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A FUNCTIONAL ANALYSIS MODEL FOR NATURAL IMAGES
PERMITTING STRUCTURED COMPRESSION

Jacques Froment
1, 2

Abstract. This paper describes a compact perceptual image model intended for morphological
representation of the visual information contained in natural images. We explain why the total varia-
tion can be a criterion to split the information between the two main visual structures, which are the
sketch and the microtextures. We deduce a morphological decomposition scheme, based on a segmen-
tation where the borders of the regions correspond to the location of the topological singularities of
a topographic map. This leads to propose a new and morphological definition of edges. The sketch
is computed by approximating the image with a piecewise smooth non-oscillating function, using a
Lipshitz interpolant given as the solution of a PDE. The data needed to reconstruct the sketch image
are very compact, so that an immediate outcome of this image model is the design of a progressive,
and artifact-free, image compression scheme.

Résumé. Cet article décrit un modèle perceptuel et compact, destiné à donner une représentation
morphologique de l’information visuelle contenue dans les images naturelles. Nous expliquons pourquoi
la variation totale peut être un critère pour séparer l’information entre les deux structures essen-
tielles, qui sont le sketch et les micro-textures. Nous en déduisons un procédé de décomposition
morphologique, basé sur une segmentation où les bords des régions correspondent à la position des
singularités topologiques de la carte topographique. Cela nous permet de proposer une définition des
bords, nouvelle et morphologique. Le sketch est calculé en approchant l’image par une fonction non-
oscillante et régulière par morceaux, en utilisant une interpolation Lipschitz donnée comme la solution
d’une EDP. Les données nécessaires à la reconstruction de l’image sketch étant très compactes, une
application immédiate de ce modèle est la mise au point d’un procédé de compression progressive des
images sans déformation visuelle.
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1. Introduction

One of the main issue for image analysis is to define a mathematical representation of the image that offers
suitable properties to build most of the computer vision algorithms. By using the same words than Marr [24],
the problem is to determine the primitives or atoms of the image, in order to constitute a raw primal sketch.

What properties should have a perfect raw primal sketch?
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1. Structure: the atoms must capture and match the structures in the images, which basically can be
separated into edges surrounding homogeneous regions and microtextures which characterize the regions.

2. Progressive representation: the set of all atoms must allow the reconstruction of an image visually identical
to the original. By using the most representative atoms only, one has to be able to reconstruct an image
closed to the original, and the missing atoms should not produce visual artifacts on the reconstructed
image.

3. Invariances: the primal sketch should not depend on the particular condition of the way the image has been
captured by a camera. This implies invariance under translation, rotation, symmetry (arbitrary position of
the camera) and zoom (change of scale), i.e. invariance by affine operators. Another important property
is the invariance under change of contrast, also called morphological invariance: the light captors of the
cameras are nonlinear nondecreasing functions, and these functions differ from one camera to the other (the
response of a given camera is even changing with time). In the Gestalt theory [35], the invariance under
change of contrast is one of the reconstruction principles used to elaborate a comprehensive representation.
In the following, we shall use the term morphology for the contrast invariance property.

4. Compactness: to obtain efficient algorithms and to allow image compression, the primal sketch must lead
to a compact data set.

5. Computable property: a fast algorithm to compute the atoms is required.

The raw primal sketch of Marr is based on the detection of the intensity changes in the image, by recording the
zero-crossing location of the image filtered by the Laplacian of the Gaussian at a given scale. The edges are
then defined as discontinuity lines, and the scale parameter allows to discriminate the important atoms. This
approach has been successfully developed in the past, since it meets almost all the requirements of a “good
primal sketch” (see e.g. [18] for a reconstruction algorithm and [4] for an optimal edge detector). These last
years have seen interesting reformalizations of this multiscale edges representation, in a wavelet [23] and in a
variational [31] framework.

However, the multiscale edges representation still suffers for some drawbacks that do not make it always
suitable for image analysis: the representation is not invariant under change of contrast. This means that
the edges locations of an image on which a change of contrast has been applied differ from the original edges
locations. In addition, the Fourier or wavelet transform applied to compute the atoms leads to visual artifacts
on the reconstructed image, due to the quantization and sampling of the coefficients needed to get a compact
representation.

