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INPUT-TO-STATE STABILITY WITH RESPECT TO MEASUREMENT

DISTURBANCES FOR ONE-DIMENSIONAL SYSTEMS ∗

Nicolas Chung Siong Fah
1

Abstract. We consider one-dimensional affine control systems. We show that if such a system is
stabilizable by means of a continuous, time-invariant feedback, then it can be made input-to-state
stable with respect to measurement disturbances, using a continuous, periodic time-varying feedback.
We provide counter-examples showing that the result does not generally hold if we want the feedback
to be time-invariant or if the control system is not supposed affine.

Résumé. Nous étudions des systèmes de contrôle affines de dimension un. Nous montrons que si un
tel système est stabilisable à l’aide d’un feedback continu indépendant du temps, alors il peut aussi
être rendu “input-to-state stable” par rapport aux erreurs de mesure à l’aide d’un feedback continu
dépendant périodiquement du temps. Nous donnons en outre des contre-exemples montrant que ce
résultat est en général faux si on ne considère que des feedbacks indépendants du temps, ou si le
système étudié n’est pas affine.
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1. Introduction

When we study, in practice, the response of a feedback system to a control, we need to take into account
exogenous disturbances that can be added to the system or the control. Stabilizability does provide natural
robustness (see Sect. 2) on compact sets, but this robustness may decrease to zero as the size of the set grows to
infinity. Input-to-state stability (ISS) was introduced by Sontag in [1] in order to deal with far from equilibrium
robustness. Control disturbances, i.e. errors added to the control signal before it reaches the plant, have been
widely studied, and we know from [1] that if an affine control system can be made globally asymptotically stable
(GAS) with a time-invariant feedback, then it can also be made ISS with a (generally different) time-invariant
feedback.

The same kind of study has been led for errors added to the measurement input before it reaches the controller,
called measurement disturbances. A counter-example has shown (Freeman [2]) that there is generally no similar
result in dimensions higher than 2. Nevertheless, a similar result does hold for those systems that can be put
in strict feedback form (see [3]). The problem remains open for other systems.
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One-dimensional strict feedback form systems can be written as

ẋ = f(x) + ug(x)

where x, u ∈ R, f and g are real continuous functions and moreover

∀y ∈ R, g(y) 6= 0. (1)

Freeman and Kokotovic prove that if such a system can be made GAS with a time-invariant continuous feedback,
then it can be made ISS for measurement disturbances with a time-invariant continuous feedback.

In Section 2, we show that we can loosen restriction (1) to allow g to have zeros, whose set we must nevertheless
suppose bounded.

In Section 3, we give a counter-example showing that restriction (1) cannot be completely lifted, even we
suppose g of class C∞.

We show in Sections 4, 5 and 6 how to lift the restriction (1) if we allow the use of periodic time-varying
feedbacks. Precisely, we prove the following theorem

Theorem 1. Consider the system

ẋ = f(x) + ug(x) (2)

where x ∈ R is the state, u ∈ R the control, f : R→ R and g: R→ R are continuous.
Suppose there exists some continuous time-invariant feedback making the closed-loop plant GAS.
Then, for any period T > 0, there exists a continuous T -periodic time-varying feedback making the closed-loop

plant ISS with respect to measurement disturbances.
Moreover, if the set of g’s zeros is bounded, the feedback can be taken time-invariant.

The interest of time-varying feedbacks compared to stationary feedbacks was first stressed when Sontag and
Sussmann proved in [4] that one dimensional state nonlinear control systems which are controllable can made
GAS by means of time-varying feedback laws. This result was extended to a nonholomic cart by Samson in [5]
and to many systems in higher dimension by Coron in [6] and [7]. It was extended to output feedback laws by
Coron in [8].

In [9], Freeman applies periodic-time varying feedbacks to affine systems for a slightly different problem. He
studies ISS for measurement disturbances with systems that are only partially observable. More precisely, the
sign of g in equation (2) is still supposed constant, but unknown.

Finally, in Section 7, we provide a further counter-example showing that our result does not hold in general
for non-affine control systems.

2. The case where the zeros of g are bounded

A function γ: R+ → R is of class K if it is continuous, strictly increasing, and if γ(0) = 0. The function γ is
of class K∞ if moreover it is not bounded.

A function β: R+ × R+ → R+ of class KL if for each fixed t, the mapping β(., t) is of class K and for each
fixed s the mapping β(s, .) is decreasing to zero on t as t→ +∞.

When d ∈ L∞(R+), we note ‖d‖∞ := Sup{d(t); t ≥ 0}.

ISS was first defined by Sontag in [1]. We adapt his definition to our problem of ISS of affine systems for
measurement disturbances. From now on, ISS will mean input-to-state stability for measurement disturbances.

Definition 1. A time-invariant feedback u ∈ C0(R;R), such that u(0) = 0, makes the system (2) ISS if and
only if there exists a function γ of class K and a function β of class KL such that any continuous solution of
the closed-loop plant

ẋ = f(x) + u(x+ d)g(x),
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where d: R+ → R is a measurable essentially bounded function of t, exists for all t ≥ 0, and satisfies

|x(t)| < β(|x(0)|, t) + γ(‖d‖∞).

We also need the following characterization of ISS (Sontag and Wang [12]):

Proposition 1. A time-invariant feedback u ∈ C0(R,R), such that u(0) = 0, makes the system (2) ISS if and
only if there exists a function γ0 of class K and a function γ1 of class K such that any solution of the closed-loop
plant

ẋ = f(x) + u(x+ d)g(x),

where d: R+ → R, is a measurable essentially bounded function of t, exists for all t ≥ 0, is bounded, and satisfies

‖x‖∞ ≤ γ0(|x(0)|) + γ1(‖d‖∞) (3)

and

limt→∞|x(t)| ≤ γ1(limt→∞|d(t)|). (4)

We also use the following lemma due to Sontag [1]:

Lemma 1. Assume there exists a function V : R→ R, functions α1, α2 of class K∞ such that

∀y ∈ R, α1(|y|) ≤ V (y) ≤ α2(|y|),

and γ of class K such that, for any real number δ and y,

|y| > γ(|δ|) =⇒
∂V

∂y
(y)[f(y) + u(y + δ)g(y)] < 0. (5)

Then the closed-loop system is ISS for measurement disturbances.

In the one-dimensional case, we can always take V (y) = α1(y) = α2(y) = y2/2.

Remark 1. We can assume with no loss of generality that γ is greater than identity. This implies that we can
separate the study for x > 0 and for x < 0. Proofs for x < 0 can be deduced from those for x > 0 by considering
the system ẋ = f̃(x) + ug̃(x), where f̃(x) = −f(−x) and g̃(x) = −g(−x).

We study system (2), and we suppose in this section that the set

{y ≥ 0; g(y) = 0}

is bounded. Let a be g’s largest positive zero if g has a zero on (0,+∞), and let a := 1 otherwise.
Without any loss of generality, we can assume

∀y > a, g(y) > 0. (6)

We also assume that the system can be made GAS by means of a time-invariant, continuous feedback w: R→ R
such that w(0) = 0.

