
ESAIM: Control, Optimisation and Calculus of Variations April 1999, Vol. 4, p. 83–98

URL: http://www.emath.fr/cocv/

APPROXIMATE CONTROLLABILITY AND ITS WELL-POSEDNESS

FOR THE SEMILINEAR REACTION-DIFFUSION EQUATION

WITH INTERNAL LUMPED CONTROLS

Alexander Khapalov
1

Abstract. We consider the one dimensional semilinear reaction-diffusion equation, governed in Ω =
(0, 1) by controls, supported on any subinterval of (0, 1), which are the functions of time only. Using
an asymptotic approach that we have previously introduced in [9], we show that such a system is
approximately controllable at any time in both L2(0, 1) and C0[0, 1], provided the nonlinear term
f = f(x, t, u) grows at infinity no faster than certain power of log | u |. The latter depends on the
regularity and structure of f(x, t, u) in x and t and the choice of the space for controllability. We also
show that our results are well-posed in terms of the “actual steering” of the system at hand, even in
the case when it admits non-unique solutions.

Résumé. On étudie l’équation de la chaleur semi-linéaire sur l’intervalle (0, 1) avec des contrôles
internes sur un sous-intervalle et qui ne sont que des fonctions du temps. Utilisant une approche
asymptotique que nous avons précédemment introduite dans [9], on montre la contrôlabilité approchée
pour tout temps à la fois dans L2(0, 1) et dans C0[0, 1] si le terme non linéaire f = f(x, t, u) ne croit
pas plus vite qu’une certaine puissance de log | u |. Celle-ci dépend de la régularité et de la structure
de f(x, t, u) par rapport à x et t et du choix de l’espace pour la contrôlabilité. On montre aussi que
nos résultats permettent de piloter le système considéré, même dans le cas où l’on n’a pas unicité des
solutions.
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1. Introduction

1.1. Problem background and literature

In the past few years considerable attention has been given to the study of global approximate controllability
of the following initial-boundary value problem for the semilinear heat equation:

ut = ∆u− f(x, t, u,∇u) + v(x, t)χω(x) in QT = Ω× (0, T ),

u = 0 in ΣT = ∂Ω× T, u(x, 0) = u0(x) in Ω, (S)
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where the term v(x, t)χω(x) models locally distributed controls supported on ω ⊂ Ω (so that χω(x) is the
characteristic function of ω). The question of interest here can be formulated as follows: Given a phase-space
H for solutions of (S) and a space V for controls, for what nonlinear terms the range of the solution mapping
V 3 v → u(·, T ) is dense in H?

Most of the success in this direction was associated with nonlinear terms satisfying the global Lipschitz
condition in u with a constant which does not depend on x and t ([3, 4, 6, 7, 20, 21], see also the bibliography
therein). This condition, on the one hand, guarantees the well-posedness of the system at hand and, on the other
hand, provides the basis for the fixed point argument to solve the approximate controllability problem. The
methods of the aforementioned works make use of the variational approach to the issue of controllability [11]
and the unique continuation property of solutions to the linear equations from an open subset ω× (0, T ) [2,17].

1.2. Problem setting and the method description

In this article we consider a quite different setup of this problem. Namely, we are concerned with the following
one dimensional system:

ut = uxx − f(x, t, u) + v(t)χ(l1,l2)(x) in QT = (0, 1)× (0, T ), v ∈ L2(0, T ),

u(0, t) = u(1, t) = 0, u(x, 0) = u0(x), (1.1)

which is governed by so-called lumped controls v = v(t), with support on a given subinterval (l1, l2). These
controls are the functions of time only, which is motivated by numerous applications. In the technical aspect,
this means that one can no longer use the aforementioned unique continuation property.

While for the standard linear heat equation this problem is well-understood by now [1, 5, 13, 15], little is
known regarding the semilinear case. Among early works in this area we can mention only [19], dealing with
uniformly bounded Lipschitz nonlinearity. For more recent results see [9].

The method, which we use in this article, is quite different from the classical fixed point or implicit function
arguments. It is as follows.

Let (1.1) admit a unique solution in C([0, T ], B), where B is a Banach space. If S(t) is the semigroup
associated with the linear part of (1.1), then:

u(t) = S(t)u0 +

t∫
0

S(t− τ)(vχ(l1,l2))(τ)dτ −

t∫
0

S(t− τ)(f(·, ·, u))(τ)dτ. (1.2)

Assume that the corresponding truncated linear problem (i.e., with f ≡ 0)

uLt = uLxx + v(t)χ(l1,l2)(x) in QT , uL(0, t) = uL(1, t) = 0, uL(x, 0) = u0(x) (1.3)

is approximately controllable in B at any time T > 0. Then, since its solution has the form of the first two
terms on the right in (1.2), for any target state u1 ∈ B and any t > 0 there is a control v(t) such that

S(T )u0 +

t∫
0

S(t− τ)(v(t)χ(l1,l2))(τ)dτ → u1 in B as t→ 0. (1.4)

In turn (1.2) and (1.4) imply that, if for the solutions u(t) to (1.1) on (0, t), corresponding to v(t), we show that∣∣∣∣∣∣
∣∣∣∣∣∣
t∫
0

S(t− τ)(f(·, ·, u(t)))(τ)dτ

∣∣∣∣∣∣
∣∣∣∣∣∣
B

→ 0 as t→ 0, (1.5)
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then u(t) will also converge to u1 as t → 0. Once we managed to show this for a dense set of u1’s in B, then
we have proven that, given u0, any element of B can be approached with an arbitrary accuracy as “quickly” in
time as we wish.

Now note that the truncated linear problem (1.3) is time-invariant. Hence, the above constructions apply on
any time-interval (t0, T ) with u(·, t0) in place of u0. Hence, if we apply any control v, say v ≡ 0 on (0, t0), then,
given u0, any element of B can be approached with an arbitrary accuracy at some moment t∗ lying arbitrarily
close to T . (To do that, select t0 “close” to T .) Hence, by the continuity properties of (1.1), any element of
B can be approached (arbitrarily close) by the trajectories of (1.1) at time T . (To show that, apply again the
zero control on (t0, T ).) This proves the approximate controllability of (1.1) in B at time T .

Remark 1.1. Obviously, if f = f(x, t, u) is uniformly bounded, then (1.5) holds, which immediately gives the
result of [19] dealing with bounded f(x, t, u).

