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COMPUTATION OF THE DISTANCE TO SEMI-ALGEBRAIC SETS ∗

Christophe Ferrier
1

Abstract. This paper is devoted to the computation of distance to set, called S, defined by polyno-
mial equations. First we consider the case of quadratic systems. Then, application of results stated for
quadratic systems to the quadratic equivalent of polynomial systems (see [5]), allows us to compute
distance to semi-algebraic sets. Problem of computing distance can be viewed as non convex mini-
mization problem: d(u, S) = infx∈S ‖x−u‖2, where u is in Rn . To have, at least, lower approximation
of distance, we consider the dual bound m(u) associated with the dual problem and give sufficient
conditions to guarantee m(u) = d(u, S). The second part deal with numerical computation of m(u)
using an interior point method in semidefinite programming. Last, various examples, namely from
chemistry and robotic, are given.

Résumé. Dans cet article nous nous intéressons au calcul de la distance à un ensemble S défini
par des équations polynomiales. Nous considérons d’abord le cas quadratique. Le passage au cas
polynomial se fait ensuite grâce aux équivalents quadratiques des systèmes polynomiaux développés
dans [5]. Le calcul de la distance peut être vu comme un problème de minimisation non convexe
d(u, S) = /infx∈S‖x − u‖2 où u ∈ Rn . Pour obtenir, au moins un minorant de cette distance, nous
considérons la borne duale m(u) issue de la résolution du problème dual. De plus, nous donnons des
conditions suffisantes pour avoir m(u) = d(u, S). La seconde partie de cet article est consacrée au
calcul de m(u) en utilisant une méthode de points intérieurs en programmation semi-définie positive.
Pour finir, nous donnons des exemples d’applications issus notamment de la chimie et de la robotique.
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1. Introduction

Computing distance to a set defined by polynomial equations has various applications. In motion planning,
Robot and obstacles are modelised in the configuration space, constructed taking robot’s characteristics into
account (orientation, speed, etc). So, it is necessary to compute the distance between a point and a set
modelised by complex equations. Another application is the localization of set defined by polynomial equations,
using bissection/exclusion technic. This can be used as a first step in the resolution of systems of polynomials
equations, before using locally convergent technics.
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First, we will present a method which computes the distance between fixed point u ∈ Rn and set S defined
by quadratic equations:

S = {x ∈ Rn | fi(x) = 0, 1 ≤ i ≤ p, gi(x) ≤ 0, p+ 1 ≤ i ≤ p+ q}·

Where

fi(x) = xTAix+ bTi x+ ci, 1 ≤ i ≤ p,
gi(x) = xTAix+ bTi x+ ci, p+ 1 ≤ i ≤ p+ q,

with Ai real symmetric matrices, bi ∈ Rn and ci ∈ R. In order to compute the distance we consider the
optimization problem:

(P)
{

inf ‖x− u‖2 = d(u, S)
x ∈ S. (1.1)

Since there is no assumption on S, it may be non-convex, non-connected and unbounded. Thus this problem
is, in general, hard to solve. That’s why we consider its dual:

m(u) = sup
(λ,µ)∈Rp×Rq+

inf
x∈Rn

‖x− u‖2 +
p∑
i=1

λifi(x) +
p+q∑
i=p+1

µigi(x)

 ·
We always have:

d(u, S) ≥ m(u) ≥ 0.

A simple calculus gives that h(λ, µ) = infx∈Rn{‖x−u‖2 +
∑p
i=1 λifi(x)+

∑p+q
i=p+1 µigi(x)} is a concave function

in (λ, µ). So the dual problem is the maximization of concave function. By the way, it is easier to solve than
the original problem. The price to pay is the possible difference between d(u, S) and m(u), called the duality
gap.

One can show that the dual problem can be written as:

m(u) = sup
(λ,µ)∈Ω̄

h(λ, µ, u),

where

Ω̄=

(λ, µ) ∈ Rp × Rq+, I +
p∑
i=1

λiAi +
p+q∑
i=p+1

µiAi, positive semi-definite

 ·
Moreover h is C2 on the interior of Ω̄:

Ω =

(λ, µ) ∈ Rp × Rq+, I +
p∑
i=1

λiAi +
q∑

i=p+1

µiAi, positive definite

 ·
Then we give an explicit formulae for h(·, u), its gradient and its Hessian on Ω. The formula for the gradient
allows a low cost computation.

It is easy to see that Ω̄ is convex. Then the dual problem is the maximization of concave function over convex
set of semidefinite matrices. We show that this problem can be efficiently solved by interior point method. One
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main advantage of such methods is avoiding, as far as possible, instability problems, which arise when the
boundary of Ω̄ is approached.

One key question is when does d(u, S) = m(u)? We establish the following theorem:

Theorem 1.1. Let u ∈ Rn such that h(·, u) reaches its maximum at a point (λ, µ) in Ω ∩Rp × Rq+. We have:
• h(·, u) is differentiable in (λ, µ) and

– ∇λh(λ, µ, u) = (f1(x(λ, µ, u)), . . . , fp(x(λ, µ, u)))T = 0Rp ,
– ∂

∂µi
h(λ, µ, u) = gi(x(λ, µ, u)) ≤ 0, if µi = 0,

– ∂
∂µi

h(λ, µ, u) = gi(x(λ, µ, u)) = 0, if µi > 0,
• m∗(u) = ‖x(λ, µ, u)− u‖2 = minx∈S ‖x− u‖2,

Where x(λ, µ, u) is the minimizer of the Lagrangian.

One interesting fact is that hypothesis of the above theorem can be numerically checked. Also note that,
when this hypothesis is true, we have the global optimum of the non-convex problem (P). That is, we have the
distance between a point u and S and the point of S where it is reached.