More recently, it has been proved in [2] that, under fairly conditions (including all invariances), there exists
only one regular multiscale analysis, the so-called AMSS (for Affine Morphological Scale Space). An image is
decomposed into this scale-space using a parabolic evolution equation, for which viscosity solutions [13] exist.
Because of the morphological invariance, the evolution of the image along the scales is equivalent to the evolution
of its level curves, which are defined as the border of the level sets. A level set is a set of pixels with gray levels
below (or above) a given threshold.

The representation of an image by its level sets has been proposed by the Mathematical Morphology school
[26,33] as a geometrical decomposition which offers the contrast invariance. This representation can be viewed
as another raw primal sketch, for which all the properties stated before are met but the compactness. Recently,
such a decomposition based on the connected components of the level lines has been described [29], together
with a fast algorithm. This representation is well adapted to number of image analysis problems (as pattern
matching) but it still suffers of a relatively large amount of data. Using AMSS, a simplification of the image can
be performed to reduce the amount of data. However, the structure of the image is then considerably weakened
and the filtered image does not sound natural.

In this paper, we introduce another model based on the level sets that can be coded using a very small amount
of data. This model is also supposed to split the information between edges and microtextures. We show in
Section 2 how the total variation can be related to the notion of microtextures: microtextures correspond to
fast oscillating parts, and therefore are associated to high variations. On the other hand, edges surrounding flat
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regions generate little variations. The total variation can be expressed in terms of level sets, leading us to link
this morphological approach with the edge and microtexture structures.

In order to catch the important features of the images, we select the most perceptive level sets according
to the principle affirmed in [7, 9], namely that “only pieces of level lines of the image joining junctions are the
atoms of visual perception”. The importance of the level line junctions for the visual perception is explained in
Section 3, together with the algorithm defined in [7, 9] to detect them on digital images.

Only a small subset of all level sets are kept in this way. To improve the quality of the representation, image
values in the border of these level sets are also recorded. This composes our image model suitable to represent
the lower part of the total variation, which consists of edges surrounding flat regions. This model is described
in Section 4.

From these data, it is possible to reconstruct an image close to the original but without the microtexture
information. We use the morphological interpolation algorithm given in [8], which is based on the Absolutely
Minimizing Lipschitz Extension (AMLE) model. This model ensures a Lipschitz reconstruction between the
remaining level lines. Its principle is recalled in Section 5.

A straightforward application of this compact image representation is the design of a compression scheme
that respects the human visual system. In addition to the geometrical sketch coding, we propose a compression
scheme adapted to the microtexture information. We first use a refinement algorithm to remove any undesirable
structure in the texture image, and we compress the remaining information using a wavelet scheme based on
the EZW method [34]. This process is described in Section 6. In Section 7, several examples of such compact
representations are given.

2. Total variation and the structure of natural images

The total variation is a well-known mathematical tool for image processing, but it has been until now
essentially used for denoising purposes. The idea, first developed by Osher and Rudin in [32], is to restore a
noisy image by smoothing it while preserving its edges, which correspond to discontinuities. This can be done
by decreasing the total variation of the image, in such a way that important discontinuities may be reduced but
should not disappear [14].

Let Ω be an open bounded subset of R2. The total variation of an image u : Ω→ R can be simply defined,
if u ∈ C1(Ω), as

TV(u) =
∫

Ω

|∇u(x)| dx (1)

with

|∇u| =
∣∣∣∣ ∂u∂x1

∣∣∣∣+
∣∣∣∣ ∂u∂x2

∣∣∣∣ · (2)

If the gradient of u, ∇u, does not exist or is not continuous but if u ∈ L1(Ω), (1) is generalized into

TV(u) = sup
φ

{∫
Ω

u(x)(divφ)(x) dx / φ ∈ C1
c (Ω,R2) and |φ| ≤ 1

}
(3)

where

divφ =
∂φ1

∂x1
+
∂φ2

∂x2
· (4)

We say that u is of bounded variation (u ∈ BV(Ω)) if TV(u) < +∞.
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Let us denote Lλ the lower level set λ of u

Lλ = {x ∈ Ω/u(x) < λ}, (5)

∂Lλ the topological boundary of Lλ, and ∂∗Lλ the reduced boundary of Lλ [15]. If u is BV, then ∂∗Lλ is an
union of Jordan curves, those curves being closed or touching the image border ∂Ω. They are the “level lines”
of u. The perimeter of Lλ, defined as per(Lλ) = TV(1ILλ), is finite and the coarea formula [15] allows to link
the TV of u with the total length of its level lines:

TV (u) =
∫
R

per(Lλ) dλ. (6)

Conversely, if u ∈ L1(Ω) and
∫
R

per(Lλ) dλ < +∞, then u is BV.