Furthermore, since the linear controllability problem is well-understood nowadays, one can select a suitable
dense set of targets u1 in B without any difficulty. Hence, as (1.5) suggests, the crux of our method is the
asymptotic behavior of the nonlinear term with u generated by the controls solving the truncated linear con-
trollability problem. In this respect, our proofs below are based on the asymptotic analysis of the corresponding
biorthogonal sequences to {eλkτ , k = 1, . . . } on (0, t) as t → 0, where λk’s are the eigenvalues to the Laplace
operator.

The disadvantage of this method is that, to ensure (1.5), one has to impose severe assumptions on the growth
rate of f in u. In that respect, the above-referred results for locally distributed controls provide better growth
rates. Accordingly, our goal is to use our method in the situations where the methods of the above-mentioned
works do not apply. We distinguish two areas: (a) lumped controls and (b) the case when (1.1) admits multiple
solutions. The latter constitutes the classical ill-posedness of the boundary problem (1.1), which, however, is not
an unusual situation in the semilinear case. The principal concern here is the following: if the same control can
generate several solutions (which one is unknown in advance), then the whole idea of “control” of the physical
process it describes does not make much sense. In this respect, we intend to show that, in some cases, one can
still “steer” such a system in terms of the following definition, namely, by employing a carefully chosen control,
which acts uniformly upon all the solutions, which it possibly generates.

Definition 1.1. Given T > 0, we shall say that system (1.1), admitting multiple solutions in C([0, T ];B),
is approximately controllable in B over time-interval [0, T ] if for all u0, u1 ∈ B and ν > 0 there exist
t∗ = t∗(u0, u1, ν) ∈ [0, T ] and v = v(u0, u1, ν) ∈ L2(0, t∗) such that

‖ u1 − u(·, t∗) ‖B ≤ ν,

where u is an arbitrary solution to (1.1) corresponding to the selected control v (within the specified class of
solutions).

In this definition, the fact that the instant t∗, when the desirable steering is achieved, is not necessarily equal
to T we view as a “payment” for the lack of uniqueness property. This circumstance does not seem essential to
us though, because, regardless of u0 and u1, this t∗ is bounded by T .

The rest of the article is organized as follows. In Section 2 we formulate our main results and the proofs are
given in Sections 3-6.
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2. Main results

2.1. The classical case

We begin with the case when f = f(u).
Theorem 2.1. Let T > 0 be given and l2± l1 be the irrational numbers. Suppose that f = f(u) is a continuous
function such that

|f(u)| ≤ logρ |u| as |u| → ∞, (2.1)

for some ρ ∈ [0, 1). Then (1.1) is approximately controllable in L2(0, 1) over [0, T ] in the sense of Definition 1.1.

In the framework of Definition 1.1, here and in Theorems 2.2 and 2.5 below we consider all the possible
solutions of (1.1) in the space C([0, T ];L2(Ω))

⋂
H1,0

0 (QT ) defined via the corresponding integral identity, as
described in the existence result of [10], pp. 466-467.

2.2. Controllability in L2(0, 1)

Our next results deal with the case when f = f(x, t, u). More precisely, we are concerned with the question
on how the regularity of f(x, t, u) in x and t and its structure affect the growth rate of f in u, required to ensure
the desirable approximate controllability property. We distinguish three principal components which contribute
here: (a) the existence theory, which is closely related to (b) the regularity theory for the semilinear pde’s (see,
e.g. [10,14]), and (c) the asymptotic behavior of the norms of controls solving the corresponding truncated linear
controllability problem (1.3) as t→ 0.

First of all, let us note that, at no extra cost, Theorem 2.1 can be extended to the “additive” case when

f(x, t, u) = f1(x, t, u) + f2(x, t, u),

where |f2(x, t, u)| satisfies (2.1) a.e. in QT , |f1(x, t, u)| ≤ ψ(x, t), and f1, f2 and ψ are such that f complies

with the existence conditions for (1.1) in C([0, T ];L2(Ω))
⋂
H1,0

0 (QT ).
We now introduce the following assumption. (Note that it is consistent with the classical constraints on f

relevant to (1.1), see, e.g. [10, 14].)

Assumption 2.1. Suppose that f(x, t, u) is Lebesgue’s measurable in (x, t, u), continuous in u for almost
all (x, t) ∈ QT , and is such that

|f(x, t, u)| ≤ ϕ(x, t) + f∗(|u|) a.e. in QT ∀u ∈ R, (2.2)

where f∗ is a continuous nonnegative monotone nondecreasing function on R+ = {a|a ∈ R, a ≥ 0}. (Other
conditions on ϕ and f will be given below.)

To satisfy (2.2), f does not need to be of the additive form. Indeed, if f(x, t, u) = f1(x, t, u)f2(x, t, u), then,
by Young’s inequality, for any s > 0 and p > 1, we have:

|f(x, t, u)| ≤
1

p
sp|f1(x, t, u)|p +

p− 1

p
s−

p
p−1 |f2(x, t, u)|

p
p−1 ,

which is consistent with the form (2.2).
We begin by the case B = L2(0, 1). We need the following additional conditions on f .

Assumption 2.2. Let T > 0 be given and, in addition to (2.2), f(x, t, u) satisfy

|f(x, t, u)| ≤ ϕ(x, t) + d|u| a.e. in QT ∀u ∈ R,
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for some d > 0 and ϕ ∈ L6/5(QT )
⋂
Lr∗,r(QT )

⋂
Lq1,q2(QT ), where q1 ∈ [1,∞], q2 ∈ [1, 2], r1 ∈ [2,∞], r2 ∈

[4,∞], and β ∈ [0, 1] are such that:

1

2q1
+

1

q2
< 1−

(1− β)

4
,

1

q1
≤ 1−

1− β

r1
,

1

q2
< 1−

1− β

r2
−
β

4
,

1

2r1
+

1

r2
=

1

4
,

1

2r∗
+

1

r
=

5

4
, r∗ ∈ [1, 2], r ∈ [1, 4/3]. (2.3)

In the above Lq1,q2(QT ) = Lq2(0, T ;Lq1(0, 1)).