Note V the standard Lyapunov function V (y) := y2

2 . GAS is equivalent to V̇ < 0 along the trajectories of
ẋ = f(x) + w(x)g(x). In particular,

∀y > 0, f(y) + w(y)g(y) < 0. (7)

It is known that stabilizability provides us with some natural robustness to measurement disturbances. For
example, we have in [10] or [11],
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Theorem 2. If w is a continuous globally asymptotically stabilizing feedback, there exists a non-negative func-
tion rm ∈ C∞(R+ \ {0};R+ \ {0})∩ C0(R+) such that, for any continuous d: R→ R satisfying

∀y ∈ R, |d(y)| ≤ rm(y),

zero is uniformly GAS for the system

ẋ = f(x) + w(x+ d(x))g(x).

Unfortunately, this is not enough to grant input-to-state stability, as rm(y) is allowed to tend to zero when y
grows to infinity. This stresses the fact that ISS is a problem at infinity. Indeed, any stabilizing feedback w
gives us some robustness for small initial conditions. Therefore, our main task consists in the construction of
some feedback v that provides us with Lemma 1 conditions for large x. We then show how to “glue together”
v and w to get the ISS property.

Define v: R+ → R a continuous function such that v(0) := 0 and satisfying the following property:

∀y > 3a, v(y) ≤Min
{
w(z); z ∈

[y
2
, 2y
]}
· (8)

Let k ∈ C∞(R+; [0, 1]) be an increasing function such that

∀y ≤ 9a, k(y) := 0, (9)

∀y ≥ 10a, k(y) := 1. (10)

Then the feedback

u := (1− k)w + kv (11)

makes the closed-loop system ISS.

Indeed, the closed-loop system can be written as

ẋ = (1− k(x))(f(x) + w(x)g(x)) + k(x)(f(x) + v(x)g(x)).

Properties (6) to (11) show that ∀x > 0, xẋ < 0, so that u is indeed a stabilizing feedback. As the inequality
(7) is strict, and all the functions continuous, we can find a function rm ∈ C0(R+;R+) such

∀y > 0, rm(y) > 0,

and

∀y > 0, ∀|δ| ≤ rm(y), y(f(y) + w(y + δ)g(y)) < 0. (12)

We choose rm strictly increasing on the interval [0, 20a] and rm(0) = 0.
Finally, let r be a continuous, non-negative, strictly increasing function such that

∀y ≤ 20a, r(y) :≤ rm(y), (13)

∀y ≥ 0, r(y) :≤ y/2. (14)

and moreover r(y)→ +∞ as y → +∞.
By (8),

∀y > 6a, ∀|δ| < y/2, v(y + δ) ≤ w(y),
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so that, with (6),

∀y ≥ 6a, ∀|δ| ≤ y/2, y(f(y) + v(y + δ)g(y)) ≤ y(f(y) + w(y)g(y)) < 0. (15)

By (10),

∀y ≥ 20a, ∀|δ| ≤ y/2, k(y + δ) = 1.

With (12) and (13), we get

∀y ≥ 0, ∀|δ| ≤ r(y), (1− k(y + δ))(f(y) + w(y + δ)g(y)) ≤ 0. (16)

Then, combining (12) and (15), and using the properties (9) and (10) of k, and the properties (13) and (14) of
r, we get

∀y > 0, ∀|δ| < r(y), y(f(y) + u(y + δ)g(y)) < 0. (17)

Then γ = r−1 is a class K function, and replacing r by γ−1 in (17) gives the property required in Lemma 1 for
ISS.

3. A counter-example in the general case

We consider equation (2), but we now allow g to have a non-bounded set of zeros. We show in this section
that we can pick f and g of class C∞ such that the system is stabilizable, but that no continuous time-invariant
feedback can make the closed-loop system ISS. Our counter-example is based on the following idea: near a
point x where f(x) = 0, if a stabilizing feedback’s sign varies too quickly, we can always manage to construct
a disturbance that will “choose” the wrong sign for u, and thus the wrong sign for ẋ, destroying the system’s
stability.

Take

g(y) = cos(y2),

and consider the points xn =
√
nπ. We have

g(xn) = (−1)n. (18)

Choose f of class C∞ satisfying

∀n ∈ N, f(xn) = 0, (19)

∀y ≥ 0, f(y) ≤ 0, (20)

∀y ≥ 0, g(y) = 0⇒ f(y) < 0, (21)

e.g. f(y) = −y sin2(y2). We check with (20) and (21) that taking u(y) = −yg(y) makes the closed-loop system
globally asymptotically stable.

Let w be a continuous time-invariant stabilizing feedback. The closed-loop system satisfies ∀x ∈ R \ {0}, ẋx
< 0. Therefore, if y 6= 0 and f(y) = 0, we must have yw(y)g(y) < 0. In particular, with (18) and (19), we
get w(xn)w(xn+1) < 0 for all n ∈ N. But for any arbitrary constant δ, and a big enough p ∈ N, we have
xp+1 − xp ≤ δ.

This implies that if we take dp(t) = xp+1 − xp as the measurement disturbance, the closed-loop system
ẋ = f(x) + u(x+ dp)g(x) satisfies

f(xp) + w(xp + dp)g(xp) > 0.
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Consequently, any trajectory of the closed-loop system such that x(0) ≥ xp satisfies

∀t ≥ 0, x(t) ≥ xp.

This construction is true for any large enough p, and xp → +∞ when p→ +∞. We have thus found disturbances
dp such that

limt→∞|dp(t)| → 0 when p→ +∞,

and corresponding trajectories yp such that

limt→∞|yp(t)| → +∞when p→ +∞.

Therefore, there cannot be any function γ1 of class K such that (4) is satisfied, and our system cannot be made
ISS using a continuous time-invariant feedback.

4. Construction of an ISS time-varying feedback

In a time-varying framework, definition 1 is no longer adequate. A definition of ISS for time-varying systems
was given by Lin in [13].

Definition 2. A feedback u ∈ C0(R × R,R), such that for all t ∈ R, u(0, t) = 0, makes the system (2) ISS
if and only if there exists a function γ of class K and a function β of class KL such that any solution of the
closed-loop plant

ẋ = f(x) + u(x+ d, t)g(x),

where d is a measurable essentially bounded disturbance, and with the initial condition

x(t0) = x0

exists for all t ≥ t0, and satisfies

|x(t)| < β(|x0|, t− t0) + γ(‖dt0‖∞), (22)

where dt0 is the function defined by dt0(t) := 0 if t < t0, and dt0(t) := d(t) for t ≥ t0.

We study the control system (2), that we suppose GAS by means of a continuous time-invariant feedback.
Let

Z := {y ∈ R+; g(y) = 0}·

In Sections 4 and 5, we assume that for some α > 0, Z ∩ [α,+∞) is a discrete and infinite set, and can thus be
described as a strictly increasing, unbounded sequence (an)n∈N. The other cases shall be treated in Section 6.
As we said in Remark 1, we treat explicitly only the case x ≥ 0. We can assume with no loss of generality that

∀y ∈ (a0, a1), g(y) > 0. (23)

As the system is stabilizable, and as f is continuous, yf(y) < 0 in neighbourhoods of positive real numbers
where g is zero. In particular,

∀n > 0, ∀u ∈ R, f(an) + ug(an) = f(an) < 0. (24)

This gives us one of the system’s key properties: whatever feedback we may apply, for any solution of the control
system (2)

(x(t0) ≤ an)⇒ (∀t ≥ t0, x(t) ≤ an). (25)
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The strategy of the proof consists in constructing a periodic time-varying feedback, of arbitrary chosen period
T > 0, so that the closed-loop system satisfies the following property:

∀n > 0, 0 ≤ x(0) ≤ an+1 ⇒ 0 ≤ x(T ) ≤ an.