2.1. Image decomposition between texture and sketch

Since any physical image is a bounded function, it follows from (1) and (3) that an image u is not BV
if it oscillates rapidly or, from the coarea formula, if it has too many small level lines. For example, (x, y)
→ sin(1/x) 6∈ BV(]0, 1[2) but (x, y)→ sin(x) ∈ BV(]0, 1[2).

What structure should perceive somebody seeing such non BV images? The fast oscillations create repetition
of small patterns at finer and finer scales: the observer has the illusion of microtextures. The terms of texture
and microtexture are not well defined, mainly because one has to link a perceptual feeling to an abstract object.
However, one considers usually that the notion of texture is related to a characteristic repetition in a given area,
microtexture corresponding to high frequencies repetition of small primitives.

In the continuous or analog model, the image resolution is not finite and one may observe more details
by moving closer. If the repetition disappears at some scale, the observer has no longer the illusion of a
microtexture: he perceives the primitives as distinct objects.

The perception of microtextures is therefore somewhat equivalent to the existence of fast oscillations at every
scale. Conversely, structures which are not perceived as microtextures may be interpreted as objects, composed
by edges surrounding homogeneous regions.

These remarks lead us to give the following definition:

Definition 1. We call BV-decomposition of an image u ∈ L1(Ω), u 6∈ BV(Ω), any pair of functions (v, w)
defined on Ω such that v, w ∈ L1(Ω), v ∈ BV(Ω) and

u = v + w almost everywhere in Ω. (7)

The function v is called sketch of the image u while w is the microtexture.

This definition is not enough to get a notion of sketch and microtexture consistent with the visual system
and with the original image u : if (v, w) is a BV-decomposition, (v + s, w − s) with s ∈ BV(Ω) is another
BV-decomposition of u, although v and v + s (as well as w and w − s) may be very different. We shall see in
the next section how a decomposition based on a segmentation can be made consistent.

In our former observations, we did not consider the case of an image having too many level sets of infinite
perimeter and which is, therefore, not BV. This may happen when the borders are very irregular, for example
when they have a fractal structure. More frequently on natural images, level sets with irregular borders may arise
in low contrasted regions (as the gradation in light intensity on an uniformly shined surface) because of limited
accuracy in the physical device used to capture the image. Such level sets do not reveal a microtexture nor a
sketch information, they are rather non-perceptive structures that may be neglected. We will see in Section 6
how to remove this irrelevant information from the sketch and the microtexture images of a BV-decomposition.
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Figure 1. A topograpic map. Up: original “House” image (256× 256 pixels, 256 gray levels).
Down and left: level lines location for levels λ1 = 20, λ2 = 40, λ2 = 60, . . . , λ12 = 240, λ13 =
+∞. The image size is doubled since, in the discrete case, the level lines lie between the pixels
grid. Down and right: same topographic map with the zoomed original image in background.

2.2. Morphological decomposition based on a segmentation

If a function is not of bounded variation in a given subset Ω′ ⊂ Ω, it will not be of bounded variation on any
subset containing Ω′. Therefore, the natural way to get a morphological representation is to segment Ω into
subsets Ω′ where u ∈ BV(Ω′) and subsets Ω′′ where u 6∈ BV(Ω′′), using subsets based on level sets. If we map
the level lines of an image for a given set of levels {λ1 < λ2 . . . < λn = +∞}, we get a segmentation of the
image with sets of type {x ∈ Ω/λi−1 < u(x) < λi}, also called topographic map [9] (see Fig. 1).