Theorem 2.2. Let T > 0 be given and l2 ± l1 be irrational. Suppose that Assumptions 2.1 and 2.2 hold and
that in (2.2)

τ∫
0

(
f∗(s−1/4eα/τ )

)r
ds → 0 as τ → 0+ ∀α > 0, (2.4)

where r is as in (2.3). Then system (1.1) is approximately controllable in L2(0, 1) over [0, T ] in the sense of
Definition 1.1. If, in addition, the origin is a stable equilibrium for (1.1), then the corresponding steering can
always be achieved at time T exactly.

In the above the term “stable equilibrium” means that for every ε > 0 there is a δ > 0 such that if
‖ u0 ‖L2(0,1)< δ, then ‖ u(·, t) ‖L2(0,1)< ε for all t > 0. For example, this is the case when f(x, t, u)u ≥ 0 for all
u ∈ R and (x, t) ∈ QT .

In Theorem 2.2 the best possible case occurs when r = 1. To explain this, let us recall that our method deals
with the limit passage (1.5). We evaluate the expression on the left of (1.5) in terms of the “smallest possible”
Lp1,p2(Qt)-norm of f(·, ·, u(t)(·, ·)) (with p1 ≥ 1, p2 ≥ 1) as t tends to zero. This gives us p2 = r = 1 as the best
possible choice (see (4.1) and Step 4 in the proof of Th. 2.2 for details).

On the other hand, the parameter r in (2.4) also depends on the regularity of ϕ in x, as given by (2.3). That
is, if the regularity of ϕ in x is not “good enough”, one has to select r larger than 1 (see also (4.1) below).

Condition (2.4) holds if, for example,

f∗(u) ≤ logρ u as u→∞, (2.5)

where ρ ∈ [0, 1/r). Indeed, in this case for “small” τ and 0 < s < τ we have:

f∗(s−1/4eα/τ ) ≤ logρ(s−1/4eα/τ ) ≤

(
−

1

4
log s

)ρ
+
(α
τ

)ρ
≤

1

4ρ
| logρ s| +

αρ

τρ
·

Here we used the inequality (a+ b)γ ≤ C(γ)(aγ + bγ),∀a, b, γ ≥ 0 for some C(γ) > 0 (C(γ) = 1 for 0 ≤ γ ≤ 1).
Then (again as τ → 0):

(
f∗(s−1/4eα/τ )

)r
≤

C(r)

4rρ
| log s|rρ +

C(r)αrρ

τrρ
≤ C(r)

1

4rρ
| log s| +

C(r)αrρ

τrρ
,

from which (2.4) follows, since rρ < 1.
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Remark 2.1.

• In [9] the approximate controllability of (1.1) was shown in L2(Ω) over any [0, T ] for the reaction-diffusion-
convection nonlinearity f = f(x, t, u, ux), while assuming that u0 ∈ L∞(0, 1) and that (2.2) holds for
ϕ ∈ L6/5(QT ) and f∗(|u|) ≤ [log log |u|]ρ, ρ ∈ [0, 5/6) as |u| → ∞. This result was based on the
L∞-estimate technique of [10] for this class of equations (i.e., with convection terms).

• In our framework, condition (2.4) seems to be optimal in the sense that: (a) via (2.3) Assumption 2.2 takes
into account the sharp results on L∞-estimates for (1.1) (see [14]); (b) in [16] it was shown that the estimate
(4.5) below, which is “responsible” for the appearance of the exponential dependence in (2.4), is sharp;
and (c) parameters 6/5 and r arise in the sharp existence and regularity results for solutions to (1.1) in

C([0, T ];L2(Ω))
⋂
H1,0

0 (QT ) [10]. Accordingly, in the embedding ϕ ∈ L6/5(QT )
⋂
Lr∗,r(QT )

⋂
Lq1,q2(QT ))

the first space is to guarantee the existence of solutions to (1.1) ( [10], pp. 466-467), while the second and
the third ones are to use the sharp energy estimate (4.1) from [10] and suitable L∞-estimates from [14].

2.3. Controllability in C0[0, 1] and L∞(0, 1)

Because of the role they play for the parabolic equations (we refer, e.g., to the maximum principle), the
steering of solutions to (1.1) in these spaces is of special interest. However, it is known that with u0 ∈ L∞(0, 1)
one can have u 6∈ C([0, T ], L∞(0, 1)). Indeed, the semigroup S(t) is not strongly continuous on L∞(0, 1) and

lim
t→0
‖ S(t)u0 − u0 ‖L∞(0,1)= 0 (2.6)

if and only if u0 ∈ C0[0, 1], see, e.g. [14], pp. 19-20. Formally, this does not allow the use of Definition 1.1.
On the other hand, S(t) is strongly continuous on L1(0, 1), which enables us to define uniquely the initial
and target states by using formula (1.2) (i.e., employing the continuity in a less regular L1(0, 1)). Moreover,
Lemma 2.1 of [14] (p. 78) implies that under the assumptions of Theorem 2.3 any L∞(QT )-solution of the corre-
sponding boundary problem lies in C((0, T ];C0[0, 1]). Hence, we can use Definition 1.1 with one correction: in-
stead of assuming that u ∈ C([0, T ];B), we will further assume that u ∈ C((0, T ];L∞(0, 1))

⋂
C([0, T ];L1(0, 1))

for B = L∞(0, 1).

Assumption 2.3. Let T > 0 be given and

1

2q1
+

1

q2
+ µ = 1, q1, q2 ∈ [1,∞], µ ∈ (0, 1).

Assume that f(x, t, u) satisfies

|f(x, t, u)| ≤ c∗(x, t)(1 + |u|) a.e. in QT ∀u ∈ R,

for some c∗ ∈ Lq1,q2(QT ) and is locally Lipschitz as follows:

|f(x, t, u1)− f(x, t, u2)| ≤ c∗(x, t)Γ(|u1|+ |u2|)|u1 − u2| ∀u, v ∈ R,

where Γ is an increasing function.
Let C0(0, 1) be the (closed) subspace of L∞(0, 1), which is generated by all the finite linear combinations

of the eigenfunctions associated with the truncated problem (1.3). (Note that C0(0, 1) is, in fact, the space
C0[0, 1] = {w|w ∈ C[0, 1], w(0) = w(1) = 0}, regarded as a subspace of L∞(0, 1).)



