we now have left to estimate

m1 = max
0<h<d/2

h−α
(

1
|x− a|2 −

1
|x− h((x− a)/|x− a|)− a|2

)
,

and

m2 = max
h>d/2

h−α
(

1
|x− a|2 −

1
|x− d/2((x− a)/|x− a|)− a|2

)
·

A simple study of these numerical functions shows that these maximum are obtained in the first case for h
satisfying the equation

−α|1− h|3 + α|1− h| − h = 0,

which is a value independent from the choice of x in the suitable set. In the second case, one obtains that the
maximum is obtained for h = d/2.

As a consequence, we can deduce an inequality (with C a constant independent of x)

max
y

(
1

|x− a|2 −
1

|y − a|2
)
/(|x− y|α) ≤ C(d(X, a))−2−α. (8.12)

Finally, we can deduce from the previous inequalities that

‖ρa‖0,α,∂Ω ≤ C[d(a, ∂Ω)]−2−α. (8.13)
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?

We consider next ‖ua‖0,X and ‖ua‖0,α,X . Of course ‖ua‖0,X ≤ 1.
We now consider ‖ua‖0,α,X . As ua(x) is constant along the half-lines with origin a, it is obvious that the

greatest values of the quotient

|ua(x)− ua(y)|
|x− y|α ,

for x 6= y and min(d(a, x), d(a, y)) ≤ d, are obtained when d(a, x) = d(a, y) = d.
By using polar coordinates with center a, we can see also that for some C > 0 independent from a,

‖ua‖0,α,X ≤ C
1

d(X, a)α
, (8.14)

which is in fact still valid when α = 1.
?

We now deal with ‖∇ψa.n‖0,X and ‖∇ψa.n‖0,α,X directly. The estimate we get here will be used for points
near x. Of course, ‖(∇ψa.n)‖0,X ≤ 1, and the norm ‖(∇ψa.n)‖0,α,X will get our whole attention.

Here, for d > 0, we introduce Xd := ∂Ω ∩ B(x, d). Let us show the next formula, for a certain C > 0
independent from a and d:

‖∇ψa.n‖0,α,Xd ≤ C
(
d1−α +

d3−α

|x− a|2
)
· (8.15)

For x, y ∈ Xd with x 6= y, we set:

Ix,y = (∇ψa(y).n(y)−∇ψa(x).n(x))|x − y|−α,

and we have

Ix,y = ∇ψa(x).(n(y) − n(x))|x− y|−α + (n(y)− n(x))(∇ψa(y)−∇ψa(x))|x − y|−α

+ n(x).(∇ψa(y)−∇ψa(x))|x− y|−α.
(8.16)

We evaluate the first term. Clearly,∣∣∇ψa(x).(n(y)− n(x))|x− y|−α
∣∣ ≤ |∇ψa(x)| ‖n‖1,∂Ω|x− y|1−α ≤ Cd1−α. (8.17)

We then evaluate the second one. We compute∣∣(n(y)− n(x))(∇ψa(y)−∇ψa(x))|x− y|−α
∣∣ ≤ C(Ω)|x− y|‖∇ψa‖1,Xd |x− y|1−α.

Let us interest ourselves to the term “‖∇ψa‖1,Xd”. From (8.3) and (8.5), one deduces that for some C > 0, one
has

‖∇ψa‖1,Xd ≤
C

|a− x| ·

Hence, taking (8.8) in account, we get

∣∣(n(y)− n(x))(∇ψa(y)−∇ψa(x))|x− y|−α
∣∣ ≤ C(Ω, c)

d2−α

|a− x| · (8.18)
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We finally evaluate the third term in (8.16). One has∣∣n(x). (∇ψa(x) −∇ψa(y)) |x− y|−α
∣∣ ≤ ‖∇ψa(·).n(x)‖C1(Xd)|x− y|1−α

We remark that ∇ψa(x).n(x) = 0 for any x in Tx∂Ω. Then

‖∇ψa(·).n(x)‖C1(Xd) ≤ ‖∇ψa.n(x)‖2,Xd d(Xd, Tx∂Ω) ≤ ‖∇ψa.n(x)‖2,Xd d2 ≤ C d2

|a− x|2 ·

So one has

∣∣n(x). (∇ψa(x) −∇ψa(y)) |x− y|−α
∣∣ ≤ C d3−α

|a− x|2 · (8.19)

Putting together estimates (8.17, 8.18) and (8.19), we get (8.15).

?

Let us now prove (8.9). We consider for ε > 0

β :=
2 + ε

3− α · (8.20)

We choose ε small enough (for example ε < 1
6 ) such that one has

2− β(2 + α) > 0. (8.21)

We distinguish the points of ∂Ω, located inside and outside the open ball B(a, |a−x|β) (which obviously meets
∂Ω for N(a) < 1).

If x 6∈ B(a,N(a)
β
2 ), then we have |x− a| ≥ |a − x|β and consequently, with (8.6, 8.10, 8.13) and (8.14), we

get

‖∂nψ̂a‖
0,α,[∂Ω\B(a,N(a)

β
2 )]
≤ C|x− a|2−β(2+α). (8.22)

We have to treat the case when x ∈ B(a,N(a)
β
2 ). We omit the term concerning a in (8.6), which obviously has

no importance to estimate ‖∂nψ̂a‖. We use (8.15) and get, with (8.20),

‖∂nψ̂a‖
0,α,[∂Ω∩B(a,N(a)

β
2 )]
≤ C(|a− x|β(1−α) + |a− x|ε).

