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NONLINEAR FEEDBACK STABILIZATION OF A ROTATING BODY-BEAM
WITHOUT DAMPING

Boumediène CHENTOUF
1

and Jean-François COUCHOURON
1

Abstract. This paper deals with nonlinear feedback stabilization problem of a flexible beam clamped
at a rigid body and free at the other end. We assume that there is no damping and the feedback law
proposed here consists of a nonlinear control torque applied to the rigid body and either a boundary
control moment or a nonlinear boundary control force or both of them applied to the free end of the
beam. This nonlinear feedback, which insures the exponential decay of the beam vibrations, extends
the linear case studied by Laousy et al. to a more general class of controls.

Résumé. On aborde dans cet article un problème de stabilisation par feedback non linéaire d’un
système constitué d’une poutre flexible fixée à l’une de ses extrémités à un corps rigide et libre à
l’autre extrémité. On suppose qu’il n’y a pas de frottements; on propose alors une loi de commande
composée d’une part d’un contrôle de couple exercé sur le disque et d’autre part d’un contrôle de force
et/ou d’un contrôle de moment appliqué à l’extrémité libre de la poutre. On montre ici que cette
loi de commande non linéaire assure l’amortissement exponentiel des vibrations de la poutre. Cette
conclusion est une extension des résultats antérieurs obtenus avec des contrôles linéaires dans le sens
où notre classe de contrôle est plus large.

AMS Subject Classification. 35A05, 35B40, 47H06, 47H20, 93C20, 93D15, 93D05.

Received October 27, 1998. Revised June 14, 1999.

1. Introduction

The purpose of this paper is to study the nonlinear feedback stabilization problem of the system presented
in the Figure 1. This system has been introduced by Baillieul and Levi [2]. It consists of a disk (D) with a
beam (B) attached to its center and perpendicular to the disk plane. The disk (D) rotates freely around its axis
and the motion of the beam (B) is confined to a plane perpendicular to the disk (see Fig. 1).
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Figure 1. The body-beam system.

The body-beam system is governed by the following equations

ρytt +EIyxxxx = ρω2(t)y,
y(0, t) = yx(0, t) = 0,
yxx(1, t) = Γ1(t),
yxxx(1, t) = Γ2(t),

ω̇(t) =
Γ3(t)− 2ρω(t)

∫ 1

0

yytdx

Id + ρ

∫ 1

0

y2dx

,

(1.1)

where the positive constants EI, ρ and Id are respectively the flexural rigidity, the mass per unit length of the
beam, and the disk’s moment of inertia; ω(t) is the angular velocity of the disk at time t, while y(., t) is the
beam’s displacement in the rotating plane at time t. For simplicity, the length of the beam is chosen to be
unity. Moreover, Γ1(t),Γ2(t) and Γ3(t) are respectively the moment control, the force control and the torque
control to be determined so that the solution’s energy of the resulting closed-loop system decays to zero in some
functional space.

In this paper, we take a nonlinear boundary control moment Γ1(t) and/or a nonlinear boundary control
force Γ2(t) applied to the free end of the beam (B) while a nonlinear control torque Γ3(t) is exerted on the disk
(D). Then, as in the linear case [16] it will be shown that, in our case, the equilibrium point of (1.1) is still
exponentially stabilizable.

The stabilization problem of the body-beam system has been extensively studied in the literature [2, 5, 9,
16–19, 23, 24]. In [2], the authors showed that with structural damping and without control, the body-beam
system has a finite number of rotating equilibrium states. Later, Bloch and Titi [5] showed that in the more
difficult case of viscous damping, a linear inertial manifold exists for the body-beam system. By taking into
account the effect of damping, and for any constant angular velocity smaller than a critical one, an exponentially
stabilizing feedback torque control law has been given in [23]. In the same case, and by adding a boundary
control force, the system is also stabilizable for any constant angular velocity [24]. The stabilization problem
of similar systems has been studied in [17,18] and [19]. Recently, for the body-beam system without damping,
exponential stabilization was established in [16] as soon as at least one of two linear boundary controls (force
or moment) is present at the free end of the beam with, in addition, a control torque of the disk. The last result
on this subject has been obtained by Coron and d’Andréa-Novel [9]: without damping nor controls on the free
boundary of the beam, the authors found a torque control which insured the strong stability of the system but
not the exponential one.

The contribution of this paper consists in extending the class of controls proposed in [16] for the system
without damping to a nonlinear one. In fact, this work is motivated by two arguments: first, the interest of such
an extension is to highlight the robustness of controls which is a very desirable property. This means nothing



NONLINEAR FEEDBACK STABILIZATION OF A ROTATING BODY-BEAM 517

more than that the stability of the system will stand even in the presence of small perturbations. In any realistic
system, these perturbations could result from modeling errors, or moderate disturbances and uncertainties in
the model which is often far from perfect. In addition, we propose a nonlinear large class of controls so that
the errors of measurement, concerning the implementation of sensors or actuators, will be taken into account.
Second, it is important that, when we search a control law for our model, we keep in mind that in practice
the input amplitudes are constrained by the power of the actuators which go into a nonlinear saturation [1].
Therefore, the stability of the system must be assured with nonlinear controls.

Thus, the new feedback control proposed here is the following:

{
Γ1(t) = −f(ytx(1, t)), Γ2(t) = g (yt(1, t)) ;

Γ3(t) = −γ(ω − ω∗),
(1.2)

for each given ω∗ ∈ R. In contrast to [16], these controls are nonlinear since f, g and γ are nonlinear real
functions satisfying hypotheses F1), F2) and F3) given in Section 3.

The main result of our paper is then (Th. 2 in Sect. 3):

under hypotheses F1), F2), F3) and the condition | ω∗ |<
√

9EI/ρ, the solutions of the closed-loop system
(1.1)–(1.2) decay exponentially to its equilibrium point in a suitable state space.

We forewarn the reader that as in [16], the decay rate although exponential is not uniform. To obtain this
result within a nonlinear framework, it was necessary to overcome new difficulties among which, well-posedness
of the system (1.1–1.2), regularity of its solutions, density of the domain of the nonlinear unbounded operator
governing the evolution problem, lack of exponential stability result in the perturbation theory of fully nonlinear
systems, no Duhamel’s formula... For instance, the linear argument of [16] to deduce the exponential decay
of the solutions of (1.1–1.2) from the exponential stability of the associated homogenous system fails in our
approach. In fact, Theorem 2 has been obtained by means of two essential tools: on the one hand, the Bénilan’s
integral inequalities (see [3] or [4]) and on the other hand, the multiplier method (see [15]).