CONTROLLABILITY WITH LUMPED CONTROLS 89

Theorem 2.3. Let T > 0 be given and l2 ± l1 be the irrational numbers. Suppose that Assumptions 2.1 and
2.3 hold and in (2.2) ϕ ∈ Lq1,q2(QT ), and

s1−1/2q1f∗(eα/s) → 0 as s → 0+ ∀α > 0. (2.7)

Then for any u0 ∈ L∞(0, 1), u1 ∈ C0(0, 1) and ν > 0 there is a control v ∈ L2(0, T ) such that for the
corresponding solution u to (1.1) the following estimate holds:

‖ u1 − u(·, T ) ‖L∞(0,1) ≤ ν.

There are no multiple solutions to (1.1) in the case of Theorem 2.3 (see Lem. 5.1 below).

In this result and the following Theorem 2.4 we deal with the solutions to (1.1) described via the semigroup
presentation (as in Lem. 5.1 below, see [14], p. 29).

It can be shown that the following condition implies (2.7):

f∗(s) ≤ logρ s, ρ ∈ [0, 1− 1/2q1) as s→∞. (2.8)

The best possible case here (ρ ∈ [0, 1)) corresponds to q1 =∞. (Note that q1 also depends on q2 in Ass. 2.3.)

Remark 2.2. One can notice the following difference between (2.8) and (2.5), which we attribute to the change
of the space for controllability: (2.5) includes only the parameter r (recall that r depends on r∗ too) associated
with the time-variable, while (2.8) explicitly involves only q1, which is associated with the regularity of f in x.

Under the assumptions of Theorem 2.3, it is possible to prove that (see [14], p. 41)

lim
t→0
‖ u(·, t)− uL(·, t) ‖L∞(0,1)= 0 ∀u0 ∈ L

∞(0, 1).

Due to (2.6), this yields that u ∈ C([0, T ];C0[0, 1]), provided u0 ∈ C0[0, 1]. Hence, Theorem 2.3 implies the
following.

Theorem 2.4. Under the assumptions of Theorem 2.3 system (1.1) is approximately controllable in C0[0, 1] at
time T in the classical sense.

Remark 2.3. The fact that u ∈ C((0, T ];C0[0, 1]) under the assumptions of Th. 2.3 suggests that Theorems 2.3
and 2.4 provide the “largest possible” partial approximate controllability results accordingly in L∞(0, 1) and
C[0, 1].

2.4. An example of the superlinear growth

An example due to Bamberger (see also [4, 7], p. 51) showed that when f(u) = u|u|r, r > 0 the approximate
controllability of (1.1) is not possible in any of Lp(Ω), 1 ≤ p < ∞ at any positive time, even by the locally
distributed controls. More precisely, it turns out that in this case the control impact does not propagate
“effectively” from ω to the rest of the space domain: regardless of how large is the control applied on ω, the
corresponding solutions remain uniformly bounded on any closed subset of Ω\ω̄. From here we have to conclude
that if the global approximate controllability of (1.1) is possible in L2(Ω) for some superlinear terms, then they
must satisfy certain assumptions which exclude Bamberger’s case. In this respect we give the following example
dealing with the restrictions on the growth of nonlinear term in t, which allows us, by applying a suitably chosen
“quick” control, to neglect the effect of nonlinearity. (Recall that the above mentioned examples do not satisfy
such a restriction.)
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Consider the following reaction-diffusion-convection equation:

ut = uxx − f(x, t, u, ux) + v(t)χ(l1,l2)(x) in QT , v ∈ L2(0, T ),

u(0, t) = u(1, t) = 0, u(x, 0) = u0(x). (2.9)

We assume that f(x, t, u, p) is Lebesgue’s measurable in (x, t, u, p) and continuous in (u, p) for almost all
(x, t) ∈ QT , and is such that

|f(x, t, u, p)| ≤ ϕ(x, t) + β(t)|u|d1 + β(t)|p|d2 a.e. in QT for u, p ∈ R,

1∫
0

f(x, t, φ, φx) φ dx ≥ (ν − 1)

1∫
0

φ2
xdx − ρ(t)

1∫
0

(1 + φ2)dx ∀φ ∈ H1
0 (0, 1),

where β(t) is a non-negative monotone nondecreasing continuous function, d1 ∈ [0, 5), d2 ∈ [0, 5/3), ν >

0, ρ(·) ∈ L1(0, T ),
∫ T

0 ρ(t)dt ≤ β(T ), and ϕ ∈ L6/5(QT ). These conditions ensure the existence of at least one

generalized solution of (2.9) in C([0, T ];L2(Ω))
⋂
H1,0

0 (QT ) (e.g. [10], pp. 466-467). However its uniqueness is
not guaranteed. Our method provides the following result for this equation.

Theorem 2.5. Given T > 0, assume that l2 ± l1 are irrational, and that

eξ/tβ(t) → 0 as t→ 0 ∀ξ > 0. (2.10)

Then system (2.9) is approximately controllable in L2(0, 1) over [0, T ] in the sense of Definition 1.1.

3. Preliminaries

3.1. The linear case revisited

Here we give a very brief account of the approximate controllability results available for the linear truncated
problem (1.3). Our goal is to explain the specific attention to the one dimensional case.

Let λk = (πk)2 and ωk(x) =
√

2 sinπkx, k = 1, . . . denote the eigenvalues and eigenfunctions (orthonormal-
ized in L2(0, 1)) for (1.3). It was shown in [15] that (1.3) is approximately controllable in L2(0, 1) at (any)
time T > 0 if and only if the averaged values

∫
ω
ωk(x)dx 6= 0 for k = 1, . . . Since (1.3) is a particular case of

(1.1), this explains why we assume in Theorems 2.1-2.5 that l2 ± l1 are the irrational numbers.
As a matter of fact, if the multiplicities of the corresponding eigenvalues are uniformly bounded, then the

result of [15] can be extended to the general n-dimensional case. This restrictive assumption can, however, be
avoided by introducing the mobile point controls [8].

The argument in [15] is based on the duality and analytic continuation techniques. The latter is employed
to prove the corresponding unique continuation result from the averaged over (l1, l2) traces of solutions to the
linear system dual of (1.3). Generally, this approach does not give a constructive description of the controls
involved, though they can always be described through the solutions of suitable optimal control problems [11].

