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OPTIMAL CONTROL OF SEMILINEAR PARABOLIC EQUATIONS
WITH STATE-CONSTRAINTS OF BOTTLENECK TYPE ∗

Mäıtine Bergounioux
1

and Fredi Tröltzsch
2

Abstract. We consider optimal distributed and boundary control problems for semilinear parabolic
equations, where pointwise constraints on the control and pointwise mixed control-state constraints
of bottleneck type are given. Our main result states the existence of regular Lagrange multipliers for
the state-constraints. Under natural assumptions, we are able to show the existence of bounded and
measurable Lagrange multipliers. The method is based on results from the theory of continuous linear
programming problems.

Résumé. Nous étudions des problèmes de contrôle optimal gouvernés par des équations aux dérivés
partielles paraboliques semilinéaires. Le contrôle est à la fois distribué et frontière et les contraintes sont
ponctuelles sur le contrôle d’une part, et mixtes de type “bottleneck” sur le contrôle et l’état. Sous des
hypothèses tout à fait naturelles nous prouvons l’existence de multiplicateurs de Lagrange mesurables
et bornés. Nous utilisons pour cela des résultats provenant de la programmation mathématique linéaire,
continue.
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1. Setting of the problem

Let Ω ⊂ RN , (N ≥ 2) be an open bounded domain with boundary Γ and let T > 0 be given fixed. We
consider the following semilinear partial differential equation: yt +Ay + d (x, t, y) = u in Q = Ω×]0, T [,

∂νAy + b (x, t, y) = v on Σ,
y(x, 0) = yo(x) in Ω,

(1.1)

where A is a uniformly elliptic differential operator defined below, Σ denotes the lateral boundary of Q and
∂νAy denotes the outward conormal derivative of y associated with A. Let us specify the assumptions on the
data:
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(A1) The boundary Γ is of class C2,β , for some 0 < β ≤ 1. The operator A is defined by

Ay = −
N∑

i,j=1

∂xi(aij(x)∂xjy) with

aij = aji ∈ C1,β(Ω), for i, j = 1 · · ·N,

∀x ∈ Ω,∀ξ ∈ RN , m
N∑
i=1

ξ2
i ≤

N∑
i,j=1

aij(x)ξiξj ≤M
N∑
i=1

ξ2
i with m > 0.

(A2)
(i) For every y ∈ R, the function d = d(·, ·, y) is measurable on Q. It is supposed to satisfy the following
assumption of smoothness:
• for almost every (x, t) ∈ Q, d is continuously differentiable with respect to y.
• There are constants M1, co, and a continuous monotone nondecreasing function η : [0,∞) → R+ such

that
|d(x, t, 0)| ≤M1 and co ≤ dy(x, t, y) ≤M1η(|y|).

(ii) Analogous conditions are imposed on b = b(x, t, y) on Σ× R with the same constants.
(iii) yo belongs to C(Ω).
We shall denote the real function d and the associated Nemytskii operator d : y(·) 7→ d(·, y(·)) by the same
symbol. In other words, we write d(x, t, y(x, t)) := d(y)(x, t), (x, t) ∈ Q, since this will not cause confusion. We
consider the optimal control problem

(P)


min J(y, u, v)

(y, u, v) satisfies (1.1)
(y, u, v) ∈ C,

where

J(y, u, v) =
αQ
2
‖y − zQ‖2Q +

αΩ

2
‖y(T )− zΩ‖2Ω +

αΣ

2
‖y − zΣ‖2Σ +

αu
2
‖u‖2Q +

αv
2
‖v‖2Σ. (1.2)

‖ · ‖S denotes the natural norm of L2(S), and αQ, αΩ, αΣ, αu, αv are nonnegative real constants such that
αQ + αΩ + αΣ + αu + αv 6= 0. Moreover, zQ ∈ L∞(Q) , zΣ ∈ L∞(Σ) and zΩ ∈ L∞(Ω) are given fixed. C is a
convex set of constraints of bottleneck type. We consider two kinds of such sets.
• C1 is the set of all (y, u, v) ∈ C(Q)× L∞(Q)× L∞(Σ) satisfying the inequalities

(I)

 0 ≤ u , 0 ≤ v (Ia)
u ≤ cQ + βQ y
v ≤ cΣ + βΣ y

(Ib)

a.e. on Q and Σ, respectively, where cQ, βQ ∈ L∞(Q) and cΣ, βΣ ∈ L∞(Σ) are given nonnegative
functions. We assume the existence of δ > 0 such that cΣ, cQ ≥ δ > 0 holds a.e. on Q and Σ,
respectively.
• C2 is the set of all (y, u, v) ∈ C(Q)× L∞(Q)× L∞(Σ) satisfying

(II)
{

0 ≤ u ≤ ub , 0 ≤ v ≤ vb (IIa)
and (Ib)

a.e. on Q and Σ, respectively, where ub ∈ L∞(Q) and vb ∈ L∞(Σ) are given.
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Remark 1.1. The simple choice for J was taken for convenience. It is quite standard in the context of least
squares problems. Any other sufficiently smooth integral functional can be chosen as well. For instance, we
refer to the objectives defined in Casas [3] or Raymond and Zidani [5].