All the systems considered in this paper (and in particular (1.1–1.2)) can be written in the following abstract
form:

CP =

{
ẋ(t) +Ax(t) +B(t, x(t)) 3 0, on J,

x(0) = x0,
(1.3)

where J is any interval in R+ starting at zero; A is a (multivalued) nonlinear m-accretive unbounded operator
on the Banach space (X, ‖ ‖); and x0 belongs to the closure of the domain D(A) of A. The nonlinear non
accretive operator B is in general (except in Sec. 2.3) locally Lipschitz from J × X to X . Note that the
multivalued aspect of A (which is a usual requirement in the modern theory of evolution equation) does not
pose any problem in the study of differential inclusions (1.3). Indeed, the mild solution notion involves the
operator resolvent (I + λA)−1 (λ > 0) which is single-valued and non expansive provided that A is accretive.
We point out that in the body-beam application, A is single-valued, X is a Hilbert space and D(A) is dense
in X . Moreover, the nonlinearity of A unfortunately occurs in its domain and the density of D(A) has been
obtained by non standard arguments (see Lem. 4).

Section 2 is devoted to preliminary results needed to prove global existence, regularity and exponential
decay of the solutions of problem CP . In Section 3, we state and show in several steps the exponential decay
result of the rotating body-beam system (1.1–1.2).
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2. Preliminaries on the abstract problem CP

2.1. The Cauchy problem CP

First, we start by briefly recalling some definitions and notations that are consistent throughout this paper.
Let X be a real Banach space. By a multivalued operator, we mean a mapping A : X → 2X . The domain of A
is defined by

D(A) := {x ∈ X ;Ax 6= ∅},
and the range of A is defined by

R(A) :=
⋃

x∈D(A)

Ax.

Definition 1. An operator A : X → 2X is called accretive if [x− x̂, y − ŷ] ≥ 0, for each x, x̂ ∈ D(A), y ∈ Ax,
ŷ ∈ Ax̂, where [·, ·] is the usual bracket

[u, v] = lim
λ↓0

‖u+ λv‖ − ‖u‖
λ

, ∀ u, v ∈ X.

Definition 2. An operator A : X → 2X is called m-accretive if it is accretive and R(I + λA) = X.

Then, consider the nonlinear differential inclusion (1.3). This terminology can be used to highlight the fact
that A is multivalued and so we use the symbol “3 0” instead of “= 0”. We point out that the proofs are not
simpler if A is a function. If necessary, we will precise some arguments in (CP ) as follows: CP = CP (x0, J).
Throughout this subsection, the system (1.3) is assumed to satisfy the following hypotheses.

(HI) A is a multivalued unbounded nonlinear m-accretive operator with domain D(A).
(HII) B is locally Lipschitz on J ×X and bounded on the bounded subsets of J ×X .

(HIII) For every x0 ∈ D(A) and T ∈ J , there is a constant C = C(x0, T ) such that for all T0 ∈ [0, T ],
each solution x(·) of CP (x0, [0, T0]) satisfies:

‖x(t)‖ ≤ C, ∀t ∈ [0, T0].

We will precise below the meaning of solutions considered in this paper.

Definition 3. The continuous function x∗ is a solution of CP if it is the mild solution of the quasi-autonomous
problem

Q =

{
ẋ(t) +Ax(t) 3 −B(t, x∗(t)), t ∈ [0, T ],

x(0) = x0,

for all T ∈ J .

We refer, for instance, the reader to [10] for the notion of mild solution for the quasi-autonomous case.
Proposition 1 below extends the well-known Picard-Lindelöf-Lipschitz theorem.

Proposition 1. Assume that (HI), (HII) and (HIII) hold. Then, for x0 ∈ D(A), the problem CP (x0, J) has
a unique solution S(·)x0 and the map x0 7→ S(t)x0 is continuous on D(A), for all t ∈ J .

Proof of Proposition 1. The proof will be divided into three steps and without loss of generality, we will suppose
J = [0, T ] for some T > 0.
Step 1. Existence and uniqueness of solution S(·)x0 are not really a new result since due to assumptions (HI)
and (HII), the problem CP has a unique local solution x(·), i.e., there are T0 ∈]0, T [ and x(·) solution of
CP (x0, [0, T0[) (see Pierre result, p. 126 of [21]). Moreover, in order to show that this solution can be extended
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on J it is enough to fit classical arguments (as in [21] for instance) to our particular assumptions (HII) and
(HIII). Indeed, the existence of limt→T−0

x(t) follows from the following estimates:

||x(t+ h)− x(t)|| ≤ ||x(s + h)− x(s)|| + 2M(t− s),

with M = sup {||B(t, ξ)||; t ∈ [0, T ], ||ξ|| ≤ C} and C is given in (HII). According to our assumptions, such an
estimate is provided by Bénilan’s integral inequalities (see [3] and [4]).
Step 2. Now it remains to prove the continuity of x0 7→ S(t)x0 on D(A), for all t ∈ J . This is not obvious
since we do not suppose any compacity property on B or anything upon the dependence x0 7→ C(x0, T ). First,
we will prove the following uniform estimate which does not require assumption (HIII).

The notation B(z, r) stands for the open ball of center z and radius r > 0 in X .

Lemma 1. Let r > 0 and x0 ∈ D(A) be such that B is L-Lipschitz on [0, r] × B(x0, r). Let x1 ∈ B(x0, r/8) ∩
D(A); pick x̂1 ∈ Ax1 and a real T1 ∈]0, r[ satisfying(r

4
+ T1(‖x̂1‖+M1)

)
eLT1 <

r

2
, (2.1)

with
M1 = sup

{
‖B(τ, x1)‖ · τ ∈ [0, r]

}
·

Then we have S(t)x0 ∈ B(x0, r) for all t ∈ [0, T1] and all x0 ∈ B(x0, r/8).

Proof of Lemma 1. Let x0 ∈ B(x0, r/8) and set y(·) = S(·)x0. Define the set

E = {t ∈ [0, T1]; ||y(τ)− x0|| < r; for all τ ∈ [0, t]} ·

Clearly, E is a non empty open subset of [0, T1]. Let us prove that it is closed in order to conclude E = [0, T1].
To accomplish this aim, set

t∞ = sup E .
Then, for t ∈ [0, t∞[, Bénilan’s integral inequalities and usual bracket properties (see Def. 1 and [4, 6]) yield

||y(t)− x1|| ≤ ||x0 − x1||+
∫ t

0

[y(τ) − x1,−B(τ, y(τ)) − x̂1]dτ

≤ r

4
+
∫ t

0

([y(τ) − x1,−B(τ, y(τ)) +B(τ, x1)]

+[y(τ)− x1,−B(τ, x1)− x̂1]) dτ

≤ r

4
+
∫ t

0

(
L||y(τ)− x1||+ ‖B(τ, x1)‖+ ||x̂1||

)
dτ.