More generally, one can consider a segmentation achieved using only some connected components of lower
levet sets (Lλ)λ and upper level sets (Mµ)µ, where the upper level set µ of u is

Mµ = {x ∈ Ω/u(x) > µ} · (8)

We shall call level set any lower or upper level set.
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Our intention is to approximate the image by BV functions smooth all the way up to the boundary of
some level sets. This necessitates some assumptions on the geometric behavior of these boundaries. We say
that a set P ⊂ Ω has a Lipschitz border if ∂P is locally the graph of a Lipschitz function [15]. In that case,
per(P ) = H1(∂P ): the perimeter of P can be interpreted as the length of the boundary of P .

Definition 2. Let S be a family of connected components of level sets with Ω ∈ S. We call morphological
segmentation of u the set P = (Pi)i=1,... ,n defined by the topographic map of S (each Pi being the interior of a
region of this map) if this set is finite with each region of Lipschitz border. In that case, we note P = MS(S).

We easily get the following properties:

Proposition 1.

− Pi 6= ∅,
− interior

(⋃n
i=1 Pi

)
= Ω,

− i 6= j =⇒ Pi ∩ Pj = ∅,
− ∂

⋃n
i=1 Pi is Lipschitz (but for a finite number of points).

(9)

A morphological segmentation is shown in Figure 2. In our framework, the pertinence of a morphological
segmentation is related to the choice of the sequences (λi)i and (µi)i so that the sets Pi match as well as
possible the visual perception of the important structures. This issue will be addressed in the Section 3.

The following result gives an example of an image decomposition based on a morphological segmentation:

Proposition 2. Let P = (Pi)i=1,... ,n be a morphological segmentation of u. We define{
v = ri on Pi where ri ∈ BV(Pi)
w = u− v. (10)

Then, (v, w) is a BV-decomposition of u.

Proof. Let us prove that the function v defined on Ω by v|Pi = ri belongs to BV(Ω) : take φ ∈ C1
c (Ω,R2),

|φ| ≤ 1. Since Pj ∩ Pk = ∅, we have∫
Ω

vdivφdx =
n∑
i=1

∫
Pi

ridivφdx = −
n∑
i=1

∫
Pi

φσi d||Dri|| +
n∑
i=1

∫
∂Pi

(φνPi)Tri dH1, (11)

where
• νPi is the outer unit normal of ∂Pi, which exists H1-a.e. on ∂Pi according to Rademacher’s theorem [15],
• ||Dri|| is the variation measure of ri on Pi,
• σi : Pi → R2 is a measurable function defined by the Riesz representation theorem [15], such that |σi(x)| =

1 ||Dri||-a.e.,
• Tri is the trace of ri on ∂Pi. Notice that T : ri ∈ BV(Pi) → Tri ∈ L1(∂Pi,H1) is a bounded linear

mapping [15].
Therefore,∣∣∣∣∫

Ω

vdivφdx
∣∣∣∣ ≤ n∑

i=1

∫
Pi

d||Dri|| +
n∑
i=1

∫
∂Pi

|Tri| dH1 ≤
n∑
i=1

||Dri||(Pi) +
∑
i=1

ci||ri||BV(Pi)
= C < +∞. (12)

And thus, TV(v) = ||Dv||(Ω) < +∞.
At last, since v ∈ BV(Ω), u 6∈ BV(Ω) and u = v + w, it follows that w 6∈ BV(Ω).
As an example, we may simply chose ri = u|Pi if u|Pi ∈ BV(Pi) and 0 elsewhere. However, from a perceptual

point of view, it is better to take a smooth BV function that approximates u on the regions where u contains
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Figure 2. A morphological segmentation obtained using the algorithm described in
Section 4.1, in order to get cells matching the important structures. Up: original “House”
image. Down and left: the morphological segmentation. Down and right: the morphological
segmentation together with the zoomed original image.

the microtextures. In this way, one can separate the local tendency of the image, which is part of the sketch,
from the high frequencies component which generates the microtexture. Moreover, the choice ri 6= u|Pi allows
to approximate the BV regions of u by smooth functions. Remember that in these places, the image is mainly
composed by edges surrounding homogeneous regions: if the morphological segmentation is computed so that the
borders ∂Pi correspond to the location of the most important discontinuities of u, it is possible to approximate
u inside Pi by a smooth function with good accuracy.