We shall denote by (Pi) the problem (P) under the choice C = Ci , i = 1, 2. Let us fix the state-space for y
as follows: for q > N/2 + 1 and s > N + 1

Y = {y ∈W (0, T ) | yt +Ay ∈ Lq(Q), ∂νAy ∈ Ls(Σ), y(0) ∈ C(Ω)},

where the conormal derivative ∂νAy is defined according to [5], and

W (0, T ) = {y ∈ L2(0, T ;H1(Ω)) | yt ∈ L2(0, T ;H1(Ω)′)}·

Y is endowed with the norm

‖y‖Y = ‖y‖W (0,T ) + ‖yt +Ay‖Lq(Q) + ‖∂νAy‖Ls(Σ) + ‖y(0)‖C(Ω).

Then Y is a Banach space, continuously embedded into C(Q) (see [1] for example).
Our main task is to show the existence of regular Lagrange multipliers for the state-constraints (Ib). The

space for these multipliers depends on how the inequalities are considered. We might define the inequalities
in the space L∞(Q) × L∞(Σ), since u and v are bounded and measurable. In this case, the multipliers have
to be defined in the associated dual space. We aim to avoid this space of nonregular multipliers for several
well known reasons. Let us briefly sketch the main idea we have in mind. Introduce the Lagrange function
L : Y × L∞(Q)× L∞(Σ)×W (0, T )× L∞(Q)× L∞(Σ)→ R

L(y, u, v, p, µ1, µ2) = J(y, u, v)−
∫
Q

[yt +Ay + d(y)− u] p dx dt−
∫

Σ

[∂νAy + b(y)− v] p dσ dt

+
∫
Q

(u− cQ − βQ y)µ1 dx dt+
∫

Σ

(v − cΣ − βΣ y)µ2 dσ dt
(1.3)

(dσ = dσ(x) denotes the surface measure on Γ). In this way, the mixed pointwise control-state-constraints
are eliminated by multipliers µ1, µ2, while the control constraints remain unchanged. Let (ȳ, ū, v̄) be a locally
optimal triplet for (P). We introduce the control sets

Uad = {u ∈ L∞(Q) |u ≥ 0 a.e.}, Vad = {v ∈ L∞(Σ) | v ≥ 0 a.e.}

in case I and

Uad = {u ∈ L∞(Q) |u ∈ [0, ub] a.e.}, Vad = {v ∈ L∞(Σ) |u ∈ [0, vb] a.e.}

in case II. Tacitly assuming that we shall be able to find regular multipliers µ1, µ2, the first order necessary
optimality conditions for (ȳ, ū, v̄) read

Ly(ȳ, ū, v̄, p, µ1, µ2) y = 0 ∀y ∈ { y ∈ Y | y(0) = 0 }
Lu(ȳ, ū, v̄, p, µ1, µ2)(u− ū) ≥ 0 ∀u ∈ Uad
Lv(ȳ, ū, v̄, p, µ1, µ2)(v − v̄) ≥ 0 ∀v ∈ Vad.

(1.4)

Moreover, the complementary slackness conditions

µ1 (ū− cQ − βQ ȳ) = 0 a.e. on Q and µ2 (v̄ − cΣ − βΣ ȳ) = 0 a.e. on Σ (1.5)

must be satisfied.
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From these relations we obtain the first order optimality system consisting of the state-equation, all inequality
constraints, the adjoint equation −pt +Ap+ dy(ȳ)p = αQ (ȳ − zQ)− βQµ1 in Q

∂νAp+ by(ȳ)p = αΣ (ȳ − zΣ)− βΣµ2 on Σ,
p(T ) = αΩ (ȳ(T )− zΩ) in Ω,

(1.6)

the variational inequalities ∫
Q

(αu ū+ p+ µ1)(u− ū) dx dt ≥ 0 ∀u ∈ Uad (1.7)

∫
Σ

(αv v̄ + p+ µ2)(v − v̄) dσ dt ≥ 0 ∀v ∈ Vad, (1.8)

the complementary slackness conditions, and the nonnegativity conditions

µ1(x, t) ≥ 0, µ2(x, t) ≥ 0

to be fulfilled for almost every (x, t). Let (p, µ1, µ2) ∈ W (0, T ) × L∞(Q) × L∞(Σ) be any triplet satisfying,
together with (ȳ, ū, v̄), the optimality conditions formulated above. Then the function p is said to be an adjoint
state, and the µi are called Lagrange multipliers associated with (ȳ, ū, v̄).

We shall derive conditions ensuring the existence of Lagrange multipliers µ1, µ2 in L∞(Q) × L∞(Σ). The
idea is as follows: a constraint qualification is formulated for the state-constraints in L∞, where the natural cone
of nonnegative functions has a nonempty interior. Therefore, this condition has a good chance to be satisfied.
Next a known result by Zowe and Kurcyusz [7] yields that (ȳ, ū, v̄) is a solution of the associated linearized
problem

(P`) min J ′(ȳ, ū, v̄)(y, u, v)

subject to the linearized equation yt +Ay + d(ȳ) + dy(ȳ) (y − ȳ) = u
∂νAy + b(ȳ) + by(ȳ) (y − ȳ) = v

y(x, 0) = yo(x)
(1.9)

and to the (linear) constraints (y, u, v) ∈ C . (P`) is a linear continuous programming problem of bottleneck
type, for which the duality theory of linear programming holds. In [2], we have proven existence of bounded
and measurable solutions µi ≥ 0 for the associated dual problem. These solutions are Lagrange multipliers for
(P`). Then it is easy to verify that they are multipliers for (P), too.