We then obtain other useful properties on the dual bound m∗(u), namely:

Proposition 1.2.

m∗(u) = 0 ⇐⇒ u ∈ S.

When the set S is only defined by equalities we have stability result:

Theorem 1.3. Let u ∈ Rn such that h(·, u) reach its maximum in a point λ ∈ Ω ∩ Rp. If S is regular in
x(λ, u), that is, if the gradient ∇fi(x(λ, u)) are linearly independent, then m∗ is continuously differentiable on
a neighborhood of u.

Last, all those results stated for the quadratic case can be applied to the polynomial one, by the way of the
quadratic equivalent system of polynomial system (see [5] which is devoted to the symbolic construction of such
equivalent system in order to have the best dual bound for the quadratic equivalent system). So we are able
to compute, at least, one minimizer of the distance to a set defined by polynomial equations. We give such
examples in Section 4.2.

2. Dual problem

As we said above, in order to compute the distance, we consider the optimization problem:

(Qu)


inf ‖x− u‖2 = d(u, S)2

xTAix+ bTi x+ ci = 0, 1 ≤ i ≤ p
xTAix+ bTi x+ ci ≤ 0, p+ 1 ≤ i ≤ p+ q
x ∈ Rn.

As the function ‖.− u‖2 is coercive and by the Weistrass theorem, Qu always has, at least, one solution. But
due to non-convexity, this problem is hard to solve directly. So we will consider the dual problem. First we
state some definitions and notations.

2.1. Definitions and notations

Definition 2.1. Let:
• Lagrangian of Qu:

L : Rn×Rp×Rq×Rn −→ R
(x, λ, µ, u) −→ L(x, λ, µ, u)= ‖x− u‖2 +

∑p
i=1 λifi(x)

+
∑p+q
i=p+1 µigi(x)
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• h:

h : Rp × Rq × Rn −→ R ∪ {−∞}
(λ, µ, u) −→ h(λ, µ, u)= infx∈Rn L(x, λ, µ, u)

• m∗:

m∗ : Rn −→ Rn
u −→ m∗(u) = sup(λ,µ)∈Rp×Rq+ h(λ, µ, u)

The dual problem of Qu is the calculus of m(u). We need some notations:

• A(λ, µ) = I +
p∑
i=1

λiAi +
p+q∑
i=p+1

µiAi;

• B(λ, µ, u) = −2u+
p∑
i=1

λibi +
p+q∑
i=p+1

µibi;

• C(λ, µ, u) = ‖u‖2 +
p∑
i=1

λici +
p+q∑
i=p+1

µici.

With those notations, Lagrangian becomes:

L(x, λ, µ, u) = xTA(λ, µ)x+ B(λ, µ, u)Tx+ C(λ, µ, u).

Let

Ω = {(λ, µ) ∈ Rp × Rq,A(λ, µ) positive definite}

and

Ω̄+ = {(λ, µ) ∈ Rp × Rq+,A(λ, µ) positive semi-definite}·

Remark 2.2. Ω et Ω̄+ are always non-empty. This is due to the fact that Ω always contains a neighborhood
of origin.

We are now able to study the dual problem.

2.2. Properties of the dual bound

First let us give explicit formulae for h, its gradient and its Hessian.

Proposition 2.3. For all (λ, µ) ∈ Ω,

x(λ, µ, u) = −1
2
A(λ, µ)−1B(λ, µ, u)

is unique minimum of L(., λ, µ, u). Then we have:

h(λ, µ, u) = −1
4
B(λ, µ, u)TA(λ, µ)−1B(λ, µ, u) + C(λ, µ, u).

Proof. For all couple (x, u) the function L(x, λ, µ, u), from Ω to R, is strictly convex and coercive. This imply
existence and uniqueness of x(λ, µ, u). Moreover, L(x, λ, µ, u) reaches its minimum at x(λ, µ, u) if and only if
∇xL(x(λ, µ, u), λ, µ, u) = 0 . But

∇xL(x(λ, µ, u), λ, µ, u) = 2A(λ, µ)x(λ, µ, u) + B(λ, µ, u)
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hence:

x(λ, µ, u) = −1
2
A(λ, µ)−1B(λ, µ, u). (2.1)

So:

h(λ, µ, u) = L(x(λ, µ, u), λ, µ, u). (2.2)

Replacing (2.1) in (2.2) we obtain:

h(λ, µ, u) = −1
4
B(λ, µ, u)TA(λ, µ)−1B(λ, µ, u) + C(λ, µ, u).

As the partial derivative of h, with respect to λ or to µ, has the same expression, we will write, in the next
proposition, ξi = λi if 1 ≤ i ≤ p and ξi = µi if p+ 1 ≤ i ≤ p+ q.

Proposition 2.4. h is twice continuously differentiable on Ω and

∂h(λ, µ, u))
∂ξi

=
1
4
B(λ, µ, u)TA(λ, µ)−1AiA(λ, µ)−1B(λ, µ, u)

−1
2
B(λ, µ, u)TA(λ, µ)−1Bi + ci, 1 ≤ i ≤ p+ q (2.3)

∂2h(λ, µ, u)
∂ξi∂ξj

= −1
2
B(λ, µ, u)TA(λ, µ)−1AjA(λ, µ)−1AiA(λ, µ)−1B(λ, µ, u)

+
1
2
B(λ, µ, u)TA(λ, µ)−1AjA(λ, µ)−1bi −

1
2
bTi A(λ, µ)−1bj (2.4)

+
1
2
B(λ, µ, u)TA(λ, µ)−1AiA(λ, µ)−1bj , 1 ≤ i, j ≤ p+ q.

Proof. Straightforward by chain rule.