Finally, we conclude that ‖∂nψ̂a‖C0,α tends to 0 and that ends the proof.

9. Proof of Lemma 7.1

9.1. Preliminary Lemmas

The main purpose of section 9 is to prove the first statement of Lemma 7.1, that is the one relative to J̃ . At
the end of the section, we will come back to the case when we wish to have a control on the whole curve J0.

We first establish a lemma which corresponds to the control of paths inside Ω. Precisely, we prove
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Lemma 9.1. Let γ : [0, L]→ Ω be a smooth path, injective, with γ((0, L)) ⊂ Ω, and γ(0), γ(L) ∈ ∂Ω, and such
that for any s in [0, L], | ·γ(s)| = 1. Suppose also that

·
γ(s) 6∈ Tγ(s)(∂Ω) for s = 0, L.

Let y ∈ C∞(γ,R3) be a vector field defined on γ such that

y(γ(0)).n(γ(0)) = y(γ(L)).n(γ(L)) = 0. (9.1)

Then for any ε > 0, there exists θ ∈ C∞0 (R3,R) such that the following properties hold:

∆θ = 0 in Ω, (9.2)

∂nθ = 0 on ∂Ω\Γ0, (9.3)

‖∇θ − y‖C0(γ) < ε. (9.4)

Actually, we need

Corollary 9.2. Given γ : [0, L] → Ω a smooth path, injective, satisfying γ((0, L)) ⊂ Ω, and γ(0), γ(L) ∈ ∂Ω,
and given ε > 0, there exists δ(γ, ε) > 0, and W(γ, ε) > 0, such that for any γ̃ such that ‖γ − γ̃‖C0 < δ, for any
ỹ in C1(γ;R3) satisfying (9.1), one can find θ such that (9.2) and (9.3) hold, and such that

‖ỹ ◦ γ̃ −∇θ ◦ γ̃‖C0([0,L]) < ε‖ỹ‖C0([0,L]);R3, (9.5)

‖θ‖C2(Ω) ≤ W‖ỹ‖C1(γ;R3). (9.6)

9.2. Proof of Lemma 9.1

Let us denote Γ := γ([0, L]). We first remark that the map which associates to θ satisfying (9.2) and (9.3),
the function (∇θ|Γ) ∈ C0(Γ) is linear.

We argue by contradiction and suppose that there exists a non-zero measure M ∈ M(Γ,R3) (viz. the Radon
measures defined on Γ), precisely belonging to the set

{y ∈ C0(Γ,R3) / y(γ(0)).n(γ(0)) = y(γ(L)).n(γ(L)) = 0}′ = M(Γ,R3)
Vect{δγ(0).n(γ(0)), δγ(1).n(γ(L))} , (9.7)

such that:

〈M,∇θ〉M(Γ)×C0(Γ) = 0, (9.8)

for all θ ∈ C∞(Ω,R) satisfying (9.2) and (9.3).
To find a contradiction, we introduce, as for Lemma 2.1, an “over-domain” Ω# described by figure 1, and

the functions φa,a defined on Ω# by  ∆φa,a = 4π(δa − δa) in Ω#,
∂nφ

a,a = 0 on ∂Ω#,∫
Ω# φ

a,a = 0.

As in Lemma 6.2, relation (9.8), which is true for θ = φa,a when a is in Ω#\Ω, is still valid when a is in Ω, as
a consequence of the analyticity of 〈M,∇φa,a〉M(Γ)×C0(Γ) in variable a.
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In the rest of the proof, we will omit a whose corresponding term has not importance, and generally, instead
of dealing with the function φa,a , we will work on the function

x 7→ 1
|x− a| ,

which is close to φa,a, for x close to a in Ω. This can be done because effects of a and of the Neumann condition
on the boundary are negligeable.

In a first step, we prove that the measure M is necessarily tangent on Γ.
Let τ be defined on Γ by τ(γ(s)) := d

dsγ(s). We also introduce a C∞ function ν(x) of unit normal vectors
defined on Γ. We consider a fixed point x0 := γ(s0) of Γ\{γ(0), γ(1)} and for any λ ∈ R the point a(x0, λ) :=
x0 − λν(x0) (placed as described in Fig. 9), which we will denote by a(λ) or even a when there is no possible
ambiguity. We use as a parameterization of Γ the arc length from x0, which we denote again by s.

First, let us prove that, for all vectorial continuous function f defined on Γ, one has

λ

∫
Γ

f(x).∇φa(x0,λ)dτ −→ 2f(x0).ν(x0), as λ→ 0. (9.9)

In that purpose, we introduce a new function η, defined once x0 is fixed, and depending on the variables s and

~ν

γ

x0

a(x0, λ)

x

Figure 9. The position of the particle approaching x0.