2. Existence of optimal solutions to (Pi)
2.1. Existence of a solution to the state-equation

The following theorem ensures the existence and uniqueness of the state y associated with (u, v).

Theorem 2.1. For each pair (u, v) ∈ Lq(Q) × Ls(Σ), equation (1.1) has a unique solution y = y(u, v) ∈ Y.
Moreover

‖y(u, v)‖W (0,T ) + ‖y(u, v)‖C(Q) ≤ c(1 + ‖u‖Lq(Q) + ‖v‖Ls(Σ) + ‖yo‖C(Ω)). (2.1)
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Proof. See [4] Theorem 4.13 or [5] Theorem 3.1. We should mention that the assumptions of [4] or [5] are
implied by (A1–A2), since u and v appear here in a very simple linear form. The main assumption is here (A2),
(i–ii). �

Thanks to this result, the operator T ,

T : Y × Lq(Q)× Ls(Σ) → Lq(Q)× Ls(Σ)× C(Ω)

(y, u, v) 7→

 yt +Ay + d(y)− u
∂νAy + b(y)− v

y(0)− yo

 (2.2)

is of class C1. We shall regard T also as an operator from Y∞ × L∞(Q) × L∞(Σ) to L∞(Q) × L∞(Σ)× C(Ω),
where Y∞ is defined analogously to Y with s and q substituted by ∞.

2.2. Boundedness properties for feasible elements

In the sequel, the set of (y, u, v) ∈ Y × L∞(Q)× L∞(Σ) satisfying all constraints of (P) including the state
equation, is said to be the feasible set. We assume this feasible set to be non empty. This is true, for
example, if we assume that yo ≥ 0 and d(·, ·, 0) = b(·, ·, 0) = 0: indeed the triplet (y, 0, 0) is feasible, where y
is the solution to (1.1) with u = 0 and v = 0 (that is T (y, 0, 0) = (0, 0, 0)). This is a direct consequence of
Theorem 2.3 here below, which implies y to be non-negative by comparison with the null function ỹ which is
solution to T (ỹ, 0, 0) = (0, 0,−yo).

We shall prove in this section that the feasible set is uniformly bounded for both the problems (Pi), i = 1, 2.
Let us first derive some auxiliary results.

Proposition 2.2 (Comparison principle for the linear equation). Suppose that functions a, u ∈ Lq(Q), α, v ∈
Ls(Σ), and yo ∈ C(Ω) are given, such that

a(x, t) ≥ co a.e. in Q, α(x, t) ≥ co a.e. on Σ

holds with some constant co ∈ R. Let y ∈ C(Q) be the unique solution of the linear parabolic equation yt +Ay + a y = u
∂νA y + αy = v

y(x, 0) = yo(x).
(2.3)

If u, v and yo are nonpositive a.e. on their domains of definition, then y ≤ 0 holds everywhere in Q.

This result can be found in [5], Proposition 3.2. It holds even for yo ∈ L2(Ω) in the sense that y and its trace
are almost everywhere nonpositive.

Now we are able to derive a comparison principle for the nonlinear state-equation. If u is a bounded and
measurable function being nonnegative almost everywhere on its domain of definition, then we shall write for
convenience u ≥ 0.

Theorem 2.3 (Comparison principle for the state-equation). Suppose ui ∈ Lq(Q) and vi ∈ Ls(Σ), i = 1, 2.
Let yi be the corresponding states, that is T (y1, u1, v1) = (0, 0, y1,o) and T (y2, u2, v2) = (0, 0, y2,o). If u1 ≥
u2 , v1 ≥ v2 and y1,o ≥ y2,o, then y1 ≥ y2.

Proof. We know that the states yi belong to C(Q). Since d is of class C1 with respect to y, we may use the
mean value theorem so that

d(x, t, y2(x, t))− d(x, t, y1(x, t)) = dy(x, t, yθ(x, t))(̇y2(x, t) − y1(x, t)),



600 M. BERGOUNIOUX AND F. TRÖLTZSCH

where yθ(x, t) = y1(x, t) + θ(x, t) (y2(x, t)− y1(x, t)), and the function θ ∈ (0, 1) can be taken measurable. As yi
is continuous and dy is a Carathéodory function, it is easy to conclude that a(x, t) = dy(x, t, yθ(x, t)) is bounded
and measurable in Q. In particular, a is bounded from below by (A2). The same argument applies to b, setting
α(x, t) = by(x, t, yθ(x, t)) on Σ. In view of this, y2 − y1 is the solution of the linear equation (y2 − y1)t +A (y2 − y1) + a (y2 − y1) = u2 − u1

∂νA (y2 − y1) + α (y2 − y1) = v2 − v1

(y2 − y1)(x, 0) = (yo + y2,o)− (yo + y1,o) = y2,o − y1,o.