Definition 3. A BV-decomposition (v, w) of u is called morphological decomposition if it is obtained by Propo-
sition 2 with a choice of a segmentation P = (Pi)i=1,... ,n and of functions (rj)j∈J and s that ensures a good
approximation of u by v (e.g. a relatively small ||w||1).
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2.3. The discrete case

Since our study must result in practical algorithms, we shall now switch from the continuous to the discrete
case where u : Ω ⊂ Z2 → Z. The definition of a morphological decomposition must be adapted to the discrete
case: digital images are of finite resolution, and therefore all digital images are BV. It follows from above that,
if v is a piecewise smooth and non-oscillating approximation of u on each region defined by the topographic
map, (v, u− v) is a morphological decomposition of u. We shall extend this result in the case where u ∈ BV(Ω)
by proposing the following algorithm:

Discrete morphological decomposition
Step 1: Compute a morphological segmentation P = (Pi)i=1,... ,n of the digital image such that (∂Pi)i=1,... ,n

matches the borders of the most important structure;
Step 2: on each region Pi, compute a smooth and non-oscillating approximation of the image. Let v be the
resulting sketch image;
Step 3: compute the microtexture image w = u− v.

In the next sections, we shall see how to solve the first step of this algorithm. We will use the “atoms of the
perception”, which are junctions between level lines, to choose the most representative regions. Since we are
seeking at the end a compact image representation, the approximation v has to be computed using a small
amount of data. The data will be samples of the image values at the borders ∂Pi. Section 4 will explain in
more details this compact image representation, while in Section 5 we shall recall the AMLE model, which is
used to compute the second step of the algorithm.

Notice that in the discrete case Ω ⊂ Z2, the border of a region lies in the shifted grid (Z+1/2)2. To overcome
this problem, we shall introduce the following notations, where B(x, r) is the closed disk of center x and radius r:

Definition 4. We note ∂IP the internal border of a region P that is, the set

∂IP = {x ∈ P/∃y 6∈ P/y ∈ B(x,
√

2)} · (13)

Similarly, ∂EP is the external border of P :

∂EP = {x 6∈ P/B(x,
√

2) ∩ P 6= ∅} · (14)

Figure 3 displays a region in the discrete grid together with its internal and external borders. Notice that the
geometrical information of ∂P is equivalent to the pair (∂IP ,∂EP ) that is, there exists obvious algorithms to
switch from one representation to the other one. Since P is a region of a morphological segmentation, we get
the following properties:

Proposition 3.

− ∀Pi ∈ P ,∀x ∈ ∂IPi(x 6∈ ∂IΩ),∃Pj ∈ P/x ∈ ∂EPj .
− ∀Pi ∈ P ,∀x ∈ ∂EPi,∃Pj ∈ P/x ∈ ∂IPj .

(15)

3. The atoms of the perception

How should be computed a morphological segmentation P such that the borders of the most important
structures are located in the regions Pi? A classical answer would be to try to match the edges, in the sense
of the discontinuity lines in the image. However, the use of classical edge detectors is not consistent with the
morphological approach, as it is well explained in [7,9], essentially because such edges are not contrast invariant.
In this paper, Caselles, Coll and Morel argue that the atoms of the perception, that is, the basic elements on
which further representations may be built, are not edges but “pieces of level lines joining junctions”. Indeed,
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Figure 3. Example of a region P in the discrete grid.

the physical generation process of an image implies some events (as occlusions and transparencies) which cause
singularities on the topographic map: level lines joining some other level lines with a shape (more or less) like a
T in case of an occlusion. Such T-junctions are the most important junctions and other types of junctions will
not be considered here.

The T-junction singularity is one of the most significant principles of the visual reconstruction, which allow
a geometrical constitution of the visual objects. It is in the heart of the Gestaltists’ theory, and in particular
of the Kanizsa’s work [19, 20]. Each time a T-junction is detected, our perception reconstructs the occlusion
of an object by another one, and the border of the occluded object is mentally extended behind the horizontal
bar of the T. In the second drawing of Figure 4, the observer reconstructs black disks from quarters of disks
only. This phenomenological description, originally formulated by Kanizsa in the case of drawings, can be easily
adapted to digital images using level lines [1]. The main difference lies in the fact that on drawings, T-junctions
occur where the line of the pen meets a previous line only, that is, at places where an object begins to come in
front of another. On digital images of natural world, the objects are never uniformly shined, and therefore even
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T-Junctions 