λ. It is indeed quite easy to see that:

|a(λ) − γ(s)|2 = |a(λ)− x0|2 + s2η(s, λ), (9.10)

where η is a continuous uniformly bounded function defined for s in a certain interval [−α0, α0] and for λ in
[0, λ̂]. Moreover, there exists some m > 0 such that, for α small enough, one has

|η(s, a)| ≥ m on γα, for all λ ∈ [0, λ̂]. (9.11)

We remark that η(0, λ) = 1 for all λ ∈ [0, λ̂].
For α > 0, let us denote by Γα the arc γ([s0 − α, s0 + α]).
We fix ε > 0. We deduce from the continuity of the function (s, λ) 7→ f(s).(γ(s) − a(x0, λ)), that, for a

certain λ0 > 0, and a certain α > 0 one has

|[(γ(s)− a(λ)).f(γ(s))] − [(x0 − a(λ)).f(x0)]| < ε,∀s ∈ [−α, α], ∀λ < λ0. (9.12)

In this expression, we remark that (x0 − a).f(x0) = λ(a)(f.ν)(x0).
We introduce the function Θλ := λφa(x0,λ), so that we are interested in the limit of∫

Γ

f(x).∇Θλdτ, (9.13)
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when λ→ 0. We cut this integral the following way:∫
Γ

f.∇Θλdσ =
∫

Γα

f.∇Θλdσ +
∫

Γ\Γα
f.∇Θλdσ. (9.14)

Let us prove the second of these two integrals tends to zero as λ→ 0. Indeed, we know that on Γ\Γα

∇φa(λ)(x) −→ ∇φx0(x)

as λ→ 0, uniformly in x. So, considering integrals, we get that∫
Γ\Γα

∇φa(λ)dσ is bounded,

and hence multiplying it by λ, we obtain an integral which converges to 0 as λ→ 0.
We are now interested in the first integral in the right hand side of (9.14), which we call I1. First, as x0 6∈ ∂Ω,

the difference between the two functions

∇φa(λ) and x 7→ x− a
|x− a|3 ,

is bounded as λ tends to 0. So considering integrals and multiplying by λ, we get the existence of λ1 < λ0 such
that, if we set

I2 :=
∫

Γα

λ(x− a(λ)).f
|x− a(λ)|3 dσ,

then one has, for λ < λ1,

|I1 − I2| < ε. (9.15)

Using (9.10) and (9.12), we get∣∣∣∣I2 − ∫ α

−α

(f.ν)(x0)λ2

(λ2 + s2η(a, s))
3
2
ds

∣∣∣∣ ≤ ε ∫ α

−α

λ2

(λ2 + s2η(a, s))
3
2
ds, (9.16)

and then, ∣∣∣∣∣I2 −
∫ α

−α

(f.ν)(x0)
(1 + ( sλ)2η(a, s))

3
2
d
( s
λ

)∣∣∣∣∣ ≤ ε
∫ α

−α

1
(1 + ( sλ)2η(a, s))

3
2
d
( s
λ

)
· (9.17)

Now we use (9.11) and consequently get∣∣∣∣∣I2 −
∫ α

−α

(f.ν)(x0)
(1 + ( sλ)2η(a, s))

3
2
d
( s
λ

)∣∣∣∣∣ ≤ ε
∫ ∞
−∞

1
(1 +mt2)

3
2
dt. (9.18)

We introduce the new notation

I3 :=
∫ α

−α

(f.ν)(x0)

(1 +
(
s
λ

)2
η(a, s))

3
2

d
( s
λ

)
·
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We now want to know the limit of I3. We compute

I3 =
∫ α

λ

−αλ

(f.ν)(x0)
(1 + t2η(a, λt))

3
2
dt. (9.19)

We extend η to R by making it equal to η(−α0) on (−∞,−α0] and to η(α0) on [α0,+∞), for any λ. Then, we
remark that

I4 :=
∫ ∞
−∞

(f.ν)(x0)dt
(1 + t2η(a, λt))

3
2
≤
∫ ∞
−∞

|(f.ν)(x0)|dt
(1 +mt2)

3
2
< +∞.

As the following inequality stands

|I4 − I3| ≤
∫
R\(−αλ ,

α
λ )

(f.ν)(x0)dt
(1 + t2m)

3
2
, (9.20)

the difference |I4 − I3| goes to 0 when λ→ 0.
We have now to search for the limit of the integral I4 as λ → 0. But given ε > 0, using m, one can find a

positive number A depending only on η, (in particular, independent from d and from the former choice of α)
such that ∣∣∣∣∣

∫ ∞
−∞

(f.ν)(x0)
(1 + t2η(a, λt))

3
2
dt−

∫ A

−A

(f.ν)(x0)
(1 + t2η(a, λt))

3
2
dt

∣∣∣∣∣ < ε, (9.21)

∣∣∣∣∣
∫ ∞
−∞

(f.ν)(x0)
(1 + t2)

3
2
dt−

∫ A

−A

(f.ν)(x0)
(1 + t2)

3
2
dt

∣∣∣∣∣ < ε, (9.22)

for all λ. Then given A, one can find λ2 ∈ (0, λ1) and α̃ small enough such that

|η(a, λt)− 1| < ε

2A
for t ∈

(
− α̃
λ
,
α̃

λ

)
and λ < λ2. (9.23)

Then, using (9.18–9.20) and (9.21), we get∣∣∣∣∫ ∞
−∞

(f.ν)(x0)
(1 + t2η(a, λt))

3
2
dt−

∫ ∞
−∞

(f.ν)(x0)
(1 + t2)

3
2
dt

∣∣∣∣ < 3ε.