We complete the proof by Proposition 2.2. �

Corollary 2.4. Let all assumptions of the previous theorem be satisfied. Then its conclusion remains true, if
(d, b) is replaced by (d− βQy, b− βΣy) in the nonlinear state-equation.

Proof. This is obvious, since (d − βQy)y = dy − βQ belongs to L∞(Q) and therefore is bounded from below.
The same argument holds for b. �

To prove the next theorem, we consider the state function y = ŷ, which corresponds to controls u and v
acting at their upper limits, that is, u = cQ + βQ y and v = cΣ + βΣ y. Inserting these controls in the equation
of state, we arrive at the system  ŷt +Aŷ + d (ŷ)− βQ ŷ = cQ

∂νA ŷ + b (ŷ)− βΣ ŷ = cΣ
ŷ(x, 0) = yo(x).

(2.4)

According to Theorem 2.1, this system admits a unique solution ŷ ∈ C(Q).

Theorem 2.5. The feasible sets of (Pi), i = 1, 2, are bounded in C(Q̄)× L∞(Q)× L∞(Σ).

Proof. (i) For C2, the result is obvious: here, the admissible controls u(x, t) and v(x, t) belong to the uniformly
bounded sets [0, ub] and [0, vb], respectively. Therefore, relation (2.1) yields that all associated states y = y(u, v)
are uniformly bounded as well.

(ii) The situation is more interesting for C1 : Let u ≥ 0 and v ≥ 0 satisfy, together with y, the state
constraints. Then u = cQ − δQ + βQ y, v = cΣ − δΣ + βΣ y, where δQ ≥ 0, δΣ ≥ 0. Therefore, yt +Ay + d (y)− βQ y = cQ − δQ ≤ cQ

∂νAy + b (y)− βΣ y = cΣ − δΣ ≤ cΣ
y(0) = yo.

(2.5)

Corollary 2.4 yields y ≤ ŷ, hence u ≤ cQ + βQ y ≤ cQ + βQ ŷ (notice that βQ is nonnegative). This shows that
all admissible controls u are uniformly bounded. The same holds for v. Thanks to the estimate (2.1), all y are
uniformly bounded, too. �

Remark 2.6. A study of the proof reveals that the property u ∈ L∞(Q), v ∈ L∞(Σ) was not needed to apply
the comparison principle. To apply this principle, it is sufficient to have u ∈ Lq(Q) and v ∈ Ls(Σ). In this
case, the uniform boundedness u ≤ cQ + βQ ŷ still holds. Therefore, we are justified to regard the sets Ci in
Lq(Q)×Ls(Σ). This will not change them in comparison with their former definition in L∞(Q)× L∞(Σ), and
the statement of Theorem 2.5 remains valid.

We are mainly interested in necessary optimality conditions for optimal controls. This refers to locally
optimal controls as well. Therefore, we are justified to assume that a pair of locally optimal controls is given.
Nevertheless, we briefly discuss the existence of (globally) optimal controls, since this is an important information
on the well-posedness of the problem.
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Theorem 2.7. Problem (Pi) (i=1,2) has at least one optimal solution (ȳ, ū, v̄) ∈ Y × L∞(Q)× L∞(Σ) .

Proof. We shall only briefly sketch the idea of the proof. Thanks to Remark 2.6, we are justified to view Ci as
a bounded set of Y × Lq(Q)× Ls(Σ). If {(yn, un, vn)} is a minimizing sequence, we can therefore assume that
{un − d(yn)} and {vn − b(yn)} are weakly converging in Lq and Ls, respectively. The linear solution mapping
can be represented by an integral operator (variations of constants formula or use of a Green’s function) see,
for instance [6], which is known to be compact from Lq(Q)×Ls(Σ) to C(Q̄). Therefore, {yn} tends strongly to
ȳ in C(Q̄), hence also d(yn) to d(ȳ) and b(yn) to b(ȳ). Moreover, un → ū and vn → v̄ (weakly). We obtain by
the continuity of the linear solution mapping that (ȳ, ū, v̄) solves the nonlinear state-equation. Moreover, the
lower semicontinuity of J with respect to (u, v) permits to show in a standard way the optimality of (ȳ, ū, v̄). �

3. Linearization of (P)

Let us write for short w := (y, v, u). In this section, we regard T as an operator defined in Y∞
×L∞(Q)× L∞(Σ). With this notation, problem (P) admits the abstract form

min { J(w) | T (w) = 0, w ∈ C },

where T is differentiable and the convex and closed set C stands for C1 or C2. To formulate a corresponding
regularity condition, we define the linearized cone of C at w̄,

C(w̄) = {λ(w − w̄) | λ ≥ 0, w = (y, u, v) ∈ C}·

The following general result is known for the linearization of (P) at the optimal point [6, 7]:

Theorem 3.1. Assume that the regularity assumption

T ′(w̄) ·C(w̄) = L∞(Q)× L∞(Σ)× C(Ω̄), (3.1)

is satisfied at w̄. Then w̄ is solution of the linearized problem min J ′(w̄) ·w
T ′(w̄) · (w − w̄) = 0,
w ∈ C.