All trajectories are forced in finite time into the interval (0, a1). The trajectories near zero are then stabilized
like in Section 2.

The main difficulty we face when we allow g’s zeros to be unbounded is the following. In Section 2, equa-
tions (8) and (11) show us how to modify any stabilizing feedback w to enforce robustness: for large x, replace
w by Min{w(y); y ∈ [x2 , 2x]}. Of course, this construction relied on the fact that g is positive on (a,+∞). If
we had supposed g negative on (a,+∞), we should have taken Max{w(y); y ∈ [x2 , 2x]} instead. But in the new
situation, where g does not have a fixed sign near infinity, neither of these modifications works. However, if
we allow the feedbacks to be periodic time-varying, we will be able treat separately in time the regions where
g is non-negative, and those where g is non-positive. Equation (25) will once again be decisive in assuring us
that while we treat trajectories situated in the regions where g is positive, no great harm can be done to the
trajectories passing through regions where g is negative.

Let T > 0 be our feedback’s period. Let w be some continuous time-invariant feedback stabilizing system
(2) such that w(0) = 0. As in the previous section, w will provide robustness near zero. Like in (12), we can
find a continuous function rm: R+ → R such that rm(y) > 0 for y > 0, and

∀y > 0, ∀δ ∈ R, |δ| ≤ rm(y)⇒ f(y) + w(y + δ)g(y) < 0. (26)

We can suppose that rm is strictly increasing on [0, a1] and that

∀y ∈ R+, rm(y) ≤
y

2
·

Recall from (24) that f is continuous and negative in the neighbourhood of the points an. We can thus define
a function B: (an)n∈N → R so that, for n > 0, B(an) < an is a point such that

(ẋ = f(x), x(0) ≤ an)⇒ (x(T/6) ≤ B(an)), (27)

and a function C: (an)n∈N → R so that, for n ≥ 0, C(an) > an is a point such that:

(ẋ = f(x), x(0) ≤ C(an))⇒ (x(T/6) ≤ an). (28)

We choose these points so that ∀n ≥ 0, C(an) < B(an+1), and so that

∀n ≥ 1, ∀y ∈ [B(an), C(an)], f(y) < 0. (29)

Let B(a0) := 0.

Let ṽ ∈ C0(R+,R−) be such that

∀n ≥ 0, ∀y ∈ [C(an), B(an+1)], ṽ(y) ≤ −2
(B(an+1)− C(an)) 6

T + Max(f(y), 0)

|g(y)|
· (30)

Then let v be defined as:

∀y ≥ 0, v(y) := Min{ṽ(z); z ∈ [y/2, 2y]} · (31)
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The function v is also continuous and non-positive, and

∀y > 0, ∀δ ∈ [−y/2, y/2], v(y + δ) ≤ ṽ(y). (32)

The function sin(2πt/T )v provides robustness far from zero.

As in Section 2, we must define a function k that will “glue” w and v together: equation (23) gives us

∀y ∈ [a0, a1], ∀t ∈ [0, T/2], sin(2πt/T )ṽ(y)g(y) ≤ 0.

As f(a1) < 0, we can therefore define p ∈ R a point such that a0 < p < a1, and t1 ∈ R a time such that
0 < t1 < T/2, and (

ẋ =
1

2
(f(x) + sin(2πt/T )ṽ(x)g(x)), x(0) ≤ a1

)
⇒ (x(t1) ≤ p) . (33)

Properties (23) and (32) imply that, if d is a measurable essentially bounded function and x a continuous
function such that

ẋ(t) =
1

2
(f(x(t)) + sin(2πt/T )v(x(t) + d(t))g(x(t))), (34)

x(0) ≤ a1, (35)

|d(t)| ≤ |x(t)|/2 for t a.e. in R+, (36)

then

x(t1) ≤ p. (37)

Likewise, inequality (26) allows us to define a point q ∈ R and a time t2 ∈ R such that a0 < q < p and
0 < t1 < t2, and, if d is a measurable essentially bounded function and x a continuous function such that

ẋ(t) =
1

2
(f(x(t)) + w(x(t) + d(t))g(x(t))), (38)

x(t1) ≤ p, (39)

|d(t)| ≤ rm(x(t)) for t a.e. in R+, (40)

then

x(t2) ≤ q. (41)

As f(a1) < 0, we can choose p and q such that

∀q ≤ y ≤ a1, f(y) < 0. (42)

Let k be an increasing function in C∞(R, [0, 1]) satisfying

∀y ≤ q + (p−q3 ), k(y) := 0,

∀q + (p−q3 ) ≤ y ≤ p− (p−q3 ), 0 ≤ k(y) ≤ 1
2 ,

∀p− (p−q3 ) ≤ y ≤ p+ (a1−p
3 ), k(y) := 1

2 ,

∀p+ (a1−p
3 ) ≤ y ≤ a1 − (a1−p

3 ), 1
2 ≤ k(y) ≤ 1,

∀a1 − (a1−p
3 ) ≤ y, k(y) := 1.

(43)
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Let r be a function of class K∞ such that

∀y ≥ 0, r(y) ≤ y/2, (44)

∀y ≤ a1, r(y) ≤ rm(y), (45)

and, moreover,

∀y ≥ a1, r(y) ≤ y − a1 +
a1 − p

3
, (46)

∀y ∈ [p, a1], r(y) ≤ y − p+
p− q

3
, (47)

∀y ∈ [q, p], r(y) ≤ p− y +
a1 − p

3
, (48)

∀y ∈ [a0, q], r(y) ≤ q − y +
p− q

3
· (49)

Then the feedback

u(x, t) := sin(2πt/T )v(x)k(x) + w(x)(1 − k(x)) (50)

makes the closed-loop system ISS.

5. Proof of Theorem 1 in the discrete case

Lemma 2. For all n > 0, if x: R+ → R and d: R+ → R satisfy

ẋ = f(x) + u(x+ d, t)g(x), (51)

0 ≤ x(0) ≤ an+1, (52)

an ≤ x(t) ≤ an+1 ⇒ |d(t)| ≤ r(x(t)) for t a.e in R+ (53)

then we have x(T ) ≤ an.

Proof. The result follows immediately from (25) when x(0) ≤ an. Now suppose an < x(0) ≤ an+1. First
consider the case when

∀y ∈ (an, an+1), g(y) > 0. (54)

The definition (43) of k and (50) of u imply that

∀y ≥ a1 −

(
a1 − p

3

)
, u(y, t) = sin(2πt/T )v(y). (55)

Then (32), (46) and (55) give

(y > a1, |δ| ≤ r(y), t ∈ [0, T/2])⇒ u(y + δ, t) ≤ 0, (56)

(y > a1, |δ| ≤ r(y), t ∈ [T/2, T ])⇒ u(y + δ, t) ≥ 0. (57)

Recall that an < C(an) < B(an+1) < an+1 (see (28) and (27)).