In the one space dimension a comprehensive constructive linear controllability theory has been developed
in [1, 5, 12, 13], based on the idea of Riesz basis. However, it does not apply in higher dimensions. To explain
this, let us recall that only for n = 1 one has

∑∞
k=1

1
λk

< ∞ and |λk − λm| ≥ ρ|k −m| with ρ > 0, in which

case {e−λkt|k = 1, . . . } form a Riesz basis in their span in L2(0, T ) for any T > 0 [5, 12, 13, 18]. This in turn
makes it possible to solve the linear approximate controllability problem explicitly in terms of controls that are
the finite linear combinations of the elements of the corresponding biorthogonal sequence. This explicit solution
is crucial in our analysis, which centers around the study of its asymptotic behavior as T → 0 (see, e.g. (4.5)
to this end). In contrast to that, the Riesz basis property is out of question for n > 1, because in this case
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for every finite set J of natural numbers and every T > 0 the functions {e−λkt|k = 1, . . . , k 6∈ J} span all the
spaces C[0, T ], Lp(0, T ), p ∈ [1,∞), see, e.g. [12], p. 30.

We will need the following formulae describing the solution to the linear approximate controllability problem
(1.3). They can easily be derived, e.g., based on the ideas of [5, 13].

It is well known that the solution of (1.3) admits the following representation:

uL(x, t) =
∞∑
k=1

e−λkt

 1∫
0

u0(r)ωk(r)dr

 ωk(x)

+
∞∑
k=1

 t∫
0

e−λk(t−τ)v(τ)

 1∫
0

χ[l1,l2](r) ωk(r) dr

 dτ

ωk(x). (3.1)

Let {qk(·, t)}∞k=1 be a biorthogonal sequence to {eλkτ}∞k=1 in L2(0, t) [5, 12,18]:

t∫
0

e−λkτ ql(τ, t) dτ =

{
1, if k = l,
0, if k 6= l.

(3.2)

Then, provided the numbers l2 ± l1 are irrational, the controls

v(t),k(τ) = qk(t− τ, t)

√2

l2∫
l1

sinπkx dx

−1

, τ ∈ (0, t) (3.3)

solve the following moment problem:

t∫
0

e−λl(t−τ)

 l2∫
l1

v(t),k(τ) ωl(x) dx

 dτ =

{
1, if l = k,
0, if l 6= k.

For every t ∈ (0, T ] denote by V∗(0, t) the set of all finite linear combinations of v(t),k, k = 1, . . .

Since {ωk}∞k=1 form a basis in L2(0, 1), formulae (3.1-3.3) allow one to conclude that (1.3) is approximately
controllable in the classical sense in L2(0, 1) at any time t ∈ (0, T ] by using controls v ∈ V∗(0, t) only.

3.2. The general scheme of further proofs

Our general strategy (as well as the one in of the above-referred works) is to view the semilinear boundary
problem as a “disturbed version” of the linear one. In this way, assuming that the latter already possesses a
desirable controllability property, sufficient conditions for controllability of the former are sought as suitable
structural and regularity assumptions on nonlinear terms. In that respect, the more information is available
on the linear controllability problem the “better” results can be expected in the semilinear case. Therefore,
as Section 3.1 implies, the main attention is given below to the one dimensional semilinear reaction-diffusion
equation.

The idea of our method, as it is fully described in Section 1.2, centers around the proof of the limit passage
(1.5) for suitably chosen dense set of targets u1’s. More precisely, in the case of Theorems 2.1 and 2.2 it can be
described as follows.
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Take any instant t ∈ (0, T ] and consider arbitrary u0 ∈ L2(0, 1) and u1 = u0 +
∑K
k=1 αkωk. Put

v(t) =
∑K
k=1 αkv(t),k ∈ V∗(0, t). Then we have:

u(t)(·, t)− uL,(t)(·, t) = −

t∫
0

S(t− τ)f(·, τ, u(t))dτ, uL,(t)(·, t) = S(t)u0 +
K∑
k=1

αkωk, ∀t ∈ (0, T ],

where u(t) and uL,(t) are accordingly a solution to (1.1) (i.e., any of possible associated multiple solutions)
and the unique solution to (1.3) on (0, t), corresponding to u0 and v(t).

Taking into account that (1.3) is approximately controllable, we can view the right-hand side of the first
equality above as an “error” of steering of (1.1). Then, if we manage to show that, uniformly over all the
aforementioned possible solutions u(t),

lim
t→0
‖ u(t) − uL,(t) ‖C([0,t];L2(0,1)) = lim

t→0
max
r∈[0,t]

‖

r∫
0

S(r − τ)f(·, τ, u(t))dτ ‖L2(0,1) = 0, (3.4)

then the states u(t)(·, t) uniformly approach u1 = u0 +
∑K
k=1 αkωk = limt→0 uL,(t)(·, t) as t tends to zero. On

the other hand, since for any u0 ∈ L2(Ω) the set of such functions u1 is dense in L2(Ω), (3.4) implies (1.5), that
is, the first part of Theorem 2.2.

Actually, it is sufficient only to show that, for any of k = 1, . . . , one has

lim
t→0
‖ u(t),k − uL(t),k ‖C([0,t];L2(0,1)) = lim

t→0
max
r∈[0,t]

‖

r∫
0

S(r − τ)f(·, τ, u(t),k)dτ ‖L2(0,1) = 0, (3.5)

where u(t),k and uL(t),k are accordingly any associated solution to (1.1) and the unique solution to (1.3) on
(0, t) with v = v(t),k. This replacement of (3.4) with (3.5) is possible, because the proof of (3.5) relies below on
the explicit estimates in terms of the corresponding norms of controls and u0. Therefore, thanks to the triangle
inequality, the estimates for any v(t) in V∗(0, t) are immediate.

4. Proofs of Theorems 2.1 and 2.2

Proof of Theorem 2.1. This is a particular case of Theorem 2.2, in which we need to select the function ϕ
as the constant function and put r = 1. One needs to use first the classical regularity estimate for solutions to
(1.1): ∣∣∣∣∣∣

∣∣∣∣∣∣
r∫
0

S(r − τ)f(·, τ, u(t),k)dτ

∣∣∣∣∣∣
∣∣∣∣∣∣
L2(0,1)

≤ c ‖ f(u(t),k) ‖L2,1(Qt) ∀t ∈ [0, T ],

where c is a positive constant. Then, the estimate (4.6) provides (2.1). Hence, the crux of the proof is
the derivation of (4.6), which combines Lemma 4.2 from [9] with suitable regularity results from [10] and
L∞-estimates from [14]. To avoid repeating, we derive this estimate in the general case in the proof of The-
orem 2.2. Indeed, the only difference here is that a particular choice of the function ϕ defines the choice of
parameters in Assumption 2.2, required to apply the further, otherwise identical, estimates.