Figure 4. The visual power of T-junctions. Although the first drawing suggests another
reconstruction, the human visual system reconstructs the black objects of the second drawing
as disks partially covered by boxes. This reconstruction is due to the T-junctions, which are
made evident by the topographic map (last drawing). One of the Kanizsa’s principle says that
the border of the occluded object has to be extended so that to preserve its curvature.

unvaried colored surfaces present lot of level lines. At the borders of an object, these level lines meet the level
lines of the background and generate multiple T-junctions: occlusions occur along all the borders (see Fig. 5).
The shapes of the objects is then essentially characterised by the T-junctions on them, and by the pieces of the
level lines joining these junctions. In this way, one gives a morphological definition of edges:

Definition 5. We call morphological edge a piece of level line joining any number of T-junctions.

The more a morphological edge contains T-junctions, the more it is perceptually significant.
On natural images, level lines are often very close to each other, and the quantization noise leads the curves

to join continually: it is therefore essential to introduce some conditions to distinguish between true junctions
and junctions due to noise. These conditions are related to the grey level quantization and to the areas of the
three sets around the junctions: the one belonging to the occulting object, the one belonging to the occulted
object and the one part of the background. To detect the significant T-junctions, we use the following algorithm
adapted from [7,9]:

T-junction detection algorithm (Caselles et al.)
Parameters :

− A is the area threshold for the level sets,
− G is the grey level threshold for the input image u. (16)

Step 1: Compute the set J ⊂ Ω of pixels where two level lines meet (in a disk of radius
√

2);
Step 2: for each x ∈ J , consider the neighbourhood V(x) of four pixels where the level lines junction is, and
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Figure 5. Zoom on the upper-left part of the house’s chimney, and associated topographic
map. The significant T-junctions (computed by the T-junction detection algorithm) are marked
by white dots. Notice that they are located at the borders of the important structures.

compute

− xλ0 = arg inf{u(y)/y ∈ V(x)},
− λ0 = u(xλ0),
− xµ0 = arg sup{u(y)/y ∈ V(x)},
− µ0 = u(xµ0),
− Lkλ = connected component of {y ∈ Ω/u(y) ≤ λ} such that xλ0 ∈ Lkλ,
− Mk

µ = connected component of {y ∈ Ω/u(y) ≥ µ} such that xµ0 ∈Mk
µ ,

− λ1 = arg inf{λ ≥ λ0/ area(Lkλ) ≥ A},
− µ1 = arg sup{λ0 < µ ≤ µ0/ area(Mk

µ) ≥ A}·

(17)
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The pixel x is said to be a T-junction if the previous sets and values exist and if the following conditions are
meet:

− µ1 − λ1 ≥ 2G,
− there exists a connected component K of {y ∈ Ω/λ1 +G ≤ u(y) ≤ µ1 −G}

containing a pixel of V(x) with area greater than A.
(18)

This algorithm ensures that, at every T-junction x, there exist significant connected components Lkλ1
, Mk

µ1

and K with all of them a pixel belonging to V(x): the three components are meeting at the junction, and in
a neighbourhood of x, each component has a common border with another one (see Fig. 6). Therefore, the
geometry of each T-junction is characterized by the border of any pair of these three components. To build our
compact image model, the connected components Lkλ1

and Mk
µ1

will be considered. In this way, morphological
edges will be composed by borders of these level sets. Notice that at every T-junction x are associated the
pixels xλ0 ∈ ∂ILkλ1

and xµ0 ∈ ∂IMk
µ1

.

4. The morphological compact image model

The compact image model is based on the discrete morphological decomposition given in Section 2.3, together
with a structure of data adapted for compression. Our model contains two types of data: geometrical data record
pixel locations in the grid, and numerical data are related to the gray level values at these locations.