First, we show that x(T/6) ≤ B(an+1). Indeed, either x(0) ≤ B(an+1) and, since (29), (54), and (56) give us

∀t ∈ [0, T/2], ∀|δ| ≤ r(B(an+1)), f(B(an+1)) + u(B(an+1) + δ, t)g(B(an+1)) < 0, (58)
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we have x(T/6) ≤ B(an+1).
Or B(an+1) < x(0) < an+1. Then (54) and (56) implies

∀t ∈ [0, T/6], ∀y ∈ [B(an+1), an+1], ∀|δ| ≤ r(y), f(y) + u(y + δ, t)g(y) ≤ f(y), (59)

which, with (27), implies that ∃τ ∈ [0, T/6) such that x(τ) = B(an+1). Finally, (58) shows that x(T/6)
≤ B(an+1).

Then, x(T/3) ≤ C(an). Indeed, either x(T/6) ≤ C(an), and since (29), (54), and (56) give us

∀t ∈ [0, T/2], ∀|δ| ≤ r(C(an)), f(C(an)) + u(C(an) + δ, t)g(C(an)) < 0, (60)

we have x(T/3) ≤ C(an).
Or C(an) < x(T/6) < B(an+1). Equation (55) shows that when y > a1 and t ∈ [T/6, T/3],

u(y, t) ≤
v(y)

2
·

We deduce from (32) that

∀y > a1, ∀|δ| ≤ r(y), ∀t ∈ [T/6, T/3], u(y + δ, t) ≤
ṽ(y)

2
,

so that the definition (30) of ṽ and (54) give us

∀y ∈ [C(an), B(an+1)], ∀|δ| ≤ r(y), ∀t ∈ [T/6, T/3], f(y) + u(y + δ, t)g(y)

≤ f(y)− (B(an+1)− C(an))
6

T
−Max(f(y), 0) (61)

≤ −(B(an+1)− C(an))
6

T
· (62)

If we integrate this last inequality along a trajectory x, we find that

∃τ ∈ (T/6, T/3), x(τ) = C(an),

and (60) finally shows that x(T/3) ≤ C(an).
Then, x(T/2) ≤ an. Indeed, either x(T/3) ≤ an, and (25) implies that x(T/2) ≤ an.
Or an < x(T/3) < C(an), then (29), (54), and (56) give us

∀t ∈ [0, T/2], ∀y ∈ [an, C(an)], ∀|δ| ≤ r(y), f(y) + u(y + δ, t)g(y) ≤ f(y), (63)

which, with (28), implies the existence of τ in (T/3, T/2) such that x(τ) = an. Equation (25) then gives us
x(T/2) ≤ an.

Finally, the same equation (25) shows that x(T ) ≤ an.
If g is negative on (an, an+1), we still have x(T/2) ≤ an+1, and, the same argument used above for g > 0

and t ∈ [0, T/2] shows that x(T ) ≤ an, which ends the proof of Lemma 2.
We now show a similar Lemma for n = 0: 2

Lemma 3. If x: R+ → R and d: R+ → R satisfy

ẋ = f(x) + u(x+ d, t)g(x), (64)

0 ≤ x(0) ≤ a1, (65)

q ≤ x(t) ≤ a1 ⇒ |d(t)| ≤ r(x(t)) for t a.e in R+ (66)

then we have x(T ) ≤ q.
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Proof. From (42), (23), and (32) we get

∀y ∈ [q, a1], ∀|δ| ≤ r(y), ∀t ∈ [0, T/2], f(y) + sin(2πt/T )v(y + δ)g(y) < 0. (67)

Properties (26) and (44) imply that

∀y ∈ [q, a1], ∀|δ| ≤ r(y), f(y) + w(y + δ)g(y) < 0. (68)

We first prove that x(t1) ≤ p (the time t1 was defined in (33)). Indeed, either x(0) ≤ p, and the definition (50)
of u, along with (67) and (68) show that

∀t ∈ [0, T/2], ∀|δ| ≤ r(p), f(p) + u(p+ δ, t)g(p) < 0. (69)

Therefore, x(t1) ≤ p.
Or p < x(0) ≤ a1. Then, for all y ∈ [p, a1] and all |δ| ≤ r(y), the property (47) of r shows that y+δ ≥ p− p−q

3 ,

so that (43) gives us k(y + δ) ≥ 1
2 . This and equation (68) imply that

∀t ∈ [0, T/2], f(y) + u(y + δ, t)g(y) ≤
1

2
(f(y) + sin(2πt/T )v(y + δ)g(y)). (70)

If we integrate this inequality along the trajectory x, properties (37) and (69) show that x(t1) ≤ p.

We next show that x(t2) ≤ q. Indeed, either x(t1) ≤ q, and the definition (50) of u, along with (67) and (68)
show that

∀t ∈ [0, T/2], ∀|δ| ≤ r(q), f(q) + u(q + δ, t)g(q) < 0. (71)

Therefore, x(t1) ≤ q.
Or q < x(t1) ≤ p. Then, for all y ∈ [q, p] and all |δ| ≤ r(y), the property (48) of r shows that y+δ ≤ p+ a1−p

3 ,

so that (43) gives us k(y + δ) ≤ 1
2 . This and equation (67) imply that

∀t ∈ [0, T/2], f(y) + u(y + δ, t)g(y) ≤
1

2
(f(y) + w(y + δ)g(y)). (72)

If we integrate this inequality along the trajectory x, properties (41) and (71) show that x(t2) ≤ q.

Finally, (71) shows that x(T/2) ≤ q, which ends the proof of Lemma 3. 2

We now define the functions β and γ needed in Definition 2 for the ISS property. Properties (45) and (26)
show that

∀0 < y ≤ q, ∀|δ| ≤ r(y), f(y) + w(y + δ)g(y) < 0.

Like in Lemma 1, this implies that if x is a solution of the equation ẋ = f(x) + w(x + d)g(x), where d is a
measurable essentially bounded disturbance such that ‖d‖∞ ≤ r(q), and if 0 ≤ x(0) ≤ q, then there exists a
function β0 of class KL and a function γ0 of class K∞ such that

∀t ≥ 0, |x(t)| ≤ β0(x(0), t) + γ0(‖d‖∞). (73)

We also suppose that

∀x ∈ [0, q], ∀t ≤ 0, β0(x, t) < a1. (74)

Definition 3. Let β be a function of class KL such that:
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• If an < y ≤ an+1 and n > 0,
∀t ∈ [0, 2T ], β(y, t− t0) ≤ an+1,

∀1 ≤ k ≤ n, ∀t ∈ [(k + 1)T, (k + 2)T ], β(y, t− t0) ≤ an−k+1,

∀t ≥ (n+ 2)T, β(y, t− t0) ≥ β0(q, t− (n+ 2)T ).

• If q < y ≤ a1, {
∀t ∈ [0, 2T ], β(y, t− t0) ≤ a1,

∀t ≥ 2T, β(y, t− t0) ≥ β0(q, t).

• If 0 ≤ y ≤ q, then ∀t ≥ 0, β(y, t− t0) ≥ β0(y, t− t0).

Note that (74) is needed for this definition to make sense on [q, a1].