Proof of Theorem 2.2. Note first of all that the existence of a solution to (1.1) in C([0, T ];L2(Ω))
⋂
H1,0

0 (QT )
follows from [10], pp. 466-467. We now proceed with the derivation of (3.5).
Step 1. Note that we have:

(u− uL)t = (u− uL)xx − f(x, t, u) in QT , (u− uL)|x=0,1 = 0, (u− uL)|t=0 = 0.
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Take any v = v(t),k. The following energy estimate is classical ([10], p. 139, 135) for this linear problem:

‖ u(t),k − uL(t),k ‖C([0,t];L2(0,1)) ≤ c∗(t) ‖ f(·, ·, u(t),k) ‖Lr∗,r(Qt) ∀t ∈ [0, T ]. (4.1)

Here and below, we use c∗ = c∗(·) to denote a generic positive nondecreasing function on R+.
We will also need the following energy estimate from [9].

Lemma 4.1 ([9], p. 863). Under the assumptions of Theorem 2.2 any solution of (1.1) in C([0, T ];L2(Ω))⋂
H1,0

0 (QT ) satisfies the following two estimates

‖ u ‖L6(Qt)≤ c
∗(t)(‖ u0 ‖L2(0,1) +

√
t ‖ v ‖L2(0,t) +1), ∀t ∈ [0, T ], (4.2a)

|u|Qt =‖ u ‖C([0,t];L2(Ω)) +

 t∫
0

∫
Ω

u2
x dxdt

1/2

≤ c∗(t)(‖ u0 ‖L2(0,1) +
√
t ‖ v ‖L2(0,t) +1), ∀t ∈ [0, T ]. (4.2b)

Step 2. To establish (3.5), we need to evaluate the right-hand side of (4.1). To this end, we will use some results
on a priori L∞-estimates in [14].

Recall that f(·, ·, u) ∈ Lq
′
(QT ) (see [10], p. 469). Hence, any solution of (1.1) in the space C([0, T ];L2(Ω))⋂

H1,0
0 (QT ) is also a mild solution in the sense of [14], p. 29, namely:

u(·, t) ∈ L1(0, 1) for t ∈ (0, T ); −f(·, ·, u) + v(·)χ[l1,l2](·) ∈ L
1(QT );

u(·, t) = S(t)u0 +

t∫
0

S(t− τ)(f(·, τ, u) + v(τ)χ[l1,l2])dτ for t ∈ (0, T ).

This permits us to use suitable results from [14] dealing with mild solutions.
We intend to apply Lemma 19 of [14], p. 69 (note that in [14] the notation n = 1/2 is used). There we are

concerned with the following system of parameters:

1

2q1
+

1

q2
< 1 + (1− γβ)

1

2p
− γ(1− β)(

1

2r1
−

1

r2
)− ε,

1

q1
≤ 1−

γ(1− β)

r1
−
γβ

p
,

1

q2
< 1−

γ(1− β)

r2
− γβδ − ε, δ =

1

2p0
−

1

2p
, βγ < 1,

where q1, q2, r1, and r2 are as in Theorem 2.1. To satisfy the other restrictions in [14] and Assumption 2.2, we
select γ = 1 (compare with the hypothesis (F1) in [14], p. 13), p0 = 2, p =∞, and take any ε ∈ (0, 1).

Recall now that C([0, T ];L2(Ω))
⋂
H1,0

0 (QT ) is continuously embedded into Lr1,r2(QT ) (see, e.g. [10],
p. 466). Combining this with (4.2), we deduce,

‖ u ‖Lr1,r2 (Qt) ≤ C(t) (‖ u0 ‖L2(0,1) +
√
t ‖ v ‖L2(0,t) + 1) < ∞, ∀t ∈ [0, T ], (4.3)

which gives us the condition (212) on p. 69 of [14], required to make use of Lemma 19 in [14].

To be consistent with this lemma, we obtain from the first first condition in Assumption 2.2:

|f(x, t, u) + v(t)χ[l1,L2](x)| ≤ (ϕ(x, t) + d + |v(t)|)(1 + |u|).

Here and below, for simplicity, we regard v = v(t) both as a function on (0, T ) and on QT . Then, ϕ+d+ |v(t)| ∈
Lq1,q2(QT ). Furthermore, from formula (214) on p. 69 of [14] (with δ = 1/4, see above), it follows that for
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almost all s ∈ [0, t] the following inequality holds:

‖ u(·, s) ‖L∞(0,1) ≤ Km−1/4(s){‖ u0 ‖L2(0,1) + mε(t)[‖ ϕ+ d + |v| ‖Lq1,q2 (Qt) (1+ ‖ u ‖Lr1,r2 (Qt))
(1−β)

+ ‖ ϕ+ d + |v| ‖1/(1−β)
Lq1,q2 (Qt)

(1+ ‖ u ‖Lr1,r2 (Qt)]}, (4.4)

where m(t) = min{1, t} and K does not depend on v, t, and ε.

Step 3. We now need the following lemma, which is proven in [9], p. 874.
Lemma 4.2 [9]. There exists a sequence of positive constants {βk}∞k=1 such that:

‖ v(t),k ‖L2(0,t) ≤ eβk/t as t→ 0, k = 1, . . . (4.5)

Remark 4.1. In a different form the estimates analogous to (4.5) were obtained in [16], where it was also
shown that this type of exponential time-dependence is sharp.

By Hölder’s inequality, t∫
0

vq2(τ)dτ

1/q2

≤

 t∫
0

v2(τ)dτ

1/2 t∫
0

dτ

(1−q2/2)/q2

≤ t(1−q2/2)/q2 ‖ v ‖L2(0,t) .

For v = v(t),k, this estimate, being combined with (4.5), gives:

‖ v(t),k ‖Lq1,q2 (0,t) ≤ eLk/t as t→ 0, k = 1, . . .

for some positive Lk’s. In turn, applying (4.5) to (4.3) yields:

‖ u(t),k ‖Lr1,r2(Qt) ≤ eMk/t as t→ 0, k = 1, . . .

for some positive Mk’s.
Applying these two new estimates to the right-hand side of (4.4) yields that for almost all s ∈ [0, t]:

‖ u(t),k(·, s) ‖L∞(0,1) ≤ Ks−1/4eαk/t as t→ 0 k = 1, . . . (4.6)

for some positive αk’s.