4.1. Geometrical data

The geometrical data have to code a morphological segmentation P , and we want to compute the Pi so that
∂Pi are composed by morphological edges. Since each morphological edge belongs to a border of a set Lkλ1

or
Mk
µ1

, the issue is to choice, from all possible connected components K of the level sets Lλ = {x ∈ Ω/u(x) ≤ λ}
and Mµ = {x ∈ Ω/u(x) ≥ µ}, the ones that contain the greatest numbers of T-junctions or, more generally,
the ones that minimize a cost function C(K), the value C(K) being small when the border of K matches the
border of an object. This cost function may be user-defined; for example, C(K) may include the cost to code
the information related to K in the model.

The following algorithm explains how to solve the first step of the morphological decomposition:
Morphological segmentation algorithm
Parameters:

− C is an optional threshold for admissible cost, take C = +∞ for no parameter. (19)

Step 1: Decompose the image u into its level sets (Lλ)λ and (Mµ)µ; initialise S to contain Ω;
Step 2: using the T-junction detection algorithm, compute the sequences of T-junctions T0 = (xλ0)λ0 and
T1 = (xµ0)µ0 ;
Step 3: put in S the connected component with minimal cost of type Lkλ, as follows.

− Compute (for example) ∀λ, k, C(Lkλ) = 1/(|T0 ∩ ∂ILkλ|),
− λ, k = arg inf C(Lkλ),
− if C(Lk

λ
) < C, then set S ← S ∪ Lk

λ
, T0 ← T0 \ ∂ILkλ·

(20)

Step 4: Put in S the connected component with minimal cost of type Mk
µ , as follows.

− Compute (for example) ∀µ, k, C(Mk
µ) = 1/(|T1 ∩ ∂IMk

µ |),
− µ, k = arg inf C(Mk

µ),
− if C(Mk

µ) < C, then set S ← S ∪Mk
µ , T1 ← T1 \ ∂IMk

µ ·
(21)
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28 31 30 = µ0 10 = λ0 12 13 14

27 35 27 = µ1 25 15 = λ1 15 12

25 27 28 26 21 14 13

26 39 30 28 26

x

xµ0 xλ0

K = c.c.{y/17 ≤ u(y) ≤ 25}

Mk
µ1

Lkλ1

Figure 6. The T-junction detection algorithm ensures significant connected components Lkλ1
,

Mk
µ1

and K associated to each retained T-junction x. The number written in each box indicates
the gray level of the pixel. In this example, the parameters are A = 8 and G = 2.

Step 5: Loop to step 3 while inf{C(Lk
λ
), C(Mk

µ)} < C.

When this algorithm ends, P = MS(S) is a morphological segmentation of u so that each ∂Pi is made by
pieces of morphological edges. An important fact to notice is that the most perceptive edges are recorded first.
The resolution of the segmentation, that is, the visual significance of the less perceptive edge, is given by the
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parameters A and G of the T-junction algorithm and, eventually, by the maximal cost C. Figure 2 gives the
result of this algorithm on the “House” image, with C = +∞.

4.2. Numerical data

The numerical data are used to compute the smooth and non-oscillating approximation v on u defined on
each Pi. The morphological segmentation algorithm ensures that no important edge can be located inside Pi:
this explains why the image may be well approximated by a piecewise-smooth function v. In addition, the
approximating function is chosen non-oscillating so that it catches the sketch and not the textures, according
to the morphological decomposition. How should be chosen the data to allow a good approximation? Since
the border of Pi is made by morphological edges, the knowledge of u in the internal and external side of each
edge is the basic information. In order to get a compact model, we propose to retain only two samples of u
for each morphological edge (one for the internal side and one for the external). The value are chosen in order
to lower the variations of v between two neighbouring regions of a T-junction. This not only helps to get a
non-oscillating function, but also prevents the appearance of visual artefacts near the edges by keeping a low
contrast.

A pixel x of ∂IPi may be associated to several morphological edges (parts of different lower level sets or
different upper level sets). In that case, v(x) is set to be the closest value to u(x). This operation corresponds
to chose the smallest level set.

To compute the values φi(x) of v on each ∂IPi, we use the following algorithm:

Algorithm to get samples of the approximating function
Step 1: Compute v on internal border associated to lower level sets, as follows.

∀Pi ∈ P = MS(S),∀x ∈ ∂IPi, if x belongs to an internal border of a connected component
of a lower level set of S, and if φi(x) has not been already defined, define

φi(x) = infλ,l/x∈∂ILlλ supy∈∂ILlλ u(y).
(22)

Step 2: Compute v on internal borders associated to upper level sets, as follows.