Definition 4. Let γ be a continuous function of class K∞ such that
∀n > 0, ∀δ ∈ [r(an), r(an+1)], γ(δ) ≥ an+1,

∀δ ∈ [r(q), r(a1)), γ(δ) ≥ a1,

∀δ ∈ [0, r(q)), γ(δ) ≥ γ0(δ).

These two functions satisfy the requirements of Definition 2 of ISS.
Indeed, let d: R+ → R be a measurable, essentially bounded measurement disturbance and let x: R+ → R

be a trajectory of the closed-loop system

ẋ(t) = f(x(t)) + u(x(t) + d(t), t)g(x(t)) (75)

x(t0) = x0 > 0, (76)

where t0 ∈ [0, T ), and x0 ≥ 0. Define n ∈ N so that an < x0 ≤ an+1. First suppose that n > 0.

Case 1. If ‖d‖∞ ≥ r(an), then γ(‖d‖∞) ≥ an+1. But (25) shows that for all times t ≥ t0, |x(t)| ≤ an+1, so
that |x(t)| ≤ γ(‖d‖∞) ≤ β(x0, t− t0) + γ(‖d‖∞).
Case 2. If there exists an integer 1 ≤ p ≤ n such that ‖d‖∞ ∈ [r(ap−1), r(ap)) and if ‖d‖∞ > r(q), then
(25) shows that x(T ) ≤ an+1 and Lemma 2 shows that for all integer j ∈ [0, n + 1 − p] and all times t ∈
[(j+1)T, (j+2)T ), x(t) ≤ an+1−j . We can check with the definition of β that for all times t ∈ [t0, T+(n+2−p)T ),
|x(t)| ≤ β(x0, t− t0) ≤ β(x0, t− t0) + γ(‖d‖∞).
Then (25) shows that for all times t ≥ T + (n + 2− p)T , x(t) ≤ ap and we can check with the definition of γ
that x(t) ≤ γ(‖d‖∞) ≤ β(x0, t− t0) + γ(‖d‖∞).
Case 3. If ‖d‖∞ ≤ r(q), like in the previous paragraph, Lemma 2 and the definition of β shows that for all
times t ∈ [t0, (n + 2)T ), |x(t)| ≤ β(x0, t − t0) ≤ β(x0, t − t0) + γ(‖d‖∞). Moreover, x((n + 1)T ) ≤ a1, and
Lemma 3 shows that x((n + 2)T ) ≤ q. The bound on d and the definition of u then shows that for times
t ≥ (n+ 2)T , the trajectory x obeys the equation ẋ = f(x) + w(x+ d)g(x).
Finally, (73) shows that for all times t ≥ (n+ 2)T , |x(t)| ≤ β0(x(n+ 2)T, t− (n+ 2)T ) + γ0(‖d‖∞) ≤ β0(q, t−
(n+ 2)T ) + γ0(‖d‖∞) ≤ β(x0, t− t0) + γ(‖d‖∞). Therefore, the trajectories all satisfy property (22).

In the cases where x0 ∈ (q, a1] or x0 ∈ [0, q], the same arguments as above show that the trajectories also
satisfy (22). Therefore, u does make the closed-loop system ISS.

6. The general case

At this point, we have only completed our proof for Z bounded or discrete near infinity. Let us treat straight
away a couple of other cases:
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1. If g ≡ 0, there is nothing to do. The system being GAS is naturally ISS.
2. If there exists some b > 0 such that g ≡ 0 on [b,+∞), it turns out that we do not need a time-varying

feedback. As a matter of fact, the situation is very similar to that studied in Section 2. Using

∀y ∈ [b,+∞), ∀u ∈ R, f(y) + ug(y) = f(y) < 0,

the proof goes along the same lines if we just replace the function v defined in (8) by the zero function.

From now on, we suppose that Z is not discrete and that for all A > 0, there are some real numbers a > A and
b > A such that g(a) 6= 0 and g(b) = 0.

In this last case, the strategy will be the following: for some a to be defined, we select from Z ∩ [a,+∞) a
discrete, strictly increasing, unbounded subset (zn)n∈N in an appropriate way. Then if we define u as if (zn)n∈N
were the set of g’s zero, like in the previous section (with a few modifications), the trajectories of the closed-loop
system (with measurement disturbances) satisfy the property

∀n > 0, ∃j ∈ N, x(0) ≤ zn+1 ⇒ x(jT ) ≤ zn,

allowing us to conclude in the same way.

6.1. Selecting a “significant” subset of zeros

Choose a so that we can define I := (a, a) the biggest subinterval of R+ such that a ∈ I and ∀y ∈ I, g(y) 6= 0,
and such that a > 0 and g(a) = g(a) = 0. Let

Z ′ = Z ∩ [a,+∞).

We shall use the following conventions:

Sup{y; y ∈ ∅} = −∞

Inf{y; y ∈ ∅} = +∞.

Definition 5. For each z ∈ Z, define a “following zero” F (z) ∈ Z:
Case 1. If Inf{g(y) = 0; y > z} > z, we say that z is (an) isolated (zero) on its right. Then let

F (z) := Min{g(y) = 0; y > z}, (77)

Case 2. If Inf{g(y) = 0; y > z} = z, and Inf{g(y) 6= 0; y > z} > z, we say that z has an interval of zeros
on its right. Then let

F (z) := Inf{g(y) 6= 0; y > z}, (78)

i.e. F (z) is the largest real number such that

∀y ∈ [z, F (z)], g(y) = 0, (79)

so that on intervals of time where x(t) ∈ [z, F (z)], the trajectory satisfies the equation

ẋ = f(x).

Moreover, on that compact interval, f is negative, so that there exists some integer j > 0 such that

x(0) ≤ F (z)⇒ x((j − 1)T ) ≤ z. (80)
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Case 3. If Inf{g(y) = 0; y > z} = z, and Inf{g(y) 6= 0; y > z} = z, we say that z is an accumulation point
(of zeros) on its right. As f(z) < 0 and f is continuous, there exists some point ζ > z, such that

(ẋ = f(x), x(0) = ζ)⇒ x(T/12) < z.

As we assumed that Inf{g(y) = 0; y > z} = Inf{g(y) 6= 0; y > z} = z, we can suppose that g(ζ) 6= 0, and we can
define

F (z) := Sup{g(y) = 0; y < ζ} · (81)

Moreover, this F (z) satisfies

(ẋ = f(x), x(0) = F (z))⇒ x(T/12) < z. (82)

Likewise,

Definition 6. Define a “previous zero” P (z) ∈ Z for all z ∈ Z:
Case 1. If Sup{g(y) = 0; y < z} < z, we say that z is (an) isolated (zero) on its left. Then let

P (z) := Max{g(y) = 0; y < z} if this real number exists, (83)

P (z) := 0 otherwise. (84)

Case 2. If Sup{g(y) = 0; y < z} = z, and Sup{g(y) 6= 0; y < z} < z, we say that z has an interval of zeros
on its left. Then let

P (z) := Sup{g(y) 6= 0; y < z}, (85)

so that on intervals of time where x(t) ∈ [z, F (z)], the trajectory satisfies the equation

ẋ = f(x).