It is easy to compute that ∫ ∞
−∞

1
(1 + t2)

3
2
dt = 2.

As the choice of A depends only on η, so does the one of α̃, and we can have chosen in (9.12) the constant α so
that α < α̃.

So finally, we have proved that∫
Γ

∇Θλ.fdσ −→ 2f(x0).ν(x0), as λ→ 0,

that is, exactly (9.9).
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We go back to the proof that M is a tangent measure on Γ.
We argue by contradiction and suppose that M.ν(x) 6= 0 on the arc γ([x0 −α, x0 +α]), for a certain α small

to be determined. We still denote by Γα the arc γ([x0 − α, x0 + α]).
We can suppose without loss of generality that ‖M.ν‖M(Γα) = 1.
Then given ε > 0, there exists f ∈ C0(Γα) such that

‖f −M.ν‖M(Γα) < ε, (9.24)
‖f‖M(Γα) = 1. (9.25)

From (9.8) and (9.24), we get that ∣∣∣∣∫
Γ

f(x).∇ψdτ
∣∣∣∣ < ε‖∇ψ‖C0(Γ), (9.26)

for any ψ satisfying (9.2) and (9.3).
Let us describe the form of functions ψ which will allow us to conclude. Given ν(x), we consider the curve γ̃

obtained by associating to x the point situated at a distance λ in the direction −ν(x) (a kind of “wave front”)
such as described in Figure 10. We consider also as a parametrisation of γ̃ the arc length ∫ w ith origin at a
certain x̃0 := x0 − λν(x0). As previously, the image of γ̃ is denoted by Γ̃.

~ν

x0

x̃0Γ̃(s)

Γ

Γ̃

Figure 10. The curve Γ̃ which supports ∆ψ.

We then consider any function R of D([−α, α]), with α small to be determined, and define ψ as the integral

ψ(x) :=
∫

s∈[−α,α]

R(s)λφγ̃(s)(x)ds. (9.27)

Note that ψ satisfies (9.8). Let us prove that ψ is bounded on Γ as λ→ 0.
For x0 in Γ, we have for a certain m which can be found independent (locally at least) from x0, for all x ∈ Γ∫

Γ̃

λdy

|y − x|2 ≤
∫ L−s0

−s0
λ

ds

λ2 +ms2
,≤
∫ +∞

−∞

dx

1 +mx2
≤ C(γ). (9.28)

But as we noticed for (9.15), as x0 6∈ ∂Ω, if we take λ small enough (say, inferior to a certain λ3), then one has∣∣∣∣∫
Γ̃

|λ∇φy(x)|dy −
∫

Γ̃

λdy

|y − x|2

∣∣∣∣ < ε.

So actually we get that

|∇ψ(x)| ≤ C(γ)‖R‖C0(Γ), (9.29)
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for x near x0, as λ→ 0.
Considering (9.26) and (9.29), we get that, at least if R has a small enough support,

|〈f,∇ψ〉M(Γ)×C0(Γ)| < C(γ)‖R‖C0(Γ)ε. (9.30)

With (9.9, 9.29, 9.30) and the Lebesgue convergence theorem, we get that

〈f.ν,R〉M(Γ)×C0(Γ) ≤ C(γ)‖R‖C0(Γ)ε. (9.31)

Consequently, with (9.24) we get that

|〈(M.ν),R〉M(Γ)×C0(Γ)| < (1 + C(γ))‖R‖C0(Γ)ε. (9.32)

This implies ‖M.ν‖M(Γ) < C′(γ)ε for every ε > 0. So we must have M|Γ((0,L)).ν = 0.
Possibly, one could have M.ν = ρ0δγ(0).ν + ρ1δγ(L).ν. Let us explain why necessarily, ρ0 = ρ1 = 0. This is a

simple consequence of the proof of Lemma 6.2. Indeed, considering as a “θ” in (9.8) the function |a−γ(0)|2φa,a
and a→ γ(0), one could get as a limit value at the point γ(0) any tangent vector.

As Γ is transverse to ∂Ω at the point γ(0), this implies that ρ0 = 0. The same can be done for γ(L).
Since the previous proof is valid whatever the choice of ν, we deduce that M is tangent everywhere on Γ.

As the second step of the proof of Lemma 9.1, we now check that actuallyM = 0. First, we prove M|γ((0,L)) =
0. As in the previous step, we suppose M|γ([x0−α,x0+α]) 6= 0.

We introduce a function f ∈ C1(Γ) with compact support in Γα so that

‖f −M‖M(Γα) < ε̃, (9.33)

and

‖f‖M(Γα) ≥
1
2
, (9.34)

and moreover that

f is tangent everywhere on Γ. (9.35)

In the rest of the proof, we will make no difference between the vectorial function f and the scalar function,
which multiplication by the unit tangent vector along Γ is f .