Let us state some main properties of the function h.

Proposition 2.5. Let δΩ be the boundary of Ω, δΩ = Ω̄\Ω
(i) For all (λ, µ) /∈ Ω̄ we have:

h(λ, µ, u) = −∞.

(ii) For all (λ, µ) ∈ δΩ:

h(λ, µ, u) > −∞ if and only if B(λ, µ, u) is orthogonal to KerA(λ, µ).

(iii) For all (λ, µ) ∈ δΩ such that B(λ, µ, u) is orthogonal to KerA(λ, µ) we have:

h(λ, µ, u)=−1
4

ΠIm(B(λ, µ, u))TAIm(λ, µ)−1ΠIm(B(λ, µ, u)) + C(λ, µ, u).

Where ΠIm is the orthogonal projection on ImA(λ, µ).
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Proof. (i) Suppose A(λ, µ) is not positive semi-definite. By definition there exists, at least, one negative
eigenvalue ν of A(λ, µ) and write vν the associated eigenvector. So we have:

L(αvµ, λ, µ, u) = (αvν)TA(λ, µ)(αvν ) + B(λ, µ, u)T (αvµ) + C(λ, µ, u).

Then L(αvµ, λ, µ, u)→ −∞ when α→∞. So

inf
x∈Rn

L(x, λ, µ, u) = −∞.

(ii) We have h(λ, µ, u) = infx∈Rn L(x, λ, µ, u). For all x ∈ Rn, there exists unique vector xIm in ImA(λ, µ)
and unique vector xK in KerA(λ, µ), such that x = xIm + xK, so:

h(λ, µ, u) = infx∈Rn{(xIm + xK)TA(λ, µ)(xIm + xK)
+B(λ, µ, u)T (xIm + xK) + C(λ, µ, u)}

= infx∈Rn{xTImA(λ, µ)xIm + 2xTImA(λ, µ)xK + xTKA(λ, µ)xK

+B(λ, µ, u)TxIm + B(λ, µ, u)TxK}+ C(λ, µ, u)
= infx∈Rn{xTImA(λ, µ)xIm + B(λ, µ, u)TxIm + B(λ, µ, u)TxK)}

+C(λ, µ, u)

then

h(λ, µ, u) = infxIm∈ImA(λ,µ){xTImAIm(λ, µ)xIm + B(λ, µ, u)TxIm}+ C(λ, µ, u)
+ infxK∈KerA(λ,µ){B(λ, µ, u)TxK}·

But infxK∈KerA(λ,µ){B(λ, µ, u)TxK} takes the value 0 when B(λ, µ, u) belongs to the kernel KerA(λ, µ)⊥

and −∞ in other cases. Proposition follows, since AIm(λ, µ) is positive definite.
(iii) We have:

h(λ, µ, u) = inf
x∈ImA(λ,µ)

{xTAIm(λ, µ)x+ ΠImB(λ, µ, u)Tx+ C(λ, µ, u)}

and AIm(λ, µ) is positive definite, as we have shown in (ii). By Proposition 2.3, we have:

x(λ, µ, u) = −1
2
AIm(λ, µ)−1ΠImB(λ, µ, u)

formulae for h(λ, µ, u) follows.

Remark 2.6. Above propositions show that h(·, u) is concave function, twice differentiable on interior of its
domain Ω̄. Moreover, in the non-degenerate case, h(·, u) takes finite value at only few points of the boundary
of its domain and we always know feasible point. So, computation of its maximum seems to be an easy task:
h(·, u) is quite a barrier function. However, the matrixA(λ, µ) becomes ill-conditioned near and on the boundary
points of Ω̄ were h(·, u) takes finite value. So the computation of the maximum of the function h(·, u) requires
some refinements.

Now we can state the following theorem, which can be related to the one of [8] (Th. XII.2.3.4) even if, here,
there is no assumption on the boundedness of the optimisation domain:

Theorem 2.7. Let u ∈ Rn such that h(·, u) reaches its maximum at point (λ, µ) in Ω ∩Rp × Rq+. We have:
• h(·, u) is differentiable in (λ, µ)and

– ∇λh(λ, µ, u) = (f1(x(λ, µ, u)), . . . , fp(x(λ, µ, u)))T = 0Rp ,
– ∂

∂µi
h(λ, µ, u) = gi(x(λ, µ, u)) ≤ 0, if µi = 0,
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– ∂
∂µi

h(λ, µ, u) = gi(x(λ, µ), u) = 0, if µi > 0,
• m∗(u) = ‖x(λ, µ, u)− u‖2 = minx∈S‖x− u‖2,

where x(λ, µ, u) is the minimizer of the Lagrangian.

Proof. As λ0 belongs to Ω, ∇2L(x, λ0, µ, u) is positive definite and so invertible. As x0 minimize L(x, λ0, µ, u),
we have ∇L(x0, λ0, µ0, u) = 0. By the implicit function theorem, there exist neighborhood V(λ0, µ0) of (λ0, µ0),
neighborhood V(x0) of x0 and an unique continuously differentiable function X , from V(λ0, µ0) to V(x0), such
that:

∇xL(X(λ, µ), λ, µ, u) = 0,∀(λ, µ) ∈ V(λ0, µ0). (2.5)

The positive definiteness of ∇2L(x, λ0, µ, u) imply also that L(x, λ0, µ, u) is strictly convex in x. So, ∀(λ, µ) ∈
V(λ0, µ0), X(λ, µ) is the unique minimizer of L(x, λ, µ, u). By the way:

h(λ, µ, u) = L(X(λ, µ), λ, µ, u). (2.6)

So differentiability of X(λ, µ) and (2.6) imply differentiability of h(λ, µ, u) on V(λ0, µ0). By the chain rule, we
have:

∇(λ,µ)h(λ, µ, u) = ∇xL(X(λ, µ), λ, µ, u).∇xX(λ, µ) +∇(λ,µ)L(X(λ, µ), λ, µ, u) · (2.7)

According to (2.5, 2.7) becomes:

∇(λ,µ)h(λ, µ, u) = (f1(X(λ, µ), . . . , fp(X(λ, µ), gp+1(X(λ, µ), . . . , gp+q(X(λ, µ))T . (2.8)

By hypothesis h(·, u) reaches its maximum in (λ0, µ0), so (2.8) imply:

fi(X(λ0, µ0)) = 0, 1 ≤ i ≤ p,
gj(X(λ0, µ0)) = 0, if µ0j 6= 0
gj(X(λ0, µ0)) < 0, if µ0j = 0, p+ 1 ≤ j ≤ p+ q.

This proves that X(λ0, µ0) belongs to S. On the other hand, m∗(u) ≤ infx∈S ‖x− u‖2, but we have m∗(u) =
L(X(λ0, µ0), λ0, µ0, u) = ‖X(λ0, µ0)− u‖2. So m∗(u) = infx∈S ‖x− u‖2.

Another property of the dual bound is the characterization of the set S:

Proposition 2.8.

m∗(u) = 0 ⇐⇒ u ∈ S.

Proof. First let us show that u ∈ S imply m∗(u) = 0. We have

0 ≤ m∗(u) ≤ inf
x∈S
‖x− u‖2.

But, if u ∈ S then infx∈S ‖x− u‖2 = 0, so m∗(u) = 0.
Suppose now m∗(u) = 0. We have

m∗(u) = sup(λ,µ)∈Ω̄ h(λ, µ, u)
h(0, 0, u) = 0.
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So the supremum of h(., ., u) is reached at (0, 0). Now (0, 0) belongs to Ω, therefore, hypothesis of Theorem 1.1
are verified. If we note that x(0, 0, u) = u, then Theorem 1.1 gives:

fi(u) = 0, 1 ≤ i ≤ p,
gj(u) < 0, p+ 1 ≤ j ≤ p+ q.

So u ∈ S.

When the set S is only defined by equalities we have the next stability result:

Theorem 2.9. Let u ∈ Rn such that h(·, u) reaches its maximum at a point λ ∈ Ω ∩ Rp. If S is regular in
x(λ, u), that is, if the gradients ∇fi(x(λ, u)) are linearly independent, then m∗ is continuously differentiable in
a neighborhood of u.

Proof. We write f(x) for (f1(x), . . . , fp(x))T . By hypothesis λ0 ∈ Ω, so :
• L(., λ0, u0) has an unique minimizer x(λ0, u0) = x◦;
• ∇xL(x◦, λ0, u0) = 0;
• ∇2

x,xL(x◦, λ0, u0) is definite positive.
By the way, we can apply the implicit function theorem to:

(x, λ, u) −→ ∇xL(x, λ, u),

at point (x◦, λ0, u0). So, there exist neighborhoods V ′(λ0, u0), V ′(x◦) and an unique continuous function X :
V ′(λ0, u0)→ V ′(x◦) satisfying:

X(λ0, u0) = x◦ and ∇xL(X(λ, u), λ, u) = 0. (2.9)

Moreover, X is C1 on V ′(λ0, u0) and its gradients are:

∇λX(λ, u) =
[
∇2
x,xL(x(λ0, u0), λ0, u0)

]−1∇f(x(λ0, u0)),
∇uX(λ, u) = 2

[
∇2
x,xL(x(λ0, u0), λ0, u0)

]−1
.

By the strict convexity of L(x, λ, u) in x and with the help of (2.9), X(λ, u) is the unique minimizer of L(x, λ, u)
for all (λ, u) in V ′(λ0, u0).

Now X(λ, u) is differentiable, therefore we obtain:

∇λh(λ, u) = ∇(λ,u)L(x(λ, u), λ, u) = (f1(x), . . . , fp(x))Tx(λ,u) , (2.10)

∇uh(λ, u) = −2(x− u).

By hypothesis, h(·, u0) is maximal at λ0, so (2.10) gives:

∇λh(λ0, u0) = (f1(x(λ0, u0)), . . . , fp(x(λ0, u0))) = 0Rp . (2.11)

The functions fi are differentiables. So, by the chain rule in (2.11), h is twice differentiable and its Hessian at
point (λ0, u0) is:

∇2
λ,λh(λ0, u0) = (∇f(x(λ0, u0)))T∇λx(λ0, u0)

= ∇f(x(λ0, u0))T
[
∇2
x,xL(x(λ0, u0), λ0, u0)

]−1∇f(x(λ0, u0)).

Now we supposed ∇fi(x) linearly independent, therefore ∇f(x(λ0, u0)) has p rank. Moreover, [∇2
x,xL(x(λ0,

u0), λ0, u0)]−1 is definite positive. Combining both precedent fact and by a classical result of linear algebra,
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we have that ∇2
λ,λh(λ0, u0) is also definite positive and so invertible. So, we can apply the implicit function

theorem to:

(λ, u) −→ ∇λh(λ, u)

at (λ0, u0). There exists neighborhood V ′′(u0) of u0, neighborhood V ′′(λ0) of λ0 and an unique function Γ, C1

from V ′′(u0) to V ′′(λ0), such that:

i) λ0 = Γ(u0),
ii) ∀u ∈ V ′′′(u0) ∇λh(Γ(u), u) = 0.

So, as for all u ∈ V ′′(u0), h(·, u) is concave, differentiable at Γ(u) and its differential at Γ(u) is zero, h(·, u)
reaches its maximum at Γ(u) and so

m∗(u) = h(Γ(u), u).