By virtue of Gronwall’s lemma, the latter implies

||y(t)− x1|| ≤
(r

4
+ t(‖x̂1‖+M1)

)
eLt, ∀t ∈ [0, t∞[.

According to the choice of T1 in (2.1) and the relation 0 ≤ t∞ ≤ T1, it comes, since x is continuous on [0, T ]

||y(t∞)− x1|| ≤ r

2
· (2.2)

Now, using the triangle inequality in (2.2), we conclude

||y(t∞)− x0|| ≤ r

2
+ ||x0 − x1|| ≤ r

2
+
r

8
< r. (2.3)
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From (2.3) and the definitions of E and t∞, it results t∞ ∈ E and thus E is closed.

Step 3. Let (x0
n)n∈N∗ be a sequence converging in D(A) to x0. Define xn and x as

xn(t) = S(t)x0
n; x(t) = S(t)x0, t ∈ [0, T ].

In order to prove the continuity of S(t)·, we will show that the sequence (xn)n converges uniformly to x on
[0, T ]. It suffices then to establish that the set

K = {θ ∈]0, T ];xn → x uniformly on [0, θ]}

is non empty, open and closed in [0, T ].
i) K is non empty:
The positive real T1 introduced in Lemma 1 belongs to K. Indeed, using again Bénilan’s integral inequalities,
we have

||xn(t)− x(t)|| ≤ ||x0
n − x0||+

∫ t

0

||B(τ, xn(τ)) −B(τ, x(τ))||dτ (2.4)

for t ∈ [0, T1]. But Lemma 1 insures

xn(t) ∈ B(x0, r), for t ∈ [0, T1] and n ≥ m, (2.5)

when the integer m is sufficiently large, if B is L-Lipschitz on [0, r]×B(x0, r). It follows from (2.4, 2.5) and the
Gronwall’s lemma

||xn(t)− x(t)|| ≤ ||x0
n − x0||eLt

for t ∈ [0, T1] and n ≥ m. Hence (xn)n converges uniformly to x on [0, T1].
ii) K is open:
Let θ1 ∈ K be such that θ1 < T . Then, in particular, xn(θ1) → x(θ1). As in i), we can show that there exists
T
′
1 ∈ [0, T − θ1[ such that (xn) converges uniformly to x on [θ1, θ1 + T

′
1]. Therefore, one has [0, θ1 + T

′
1] ⊂ E

which proves the claim ii).
iii) K is closed:
Let θn ∈ E , n ∈ N∗ be such that θn ↑ θ∞. We have to prove that (xn)n converges uniformly to x on [0, θ∞].
First, we can find r > 0 then T2 ∈]0, r[ and then m ∈ N∗ as follows:

a) B is L-Lipschitz on [θ∞ − r, θ∞]× B (x(θ∞), r);
b) ‖x(θ∞ − τ) − x(θ∞)‖ ≤ r

16 , for all τ in [0, T2];

c)
(r

4
+ T2(‖x̂1‖+M2)

)
eLT2 <

r

2
, with x1 ∈ B(x(θ∞), r/8) ∩ D(A) and

M2 = supτ∈[0,r] ||B
(
θ∞ − τ, x1

)
||;

d) ‖xn(θ∞ − T2)− x(θ∞ − T2)‖ ≤ r
16 for n ≥ m.

Then, as in Lemma 1, one can check

xn((t) ∈ B (x(θ∞), r) , (2.6)

for n ≥ m and t ∈ [θ∞ − T2, θ∞[.
But the Bénilan’s inequalities provide

‖xn(t)− x(t)‖ ≤ ‖xn(θ∞ − T2)− x(θ∞ − T2)‖+
∫ θ∞

θ∞−T2

‖B (τ, xn(τ)) −B (τ, x(τ)) ‖dτ,

for t ∈ [θ∞ − T2, θ∞].
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According to (2.6), the Lebesgue Dominated Convergence Theorem used in the last inequality gives the
uniform convergence of (xn)n to x on [θ∞ − T2, θ∞] and finally on [0, θ∞]. Thus, as required at the begining of
iii) we have θ∞ ∈ K. The proof of Proposition 1 is now complete.

2.2. Two lemmas without (HIII)

The two following technical lemmas which do not involve hypotheses (HIII) are used in Section 3 in order
to check (HIII) for CP problem stemmed from the body-beam system.

Lemma 2. Let V : X → R be a continuous function, x0 ∈ D(A) and x be the solution of CP (x0, [0, T ]). Assume
that (HI) and (HII) hold. Suppose in addition that each local solution y of CP (x0, [0, T ]) with x0 ∈ D(A)
satisfies:

V (y(t)) ≤ V (x0),

on the domain of y. Then, we have
V (x(t)) ≤ V (x0),

for all t ∈ [0, T ]. Consequently, Hypothesis (HIII) holds if, for instance, V (z) ≥ K‖z‖ for any z ∈ X and for
some positive constant K.

Proof of Lemma 2. The function x being the solution of CP (x0, [0, T ]), set

G =
{
t ∈ [0, T ];V (x(τ)) ≤ V (x0), ∀τ ∈ [0, t]

}
·

Let us show G = [0, T ]. Clearly, G is closed in [0, T ]. Now, we want to prove that G is not reduced to {0}.
Let x0

n → x0 with x0
n ∈ D(A) for all n ∈ N∗. From Lemma 1 (which does not suppose (HIII)), there exists

T1 ∈]0, T ] such that the solution S(·)x0
n exists on [0, T1] for n sufficiently large and such that (see also Step 3 i)

in the proof of Prop. 1)
(
S(·)x0

n

)
n

converges to x(·) = S(·)x0 uniformly on [0, T1]. Therefore, we have

V (S(t)x0
n) ≤ V (x0

n), for t ∈ [0, T1], n ∈ N∗.

Since V is continuous, the previous relation yields

V (S(t)x0) ≤ V (x0), for t ∈ [0, T1]

and thus [0, T1] ⊂ G. Finally, repeating these arguments, one can easily show that G is open in [0, T ]. Therefore,
G = [0, T ] and thus the proof of Lemma 2 is ended.

In a Hilbert space and more generally in a Banach space X which has the Radon-Nykodym property, each
Lipschitz continuous map from [0, T ] to X is a.e. differentiable on [0, T ].

Lemma 3. Suppose that (HI) and (HII) hold and that the Banach space X has the Radon-Nykodym property.
Then, each solution x of CP (x0, [0, T ]), with x0 ∈ D(A), is a strong one.