We now want to prove that ‖f‖M(Γ) < C′(γ)ε̃, for some constant C′(γ). We proceed as previously, and prove
that

−1
log(λ)

∫
Γ

(∂τf(x))φa(λ)dτ −→ ∂τf(x0), as λ→ 0, (9.36)

where a(λ) is defined (as in the first step) in accordance with Figure 9. As previously, we will use the same arc
length s as a parameter on Γ. Let ε be a positive number. One can find α > 0, such that

|∂τf(x)− ∂τf(x0)| < ε on Γα. (9.37)

Reducing α if necessary, we demand that for all s ∈ (−α, α) and for all λ less than some λ0, one has

|η(s, λ) − η(0, λ)| < ε. (9.38)
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Let us denote by Θ̃λ the function −φ
a(λ)

log λ . As for (9.14), one can write∫
Γ

(∂τf(x))Θ̃λ =
∫

Γα

(∂τf(x))Θ̃λ +
∫

Γ\Γα
(∂τf(x))Θ̃λ. (9.39)

For that α, one can find λ1 ∈ (0, λ0] such that

|
∫

Γ\Γα
(∂τf(x))Θ̃λdτ | < ε, (9.40)

for all λ < λ1. The existence of λ1 is a simple consequence of the uniform convergence of the function φa to 0
on Γ\Γα as a→ x0.

From now, we will impose λ to be strictly inferior to λ0, λ1 and 1. Let us then consider the integral of Θ̃λ∂τf
along Γα, which we will denote by Ĩ1. This integral can be estimated the following way :

Ĩ1 =
−1

log |λ|

∫ α

−α

∂τf(x(s))√
λ2 + s2η(s, λ)

ds (9.41)

=
−1

log |λ|

∫ α
λ

−αλ

(∂τf)(x((t/λ))√
1 + t2η(λt, λ)

dt. (9.42)

We now want to find the limit of this integral. Note that∣∣∣∣∣ −1
log |λ|

∫ α
λ

−αλ

∂τf(x((t/λ))√
1 + t2η(λt, λ)

dt− −1
log |λ|

∫ α
λ

−αλ

∂τf(x0)√
1 + t2η(λt, λ)

dt

∣∣∣∣∣ ≤ ε
(

2 lim
λ→0

−1
log |λ|

∫ α
λ

−αλ

1√
1 + t2m

dt

)
,

if λ1 is small enough. As

lim
λ→0

−1
log |λ|

∫ K
λ

−Kλ

1√
1 + t2m

dt =
1√
m
,

we can deduce the estimate∣∣∣∣∣ −1
log |λ|

(∫ α
λ

−αλ

∂τf(x((t/λ))√
1 + t2η(λt, λ)

dt−
∫ α

λ

−αλ

∂τf(x0)√
1 + t2η(λt, λ)

dt

)∣∣∣∣∣ ≤ 2ε
√
m
−1
. (9.43)

Let us define

Ĩ2 := − 1
|λ|

∫ α
λ

−αλ

∂τf(x0)√
1 + t2η(λt, λ)

dt.

Using (9.38), we can deduce:

−1
log |λ|

∫ α
λ

−αλ

∂τf(x0)√
1 + (1 + ε)t2

dt ≤ I2 ≤
−1

log |λ|

∫ α
λ

−αλ

∂τf(x0)√
1 + (1− ε)t2

dt,

if ∂τf(x0) > 0 and in the other way around otherwise. Consequently,

(1− ε) lim
λ→0

−1
log |λ|

∫ α
λ

−αλ

∂τf(x0)dt√
1 + (1 + ε)t2

≤ I2,
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and

I2 ≤ (1 + ε) lim
λ→0

−1
log |λ|

∫ α
λ

−αλ

∂τf(x0)dt√
1 + (1− ε)t2

, (9.44)

which implies

(1− 3ε)∂τf(x0) ≤ −1
log |λ|

∫ α
λ

−αλ

∂τf(x0)√
1 + t2η(λt, λ)

dt ≤ (1 + 3ε)∂τf(x0). (9.45)

From (9.40, 9.43) and (9.45) we get that for λ < λ1,∣∣∣∣∫
Γ

Θ̃(x)∂τ f(x)dx− ∂τf(x0)
∣∣∣∣ < (1 + (3 + 2

√
m
−1)‖∂τf‖C0)ε. (9.46)

So we have obtained (9.36).

We go back to the proof that M = 0. We integrate by parts to obtain the general equality∫
Γ

f.∇ψ = f(γ(0))ψ(γ(0))− f(γ(L))ψ(γ(L)) +
∫

Γ

ψ∂τfdτ. (9.47)

Considering |a− γ(0)|φa as a function ψ, and making a converge to γ(0), we obtain easily that

|f(γ(0))| < ε, (9.48)

and the same for γ(L) (indeed this family of functions is uniformly bounded by 1 and converges to the charac-
teristic function of γ(0) when a→ γ(0)).

After that we consider a function ψ defined exactly as in the previous step, with a support described by
Figure 10. Again we introduce a smooth function R with support [−α, α] (α small). Then we define the
function ψ by

ψ(x) :=
∫

s∈[−α,α]

R(s)
−1

log λ
φγ̃(s)(x)ds. (9.49)

We can prove that ψ is bounded when d→ 0, in the same way as is the first step.
We get then by (9.26, 9.36, 9.48) and (9.49), using the same deduction as in the previous step, that

‖f‖M(Γ) < C′(γ)ε,

which is a contradiction with (9.34) for ε small enough.