Remark 3.2. The original result of [7] states that

J ′(w̄) · h ≥ 0 ∀h ∈ C(w̄) : T ′(w̄)h = 0.

We have h = λ (w − w̄). Inserting this for λ = 1, the inequality J ′(w̄) · (w − w̄) ≥ 0 follows, so that w̄ attains
the minimal value.

In our case, the sets C = Ci, i = 1, 2, have obviously a nonempty interior in the space C(Q̄)×L∞(Q)×L∞(Σ).
Therefore it makes sense to assume the following stronger regularity condition, which is known to be sufficient
for (3.1) to hold [6]: T is surjective and{

∃(ỹ, ũ, ṽ) ∈ intC such that
T ′(ȳ, ū, v̄) (ỹ − ȳ, ũ− ū, ṽ − v̄) = 0. (3.2)
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Here, int C denotes the L∞-interior and ỹ belongs to Y∞. Since T is surjective, we have to find a triplet (ỹ, ũ, ṽ)
of Y × L∞(Q)× L∞(Σ) such that (ỹ − ȳ)t +A (ỹ − ȳ) + dy(ȳ)(ỹ − ȳ) = ũ− ū

∂νA(ỹ − ȳ) + by(ȳ)(ỹ − ȳ) = ṽ − v̄
ỹ(0)− ȳ(0) = 0

(3.3)

and

ε ≤ ũ(x, t) ≤ cQ(x, t)− ε+ βQ(x, t) ỹ(x, t)
ε ≤ ṽ(x, t) ≤ cΣ(x, t)− ε+ βΣ(x, t) ỹ(x, t) (3.4)

holds a.e. on Q and Σ, respectively, where ε is positive, for the case where Ci = C1. When Ci = C2, we demand
in addition

ũ(x, t) ≤ ub(x, t)− ε
ṽ(x, t) ≤ vb(x, t)− ε.

(3.5)

We shall verify these conditions under the following very natural assumption:
(A3) There is a positive constant δ such that

cQ(x, t) + βQ(x, t) ȳ(x, t) ≥ δ
cΣ(x, t) + βΣ(x, t) ȳ(x, t) ≥ δ.

In other words, the sets {u ∈ L∞(Q)| 0 ≤ u ≤ cQ + βQ ȳ } and { v ∈ L∞(Σ)| 0 ≤ v ≤ cΣ + βΣ ȳ } (defined
upon ȳ) are assumed to have a nonempty interior. In particular, this assumption is satisfied, if cQ and cΣ are
bounded from below by a positive constant (a condition being assumed in this paper) and if ȳ is known to be
nonnegative (which is the case if yo is nonnegative).

To verify that (A3) implies (3.2), let us discuss case II. It is technically more difficult than case I, which
can be proved by an evident modification. We introduce the “maximal linearized solution” ŷ by inserting
û := min{ub, cQ + βQŷ}, v̂ := min{vb, cΣ + βΣŷ} in the linearized equation (1.9). In this way, ŷ is defined by ŷt +A ŷ + d(ȳ) + dy(ȳ)(ŷ − ȳ) = min{ub, cQ + βQŷ} (= û)

∂νA ŷ + b(ȳ) + by(ȳ)(ŷ − ȳ) = min{vb, cΣ + βΣŷ} (= v̂)
ŷ(0) = yo.

(3.6)

The existence of the solution ŷ to (3.6) and its uniqueness can be shown by the same technique, which was used
to prove Lemma 2.6 in [2]. We avoid this proof, since the implication (A3) ⇒ (3.2) does not play a central role
in our paper.

Lemma 3.3. The relation ŷ(x, t) ≥ ȳ(x, t) holds for all (x, t) ∈ Q.

Proof. Define Q1 by

Q1 = {(x, t) ∈ Q |ub < cQ + βQŷ},

and put Q2 = Q \ Q1. On Q1 we have û = ub, while û = cQ + βQŷ holds on Q2. Completely analogous, we
introduce sets Σi, i = 1, 2, for v̂. Define ĉQ, β̂Q by ĉQ = ub, β̂Q = 0 on Q1, ĉQ = cQ, β̂Q = βQ on Q2. Then
û = ĉQ + β̂Q ŷ everywhere on Q. Analogously, v̂ = ĉΣ + β̂Σ ŷ is obtained on Σ = Σ1 ∪ Σ2. In view of this,

ū ≤ ĉQ + β̂Qȳ on Q

û = ĉQ + β̂Qŷ on Q.
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The function ȳ(x, t) satisfies  ȳt +A ȳ + d(ȳ) = ū = ĉQ + β̂Qȳ − δQ
∂νA ȳ + b(ȳ) = v̄ = ĉΣ + β̂Σȳ − δΣ

ȳ(0) = yo,

(3.7)

where δQ and δΣ are nonnegative. Subtracting (3.7) from (3.6) we find (ŷ − ȳ)t +A (ŷ − ȳ) + dy(ȳ)(ŷ − ȳ)− β̂Q(ŷ − ȳ) = δQ
∂νA(ŷ − ȳ) + by(ȳ)(ŷ − ȳ)− β̂Σ(ŷ − ȳ) = δΣ

ŷ(0)− ȳ(0) = 0.