Step 4. By (2.2),

‖ f(·, ·, u(t),k) ‖Lr∗,r(Qt)≤‖ ϕ
∗ ‖Lr∗,r(Qt) +(l2 − l1)1/r∗

 t∫
0

f∗(‖ u(t),k(·, s) ‖L∞(0,1)))
rds

1/r

. (4.7)

Combining (4.7) and (4.6) yields that, for some α1k, α2k > 0,

‖ f(·, ·, u(t),k) ‖Lr∗,r(Qt)≤‖ ϕ
∗ ‖Lr∗,r(Qt) +(l2 − l1)1/r∗

 t∫
0

(f∗(α1ks
−1/4eα2k/t))rds

1/r

as t→ 0. In view of Assumption 2.2 and (4.1), this implies (3.5).
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Step 5. Observe now that all the estimates in the above are given explicitly in terms of u0 and v/v(t),k. Hence,
it is not difficult to derive that they must hold for any realization of a (possibly non-unique) solution to (1.1).
This yields the required approximate controllability in the sense of Definition 1.1.

Step 6. The following observation is used to prove the second part of Theorem 2.2.
Remark 4.2. If in (1.1) and (3.1) the initial conditions are different, say, u01 and u02, then for any v = v(t),k

we have

u(t),k(·, t)− uL(t),k(·, t) = S(t)(u01 − u02) −

t∫
0

S(t− τ)f(·, τ, u(t),k)dτ. (4.8)

In contrast to above, now u(t),k and uL(t),k are accordingly any associated solution to (1.1) and the unique
solution to (1.3) on (0, t), corresponding respectively to v = v(t),k and u0 = u01 and to v = v(t),k and
u0 = u02. In the above proof, we established that (3.5) holds for any u0. Hence, the same convergence property
holds for the second term on the right in (4.8):

lim
t→0

max
r∈[0,t]

‖

r∫
0

S(r − τ)f(·, τ, u(t),k)dτ ‖L2(0,1) = 0.

Therefore (1.1) can be steered over an arbitrary small time-interval (in the sense of Def. 1.1) into any prescribed
neighborhood of u1 from any u01 lying in a sufficiently small neighborhood of u02 (this makes the first term
on the right in (4.8) “small”). Indeed, one just needs to apply the same control which drives (3.1) from u02

sufficiently close to u1.

Sketch of the proof of the second part of Theorem 2.2. Let u0, u1 ∈ L2(Ω) be given. If (1.1) has a
stable equilibrium at the origin, then the steering at t = T can be achieved as follows. Firstly (as described
in Steps 1-5) we steer (1.1) at some time t∗ < T from u0 into a “sufficiently small” neighborhood of the
origin. Then we use the zero-control on some interval (t∗, t

∗), t∗ ∈ (t∗, T ] (t∗ will be selected a little bit later).
By stability, all possible (multiple) solutions to (1.1) will stay in this neighborhood until t = t∗. Therefore,
thanks to Remark 4.2, there is a control, which, regardless of the actual realization of a solution, can steer (1.1)
(again as in Steps 1-5) over an arbitrary small time-interval [t∗, t∗∗] (t∗∗ ∈ (t∗, T ]) into a “sufficiently small”
neighborhood of u1. If t∗ is close enough to T , applying the zero-control on [t∗∗, T ], we will have all (i.e.,
possibly multiple) u(·, T ) as close to u1 as we wish. (This follows from the continuity solutions to (1.1) in
time: one can use an estimate like (6.1) below to show this.) This completes the proof of Theorem 2.2.

Remark 4.3. In Assumption 2.1 the bound 2 in the restriction on q2 is due to our choice of the space L2(0, T )
for controls. This restriction ensures, e.g., that vχ[l1,l2] ∈ L

q1,q2(QT ) in the estimates (4.4).

5. Proof of Theorem 2.3

Lemma 5.1. Let
1

2q1
+

1

q2
< 1, q1, q2 ∈ [1,∞].

Assume that f(·, ·, u) satisfies Assumptions 2.1 and 2.3. Then, for any T > 0, u0 ∈ L∞(0, 1), and v ∈ L2(0, T )
there exists a unique solution to (1.1) in L∞(QT ).

Proof. It can be achieved by combining some results from [14]. Put z = u− uL. Then we obtain:

zt = zxx − f̂(x, t, z) in QT = (0, 1)× (0, T ), v ∈ L2(0, T ), z(0, t) = z(1, t) = 0, z(x, 0) = 0,
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where f̂(x, t, z) = f(x, t, z + uL). Thus, instead of the second inequality in Assumption 2.3, we have

|f̂(x, t, z)| ≤
(
c∗(x, t) + c∗(x, t) ‖ uL ‖L∞(QT )

)
(1 + |u|),

while the local Lipschitz condition holds with the coefficient Γ(|z1| + |z2| + 2 ‖ uL ‖L∞(QT )). By Lemma 9
of [14] (p. 41), one has the existence and uniqueness of a mild solution to the above boundary problem in z
and, hence, to (1.1) on some QT∗ , T

∗ ≤ T . This solution lies in L∞(QT∗). To complete the proof, we apply
Theorem 5 of [14], p. 76 (see (249) there), which, by an explosion argument, yields that T ∗ = T .

Proof of Theorem 2.3. We argue as in Section 3.2, or (1.2), this time under Assumptions 2.1 and 2.3 and with
the space L∞(0, 1) in place of L2(0, 1). Since u, uL ∈ C((0, T ];C0[0, 1]), (instead of (3.5)) it is sufficient to
show that:

lim
t→0
‖ u(t),k − uL(t),k ‖L∞(Qt)= lim

t→0
ess supr∈[0,t] ‖

r∫
0

S(r − τ)f(·, τ, u(t),k)dτ ‖L∞(0,1) = 0, k = 1, . . . (5.1)

Our plan is to prove (5.1) along the sequence of estimates (5.6-5.9), the derivation of which makes use of suitable
a priori L∞-estimates in [14] and the asymptotic behavior (4.5).
Step 1. From semigroup theory we have the following estimate, see, e.g. (30) in [14], p. 25:

‖ S(t)w ‖L∞(0,1) ≤ Mm−1/2q1(t)e−λ1t ‖ w ‖Lq1(0,1) ∀w ∈ L
q1(0, 1), ∀t > 0. (5.2)

Here and below, M is a positive generic constant and λ1 is the principal eigenvalue of the truncated linear
problem (1.3).