9.3. Proof of Corollary 9.2

Before precisely proving Corollary 9.2, we state the following intermediate result:

Corollary 9.3. Given γ as in Lemma 9.1, for any ε > 0, there exists some positive constant W (γ, ε) such that
for any y satisfying the assumptions of Lemma 9.1, which is moreover in C1(Γ;R3), there exists a function θ
satisfying (9.2–9.3) such that

‖y −∇θ‖C0(Γ;R3) < ε‖y‖C0(Γ;R3), (9.50)
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and furthermore the inequality

‖θ‖C2(Ω) ≤W (γ, ε)‖y‖C1(Γ;R3). (9.51)

Let us first remark that, if we do not take (9.51) into account, there is no difference between Corollary 9.3 and
Lemma 9.1.

To prove this corollary, we argue by contradiction, and suppose that there exists a certain ε0 > 0, such that
for any n ∈ N, one can find yn ∈ C1(Γ;R3), such that for any θ satisfying (9.2–9.3) and (9.50) with y = yn and
ε = ε0, then one has

‖θ‖C2(Ω) ≥ n‖yn‖C1(Γ;R3). (9.52)

We can obviously suppose that ‖yn‖C1(Γ;R3) = 1, by “homogeneity” of formula (9.50).
By Ascoli’s theorem, we can suppose that

yn
C0(Γ;R3)−→ Y, as n→∞. (9.53)

We use Lemma 9.1 with y = Y and ε = 1
2ε0, and hence we get a certain θ. Then, by (9.53), for n large enough,

one has ‖∇θ − yn‖C0(Γ;R3) < ε0‖yn‖C0(Γ;R3).
By (9.52), we deduce

‖θ‖C2(Ω) ≥ n,

for all n ∈ N, which is obviously absurd.

Our goal is now, in order to prove Corollary 9.2, to check that one can find in the constant W (γ, ε) indepen-
dently from γ (at least for curves “close” to γ).

Let us indeed consider near γ a different arc γ̃ such that ‖γ − γ̃‖C0 < β for a certain β > 0. We consider a
certain ỹ in C1(Γ̃;R3) which satisfies the same assumption as y in Lemma 9.1. Then one can extend ỹ to a C1

vector field in Ω, in such a way that ‖y‖C1(Ω;R3) = ‖ỹ‖C1(Γ̃;R3).
Now we consider the θ given by Corollary 9.3 on γ with a given ε, and the function y|γ .
We want to show this θ solves a similar problem on γ̃. For any s ∈ [0, L], one can compute

|∇θ(γ̃(s))− ỹ(γ̃(s))| ≤ |∇θ(γ̃(s))−∇θ(γ(s))| + |∇θ(γ(s)) − y(γ(s))|+ |y(γ(s))− ỹ(γ̃(s))|. (9.54)

Using the second derivatives of θ, one can deduce

|∇θ(γ(s)) −∇θ(γ̃(s))| < W (ε)β‖y‖C1(Γ̃;R3). (9.55)

By the choice of y, we have

|y(γ(s))− ỹ(γ̃(s))| < ‖ỹ‖C1(Γ̃;R3)β. (9.56)

And θ was chosen such that

|∇θ(γ(s))− y(γ(s))| < ε‖y‖C0(Γ;R3). (9.57)

Consequently, we have finally

|∇θ(γ̃(s)) − ỹ(γ̃(s))| < (W (ε)β + 2β)‖ỹ‖C1(Γ̃;R3) + ε‖y‖C0(Γ;R3). (9.58)
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Taking β := ε
W (ε)+2 , we obtain Corollary 9.2.

9.4. Proof of Lemma 7.1

Before defining v := ∇θ, we would like to make a small transformation on v, which one can perform for any
q ∈ N∗ and any τ < 1

3q .
We introduce a function p : R→ R, such that

p = 1 in
(
−∞,−3

2

]
∪ [0,+∞) , (9.59)

p = 0 in
[
−1,−1

2

]
, (9.60)

‖p‖C0 ≤ 1, ‖p‖C1 ≤ 10. (9.61)

We also introduce a function j such that

j = 0 on (−∞, 0] ∪ [1/2,+∞), (9.62)

0 ≤ j ≤ 10 in R, (9.63)

∫
R
j = 1. (9.64)

We consider times ti := i
q , for i ∈ {0, . . . , q}. Then we define v̂τ,q on the time interval [ti, ti+1], i ∈ {0, . . . , q−1}

by

v̂τ,q(t, x) = p(
t− ti+1

τ
)v(t, x) in [ti, ti+1]× Ω, (9.65)

with τ to be chosen small enough. Note in particular that

‖v̂‖C0([0,1],C1(Ω)) ≤ ‖v‖C0([0,1],C1(Ω)). (9.66)

Let us prove that, given q, one has |φv(0, t, x)− φv̂τ,q (0, t, x)| uniformly small if τ is small. This is done by an
induction method.