Moreover, on that compact interval, f is negative, so that there exists some integer j > 0 such that

x(0) ≤ z ⇒ x((j − 1)T ) ≤ P (z). (86)

Case 3. If Sup{g(y) = 0; y < z} = z, and Sup{g(y) 6= 0; y < z} = z, we say that z is an accumulation point
(of zeros) on its left. As f(z) < 0 and f is continuous, there exists some point ζ < z, such that

(ẋ = f(x), x(0) = z)⇒ x(T/12) < ζ.

As we assumed that Sup{g(y) = 0; y < z} = Sup{g(y) 6= 0; y < z} = z, we can suppose that g(ζ) 6= 0, and we
can define

P (z) := Inf{g(y) = 0; y > ζ} · (87)

Moreover, this P (z) satisfies

(ẋ = f(x), x(0) = z)⇒ x(T/12) < P (z). (88)

Finally, let P (0) := −1.
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Clearly,
⋃
z∈Z′

(P (z), F (z)) ⊃ [a,+∞). For each n ∈ N, we can extract from the compact interval [a + n, a +

n + 1] ∩ Z ′ a finite family Z ′n such that
⋃

z∈Z′n

(P (z), F (z)) ⊃ [a + n, a + n + 1]. Therefore, we can extract a

countable, discrete subset of Z ′, that we note (zn)n∈N, such that zn+1 > zn for all n ∈ N and⋃
n∈N

(P (zn), F (zn)) ⊃ [a,+∞). (89)

This subset can be chosen such that z0 = a, z1 = a. It is also very important to choose this subset as minimal
in the sense that there is no smaller subset of Z ′ satisfying the conditions stated above.

Finally, we prove two technical lemmas.

Lemma 4. There is no n ∈ N such that there exists an non-empty open interval I such that zn ∈ I and I ⊂ Z ′.
Consequently, if zn has an interval of zeros on its right, it cannot have an interval of zeros on its left, and

[zn, F (zn)] is a maximal subinterval of Z ′. Likewise, if zn has an interval of zeros on its left, it cannot have an
interval of zeros on its right, and [P (zn), zn] is a maximal subinterval of Z ′.

Proof. If there is such an I, we can suppose it maximal in the sense that there is no greater open interval
included in Z ′ and containing zn. Then the definitions of P (zn) and F (zn) show that I = (P (zn), F (zn)). Let
j < n be an integer. If zj ∈ I, then (P (zj), F (zj)) = I. The minimal character of (zn)n∈N therefore implies
that zj ≤ P (zn). Likewise, if j > n, zj ≥ F (zn).

As we have (89), either there is some j < n such that F (zj) > P (zn), or there is some j > n such that
P (zj) < F (zn). Suppose we are in the first case (the proof for the second case goes along the same lines). Then
we also have

F (zj) < F (zn), (90)

otherwise (P (zn), F (zn)) ⊂ (P (zj), F (zj)), which is impossible due to the minimal character of (zn)n∈N. Thus,
F (zj) ∈ I.

But this situation is only possible if zj has a whole interval of zeros on its right. Indeed, if zj were isolated on
its right, then (77) would imply that F (zj) is isolated on its left. That would contradict F (zj) ∈ I. If zj were
an accumulation point on its right, then (82) would define F (zj) as a Sup of points y such that g(y) = 0, and
y < ζ, where g(ζ) 6= 0. As g is zero in I, that would imply F (zj) ≥ F (zn), which would contradict F (zj) ∈ I.

Then, according to (79), [zj , F (zj)] ∈ Z ′, and moreover F (zj) is the largest number such that this property is
true. As I = (P (zn), F (zn)), zj ≤ P (zn), and F (zj) > P (zn), we must have F (zj) = F (zn), which contradicts
(90), and finishes the proof of Lemma 4. 2

Lemma 5. We can choose the sequences (zn)n∈N, P (zn)n∈N, and F (zn)n∈N such that all three are strictly
increasing.

Proof. The way we constructed (zn)n∈N does not automatically grant this property for the sequences or previous
and next zeros. More precisely, using the definition of P , the minimal character of (zn)n∈N and Lemma 4 make
it easy to check in each case, except when zn and zn+1 are accumulation points on their left, that we do have
P (zn) < P (zn+1). In the same way, F (zn) < F (zn+1), except when zn and zn+1 are accumulation points
on their right. Note that if P (zn) ≥ P (zn+1), then necessarily F (zn) ≥ F (zn+1) otherwise (P (zn), F (zn)) ⊂
(P (zn+1), F (zn+1)), which would contradict the minimal character of (zn)n∈N. Of course, the symmetrical
assertion is also true. Therefore, the only case where we do not have P (zn) < P (zn+1) and F (zn) < F (zn+1) is
the case where zn and zn+1 are accumulation points on both sides.
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But we can get rid of such cases the following way: if ever P (zN ) ≥ P (zN+1) and F (zN ) ≥ F (zN+1), we
then see that

[a,+∞) ⊂
⋃

0≤n≤N−1

(P (zn), F (zn)) ∪ (P (zN+1), F (zN )) ∪
⋃

n≥N+2

(P (zn), F (zn)).

Moreover, as zN < zN+1, (82) shows that F (zN) also satisfies

ẋ = f(x), x(0) = F (zN )⇒ x(T/12) < zN+1.

Therefore, if you replace the sequence (zn)n∈N by the sequence (zn)n∈N\{N}, and F (zN+1) by F (zN ), you obtain
a new subsequence of Z ′ and new functions F and P that satisfy the same properties as the original ones. We
can repeat this transformation in an ordered way (starting with N = 0) each time we need to. Therefore, we
can always suppose that (zn)n∈N is such that, for all integer n,

P (zn) < P (zn+1), (91)

F (zn) < F (zn+1), (92)

which ends the proof of this lemma. 2

The minimality of (zn)n∈N, along with properties (89), (91), and (92), then show that

F (zn) > P (zn+1). (93)

6.2. Defining the feedback

The definition goes quite along the same lines as Section 4. Define functions w and rm like in (26). For all
z ∈ Z, we have f(z) < 0 and can therefore define some points B(z) < z and C(z) > z such that:

(ẋ = f(x), x(0) ≤ z)⇒ x(T/12) < B(z), (94)

and

(ẋ = f(x), x(0) ≤ C(z))⇒ x(T/12) < z. (95)

Without any loss of generality, we can suppose that, for all n ∈ N,

zn < C(zn) < B(zn+1) < zn+1.

Then let ṽ: [0,+∞)→ (−∞, 0] be a continuous, non-positive function such that, for all n ≥ 0:

1. If ∀y ∈ (zn, zn+1), g(y) 6= 0 (the case we dealt with in Sect. 5), then

∀n ≥ 0, ∀y ∈ [C(zn), B(zn+1)], ṽ(y) ≤ −2
(B(zn+1)− C(zn)) 6

T + Max(f(y), 0)

|g(y)|
· (96)

2. If zn is an accumulation point on its right, and if zn+1 is isolated on its left, ∀y ∈ (P (zn+1), zn+1), g(y) 6= 0,
so that, necessarily P (zn+1) > zn. Then let ṽ satisfy

∀n ≥ 0, ∀y ∈ [C(P (zn+1)), B(zn+1)], ṽ(y) ≤ −2
(B(zn+1)− C(P (zn+1))) 6

T
+ Max(f(y), 0)

|g(y)|
· (97)



MEASUREMENT ERRORS ISS FOR ONE-DIMENSIONAL SYSTEMS 115

Define v, p, q, and k like in section 4 (see respectively (31), (33), (41), and (43)), and let

u(x, t) := m(t)(sin(2πt/T )v(x)k(x) + w(x)(1 − k(x))),

where m is a T -periodic function of class C∞ such that

∀t ∈ R, 0 ≤ m(t) ≤ 1, (98)

and 
∀t ∈ [0, T/12], m(t) := 0,

∀t ∈ [T/6, 5T/6], m(t) := 1,

∀t ∈ [11T/12, T ), m(t) := 0.