Proof of Lemma 3. Let x0 ∈ D(A), r > 0 and T1 chosen as in Lemma 1 with x1 = x0 for instance. For
t, t+ h ∈ [0, T1] with h ≥ 0, the Bénilan’s inequalities imply:

||x(t+ h)− x(t)|| ≤ ||x(h)− x0||+
∫ t

0

(||B(τ + h, x(τ + h))−B(τ, x(τ))||) dτ

≤ ||x(h)− x0||+
∫ t

0

(Lh+ L||x(τ + h)− x(τ)||) dτ. (2.7)
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But we have (see [3] or [4]) {
||x(h)− x0|| ≤ h||x̂1||+M1h,

x̂1 ∈ Ax0 and M1 = supτ∈[0,T ] ||B(τ, x(τ))||.
(2.8)

Clearly (2.8) and the Gronwall’s lemma applied in (2.7) show that x is Lipschitz on [0, T ]. Because X has the
Radon-Nykodym property, the map x is differentiable a.e. on [0, T1]. Then, in this case (see [3] or [4]), x belongs
to W 1,1 ([0, T1];X) and satisfies {

x(t) ∈ D(A), a.e on [0, T1]
ẋ(t) +Ax(t) +B(t, x(t)) 3 0. (2.9)

In other words, x is a strong solution of CP (x0, [0, T1]).
Now introduce the set

L =
{
t ∈ [0, T ];x

∣∣∣
[0,t]

is a strong solution of CP (x0, [0, t])
}
·

This set is clearly closed and contains [0, T1]. In order to conclude L = [0, T ], it remains to prove that L is
open.

Consider t0 ∈ L with t0 < T and some open ball B (x(t0), r) such that the operator B is L-Lipschitz on
[t0−r, t0+r]×B (x(t0), r). Then, from (2.9) and the continuity of x, there is h ∈]0, t0] such that x(t0−h) ∈ D(A)
and x(τ) ∈ B (x(t0), r) for τ ∈ [t0 − h, t0]. But by virtue of part a) of this proof, x is a strong solution of
CP (x(t0 − h), [0, T ′1]) where T ′1 is any real in ]t0, T ]∩]t0, t0 + r[ satisfying

t0 − h ≤ t ≤ T ′1 ⇒ x(t) ∈ B (x(t0), r) .

Of course, due to the continuity of x such a T ′1 exists and thus we have [0, T ′1[⊂ L and t0 ∈ [0, T ′1[. The proof is
now done.

2.3. An exponential decay result

In this subsection, our hypotheses are different from those of the previous developments. Let x0 ∈ X and
denote by (HIV) and (HV) the following hypotheses:

(HIV) The problem CP (x0, [0,+∞[) has a unique solution x.

(HV) There is a locally integrable positive real valued function µ on [0,+∞[ satisfying

‖B(t, x(t))‖ ≤ µ(t)‖x(t)‖, and lim
ξ→+∞

∫ ξ+δ

ξ

µ(τ)dτ = 0, ∀δ > 0.

The result of this subsection is the following.

Theorem 1. Assume that the nonlinear semigroup e−At generated by the operator −A is exponentially (uni-
formly) stable on X. Then, under hypotheses (HI), (HIV) and (HV), there exist positive constants M and κ
such that

‖x(t)‖ ≤Me−κt, ∀t ≥ 0.
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Remark 1. The decay rate obtained in Theorem 1, although exponential, is not uniform. In return, the
nonlinear semigroup e−At being uniformly stable, there exists constants M1, ω1 > 0 satisfying ‖e−Atx0‖ ≤
M1e

−ω1t‖x0‖, for all x0 ∈ X and t ≥ 0. Then, the constants M and κ of Theorem 1 can be chosen as follows

κ =
ω0

δ
, M = max

(
M1e

ω0(2+t0/δ), sup
0≤t≤t0

‖x(t)‖eκt0
)
,

with
ω0 > max(1, ω1), δ >

1
ω1

(lnM1 + 2ω0),

and t0 defined by ∫ ξ+δ

ξ

µ(τ)dτ ≤ ω0

eω0δ
, ∀ξ ≥ t0.

Remark 2. Even when A is linear, such a result is not quite obvious. Nevertheless, if µ(t) → 0 as t → +∞,
the result is clear when A is linear.

Proof of Theorem 1. The nonlinear semigroup e−At being uniformly stable, there exist constants M1, ω1 > 0
such that ‖e−Atx0‖ ≤M1e

−ω1t‖x0‖. Let δ > 0 and tk = t0 +kδ. Since the operator A is accretive, the Bénilan’s
inequalities give for any t ∈ [tk−1, tk],

‖x(t)− e−(t−tk−1)Ax(tk−1)‖ ≤
∫ tk

tk−1

‖B(τ, x(τ))‖dτ.

Thus, for t ∈ [tk−1, tk], we have

‖x(t)‖ ≤ ‖e−(t−tk−1)Ax(tk−1)‖+
∫ tk

tk−1

‖B(τ, x(τ))‖dτ

≤ M1e
−ω1(t−tk−1)‖x(tk−1)‖+

∫ tk

tk−1

µ(τ)‖x(τ)‖dτ. (2.10)

For t ∈ [tk−1, tk], set

yk(t) = eω1(t−tk−1)‖x(t)‖. (2.11)

Then, for t ∈ [tk−1, tk], (2.10) gives ,

yk(t) ≤M1yk(tk−1) + eω1δ

∫ t

tk−1

µ(τ)yk(τ)dτ.

Applying the Gronwall’s formula, we get

yk(t) ≤M1yk(tk−1) exp

(
eω1δ

∫ t

tk−1

µ(τ)dτ

)
, t ∈ [tk−1, tk], (2.12)

and in particular

yk(tk) ≤M1e
αkyk(tk−1), (2.13)

where

αj = eω1δ

∫ tj

tj−1

µ(τ)dτ, j ∈ N∗.
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This implies, together with (2.11),

‖x(tk)‖ ≤Mk
1 exp

−kω1δ +
j=k∑
j=1

αj

 ‖x(t0)‖. (2.14)

Since we have
j=k∑
j=1

αj = eω1δ

∫ tk

t0

µ(τ)dτ,

the inequality (2.14) becomes

‖x(tk)‖ ≤ exp
(
k lnM1 − kω1δ + eω1δ

∫ tk

t0

µ(τ)dτ
)
‖x(t0)‖. (2.15)

Now, take a positive constant ω0 such that ω0 > max(1, ω1). Next, according to hypothesis (HV), choose δ
and then t0 as follows:  δ >

1
ω1

(lnM1 + 2ω0),∫ ξ+δ
ξ

µ(τ)dτ ≤ ω0

eω0δ
, ∀ξ ≥ t0.