We consider the evolution of both flows of v and v̂τ,q between timesti and ti+1 − 3τ
2 . For these times, one

has v̂τ,q = v, so by Gronwall’s lemma we obtain the inequality for all t ∈
[
ti, ti+1 − 3τ

2

]
|φv(x, 0, t)− φv̂τ,q (x, 0, t)| ≤ |φv(0, ti, x)− φv̂τ,q(0, ti, x)|tet‖v‖C0 . (9.67)

But is is quite clear that for all t in
[
ti+1 − 3τ

2 , ti+1

]
, one has

|φv(x, 0, t)− φv̂τ,q (x, 0, t)| ≤
∣∣∣∣φv

(
0, ti+1 −

3τ
2
, x

)
− φv̂τ,q

(
0, ti+1 −

3τ
2
, x

)∣∣∣∣+ 2τ‖v‖C0([0,1],C1(Ω)). (9.68)
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If we consider the sequence (un) defined by{
u0 = 0,

un+1 = une
‖v‖

C0([0,1],C1(Ω))
q + 2τ‖v‖C0([0,1],C1(Ω)),

(9.69)

then we get

|φv(x, 0, t)− φv̂τ,q (x, 0, t)| ≤ uq, (9.70)

for all t ∈ [0, 1].
Let

b := e
‖v‖

C0([0,1],C1(Ω))
q and c := 2‖v‖C0([0,1],C1(Ω))τ.

We have

un =
c

1− b + (
c

b− 1
)bn. (9.71)

As bq = e‖v‖C0([0,1],C1(Ω)) , we obtain that uq is small when τ is small, that is what we intended to prove. Precisely,
if one expects

|φv(x, 0, t)− φv̂τ,q(x, 0, t)| < ε

2
, (9.72)

then it is sufficient to take as τ the real number (if k is large)

τ(ε, k) :=
ε

4k
· (9.73)

We go back to the problem of approximation of v by v. Let us denote by J(t) the arc φv(J, 0, t). It is
parametrized by s ∈ [0, 1]. We consider ε ∈ (0, 1/400]. For every t ∈ [0, 1], one can deduce by Corollary 9.2 a
certain δ(J(t), ε/2) and a certain W(J(t), ε/2).

Let us remark that, if t̃ is close enough to t, then one can expect the relation ‖J(t) − J(t̃)‖C0([0,1],C1(Ω)) <

δ(ε/2, J(t))/2.
So for fixed t, if we increaseW and decrease δ, we can consider them valid for the arcs γ(t̃), with t̃ in a small

open set around t. Then by compacity of the interval [0, 1], one can find δ(ε) and W(ε) valid for all γ in the set
{J(t), t ∈ [0, 1]}. We furthermore impose

δ < ε/20 and δW < ε/2, (9.74)

reducing δ if needed.
Then, we fix k in N such that(

20εδ +
2ε‖v‖C0([0,1],C1(Ω))

k

)
e
W‖v‖

C0([0,1],C1(Ω))
k <

δ

20
· (9.75)

We also require from k that for any t, t′ ∈ [0, 1] such that |t− t′| < 1
k , one has

|v(t, ·)− v(t′, ·)|C0(Ω) < ε‖v‖C0 , (9.76)
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which can be obtained by an argument of uniform continuity.
We cut the time interval [0, 1] in k parts [ lk ,

l+1
k ], with l = 0, . . . , k − 1. From now we denote by tl the time

l/k. For that k, we introduce a τ such that |(φv̂k,τ − φv)(x, 0, t)| < ε for any (t, x) ∈ [0, 1] × Ω (expressed by
(9.73)). From now, we will consider v̂k,τ instead of v and particularly we will set Ĵ(t) := φv̂k,τ (J0, 0, t).

We will define v inductively on these time intervals, so that it will be close to v̂k,τ .
We will denote by T (γ, y, ε) a function θ given by Corollary 9.2 with γ, y and ε as variables. At each time,

we introduce the arc

J (t) := φv(J0, 0, t), (9.77)

and we will denote by G(s, t) the function defined on [0, 1]× [0, 1] by

G(·, t) =
Ĵ(t)−J (t)

τ
· (9.78)

Both functions J and G are well defined along the construction of v.
During the time interval [0, 1

k − τ ], we set

v(t, x) = p

(
t− t1
τ

)
T (J0,v(0, ·), ε/2). (9.79)

Then we define v during the second time interval [ 1
k − τ,

1
k −

τ
2 ] by

v(t, x) = j

(
t− t1 + τ

τ

)
T (J (t1 − τ), G(·, t1 − τ), ε/2). (9.80)

We then define v by induction on the intervals [ lk −
τ
2 ,

l+1
k − τ ] by

v(t, x) = p

(
t− tl+1

τ

)
T (J (tl),v(tl, ·), ε/2), (9.81)

and during the intervals: [ l+1
k − τ,

l+1
k −

τ
2 ], we set

v(t, x) = j

(
t− tl + τ

τ

)
T (J (tl − τ), G(·, tl − τ), ε/2). (9.82)

When k = l − 1, we extend this formula till t = 1.
Note that this can be done, because the assumptions on γ (injectivity in particular) in Corollary 9.2 are

preserved by the flow of v.
Now we have to prove that the v constructed above has the required properties. We want to estimate the

norm ‖φv(J0, 0, t)−φv(J0, 0, t)‖C0([0,1]) (as the constants k and τ are now fixed, we will no longer precise them
for v̂).