The comparison principle yields ŷ − ȳ ≥ 0. �
Theorem 3.4. Assumption (A3) implies the regularity condition (3.2).

Proof. To construct (ỹ, ũ, ṽ), take a constant λ < 1 close to 1 and define ỹ by ỹt +A ỹ + d(ȳ) + dy(ȳ)(ỹ − ȳ) = min{λub, λcQ + βQỹ} (=: ũ)
∂νA ỹ + b(ȳ) + by(ȳ)(ỹ − ȳ) = min{λvb, λcΣ + βΣỹ} (=: ṽ)

ỹ(0) = yo.
(3.8)

Then  (ỹ − ȳ)t +A (ỹ − ȳ) + dy(ȳ)(ỹ − ȳ) = ũ− ū
∂νA(ỹ − ȳ) + by(ȳ)(ỹ − ȳ) = ṽ − v̄

ỹ(0)− ȳ(0) = 0,
(3.9)

and the equation T ′(w̄)(w̃ − w̄) = 0 is satisfied. By continuity, ỹ tends uniformly in Q̄ towards ŷ, as λ tends
to 1.

We briefly explain this: let y1 denote the solution of (3.8) for λ = 1, and define u1 (resp. ũ) by the equations
u1 = min{ub, cQ + βQy1} (resp. ũ = min{λub, λcQ + βQỹ}). Then, by min(a, b) = 1

2 (a+ b− |a− b|),

u1 =
1
2

(ub + cQ + βQy1 − |ub − cQ − βQy1|)

ũ =
1
2

(λ(ub + cQ) + βQỹ − |λ(ub − cQ)− βQỹ|),

and a simple estimation gives |u1 − ũ| ≤ c (1 − λ) + c |y1 − ỹ| on Q. An estimate for |v1 − ṽ| on Σ can be
derived in the same way. Finally, we consider the equation for y1 − ỹ. Its right hand sides are estimated by
c(1− λ) + |y1 − ỹ|, and the property |y1 − ỹ| → 0 follows from an application of the comparison principle.

Now we return to the main line of proof and pass to the limit λ→ 1. Then

ũ = min{λub, λcQ + βQỹ} ≥
δ

2
and ṽ = min{λvb, λcΣ + βΣỹ} ≥

δ

2

follows from assumption (A3) and Lemma 3.3 for λ sufficiently close to 1. Moreover,

ũ = min{λub, λcQ + βQỹ} < min{ub, cQ + βQỹ},
ṽ = min{λvb, λcΣ + βΣỹ} < min{vb, cΣ + βΣỹ}·

Altogether, the last relations show that (ỹ, ũ, ṽ) belongs to the L∞-interior of C1. �
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The proof of case I can be performed analogously by the formal setting ub = ∞, vb = ∞. In this case, the
arguments are even simpler.

From now on, we assume that (A3) is fulfilled so that Theorem 3.1 is applicable. The linearized problem has
been defined in an abstract setting. Inserting the concrete expressions for J ′ and T ′, it admits the following
explicit form:

(P`i )

min αQ

∫
Q

(ȳ − zQ) · y dx dt+ αΩ

∫
Ω

(ȳ(T )− zΩ) · y(T ) dx+

αΣ

∫
Σ

(ȳ − zΣ) · y dσ dt+ αu

∫
Q

ū · u dx dt+ αv

∫
Σ

v̄ · v dσ dt

subject to

 yt +Ay + dy(ȳ) y = u+ dy(ȳ)ȳ − d(ȳ)
∂νAy + by(ȳ) y = v + by(ȳ)ȳ − b(ȳ)

y(0) = yo,
(3.10)

(y, u, v) ∈ Ci.

For convenience, we set

ωQ := d(ȳ)− dy(ȳ) · ȳ ∈ L∞(Q), ωΣ := b(ȳ)− by(ȳ) · ȳ ∈ L∞(Σ),

and
aQ := −αQ [ȳ − zQ] ∈ L∞(Q), aΩ := −αΩ [ȳ(T )− zΩ] ∈ L∞(Ω),
aΣ := −αΣ [ȳ − zΣ] ∈ L∞(Σ), au := −αuū ∈ L∞(Q), av := −αvv̄ ∈ L∞(Σ),

so that (P`i ) can be written as

(P`i )



max
∫
Q

aQ y dx dt+
∫

Ω

aΩ y(T ) dx+
∫

Σ

aΣ y dσ dt+
∫
Q

au u dxdt+
∫

Σ

av v dσ dt

subject to yt +Ay + dy(ȳ) y = u− ωQ
∂νAy + by(ȳ) y = v − ωΣ

y(0) = yo,
(u, v) satisfies Ia or IIa and
u ≤ cQ + βQ y, v ≤ cΣ + βΣ y.

This kind of linear control problems has been studied in our paper [2].