(2.16)

It comes from (2.16)

αj ≤ eω1δ
ω0

eω0δ
≤ ω0, (2.17)

for j ∈ N∗. According to (2.15, 2.16) and (2.17), we get

‖x(tk)‖ ≤ exp
(
−ω0

(
tk − t0
δ

))
‖x(t0)‖. (2.18)

One can show that (2.11) and (2.12) (with k + 1 instead of k) give

‖x(t)‖ ≤M1e
−ω1(t−tk)eαk+1‖x(tk)‖,

for all t ∈ [tk, tk+1]. Then, combining this last inequality with (2.18), we obtain

‖x(t)‖ ≤M1e
−ω1(t−tk−1)+αk+1 exp

(
−ω0

(
tk − t0
δ

))
‖x(t0)‖, ∀t ∈ [tk, tk+1]. (2.19)

We deduce from (2.17) and (2.19) that for any t ∈ [tk, tk+1], we have

‖x(t)‖ ≤ M1e
−ω1(t−tk)eω0 exp

(
−ω0

(tk − t0)
δ

)
‖x(t0)‖

≤ M1e
ω0eω0

t0
δ e

ω0(t−tk)
δ e−ω0

t
δ ‖x(t0)‖

≤ M1e
−ω0

t
δ eω0(2+

t0
δ )‖x(t0)‖.

Hence, the required estimate of Theorem 1 follows.
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3. Stability of a rotating body-beam system

This section deals with exponential stability of the body-beam system (1.1–1.2) under suitable conditions
on the nonlinear controls f, g and γ.

3.1. Hypotheses, notations and main result

In the sequel, assume that the following hypotheses are satisfied:
F1) The functions f and g are in {h ∈ C0(R); h is increasing ; h(0) = 0}.
F2) There exist constants L1 ≥ 0, L2 > 0, L3 > 0 such that

| f(x) | ≤ L1 | x | and L2 | x | ≤ | g(x) | ≤ L3 | x |, ∀x ∈ R.

F3) The function γ is Lipschitz on each bounded subset of R and for some L4 > 0,

γ(x)x ≥ 0, | γ(x) | ≥ L4 | x |, ∀x ∈ R.

The conditions F1) F2) ensure in particular the presence of at least a control force in the flexible beam because
g is not identically zero. In the other hand, the hypothesis F2) and the second condition of F3) are not deprived
of practical interest. Indeed, in control system only a constrained input control is frequently available [1].
Usually, this can be satisfied by assuming hypotheses as F2) and F3) which are used in different previous works
for nonlinear boundary stabilization problems (see for instance [8, 14] and [15]). In particular, F2), F3) allow
the choice of a limited command for the part concerning f and γ. Moreover, Hypotheses F1), F2) and F3) are
obviously satisfied when f , g and γ are linear (as supposed in [16] for instance).

The closed loop system (1.1–1.2) can be written as follows:

ρytt +EIyxxxx = ρω2(t)y,
y(0, t) = yx(0, t) = 0,
yxx(1, t) = −f(ytx(1, t)),
yxxx(1, t) = g (yt(1, t)) ,

ω̇(t) =
−γ(ω(t)− ω∗)− 2ρω(t)

∫ 1

0

y(t)yt(t)dx

Id + ρ

∫ 1

0

y(t)2dx

·

(3.1)

For the phase space of the system, take the real Hilbert space

X = H× R = H2
0 × L2(0, 1)× R,

equipped with the inner product

〈(u, v, ξ), (ũ, ṽ, ξ̃)〉X = 〈(u, v), (ũ, ṽ)〉H + ξξ̃,

where for n ∈ N,
Hn

0 = {u ∈ Hn(0, 1); u(0) = ux(0) = 0},
and the space H is endoweded with the inner product

〈(u, v), (ũ, ṽ)〉H =
∫ 1

0

(
EIuxxũxx − ρω∗2uũ+ ρvṽ

)
dx.
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Note that the norm induced by this scalar product is equivalent to the usual one of the Hilbert space H2(0, 1)×
L2(0, 1) provided that | ω∗ |<

√
9EI/ρ (see [16] for details).

Set Φ = (y, z) . Then, the system (3.1) can be written as follows
Φ̇(t) + ÃΦ(t) +

(
0, (ω∗2 − ω2(t))y(t)

)
= 0,

ω̇(t) =
−γ (ω(t)− ω∗)− 2ρ ω(t) < y(t), z(t) >L2(0,1)

Id + ρ‖y(t)‖2L2(0,1)

,
(3.2)

where the nonlinear operator Ã is defined by

D(Ã) =
{

(y, z) ∈ H4
0 ×H2

0 ;
yxx(1) = −f(zx(1)),
yxxx(1) = g(z(1))

}
, (3.3)

and

Ã(y, z) =
(
−z, EI

ρ
yxxxx − ω∗2y

)
. (3.4)

Clearly, the system (3.2) is equivalent to the following one

(
Φ̇(t), ω̇(t)

)
+ (A+B) (Φ(t), ω(t)) = 0, (3.5)

where


A(Φ, ω) =

(
ÃΦ, 0

)
, with D(A) = D(Ã)× R,

B(Φ, ω) =

(
0, (ω∗2 − ω2)y,

−γ (ω − ω∗)− 2ρ ω < y, z >L2(0,1)

Id + ρ‖y‖2L2(0,1)

)
·

(3.6)

We will show in the sequel that (3.5) is in fact a formulation of the closed loop system (1.1–1.2) in a CP form.
The main result of this section is:

Theorem 2. Suppose that | ω∗ |<
√

9EI/ρ. Then under hypotheses F1), F2) and F3), for each initial data
(Φ0, ω0) ∈ D(A) the solution (Φ(t), ω(t)) of the closed-loop system (3.5) tends exponentially to (0, ω∗) in X as
t→ +∞.

First, we deal with the existence and uniqueness of the solution of the following subsystem{
Φ̇(t) + ÃΦ(t) = 0,
Φ(0) = Φ0,

(3.7)

where Ã is the nonlinear operator defined by (3.3–3.4).

3.2. Wellposedness of the subsystem (3.7)

We have the following proposition.

Proposition 2. Assume that | ω∗ |<
√

9EI/ρ. The operator Ã defined by (3.3–3.4) is m-accretive in H with
dense domain.
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Proof of Proposition 2. A straightforward computation shows that for all (y, z), (ỹ, z̃) in D(Ã),

〈 Ã(y, z)− Ã(ỹ, z̃), (y, z)− (ỹ, z̃) 〉H = EI (z(1)− z̃(1) )
(
g(z(1))− g(z̃(1))

)
+EI (zx(1)− z̃x(1))

(
f(zx(1))− f(z̃x(1))

)
.

(3.8)

Using Hypothesis F1), we deduce that 〈 Ã(y, z) − Ã(ỹ, z̃), (y, z) − (ỹ, z̃) 〉H ≥ 0 and thus the operator Ã is
accretive.