We compute

d

dt+
|J (t)(s)− Ĵ(t)(s)| ≤ |v(J (t)(s))− v̂(Ĵ(t)(s))|. (9.83)

We want to prove that for all t ∈ [0, 1], one has

|G(·, t)| < δ

τ
, (9.84)
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and ∣∣∣G(·, tl − τ

2

)∣∣∣ < 20εδ
τ
· (9.85)

We prove jointly that (9.84) is true on the intervals [tl − τ
2 , tl+1 − τ

2 ] and (9.85) by induction on l.
For l = 0, as we have chosen the time support of v placed after t1, we have nothing to prove.
Let us suppose (9.84) true on the interval [tl−1 − τ

2 , tl −
τ
2 ] and also (9.85) at rank l. Then, we first consider

what happens during the time interval [tl − τ
2 , tl+1 − τ ]. By (9.83), one has

d

dt+

∣∣∣J (t)(s) − Ĵ(t)(s)
∣∣∣ ≤ ∣∣∣v(J (t)(s)) − v

(
Ĵ
(
tl −

τ

2

)
(s)
)∣∣∣+

∣∣∣v(Ĵ (tl − τ

2

)
(s)
)
− v̂

(
Ĵ
(
tl −

τ

2

)
(s)
)∣∣∣

+
∣∣∣v̂(Ĵ (tl − τ

2

)
(s)
)
− v̂

(
Ĵ(t)(s)

)∣∣∣ .
(9.86)

Consequently, one has

d

dt+
|J (t)(s) − Ĵ(t)(s)| ≤ W‖v‖|J (t)(s)− Ĵ(t)(s)| + ε‖v‖+ ε‖v‖,

where the norm considered is the norm in C0([0, 1], C1(Ω)). This gives, when integrated, for all t ∈ [tl− τ
2 , tl+1−

τ ],

|J (t)(s) − Ĵ(t)(s)| ≤
∣∣∣J (tl − τ

2

)
(s)− Ĵ

(
tl −

τ

2

)
(s)
∣∣∣+

2ε‖v‖
k

+
∫ t

tl− τ2
W‖v‖|J (t)(s) − Ĵ(t)(s)|,

which implies by the induction hypothesis and Gronwall’s lemma

|J (t)(s) − Ĵ(t)(s)| ≤
(

20εδ +
2ε‖v‖
k

)
eW‖v‖t−tl+

τ
2 .

Together with (9.75), this gives us for t ∈ [tl − τ
2 , tl+1 − τ ]

|J (t)(s)− Ĵ(t)(s)| < δ

20
, (9.87)

which implies a fortiori relation (9.84) on the interval [tl − τ
2 , tl+1 − τ ]. Let us prove it on [tl+1 − 3τ

2 , tl+1 − τ
2 ].

We make the same computation as in (9.86) and get for t in [tl+1 − τ, tl+1 − τ
2 ]

d

dt+
|J (t)(s) − Ĵ(t)(s)| ≤ W‖j(t)G(tl −

τ

2
)‖|J (t)(s) − Ĵ(t)(s)|+ ε‖G‖.

Therefore

|J (t)(s) − Ĵ(t)(s)| ≤ δ

20
+ τε

∥∥∥j (tl − τ

2

)
G
(
tl −

τ

2

)∥∥∥+
∫ t

tl− τ2
10W‖G‖|J (t)(s) − Ĵ(t)(s)|,

which implies, by Gronwall’s lemma,

|J (t)(s)− Ĵ(t)(s)| ≤
(
δ

10

)
e10W‖G‖(t−tl+ τ

2 ),≤ δ

10
e10Wδ,≤ δ

2
,
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and hence, (9.84) holds on the interval [tl+1 − τ, tl+1 − τ
2 ].

Then, in order to prove (9.85) at rank l + 1, we consider the difference for t ∈ [tl+1 − τ, tl+1 − τ
2 ]:

|φv(tl − τ, t,J (tl − τ)) − φG(s,t)(tl − τ, t,J (tl − τ))|

But one has

‖v(J (t)(s), t)− j(t)G(s, t)‖ ≤ 10ε‖G‖+ 10W‖G‖|J (t)(s)− Ĵ(t)(s)|,≤ 10(ε+Wδ)‖G‖

from what we deduce

|φv(tl − τ, t,J (tl − τ)) − φj(t)G(s,t)(tl − τ, t,J (tl − τ))| ≤ (ε+Wδ)10‖G‖τ,≤ 10δ(ε+Wδ), (9.88)

which gives us (cf. (9.74)), if we take t = tl+1 − τ
2 , relation (9.85) at rank l.

Note that we could use the estimate of Corollary 9.2 because J (t) was not too far from Ĵ(t).
Then (9.84) implies

|Ĵ(t)−J (t)| < ε,

for all t in [0, 1].
This concludes the proof of the first statement of Lemma 7.1.

9.5. The second statement of Lemma 7.1

In this case the demonstration of an equivalent Lemma 9.1 is the same. First, one shows that the measure
M is necessarily tangent on J0, then that it must be a linear vortex on J0 exactly in the same way. But this
time the conclusion that M is zero does not come from a particular study of points γ(0) and γ(1), but from the
additional assumption (7.3).

Then, the conclusions given by Corollary 9.2 and Subsection 9.4 are still valid, which completes the proof of
Lemma 7.1.
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[7] O. Glass, Contrôlabilité de l’équation d’Euler tridimensionnelle pour les fluides parfaits incompressibles, Séminaire Équations
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