By the way m∗ is C1 on a neighborhood of u0.

In conclusion:

1. As we saw in Remark 2.6, computation of h is numerically tractable.
2. In all cases calculus of m(u) gives a lower bound on the distance.
3. sufficient condition for zero duality gap is numerically checked. When this condition is fullfilled we have

the global optimum of non-convex problem (Qu), that is the distance to set S.

The first item answer to the question “do the calculus of m(u) possible?”, the second and the third answer to
the question “is it interesting?”. However, as we approach the boundary of Ω, matrix A becomes more and
more ill-conditioned, accordingly, the computation of h becomes more and more unstable. So, in the numerical
process, it is important to stay, as long as possible, far from this boundary. That’s why we choose interior point
method to lead this computation.

3. Computation of the dual bound

As we saw in the above section, stability problems arise in the computation of h when the boundary of Ω is
approached. As avoiding the boundary of the feasible domain is one main feature of the interior point method,
we use it to solve our problem. Principle of such method is rather old, see Fiacco and McCormick’s book in
1968 [6]. Recent development of such method started with the work of Karmarkar [11] for linear problems.
For the non-linear convex case see work of Sonnevend [15]. It is still an active research field see Jarre [9, 10],
Alizadeh [1] and monograph of Nesterov and Nemirovsky [13]. In addition our problem constraints are of type
LMI (Linear Matrix Inequality) see [3, 7, 16, 18]. So they can be handle by special barrier function ln det(X),
which can be called “the principal actor” of such optimization problem, see [13].

3.1. Barrier function

Let P defined from Ω+ = {(λ, µ) ∈ Ω, µ > 0}, to R:

P : Ω+ −→ R
(λ, µ) −→ P (λ)= ln det(A(λ, µ)) +

∑p+q
i=p+1 ln(µi)

(3.1)

Proposition 3.1. Function P is concave. If matrices Ai are linearly independent, P is strictly concave.

Proof. Function
∑p+q
i=p+1 ln(µi) is strictly concave as sum of strictly concave functions. It is well known that

A −→ ln det(A) is also strictly concave over the cone of semi-definite matrix. As (λ, µ) −→ A(λ, µ) is affine,
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ln det(A(λ, µ)) is concave. Moreover, as ln det is strictly concave, we have the next equivalence: P is not strictly
concave if and only if there exists distinct point (λ, µ) and (λ′, µ′) in Ω+, such that:

A(λ, µ) = A(λ′, µ′) (3.2)

which imply linear dependence of matrices Ai, 1 ≤ i ≤ p+ q.

Proposition 3.2. We have:
(i) lim(λ,µ)→(λ̄,µ̄)∈Ω̄+\Ω+

P (λ, µ) = −∞,
(ii) P is twice continuously differentiable on Ω+, its gradient and Hessian are:

∂P

∂λi
(λ, µ) = trace(A(λ, µ)−1Ai),

∂P

∂µi
(λ, µ) = trace(A(λ, µ)−1Ai) +

1
µi
,

∂2P

∂λi∂λj
(λ, µ) = −trace

(
A(λ, µ)−1AjA(λ, µ)−1Ai

)
,

∂2P

∂λi∂µj
(λ, µ) = −trace

(
A(λ, µ)−1AjA(λ, µ)−1Ai

)
,

∂2P

∂µi∂µj
(λ, µ) = −trace

(
A(λ, µ)−1AjA(λ, µ)−1Ai

)
+ δi,j

1
µi
,

where

δi,j =
{

1 if i = j,
0 otherwise.

Proof. First assertion is obvious and the second rely on the twice differentiability of B → ln det(B) over the
space of real symmetric definite positive matrices.

Definition 3.3. Let G be the penalized function:

G : Ω+ × R+ × Rn −→ Rn
(λ, µ, u, α) −→ G(λ, µ, u, α)=h(λ, µ, u) + αP (λ, µ) (3.3)

Due to properties on h and P , G is twice continuously differentiable and we have explicit formulae for its
derivatives.

Proposition 3.4. If Ω̄ is bounded and non-empty. For all α > 0 function G(., α) attains its maximum in Ω+,
at an unique point and

α −→ (λ(α), µ(α)) = argmax(λ,µ)∈Ω̄+
G(λ, µ, α)

is C1.

Proof. Let α > 0 and (λk, µk) ∈ Ω̄+ such that

G(λk, µk, α)→ sup
(λ,µ)∈Ω̄+

G(λ, µ, α).

For β > 0 great enough, there exists a compact set K such that (λk, µk) ∈ K ⊂ Ω̄+, this is due to the fact
that the boundary of Ω+ is compact and G(., α) goes to −∞ when one approaches the boundary. So, sequence
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(λk, µk) have cluster points (λ∞, µ∞). As the function G(., α) is upper semi-continuous, for all cluster point,
we have:

G(λ∞, µ∞, α) = sup
(λ,µ)∈Ω̄+

G(λ, µ, α).

But as Ω̄+ is a non-empty bounded set, matrices Ai, 1 ≤ i ≤ p + q, are linearly independent. Suppose to the
contrary that there exists (λ, µ) such that

p∑
i=1

λiAi +
p+q∑
j=p+1

µjAj = 0. (3.4)

Then, for all (λ′, µ′) ∈ Ω+ and for all γ ∈ R, (3.4) imply

A0 +
p∑
i=1

(λ′i + γλi)Ai +
p+q∑
j=p+1

(µ′j + γµj)Aj = A0 +
p∑
i=1

λ′iAi +
p+q∑
j=p+1

µ′Aj . (3.5)

Now, the second member matrix is, by assumption, positive semi-definite, therefore, for all γ ∈ R, (λ′+γλ, µ′+
γµ) ∈ Ω+. Which contradict the boundedness of Ω̄+.