Now, we have to show the maximality of Ã, what amounts to saying that (see [6]), for any given (u, v) ∈
H = H2

0 × L2(0, 1), there exists (y, z) ∈ D(Ã) such that (I + Ã)(y, z) = (u, v). Equivalently, we seek y and z
satisfying



y − z = u,

z − ω∗2y +
EI

ρ
yxxxx = v,

yxx(1) + f(zx(1)) = 0,

yxxx(1)− g (z(1)) = 0,

y ∈ H4
0 , z ∈ H2

0 .

(3.9)

Eliminating the unknown z in (3.9), one obtains



EIyxxxx + ρ
(
1− ω∗2

)
y = ρ (u+ v) ,

yxx(1) + f (yx(1)− ux(1)) = 0,

yxxx(1)− g (y(1)− u(1)) = 0,

y ∈ H4
0 .

(3.10)

Let us define, as in [22], the function J(·) on H2
0 by

J(ψ) =
1
2

{∫ 1

0

[EIψ2
xx + ρ

(
1− ω∗2

)
ψ2] dx

}
− ρ

∫ 1

0

(u+ v) ψ dx+EI [F (ψx(1)− ux(1)) +G(ψ(1)− u(1))] ,

where

F (x) =
∫ x

0

f(ξ)dξ, G(x) =
∫ x

0

g(ξ)dξ, ∀x ∈ R.

From Hypothesis F1), we deduce that F and G are continuously differentiable on R, convex and F (x) ≥
0, G(x) ≥ 0 for all x ∈ R. Consequently, we can claim that J is convex, coercive and continuous in H2

0 .
Hence, by a minimization theorem (Prop. 38.15, [25] p. 155), there exists a function y ∈ H2

0 such that
J(y) = infψ∈H2

0
J(ψ). This implies that the function

Θ : λ 7−→ Θ(λ) = J(y + λψ)
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admits a minimum at λ = 0 and thus d
dλ

(J(y + λψ)) |λ=0 = 0, ∀ψ ∈ H2
0 . This means, thanks to a direct

computation, that for any ψ ∈ H2
0 , we have∫ 1

0

yxxψxx dx =
∫ 1

0

[ρ(ω∗2 − 1)y + ρ(u+ v)] ψ dx+ g(y(1)− u(1)) ψ(1)

+EIf(yx(1)− ux(1)) ψx(1).
(3.11)

Integrating by parts in the last relation, we can prove after a careful computation that y ∈ H4
0 and

EIyxxxx + ρ
(
1− ω∗2

)
y = ρ (u+ v) ,

yxx(1) + f(yx(1)− ux(1)) = 0,

yxxx(1)− g (y(1)− u(1)) = 0.

(3.12)

We deduce that y is solution of the system (3.10). Then (y, y − u) satisfies clearly system (3.9) and thus the
maximality of Ã is proved.

Finally, it remains to prove the density of the domain D(Ã).

Lemma 4. The domain D(Ã) of Ã is dense in H.

The proof of this Lemma propose a general approach for the density of the domain of nonlinear m-accretive
operators on uniformly convex spaces when the nonlinearity is concentrated in the domain. This result supplies
the well-known analogous theorem for linear m-accretive operators on reflexive Banach spaces (see [4, 20]).

Proof of Lemma 4. Because of Ã is maximal, there exits (un, vn) ∈ D(Ã) such that

(un, vn) =
(
I + λnÃ

)−1

(u0, v0). (3.13)

We want to prove

(un, vn)→ (u0, v0) in H. (3.14)

Clearly, this implies the density of D(Ã). Since Ã is m-accretive in the Hilbert space, the resolvent operator(
I + λnÃ

)−1

is nonexpansive, whence

‖(un, vn)‖H ≤ ‖(u0, v0)‖H. (3.15)

Then the bounded subset {(un, vn)}n is weakly precompact in H and thus there exists a subsequence, still
indexed by n for convenience, such that {

(unxx)n ⇀ (u∞)xx
(vn)n ⇀ v∞

(3.16)

weakly in L2(0, 1). But, from (3.13) it follows un − λnvn = u0,

vn + λn
EI

ρ
unxxxx − ω∗

2λnu
n = v0.

(3.17)

Then, it is easy to show that (3.17) implies (unxx)n → u0
xx and (vn)n → v0 in D′(0, 1) (i.e. in the sense of

distributions). This together with (3.16) implies that (u∞)xx = u0
xx and v∞ = v0 in D′(0, 1). Finally, a
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classical property of Lebesgue spaces (see [7] Lem. IV.2, p. 61) gives (u∞)xx = u0
xx and v∞ = v0 in L2(0, 1).

Consequently (3.16) becomes

(un, vn)n ⇀ (u0, v0) (3.18)

weakly in H(0, 1). Now, since H is a Hilbert space and a fortiori a uniformly convex space, from (3.15) and
(3.18) we deduce (un, vn)n → (u0, v0) strongly in H(0, 1) (see for instance [7], Prop. III.30, p.521). This ends
the proof of Lemma 4.

We have thus shown Proposition 2.

The following lemma is a consequence of Proposition 2 and well known results in [6].

Lemma 5. i) For any initial data Φ0 = (y0, z0) ∈ D(Ã), the system (3.7) admits a unique solution Φ(t) =
(y(t), z(t)) ∈ D(Ã) such that

(y, z) ∈ L∞(R+;H), and
d

dt
(y, z) ∈ L∞(R+;H).

The solution Φ = (y, z) is given by Φ(t) = e−ÃtΦ0, for all t ≥ 0 where e−Ãt is the semigroup generated by −Ã
on D(Ã) = H. Moreover, the function t 7−→ ‖ÃΦ(t)‖H is decreasing.
ii) For any initial data Φ0 = (y0, z0) ∈ D(Ã) = H, the equation (3.7) admits a unique mild solution Φ(t) =
e−ÃtΦ0 which is bounded on R+ by ||Φ0||H and

Φ = (y, z) ∈ C0(R+;H).

3.3. Asymptotic stability of e�Ãt

In this subsection, using the LaSalle’s invariance principle [11-13], we show that the nonlinear semigroup
e−Ãt is asymptotically stable.

Proposition 3. Assume that | ω∗ |<
√

9EI/ρ. The semigroup e−Ãt is asymptotically stable in H, i.e., for any

initial data Φ0 = (y0, z0) ∈ D(Ã) = H, we have e−ÃtΦ0 → 0 as t→ +∞.