(99)

In particular, ∀t ∈ [0, T/12]∪ [11T/12, T ], any trajectory x of the closed-loop system satisfies

ẋ = f(x). (100)

Finally, define r like in Section 4, satisfying properties (44) to (49).

6.3. Proof of theorem 1

Lemma 6. For all n > 0, if x: R+ → R and d: R+ → R satisfy

ẋ = f(x) + u(x+ d, t)g(x), (101)

0 ≤ x(0) ≤ zn+1, (102)

∀t ≥ 0, zn ≤ x(t) ≤ zn+1 ⇒ |d(t)| ≤ r(x(t)), (103)

then there exists some integer j > 0 so that x(jT ) ≤ zn.

Proof. The result follows immediately from (25) when x(0) ≤ zn. Now suppose zn < x(0) ≤ zn+1.
The proof depends on the nature of zn and zn+1:
• If zn is isolated on its right, and zn+1 is isolated on its left, then, according to (77) and (83), ∀y ∈

(zn, F (zn)), g(y) 6= 0, and ∀y ∈ (P (zn+1), zn+1), g(y) 6= 0. With (93), we deduce that for all y ∈ (zn, zn+1), g(y)
6= 0. In that case, the definition (96) of ṽ is the same than in Section 4, and we prove in the same way as
Lemma 2 that if x(0) ≤ zn+1, then x(T ) ≤ zn.
• If zn is an accumulation point on its right, and zn+1 is isolated on its left, then, with the definition (97) of

ṽ, we prove in the same way as in Lemma 2 that if x(0) ≤ zn+1, then

x(T ) ≤ P (zn+1).

Therefore, according to (93), x(T ) ≤ F (zn), which, with (82) and (100), shows that x(13T/12) ≤ zn. Finally,
with (25), we can conclude that

x(2T ) ≤ zn.

• If zn has an interval of zeros on its right, and zn+1 is isolated on its left. We show that this situation
cannot occur. Indeed, (79) gives

∀y ∈ (zn, F (zn)), g(y) = 0,

but (83) implies that
∀y ∈ (P (zn+1), zn+1), g(y) 6= 0.

As we supposed zn+1 > zn, this implies that P (zn+1) ≥ F (zn), which contradicts (93).
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• If zn is isolated on its right and zn+1 is an accumulation point on its left, we can deduce from (88) and
(100) that

x(T/12) ≤ P (zn+1).

But (77) shows that ∀y ∈ (zn, F (zn)), g(y) 6= 0. As P (zn+1) ∈ Z, (93) shows that P (zn+1) ≤ zn. Therefore,
with (25), we get

x(T ) ≤ zn.

• If zn is an accumulation point on its right and zn+1 is an accumulation on its left, then, according to (88),
(100), and (93),

x(T/12) ≤ P (zn+1) < F (zn).

As F (zn) ∈ Z, we can deduce from (25) that x(11T/12) ≤ F (zn). Finally, we use (82) and (100) to show that

x(T ) ≤ zn.

• If zn has an interval of zeros on its right and zn+1 is an accumulation point on its left, then, according to
(88), (100), and (93), x(T/12) ≤ P (zn+1) < F (zn). With (80), we can conclude that there is some integer j > 0
such that

x(jT ) ≤ zn.

• If zn is isolated on its right and zn+1 has an interval of zeros on its left: this situation cannot occur for the
same reasons as its symmetrical situation.
• If zn is an accumulation point on its right and zn+1 has an interval of zeros on its left (86) and (93) shows

that there is some integer j > 0 such that

x((j − 1)T ) ≤ P (zn+1) < F (zn).

Then (82) implies that x((j − 1)T + T/12) ≤ zn, so that

x(jT ) ≤ zn.

• If zn has an interval of zeros on its right and zn+1 has an interval of zeros on its left, we see from (79),
(85), and (93) that ∀y ∈ [zn, zn+1], g(y) = 0, and the same argument as the one we used to prove (80) shows
that there is some integer j > 0 such that

x(jT ) < zn,

which concludes the proof of Lemma 6. 2

Lemma 3 still holds in the general case with the same proof. We then define functions β and γ like in
Section 4 and prove in the same way that they satisfy the requirements of the definition of ISS.

7. A non-linear counter-example

When, in Section 3, we provided our counter-example, we stressed the role played by frequent oscillations in
the sign of g. The proof relied on the fact that a “good” feedback for some point x was not “good” anymore for
a neighbour point, when x is large enough. Using a similar idea, we now prove that a (non-affine) system GAS
by means of a continuous time-invariant feedback cannot generally be made ISS for measurement disturbances,
even if we allow periodic time-varying feedbacks.

What saves ISS in the affine case is the fact that an appropriate feedback can bring back an+1 to an in an
arbitrary (small) lapse of time. By taking a large u of the right sign, one can get an arbitrary large ẋ (except
when g is zero) of any sign. This property can of course no longer be granted for general nonlinear systems.
We are therefore led to consider systems such that f(x, u) has an finite upper or lower bound when u ∈ R, a
bound which vanishes to zero when x→∞.



MEASUREMENT ERRORS ISS FOR ONE-DIMENSIONAL SYSTEMS 117

Theorem 3. The one-dimensional control plant

ẋ = f(x, u) = (u− sin(x2))2 −
x

3(x4 + 3)
, (104)

is GAS by means of a time-invariant continuous feedback, but cannot be made ISS for measurement disturbances
by means of a periodic time-varying continuous feedback.

Proof. The feedback w(y) := sin(y2) makes the closed-loop system GAS.

Consider a continuous, periodic time-varying feedback u(x, t) of given period T > 0 making the closed-loop
system GAS, and let δ > 0 be the bound allowed for measurement disturbances, i.e. ‖d‖∞ ≤ δ.