So by Proposition 3.1 P is strictly concave and as h is concave, G(., α) is also strictly concave over Ω+.
Hence, the maximum of the function G(., α) is reached at an unique point and all the cluster points are equal.
Moreover, strict concavity of G(., α) imply invertibility of its Hessian matrix. So, implicit function theorem can
be applied to:

(λ, µ, α)→∇G(λ, µ, α)

at point (λ∞, µ∞). So, there exists neighborhoods V(α), V(λ∞, µ∞) and unique application (λ(α), µ(α)), C1

from V(α) to V(λ∞, µ∞), such that:

G(λ(α), µ(α), α) = G(λ∞, µ∞, α).

So, for all α′ ∈ V(α), we have:

∇G(λ(α′), µ(α′), α′) = 0 (3.6)

But together with the strict concavity of the functionG(., α′), (3.6) imply thatG(., α′) is maximal at (λ(α′), µ(α′))
and this maximum is unique. So the function

α −→ (λ(α), µ(α)) = argmax(λ,µ)∈Ω̄+
G(λ, µ, α)

is C1.

3.2. Convergence

Now, we will show that our method converge under mild assumption.
First some notations. When such points exists we will write (λα, µα) for the points where the maximum of

G(., α) is reached.

Theorem 3.5. If Ω̄+ has non-empty interior and if one of the conditions below is satisfied:
(i) Ω̄+ is bounded,
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(ii) there exists a > 0 such that, for all α < a, lim‖(λ,µ)‖→∞G(λ, µ, α) = −∞;
then, when penalty coefficient α leads to 0:

• sequence (λα, µα) admits, at least, one cluster point and all cluster point of (λα, µα) is global minimum of
(D);
• αP (λ, µ)→ 0.

Proof. If Ω̄+ is bounded, by Weierstrass theorem, P admits upper bound M ∈ R and the function h attains its
maximum at point (λ0, µ0). If Ω̄+ is not bounded, by assumption, there exists a real a > 0 such that, for all
α < a

lim
‖(λ,µ)‖→∞

G(λ, µ, α) = −∞.

So considering a suitable compact convex set included in Ω̄+, we can restrict our proof to the case Ω̄+ bounded.
If Ω̄+ is bounded, by Weierstrass theorem, P admits upper bound M ∈ R and the function h attains its

maximum at point (λ0, µ0).
Let αk be infinite decreasing sequence of positive values. Let the function PM , from Ω̄+ to R, be PM (λ, µ) =

M − P (λ, µ). Obviously, for all (λ, µ) ∈ Ω̄+, we have PM (λ, µ) ≤ 0. Let GM (λ, µ, α) = h(λ, µ) + αPM (λ, µ).
As GM is translated from G, the function GM (λ, µ, α) reaches its maximum at the same points (λα, µα), as
G(λ, µ, α). So we have, for all α > 0:

h(λ0, µ0) ≥ h(λα, µα) ≥ h(λα, µα) + αPM (λα, µα). (3.7)

By continuity of h and as all points of Ω̄+ are Ω̄+-interior point sequence’s limit (Ω̄+ is convex), we have that
there exists (λ̃, µ̃) ∈ Ω̄+ such that:

h(λ̃, µ̃) ≥ h(λ0, µ0)− ε,

for all ε > 0. This imply, for all 0 ≤ α < a

h(λα, µα) + αPM (λα, µα) ≥ h(λ̃, µ̃) + αPM (λ̃, µ̃) ≥ h(λ0, µ0)− ε+ αPM (λ̃, µ̃). (3.8)

But as for all α < a, the function GM (., α) is upper bounded and for all (λ, µ) ∈ Ω̄+, GM (λα, µα, α) ≥
GM (λ, µ, α), the sequence GM (λαk , µαk , αk) is bounded and admits cluster points written ḠM . By (3.8) we
have, for all ε > 0:

ḠM ≥ h(λ0, µ0) + ε

combine with (3.7) and we obtain:

h(λ0, µ0) ≥ ḠM ≥ h(λ0, µ0) + ε. (3.9)

This is true for all ε > 0. So (3.9) gives ḠM = h(λ0, µ0). So

lim
k→+∞

GM (λαk , µαk , αk) = h(λ0, µ0). (3.10)

But as limk→+∞ h(λαk , µαk) = h(λ0, µ0), equation (3.10) imply

lim
k→+∞

PM (λαk , µαk) = 0.
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Hence

lim
k→+∞

G(λαk , µαk , αk) = h(λ0, µ0),

lim
k→+∞

P (λαk , µαk) = 0.

As (λαk , µαk) is in Ω̄+ which is compact, the sequence haves cluster points (λ̄, µ̄) ∈ Ω̄+. By continuity of h, we
have that h(λ̄, µ̄) = h(λ0, µ0). So, all cluster point (λαk , µαk) is a global optimum of h.

4. Numerical experiments

In order to compute the dual bound we solve the sequence of problems (Dα) below when α decrease to 0:

(Dα) sup
(λ,µ)∈Rp×Rq

{h(λ, µ) + αP (λ, µ)}·

For the first value of the penalty we choose the origin as starting point, because it is the only feasible point
that we know. In the sequel, the starting point is the previous maximizer.

For each α, we compute the maximum using Newton’s method. We adapt the penalty step size in function
of how many newton steps have been needed to reach the previous maximizer. The linear algebraic routines
used in our C-code are from the language C library Meschach (shareware on internet [17]).

We test our algorithm using “artificial” polynomial systems, specially designed to be hard to solve from the
research program POSSO (POlynomial System SOlving) and from real problem as combustion chemistry and
robotic (Stewart platform).