Proof of Proposition 3. Since the nonlinear semigroup e−Ãt is contractive and since D(Ã) is dense in H, it
suffices to prove the Proposition for any initial data Φ0 = (y0, z0) ∈ D(Ã). Let Φ0 = (y0, z0) ∈ D(Ã). By virtue
of Lemma 5, we know that the trajectory {e−ÃtΦ0; t ≥ 0} is a bounded set for the graph norm. Furthermore,
one can show directly that the injection

i : (D(Ã), ‖ ‖D(Ã)) −→ H

is compact. This implies that the considered trajectory is precompact in H. Applying the LaSalles’s invariance
principle [11,13], we deduce that the ω-limit set

ω (Φ0) =
{

(ψ1, ψ2) ∈ H; (ψ1, ψ2) = lim
n→∞

S(tn) (Φ0) with tn →∞ as n→∞
}

is non empty, compact, invariant under the semigroup e−Ãt and

e−ÃtΦ0 −→ ω (Φ0) as t→ +∞.
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Moreover, we deduce from the m-accretivity of Ã (see [6])

ω (Φ0) ⊂ D(Ã).

In order to prove the asymptotic stability, it is sufficient to show that the ω-limit set ω (Φ0) reduces to {0}. For
this, let (φ̃1, φ̃2) ∈ ω (Φ0) and

(ỹ, z̃)(t) = e−Ãt(φ̃1, φ̃2) ⊂ ω(Φ0) ⊂ D(Ã), ∀t ≥ 0.

But, ‖(ỹ, z̃)(t)‖H is constant on R+ (see [12]) and thus d
dt
‖(ỹ, z̃)(t)‖2H = 0, on R+. Since (ỹ, z̃) is a strong

solution, this means

〈 Ã(ỹ, z̃)(t), (ỹ, z̃)(t) 〉H = 0, a.e. t ≥ 0. (3.19)

Now, from (3.8) and (3.19), it follows

〈 Ã(ỹ, z̃)(t), (ỹ, z̃)(t) 〉H = EIz̃(1, t)g(z̃(1, t)) +EIz̃x(1, t)f(z̃x(1, t)) = 0, a.e. t ≥ 0. (3.20)

We deduce from (3.20) and F1) that ỹ is the strong solution on R+ of the following linear system
ρytt +EIyxxxx = ρω∗2y,
y(0, t) = yx(0, t) = 0,
yxx(1, t) = 0,
yxxx(1, t) = yt(1, t) = 0,
(y(0), yt(0)) = (φ̃1, φ̃2) ∈ ω (Φ0)) ·

(3.21)

However, it was shown in [16] that zero is the unique (mild) solution of (3.21). Of course, for such a linear system
the notions of mild, strong or classical solutions coincide. Therefore, the proof of Proposition 3 is complete.

Remark 3. Notice that the well-posedness result as well as the asymptotic stability one is obtained with only
Hypothesis F1).

3.4. Exponential stability of e�Ãt

In this subsection, by using the multiplier method (see [15]), we obtain an exponential stability result of
the semigroup e−Ãt under hypotheses F1) and F2).

Proposition 4. Assume that | ω∗ |<
√

9EI/ρ. Let Φ = (y, z) be the solution of (3.7) stemmed from Φ0 =
(y0, z0) ∈ D(Ã) = H. If hypotheses F1) and F2) are satisfied, then there exist (uniform) constants M̃, µ̃ > 0
such that

‖Φ(t))‖H ≤ M̃e−µ̃t‖Φ0‖H, ∀t ≥ 0.

Proof of proposition 4. As in the proof of Proposition 3, we may assume that Φ0 = (y0, z0) ∈ D(Ã). Then, let
us write Φ(t) = e−ÃtΦ0 = (y, yt)(t) and define the functional ξ as

ξ(t) = 2
∫ 1

0

xytyxdx, t ≥ 0. (3.22)
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Returning to the definition of mild solutions, we note that the function t 7→ ξ(t) is everywhere defined and
continuous on [0,+∞[ (even without assuming (y0, z0) ∈ D(Ã)). Standard computations (see (3.27) below)
provide a constant K1 such that

| ξ(t) |≤ K1‖(y(t), z(t))‖2H, ∀t ≥ 0. (3.23)

On the other hand, according to Lemma 5 and (3.1), a straightforward computation gives

ξt(t) = −2
EI

ρ
yx(1, t) f(yxt(1, t))− 2

EI

ρ
yx(1, t) g (yt(1, t)) (3.24)

+y2
t (1, t) +

EI

ρ
f2(yxt(1, t)) + ω∗2y2(1, t)−

∫ 1

0

[
y2
t + 3

EI

ρ
y2
xx + ω∗2y2

]
dx, (3.25)

a.e. t ≥ 0.
Moreover, using once again the Cauchy-Schwarz’s inequality, we have

−2
EI

ρ
yx(1, t) g (yt(1, t)) ≤

EI

ρθ
y2
x(1, t) + θ

EI

ρ
g2 (yt(1, t)) ,

−2
EI

ρ
yx(1, t) f(yxt(1, t)) ≤

EI

ρθ
y2
x(1, t) + θ

EI

ρ
f2 (yxt(1, t)) ,

(3.26)

for any θ > 0.

From y(0) = yx(0) = 0, it easily follows

y2
x(1, t) ≤

∫ 1

0

y2
xxdx, and ω∗2y2(1, t) ≤ ω∗2

3

∫ 1

0

y2
xxdx. (3.27)

The first inequality of (3.27), together with (3.26), implies

−2
EI

ρ
yx(1, t) g (yt(1, t))− 2

EI

ρ
yx(1, t) f(yxt(1, t)) ≤ θ

EI

ρ
g2 (yt(1, t)) + θ

EI

ρ
f2 (yxt(1, t)) + 2

EI

ρθ

∫ 1

0

y2
xxdx.

(3.28)

Combining (3.25), the second inequality of (3.27) and (3.27), we get

ξt(t) ≤ y2
t (1, t) + θ

EI

ρ
g2 (yt(1, t)) + (1 + θ)

EI

ρ
f2 (yxt(1, t))

+
1
ρ

∫ 1

0

[
−ρy2

t +
(

2
θ

+
ρω∗2

3EI
− 3
)
EIy2

xx − ρω∗
2y2

]
dx,

(3.29)

a.e. t ≥ 0.
Taking into account the condition | ω∗ |<

√
9EI/ρ, we can choose θ in order to have

2
θ

+
ρω∗2

3EI
− 3 < 0.
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Thus remembering the definition of the norm ‖.‖H, we find a constant K2 > 0 satisfying

ξt(t) ≤ y2
t (1, t) + θ

EI

ρ
g2 (yt(1, t)) + (1 + θ)

EI

ρ
f2 (yxt(1, t))−K2‖(y(t), z(t))‖2H, (3.30)

a.e. t ≥ 0.
Given ε > 0, we introduce (see [8] and [22]) the perturbed energy by

Eε(t) = E1(t) + εξ(t), (3.31)

where
E1(t) =

1
2
‖(y(t), z(t))‖2H,

for all t ≥ 0.
The energy E1(t) is a decreasing function: more precisely, owing to the accretivity of Ã, we have

E1t(t) = −EIyt(1, t) g(yt(1, t))−EIyxt(1, t) f(yxt(1, t)) a.e t ≥ 0. (3.32)

But (3.23) and (3.31) imply that for all t ≥ 0, we have

K3
−1Eε(t) ≤ E1(t) ≤ K3E

ε(t), (3.33)

provided K3 > 1 and ε ≤ 1
2

(
1−K3

−1
)
.