Let

bn :=
√

2πn (105)

for n ∈ N. There exists an integer N0 such that

∀n ≥ N0, bn+1 − bn < δ. (106)

Define

An := {t ∈ [0,+∞), ∃y ∈ [bn, bn+1], u(y, t) ≥ 0}, (107)

Bn := {t ∈ [0,+∞), ∃y ∈ [bn, bn+1], u(y, t) ≤ 0}, (108)

and mAn := meas(An ∩ [0, T ]), mBn := meas(Bn ∩ [0, T ]).
Finally, introduce the points

xn :=

√
(2n+

3

2
)π, (109)

yn :=

√
(2n+

1

2
)π. (110)

Let us now give some useful estimates. The function x 7→ x
3(x4+3) increases from 0 to 1

12 on the interval [0, 1],

then decreases to 0 on [1,∞). Therefore, we have the global estimate

∀y ≥ 0, ∀u ∈ R, f(y, u) ≥ −
1

12
, (111)

and, with (105), for n ≥ 1, y ∈ [bn, bn+1], and u ∈ R,

f(y, u) ≥ −
y

3(y4 + 3)
≥ −

bn

3(bn
4 + 3)

= −

√
2πn

3(4π2n2 + 3)
· (112)

The following estimates hold when n grows to infinity:

√
2πnT

3(4π2n2 + 3)
∼

T

3(2π)3/2
n−3/2, xn −

√
(2n+

7

6
)π ∼

√
(2n+

11

6
)π − xn ∼

π

6
√

2π
n−1/2,

and

yn −

√
(2n+

1

6
)π ∼

√
(2n+

5

6
)π − yn ∼

π

6
√

2π
n−1/2.
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These estimates imply the existence of an integer N1 such that, for all n ≥ N1:

√
2πnT

3(4π2n2 + 3)
≤ xn −

√
(2n+

7

6
)π, (113)

√
2πnT

3(4π2n2 + 3)
≤

√
(2n+

11

6
)π − xn, (114)

and

√
2πnT

3(4π2n2 + 3)
≤ yn −

√
(2n+

1

6
)π, (115)

√
2πnT

3(4π2n2 + 3)
≤

√
(2n+

5

6
)π − yn. (116)

Choose

n ≥ Max(N0, N1). (117)

It appears from (107) and (108) that mAn +mBn ≥ T , so that one of the two sets has a measure greater than
T/2. Suppose for example that

mAn ≥ T/2. (118)

Let α: R+ → [bn, bn+1] be a measurable T-periodic function such that

∀t ∈ An, u(α(t), t) ≥ 0. (119)

Then consider a continuous trajectory sτ of the closed-loop system:

ẋ = f(x, u(α(t), t)) (120)

with the initial condition sτ (τ) = xn.

Lemma 7. Then sτ (T + τ) > sτ (τ).

Indeed, if we integrate (120) between τ and T + τ , using estimates (112) and (113), and the definition (109)
of xn, we find that

∀t ∈ [τ, T + τ ], sτ (t) ≥

√
(2n+

7

6
)π.

There are two cases:

1. Either ∃t0 ∈ (τ, T + τ ] such that sτ (t0) =
√

(2n+ 11
6 )π, then integrate (120) between t0 and T + τ , using

estimates (112) and (114), as well as (109), to find that

sτ (T + τ) > sτ (τ).
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2. Or ∀t ∈ [τ, T + τ ], sτ (t) ≤
√

(2n+ 11
6 )π.

But then, for all y ∈ [
√

(2n+ 7
6 )π,

√
(2n+ 11

6 )π] , we have sin y2 ≤ − 1
2 . If moreover u ≥ 0, then

f(y, u) ≥ f(y, 0) ≥ (sin y2)2 −
y

3(y4 + 3)
≥

1

4
−Max

{
z

3(z4 + 3)
; z ≥ 0

}
≥

1

4
−

1

12
=

1

6
, (121)

which, with (111), gives us:

sτ (T + τ)− sτ (τ) =

∫ τ+T

τ

ṡτ =

∫
An∩[τ,τ+T ]

ṡτ +

∫
[τ,T+τ ]\An

ṡτ ≥ mAn

1

6
− (T −mAn)

1

12
·

As we supposed in (118) that mAn is greater than T/2, we finally get

sτ (T + τ)− sτ (τ) > 0.

The same lemma can be proved when n is such that mBn is greater than T/2: just consider the trajectories of
the same closed-loop system, but with initial condition sτ (τ) = yn. The proof goes along the same lines, using
estimates (115) and (116) instead of (113) and (114). 2

We now construct a measurable, essentially bounded disturbance d and a trajectory x of the closed-loop
system

ẋ = f(x, u(x+ d, t))

of initial condition x(0) = xn if mAn ≥ T/2 (resp. x(0) = yn if mBn ≥ T/2), such that the limsup of this
trajectory is greater than xn (resp. yn). We treat the case mAn ≥ T/2 (the proof goes along the same lines in
the other case).

Let t0 := T if ∀t ∈ [0, T ), s0(t) ≤
√

(2n+ 11
6 )π. Otherwise, let t0 < T be such that: ∀t ∈ [0, t0), s0(t) ≤√

(2n+ 11
6 )π and s0(t0) =

√
(2n+ 11

6 )π.

By (106) and (117), we have bn+1 − bn < δ. The function α has been defined in (119) such that on [0, T ],
α(t) ∈ [bn, bn+1]. Moreover, t0 has been defined so that on [0, t0], s0(t) ∈ [bn, bn+1]. Therefore, we can define a
measurable disturbance d1: R+ → R essentially bounded by δ such that:

∀t ∈ [0, t0], d1(t) = α(t)− s0(t). (122)

The definition of d1 and (120) show that there exists some trajectory X1 of the closed-loop system

ẋ = f(x, u(x+ d1, t)) (123)

with the initial condition X1(0) = xn such that

∀t ∈ [0, t0], X1(t) = s0(t).

If t0 = T , Lemma 7 shows that X1(T ) > xn. Otherwise, X1(t0) =
√

(2n+ 11
6 )π, then integrate (123) between

t0 and T , using estimates (112) and (114), as well as (109), to find that

X1(T ) > xn.

Now, either ∀t ≥ T, X1(t) > xn, then take d = d1 and x = X1, the function x is a trajectory of the closed-loop
system

ẋ = f(x, u(x+ d, t))
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and its limsup is greater than xn.

Or there is a time τ1 > T such that X1(τ1) = xn. Let t1 = τ1 + T if ∀t ∈ [τ1, τ1 + T ), s0(t) ≤
√

(2n+ 11
6 )π.

Otherwise, let t1 < T be such that: ∀t ∈ [τ1, τ1 + t1), s0(t) ≤
√

(2n+ 11
6 )π and s0(t1) =

√
(2n+ 11

6 )π.

Then let d2 be a measurable measurement disturbance essentially bounded by δ such that

∀t ∈ [0, τ1), d2(t) = d1(t)

and
∀t ∈ [τ1, τ1 + t1), d2(t) = α(t)− sτ1(t).

The definition (120) of sτ1 shows that there exists some trajectory X2 of the closed-loop system

ẋ = f(x, u(x+ d2, t)

with the initial condition X2(0) = xn, and such that

∀t ∈ [0, τ1), X2(t) = X1(t)

and
∀t ∈ [τ1, τ1 + t1], X2(t) = sτ1(t).

Therefore, like above, X2(τ1 + T ) > xn.
By repeating this process as many times as needed, we can define a measurable measurement disturbance d

bounded by δ and some trajectory x of the closed-loop system

ẋ = f(x, u(x+ d, t))

such that x(0) = xn, and
∀t ≥ 0, x(t) = xn ⇒ x(t+ T ) > xn.

This implies that limt→∞x(t) ≥ x(0).
When δ is given, this construction can be done for any large enough n. Moreover, the construction can be

done for any positive δ. We can therefore conclude in the same way as in Section 3 that the system cannot be
made ISS.
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