4. Existence of regular Lagrange multipliers

Let us assume from now on that Γ and the coefficients of A are sufficiently smooth to ensure the existence of
a Green’s function G = G(x, ξ, t) associated with the linearized partial differential equation. This assumption
can certainly be avoided. However, we want to directly apply our results of [2], where all main theorems were
proved on using Green’s functions. A study of our technique in [2] reveals that the theory can be developed also
for weak solutions satisfying comparison principles. We shall not discuss this generalization here. The solution
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y of (3.10) has the integral representation

y(x, t) =
∫

Ω

G(x, ξ, t) yo(ξ) dξ +
∫ t

0

∫
Ω

G(x, ξ, t − s) (u(ξ, s)− w̄Q(ξ, s)) dξ ds

+
∫ t

0

∫
Γ

G(x, ξ, t − s) (v(ξ, s)− w̄Σ(ξ, s)) dσ(ξ) ds

= yc(x, t) +
∫ t

0

∫
Ω

G(x, ξ, t− s)u(ξ, s) dξ ds+
∫ t

0

∫
Γ

G(x, ξ, t − s) v(ξ, s) dσ(ξ) ds

= yc(x, t) + η(x, t),

(4.1)

where yc denotes the constant part of y corresponding to (yo,−w̄Q,−w̄Σ), and η is the part associated with
(0, u, v). Inserting the expression (4.1) in (P`i ), and using the Fubini theorem in the objective, we arrive at the
following linear continuous programming problem of bottleneck type (primal problem):

max
∫
Q

a1(x, t)u(x, t) dx dt +
∫

Σ

a2(x, t)v(x, t) dσ dt

subject to

u(x, t) ≤ c̄Q(x, t) +
∫ t

0

∫
Ω

βQ(x, t)G(x, ξ, t − s)u(ξ, s) dξ ds

+
∫ t

0

∫
Γ

βQ(x, t)G(x, ξ, t − s) v(ξ, s) dσ(ξ) ds,

v(x, t) ≤ c̄Σ(x, t) +
∫ t

0

∫
Ω

βΣ(x, t)G(x, ξ, t − s)u(ξ, s) dξ ds

+
∫ t

0

∫
Γ

βΣ(x, t)G(x, ξ, t − s) v(ξ, s) dσ(ξ) ds,

u(x, t) ≥ 0, (u(x, t) ≤ ub)
v(x, t) ≥ 0, (v(x, t) ≤ vb),

(4.2)

where the upper bounds for the controls are only required in (P`2). The function a1 ∈ L∞(Q) is defined by

a1(x, t) =
∫

Ω

G(x, ξ, T − t) aΩ(ξ)dξ +
∫ T

t

∫
Ω

G(x, ξ, s− t) aQ(ξ, s) dξ ds

+
∫ T

t

∫
Γ

G(x, ξ, s− t) aΣ(ξ, s) dσ(ξ) ds + au(x, t)

while a2 ∈ L∞(Σ) has the same form with av(x, t) substituted for the last item. Moreover, c̄Q := cQ + βQyc,
c̄Σ := cΣ + βΣyc were introduced. The two first inequality constraints of (4.2) admit the form

u ≤ c̄Q + βQη, u ≤ c̄Σ + βΣη. (4.3)

The primal problem may have more than one solution. However, one of them is always (ū, v̄). The associated
state is ȳ = yc + η̄.

Let us define another auxiliary function ψ ∈ Y by −ψt +Aψ + dy(ȳ)ψ = aQ
∂νAψ + by(ȳ)ψ = aΣ

ψ(T ) = = aΩ.
(4.4)
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Then we have a1 = ψ + au and a2 = ψ|Σ + av, and the relation∫
Q

a1(x, t)u(x, t) dx dt +
∫
Q

a2(x, t) v(x, t) dσ dt

=
∫

Ω

aΩ η(T ) dx+
∫
Q

aQ η dx dt +
∫

Σ

aΣ η dσ dt+
∫

Ω

au u dxdt+
∫

Σ

av v dσ dt
(4.5)

is obtained integrating by parts on using ψ. The associated dual problem has the form

(D`) min
∫
Q

(c̄Q µ1 + ub µ3) dx dt+
∫

Σ

(c̄Σ µ2 + vb µ4) dσ dt

subject to

µ1(x, t) + µ3(x, t) ≥ a1(x, t) +
∫ T

t

∫
Ω

G(x, ξ, s− t)βQ(ξ, s)µ1(ξ, s) dξ ds

+
∫ T

t

∫
Γ

G(x, ξ, s− t)βΣ(ξ, s)µ2(ξ, s) dσ(ξ) ds,

µ2(x, t) + µ4(x, t) ≥ a2(x, t) +
∫ T

t

∫
Ω

G(x, ξ, s − t)βQ(ξ, s)µ1(ξ, s) dξ ds

+
∫ T

t

∫
Γ

G(x, ξ, s− t)βΣ(ξ, s)µ2(ξ, s) dσ(ξ) ds,

µi(x, t) ≥ 0, i = 1, ..., 4.