4.1. Quadratic case

4.1.1. Big System: 100 unknowns, 100 equations.

We consider the following system from [20]:

x2
i +

n∑
k=1

xk − 2xi − 10 = 0, 1 ≤ i ≤ n.

We took n = 100. In general, for the point u we have tested, we have distance and solution point where it is
reached.
cycles CPU=113873, eps= 2.220450e-13,
mu: 10.000000 -> 0.100000
distance = 1.019348
from point u: dim:100 (0 ... 0 )

to point x0: dim: 100
0.101934789 ... 0.101934789
system value at x0: < 5.4e-15

cycles CPU=230526, eps= 2.220450e-13,
mu: 10.000000 -> 0.100000
distance = 23.980652
from point u: dim: 100 (2.5 ... 2.5)

to point x0: dim: 100
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0.101934789 ... 0.101934789

system value at x0: < 1.6e-14

4.1.2. robotic: 9× 9.

Considered system is:



f1(x) = x1
2 + x2

2 + x3
2 − 12 x1 − 68 = 0,

f2(x) = x4
2 + x5

2 + x6
2 − 12 x5 − 68 = 0,

f3(x) = x7
2 + x8

2 + x9
2 − 24 x8 − 12 x9 + 100 = 0,

f4(x) = x1x4 + x2x5 + x3x6 − 6 x1 − 6 x5 − 52 = 0,
f5(x) = x1x7 + x2x8 + x3x9 − 6 x1 − 12 x8 − 6 x9 + 64 = 0,
f6(x) = x4x7 + x5x8 + x6x9 − 6 x5 − 12 x8 − 6 x9 + 32 = 0,
f7(x) = 2x2 + 2 x3 − x4 − x5 − 2 x6 − x7 − x9 + 18 = 0,
f8(x) = x1 + x2 + 2 x3 + 2 x4 + 2 x6 − 2 x7 + x8 − x9 − 38 = 0,
f9(x) = x1 + x3 − 2 x4 + x5 − x6 + 2 x7 − 2 x8 + 8 = 0.

See [2] for details.
For this problem we only have, in general, lower approximation of distance.

cycles CPU=27 ns=9, eps= 2.220450e-13,
mu: 10.000000 -> 0.010000
distance = 13.366627
from point u: dim: 9 (1 1 1 1 1 1 1 1 1)
to point x0 : dim: 9
3.49273324 -3.63941286 9.19066306 4.308928 1.88292196
8.275434 3.1542493 4.11066123 3.20553313

system value at x0 : dim: 8
2.27373675e-13 1.42108547e-14 3.12638804e-13 1.56319402e-13
2.7000624e-13 1.13686838e-13 4.26325641e-14 1.42108547e-14

Here we have distance and point in S where it is reached.

cycles CPU=25, eps= 2.220450e-13,
mu: 10.000000 -> 0.010000
distance = 15.342724
from point u: dim: 9 (0 0 0 0 0 0 0 0 0)
to point x0 : dim: 9
3.68391804 -4.15602597 8.92236933 4.14668808 1.35553913
8.05542796 1.42738915 3.53910593 4.46967467

system value at x0: dim: 8
-1.75453803 -0.34404164 -4.0339362 -0.720836513 3.03902923
1.30092245 0.0225397674 -0.00848423342

We see that point x◦ is not system solution. From this computation, we know that there is no solution in hyper-
cube centered in (0 0 0 0 0 0 0) and with radius 15.342724. This information can be used by bisection-exclusion
algorithms to localize the roots of polynomial systems, see [4].



COMPUTATION OF THE DISTANCE TO SEMI-ALGEBRAIC SETS 153

4.2. Polynomial systems

4.2.1. Chemical combustion

This example is from [19]

p1(z) = z2 + 2 z6 + z9 + 2 z10 − 1
100000 = 0,

p2(z) = z3 + z8 − 3
100000 = 0,

p3(z) = z1 + z3 + 2 z5 + 2 z8 + z9 + z10 − 1
20000 = 0,

p4(z) = z4 + 2 z7 − 1
100000 = 0,

p5(z) = 5.140437× 10−8z5 − z1
2 = 0,

p6(z) = 1.006932× 10−7z6 − z2
2 = 0,

p7(z) = 7.816278× 10−16z7 − z4
2 = 0,

p8(z) = 1.496236× 10−7z8 − z1z3 = 0,
p9(z) = 6.194411× 10−8z9 − z1z2 = 0,
p10(z) = 2.089296× 10−15z10 − z1z

2
2 = 0.

Quadratic equivalent system is:

f1(x) = x2 + 2 x6 + x9 + 2 x10 − 1
100000 = 0,

f2(x) = x3 + x8 − 3
100000 = 0,

f3(x) = x1 + x3 + 2 x5 + 2 x8 + x9 + x10 − 1
20000 = 0,

f4(x) = x4 + 2 x7 − 1
100000 = 0,

f5(x) = 5.140437× 10−8x5 − x1
2 = 0,

f6(x) = 1.006932× 10−7x6 − x2
2 = 0,

f7(x) = 7.816278× 10−16x7 − x4
2 = 0,

f8(x) = 1.496236× 10−7x8 − x1x3 = 0,
f9(x) = 6.194411× 10−8x9 − x1x2 = 0,
f10(x) = 2.089296× 10−15x10 − x1x11 = 0,
f11(x) = x11 − x2

2 = 0.