Combining (3.31) and (3.30), we obtain

Eεt (t) ≤ E1t(t) + εy2
t (1, t) + ε θ

EI

ρ
g2 (yt(1, t)) + ε(1 + θ)

EI

ρ
f2(yxt(1, t))− 2εK2E1(t), (3.34)

a.e. t ≥ 0. In addition, hypothesis F2) leads us to
y2
t (1, t) + θ

EI

ρ
g2 (yt(1, t)) ≤

(
1
L2

+ θL3
EI

ρ

)
yt(1, t) g(yt(1, t)),

(1 + θ)
EI

ρ
f2(yxt(1, t)) ≤ (1 + θ)

EI

ρ
L1yxt(1, t) f(yxt(1, t)).

a.e. t ≥ 0.
Plugging these two last inequalities into (3.34) and using (3.32), we get

Eεt (t) ≤ −2εK2E1(t) +
[
ε

(
1
L2

+ θL3
EI

ρ

)
−EI

]
yt(1, t) g(yt(1, t))

+
[
εL1(1 + θ)

EI

ρ
−EI

]
yxt(1, t) f(yxt(1, t)).

This implies

Eεt (t) ≤ −2K2εE1(t), (3.35)

a.e. t ≥ 0, provided that, ε satisfies 
ε

(
1
L2

+ θL3
EI

ρ

)
−EI ≤ 0,

εL1(1 + θ)
EI

ρ
−EI ≤ 0.
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Finally, from (3.33) and (3.35), for such ε > 0 we deduce

Eεt (t) ≤ −2εK3
−1K2E

ε(t), (3.36)

a.e. t ≥ 0. Solving this differential inequality (remark that Eε is absolutely continuous since Φ is locally
Lipschitz) and using once again (3.33), we obtain the required exponential decay of E1(t) = 1

2 ||Φ(t)||2H with
µ̃ = εK3

−1K2.

3.5. The global system (3.5)

a) Cauchy problem
By using Proposition 1, we will show that the global system (3.5) is well posed on [0,∞[. Indeed, we recall

that the global system (3.5) can be written as an evolution equation(
Φ̇(t)
ω̇(t)

)
+ (A+B)

(
Φ(t)
ω(t)

)
= 0,

where the operators A and B are defined in (3.6).
First, we have shown in Proposition 4 that the operator Ã defined by (3.3–3.4) is m-accretive in H with

dense domain D(Ã). We deduce thus, from (3.6), that the operator A is also m-accretive with dense domain
D(A) = D(Ã)× R in X = H× R.

Second, as the reader can easily see, the operator B, defined in (3.6), is Lipschitz on bounded subsets of X
and therefore B satisfies hypothesis (HII) of Section 2. So (3.5) has a local solution (Φ, ω)(t) = (y, z, ω)(t) .

Consider now the function V : X → R+ defined by

V (y1, z1, ω1) =
1
2
Id (ω1 − ω∗)2 +

1
2

(ω1 − ω∗)2

∫ 1

0

ρy2
1dx+

1
2

∫ 1

0

(ρz2
1 +EIy2

1xx)dx− 1
2
ω∗2

∫ 1

0

ρy2
1dx (3.37)

for (y1, z1, ω1) ∈ X . We claim that this function is a reasonable choice of Lyapunov function for (3.5). Indeed,
on the one hand, it is easy to check

V (y1, z1, ω1) ≥ K‖(y1, z1, ω1)‖2X , (3.38)

for some positive constant K and for all (y1, z1, ω1) ∈ X . On the other hand, from Lemma 3, we know that
each local solution of (3.5), with initial data in D(A), is a strong one. Moreover, a straightforward computation
shows that for any initial condition (y0, z0, ω0) ∈ D(A), the corresponding strong solution (y, z, ω)(t) of (3.5)
satisfies

dV

dt
(Φ, ω)(t) = −EI

[
yxt(1, t) f

(
yxt(1, t)

)
+ yt(1, t) g

(
yt(1, t)

)]
− (ω(t)− ω∗) γ

(
ω(t)− ω∗

)
≤ 0, (3.39)

almost everywhere on the domain [0, Tmax) of this local solution (y, z, ω)(t). Thus, the function t 7−→ V (y(t),
z(t), ω(t)) is non increasing on its domain. Then by Lemma 2 and (3.38), (HIII) holds for the system (3.5).

Now, from Proposition 1 we are in position to claim that for any initial condition (y0, z0, ω0) ∈ X , the
global system (3.5) has a unique solution (Φ, ω) on [0,∞].

Proof of Theorem 2. Initially, we will restrict ourselves to the system{
Φ̇(t) + ÃΦ(t) + B̃(t,Φ(t)) = 0, on [0,∞[;
Φ(0) = Φ0,
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where Φ(t) = (y, z)(t), Φ0 ∈ D(Ã) and

B̃(t, (u, v)) = (0, (ω∗2 − ω2(t))u); (3.40)

ω(t) being such that (Φ(t), ω(t)) is the solution of the global system (3.5) with initial data (Φ0, ω0) ∈ D(A).
From (3.40), we have

‖B̃(t,Φ(t))‖H ≤ |ω∗2 − ω2(t)|‖Φ(t)‖H.
In addition, one can show that (3.37, 3.39) and F3) give

ω∗ − ω(·) ∈ L2 ([0,∞[;R) ∩ L∞ ([0,∞[;R) .

Consequently, (HV) holds with µ(t) = |ω∗2−ω2(t)|. (Really, we have the stronger condition limt→+∞ ω(t) = ω∗).
Therefore, all the assumptions of Theorem 1 are satisfied. Thus, there exist strictly positive constants M and
κ such that

‖Φ(t)‖H ≤Me−κt, ∀t ≥ 0.
Finally, returning to the second equation of (3.5) and using F3) we prove analogously to [16] that ω∗ − ω(·)
tends also exponentially to zero. The proof of Theorem 2 is now complete.
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[3] P. Bénilan, Équations d’évolution dans un espace de Banach quelconque et applications, Thèse, Paris XI, Orsay (1972).
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