(4.6)

In the case of (P1), the functions µ3, µ4 do not appear: The associated dual problem is obtained by setting
µ3 = µ4 = 0. If we denote by ϕ the solution of the system −ϕt +Aϕ+ dy(ȳ)ϕ = βQ µ1

∂νAϕ+ by(ȳ)ϕ = βΣ µ2

ϕ(T ) = 0,
(4.7)

then the constraints of the dual problem admit the simpler form

µ1 + µ3 ≥ a1 + ϕ
µ2 + µ4 ≥ a2 + ϕ

µi ≥ 0, i = 1, . . . , 4.

In this way, the dual problem is seen to be a linear parabolic control problem with state-constraints. The theory
in [2] yields the next theorem on the existence of at least one bounded and measurable optimal solution
(µ̄1, µ̄2, µ̄3, µ̄4) for the dual problem. The following assumption is needed:
(A4) The functions c̄Q and c̄Σ are nonnegative.

Remark 4.1. This assumption is satisfied, if dy(ȳ) ȳ − d(ȳ) ≥ 0, an analogous relation holds for b, and yo is
nonnegative. This follows from (3.10) and the comparison principle. In particular, nonlinearities of the type
d(y) = yk (k odd) or d(y) = |y| yk−1 (k even) meet this assumption. Here, the comparison principle implies
ȳ ≥ 0, since d is monotone non-decreasing.

Theorem 4.2. Suppose that (A3) is satisfied. Then the dual problem (D`) admits at least one optimal solution
(µ̄1, µ̄2, µ̄3, µ̄4) that belongs to L∞(Q)× L∞(Σ)× L∞(Q)× L∞(Σ).
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The proof of the theorem was performed separately for the cases of boundary control and distributed control.
However, it is clear that it can be extended to the general problem above (see the remarks in the last section
of [2]). The idea of [2] is as follows: First of all, the feasible set of (D`) is nonempty. This is a consequence
of the duality relation max (P`) = inf (D`), which follows from the simple structure of the constraints of
(P`). If a feasible (µ1, µ2, µ3, µ4) is given such that µ1(x, t) + µ3(x, t) is positive on some subset of Q, and
µ1(x, t) + µ3(x, t) > a1(x, t) + ϕ(x, t) holds there, then we are able to diminish µ1 + µ3 on this set, until the
equality µ1 + µ3 = max{a1 + ϕ, 0} is achieved. In the same way, µ2 + µ4 is handled. Here, we essentially use
the positivity of G(x, ξ, t). The value of the dual objective decreases, since c̄Q, c̄Σ, ub, vb are positive. Finally,
one is able to show that the infimum of (D`) is attained in a uniformly bounded set. The solution is found by
weak compactness.

We recall the complementary slackness conditions,

(µ̄1 + µ̄3 − a1 − ϕ) ū = 0 , µ̄3(ū− ub) = 0 a.e in Q , (4.8)
(µ̄2 + µ̄4 − a2 − ϕ) v̄ = 0 , µ̄4(v̄ − vb) = 0 a.e on Σ , (4.9)

µ̄1(ū− c̄Q − βQη̄) = 0 (4.10)
µ̄2(v̄ − c̄Σ − βΣη̄) = 0 (4.11)

which are well known from the theory of linear continuous programming.

Theorem 4.3. If (µ̄1, µ̄2, µ̄3, µ̄4) is a bounded and measurable optimal solution of the dual problem (D`), then
µ̄1 and µ̄2 are Lagrange multipliers for the (nonlinear) optimal control problem (P), associated with the state-
constraints u ≤ cQ + βQy and v ≤ cΣ + βΣy, respectively.

Proof. We define p := −(ψ + ϕ) and verify the optimality conditions (1.6–1.8): the adjoint equation (1.6) is
easily obtained by adding the systems for ψ and ϕ with negative sign. Let us show the variational inequality
(1.7). We find ∫

Q

(αuū+ p+ µ̄1)(u− ū) dx dt =
∫
Q

(−au + p+ µ̄1)(u− ū) dx dt

=
∫
Q

(ψ − a1 + p+ µ̄1)(u− ū) dx dt = −
∫
Q

(a1 + ϕ− µ̄1)(u− ū) dx dt

=
∫
Q

(a1 + ϕ− µ̄1 − µ̄3) ū dx dt−
∫
Q

(a1 + ϕ− µ̄1 − µ̄3)u dxdt+
∫
Q

µ̄3(ū− ub) dx dt−
∫
Q

µ̄3(u− ub) dx dt ≥ 0.

The last inequality follows from the complementary slackness conditions (4.8, 4.9) for the terms containing ū,
the nonnegativity of µ̄1, µ̄3, and from the inequality constraints u ≥ 0, u ≤ ub. We have shown (1.7). The
variational inequality (1.8) is verified in the same way. In view of the complementary slackness conditions,
µ̄1, µ̄2 satisfy all properties of Lagrange multipliers. The complementary slackness condition (1.5) are obtained
from (4.10, 4.11). For instance,

0 = µ1(ū− c̄Q − βQη̄) = µ1(ū− cQ − βQ(yc + η̄)) = µ1(ū− cQ − βQȳ).

We have performed the proof for problem (P2), the case of (P1) is treated by µ̄3 = 0, µ̄4 = 0. �

We are grateful to both the referees for their remarks, which helped us to essentially improve our paper.
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