In view of Assumption 2.3, f(·, ·, u) ∈ Lq1,q2(QT ) and, hence, for almost all t ∈ [0, T ]:

‖ S(t− s)f(·, s, u(·, s)) ‖L∞(0,1)≤Mm(t− s)−1/2q1e−λ1(t−s) ‖ c(·, s) ‖Lq1(0,1) (1+ ‖ u ‖L∞(Qt)). (5.3)

This yields:

‖ u(·, t)− uL(·, t) ‖L∞(0,1) ≤

t∫
0

‖ S(t− τ)f(·, τ, u) ‖L∞(0,1) dτ

≤ M(1+ ‖ u ‖L∞(Qt))

t∫
0

(t− s)−1/2q1e−λ1(t−s) ‖ c(·, s) ‖Lq1(0,1) ds ∀t ≤ 1.

From Hölder’s inequality, namely,

‖ w1w2 ‖Lr(0,t) ≤ ‖ w1 ‖Lr1(0,t)‖ w2 ‖Lr2(0,t),
1

r1
+

1

r2
=

1

r
, wi ∈ L

ri(0, t), (5.4)

where we put r = 1, r1 = (µ+ 1/2q1)−1, and r2 = q2, it follows that

‖ u(·, t)− uL(·, t) ‖L∞(0,1) ≤ M(1+ ‖ u ‖L∞(Qt))t
µ ‖ c ‖Lq1,q2 (Qt) ∀t ∈ [0, T ] (5.5)

(compare with (92) on p. 42 of [14]).
Step 2. We will evaluate now the L∞(Qt)-norm of u as t → 0. From classical results for the linear heat
equation (see, e.g. [10]), we have:

‖ uL ‖L∞(Qt) ≤ m∗(‖ u0 ‖L∞(0,1) + ‖ v ‖L2(Qt)),
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where m∗ is a positive constant. Combining this and (5.5) yields

‖ u ‖L∞(Qt) ≤ M(1+ ‖ u ‖L∞(Qt))t
µ ‖ c ‖Lq1,q2 (Qt) + m∗(‖ u0 ‖L∞(0,1) + ‖ v ‖L2(Qt)). (5.6)

If tµM ‖ c ‖Lq1,q2 (Qt)< 1/2, then it follows from (5.6) with v = v(t),k that:

‖ u(t),k ‖L∞(Qt) ≤ 2[m∗(‖ u0 ‖L∞(0,1) + ‖ v(t),k ‖L2(Qt)) + Mtµ ‖ c ‖Lq1,q2 (Qt)]. (5.7)

Step 3. Analogously to (5.3), but using (2.2) instead of the second inequality in Assumption 2.3, we deduce
that

‖ S(t− s)f(·, s, u(·, s)) ‖L∞(0,1)

≤ Mm(t− s)−1/2q1e−λ1(t−s)(‖ ϕ(·, s) ‖Lq1(0,1) + ‖ f∗(|u(·, s)|) ‖Lq1(0,1)).

From this and (5.1), it follows by Hölder’s inequality (as in the lines (5.3-5.5)) that (again, with v = v(t),k) we
have:

lim
t→0
‖ u(t),k − uL(t),k ‖L∞(Qt) ≤ Mtµ ‖ ϕ ‖Lq1,q2 (Qt) + M

(
1−

1

2q1

)−1

t
1− 1

2q1 f∗(‖ u(t),k ‖L∞(Qt)) (5.8)

(we remind that M is generic).
The first term on the right in (5.8) tends to zero as t→ 0. Hence, to establish (5.1) it remains only to show

that

t
1− 1

2q1 f∗(‖ u(t),k ‖L∞(Qt)) → 0 as t→ 0. (5.9)

This follows from (5.7), combined with (4.5) and (2.7). This completes the proof of the approximate
controllability of (1.1) in the sense of Definition 1.1, that is, over any [0, T ]. From here, the statement in
Theorem 2.3 follows by the argument of Section 1.2.

Remark 5.1.

• In Step 2 the inequality tµM ‖ c ‖Lq1,q2 (Qt)< 1/2 can be obtained for µ = 0 as t→ 0. However, applying
Hölder’s inequality in the above requires µ ∈ (0, 1) (otherwise, one can have the diverging integral).
• In the proof of Theorem 2.3, the local Lipschitz condition has been used merely to prove the existence of

a unique solution in L∞(QT ).

Proof of Theorem 2.5. Following the discussion in Section 3, we need to show (3.5).
We first recall the estimate (2.10) from [9], p. 865 (see also (6.50) from [10], p. 469):

‖ u(t),k − uL(t),k ‖C([0,t];L2(0,1))≤ c
∗(t)‖ϕ‖L6/5(Qt) +β(t)c∗(t)

(
t

5
6 (1−

d1
5 ) ‖u‖5q

∗/6
L6(Qt)

+t
5
6 (1−

3d2
5 ) ‖ux‖

5m∗/6
L2(Qt)

)
.

(5.10)

Combining this with (4.2) (valid for (2.9), see [9]), (4.5) and (2.10) yields that, for some αk > 0, we have:

‖ u(t),k − uL(t),k ‖C([0,t];L2(0,1)) ≤ c∗(t) ‖ ϕ ‖L6/5(Qt) + β(t)c∗(t)eαk/t → 0 as t→ 0.

Hence (3.5) holds. This completes the proof. 2

Concluding remark. A typical alternative lumped control is the point control, which is described by source
terms of the form v(t)δ(x − x0), where x0 is the location. The introduction of controls of this type instead of
those in (1.1) does not qualitatively change the controllability results (see, e.g. [15] for the linear case), except
for creating a purely technical problem of existence and regularity (which, on the other hand, is of interest of
by itself). It seems plausible that our results in one space dimension can be extended to cover this case as well.
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[11] J.-L. Lions, Remarques sur la contrôlabilité approchée, in Proc. of “Jornadas Hispano-Francesas sobre Control de Sistemas

Distribuidos”, University of Málaga, Spain (October 1990).
[12] W.A.J. Luxemburg and J. Korevaar, Entire functions and Müntz-Szász type approximation. Trans. AMS 157 (1971) 23-37.
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