In general we have distance and solution point where it is reached.
cycles CPU=78 ns=11, eps= 2.220450e-13,
alpha : 10.000000 -> 0.010000,
distance = 0.000022
from point u: dim: 11
0 0 0 0 0 0 0 0 0 0

to point x0: dim: 11
1.7225278e-20 5.7417594e-20 1.4848484e-05 1.4210854e-19
6.0606060e-07 2.0202020e-06 5e-06 1.5151515e-05
1.3131313e-06 2.3232323e-06 3.6151826e-29

system value at x0: dim: 11
5.5904174e-20 -3.3881317e-21 1.3552527e-20 1.4230153e-19

-2.9671021e-40 -3.2967801e-39 -2.0194839e-38 -2.5576928e-25
-9.8903405e-40 -6.2272522e-49 3.6151823e-29

cycles CPU=110 ns=11, eps= 2.220450e-13,
mu: 2.000000 -> 0.010000,
distance = 21.307277
from point u: dim: 11
-6 -9 8 -6 -7 -8 -6 -4 -8 -6 -5
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to point x0: dim: 11
-1.12673899e-15 -1.61070089e-13 4.00001485 -4.5238948e-14
1.00000061 -2.66666465 5e-06 -3.99998485

-1.33333202 3.33333566 -1.62501599e-15
system value at x0: dim: 11

-1.59362515e-13 -2.91208911e-15 -5.00151271e-15 -4.56175252e-14
-1.26954076e-30 -2.59435735e-26 -2.04656242e-27 4.5069727e-15
-1.8148395e-28 -1.83096888e-30 -1.62501599e-15

4.3. Numerical bifurcation test

We consider system below, from [12]: p1(x) = 5 z1
9 − 6 z1

5z2 + z1z2
4 + 2 z1z3 = 0

p2(x) = −2 z1
6z2 + 2 z1

2z2
3 + 2 z2z3 = 0

p3(x) = z1
2 + z2

2 − 0.265625 = 0.

Quadratic equivalent system is:

x12x13 − 6 x9x8 + x11x2 + 2 x1x3 = 0,
−2 x6x12 + 2 x9x2 + 2 x2x3 = 0,
x1

2 + x2
2 − 0.265625 = 0,

x2x8 − x1x6 = 0,
−x10 + x2x8 = 0,
−x8x11 + x7x10 = 0,
−x5x7 + x2x10 = 0,
x4x11 − x7

2 = 0,
−x8 + x1x5 = 0,
x1x2 − x4 = 0,
x6x7 − x5x11 = 0,
x10

2 − x9x12 = 0,
−x1x13 + x8

2 = 0,
−x4x9 + x6x7 = 0,
x4x13 − x8x10 = 0,
−x7x9 + x6x11 = 0,
x10x11 − x9

2 = 0,
−x6x12 + x4x13 = 0,



x2x4 − x7 = 0,
−x4x5 + x2x8 = 0,
−x5x12 + x8

2 = 0,
−x9x10 + x11x12 = 0,
−x7x13 + x10

2 = 0,
x6

2 − x4x10 = 0,
−x8x12 + x5x13 = 0,
x6x13 − x10x12 = 0,
x8x13 − x12

2 = 0,
x5

2 − x12 = 0,
x6x10 − x8x9 = 0,
x11 − x2x7 = 0,
−x7x12 + x6x10 = 0,
x5

2 − x1x8 = 0,
−x6x8 + x4x12 = 0,
x6 − x1x4 = 0,
−x9 + x4

2 = 0,
x4

2 − x1x7 = 0,



x6 − x2x5 = 0,
x4x8 − x1x10 = 0,
x4x12 − x5x10 = 0,
x4x12 − x2x13 = 0,
x4x8 − x5x6 = 0,
−x2x6 + x4

2 = 0,
−x1x11 + x2x9 = 0,
x2x9 − x4x7 = 0,
x2x10 − x1x9 = 0,
x6

2 − x7x8 = 0,
−x4x6 + x2x10 = 0,
x7x10 − x6x9 = 0,
x1x12 − x13 = 0,
−x1

2 + x5 = 0,
x1x12 − x5x8 = 0,
−x2x12 + x4x8 = 0,
−x5x9 + x6

2 = 0.

For the different points u, we have tested, we only manage to have non trivial lower approximation of distance.
cycles CPU=5558, eps= 2.220450e-13,
mu: 100.000000 -> 0.000100
distance = 0.925606
from point u : dim: 13
1 1 0 0 0 0 0 0 0 0 0 0 0

to point x0: dim: 13
0.329446583 0.394387662 - 0.0110276803
0.129282427 0.109119827 0.042683305
0.0509202463 0.0362028528 0.0167837212
0.0141194878 0.0201264018 0.0121048743
0.00402183489

system value at x0: between 3.5e-3 and 1.5e-6
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cycles CPU=4571, eps= 2.220450e-13,
mu: 100.000000 -> 0.010000,
distance = 13.666166
from point u: dim: 13
10 -10 1 0 0 0 0 0 0 0 0 0 0

to point x0: dim: 13
0.361958856 -0.364033061 -0.00382504396
-0.131744449 0.131999456 -0.0479597274
0.0480543883 0.0479694041 0.0182949269
-0.0174346063 -0.0174637981 0.0185660341
0.00673531879

system value at x0: between 8.7e-3 and 7.2e-6

5. Conclusion

We can see on numerical examples studied in Section 4, that our method has good convergence properties
in practice. Moreover, even for the case where we did not have the an exact solution, the lower bound on the
distance is non trivial. Thus, this can be used to localise the solution set by bissection/exclusion technic. This
good behaviour obviously comes from the capacity of our method to avoid singularities on the boundary of
Ω. Of course, there may exists other methods sharing such a capacity. For example Shor’s space dilatation
in the direction of two successive subgradients (see [14]) has been tested on simple examples and avoids the
singularities. In order to compare it with our method, it would be necessary to test it on real examples of same
kind as those of Section 4.
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