∀Pi ∈ P = MS(S),∀x ∈ ∂IPi, if x belongs to an internal border of a connected component
of an upper level set of S, and if φi(x) has not been already defined, define

φi(x) = supµ,l/x∈∂IMl
µ

infy∈∂IMl
µ
u(y).

(23)

When this algorithm ends, a value φi(x) has been defined at each point x of each ∂IPi that is, according to the
proposition 3, at each left and right hand sides of any curve of ∂Pi : φi is therefore a function defined on ∂IPi.

To summarize our discussion, the compact image model contains the following data:
• the morphological segmentation map (∂Pi)i;
• the sequence of samples (φi(x))i;x∈∂IPi .

5. Reconstruction of images from the model

The issue of computing an approximating function v from the samples (φi(x))i;x∈∂IPi belongs to the class
of interpolation problems. Different approaches using image interpolation techniques have been described in
the literature (see for example [5, 16, 21]), some of them including the same motives than ours of catching the
image sketch in a compact way. Recently, a morphological interpolation technique for image coding has been
proposed by Casas in [6]. In our knowledge, our work is the first one to use a segmentation map not based on
a classical (and non morphological) edge detector, but on a selection of the level sets that carry the atoms of
the perception.

We shall retain the work of Caselles, Morel and Sbert in [8], where they extend the Casas’ morphological
interpolation technique, and where they prove that any interpolation operator (satisfying fairly conditions, such
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as morphological, invariance and regularity properties) comes down to let evolve the interpolating function ri
on each Pi with the following equation:


∂w

∂t
= D2w

(
Dw

|Dw| ,
Dw

|Dw|

)
∀t > 0, ∀x ∈ Pi;

w(0, x) = w0(x) ∀x ∈ Pi;
w(t, x) = w0(x) = φi(x) ∀t > 0, ∀x ∈ ∂Pi.

(24)

We have written by Dw the gradient of w along the spatial coordinates, and by D2w the Hessian of w, that is,
the matrix of the second derivatives of w.

Under some reasonable conditions [3], there exists a unique continuous viscosity solution w(t, x) of (24) such
that w(t, .) is a Lipshitz function for all t > 0 on each Pi, with uniformly bounded Lipschitz norm. When
t→ +∞, w(t, .) → ri with ri|∂Pi = φi. The function ri is an absolutely minimizing Lipschitz interpolant of φi
inside Pi, or AMLE for short.

As in the Proposition 2, the function v is defined by v = ri on each region Pi of the morphological segmentation
P . It is a non-oscillating piecewise-smooth function that verifies v|∂Pi = φi (or v|∂IPi = φi in the discrete case)
and which is, in the sense given by the sampling algorithm in Section 4.2, an approximation of u.

The evolution equation (24) can be solved using an implicit Euler scheme, so that to transform the evolution
problem to a sequence of non linear elliptic problems, which leads in a discrete case to an implicit difference
scheme.

6. Texture refinement and compression

6.1. Texture refinement

The pertinence of a morphological decomposition is connected to the quality of the sketch approximation v of
the original image u. Because of the imperfect approximation (mainly due to the limited information furnished
by the samples (φi(x))i;x∈∂IPi), some low-frequency information is not catched in v and appears in the error
image w = u − v, whereas it does not participate in the texture information. As noticed in Section 2.1, some
level sets with irregular borders may also be included in w and they should be removed.

The texture refinement consists in the detection of this unwanted information, and it is based on the following
observations:
• the microtexture information is associated to fast oscillations of the image which create level sets of small

sizes, whereas low-frequency information due to the imperfect approximation creates level sets of bigger
sizes;
• level lines can be made smooth by slightly pre-filtering the image u using a morphological filter, such as

MCM (mean curvature motion) or AMSS [2]. Let us denote by F (u) this pre-filtered image, which differs
from u at level set borders only.

Texture refinement algorithm
Step 1: Compute the discrete morphological decomposition on the filtered image F (u). Let w = u − v be the
difference image between the original and the sketch v obtained from F (u).
Step 2: Remove from w all level sets of big sizes (low-frequency information) and set gray level values to 0 in
the neighbourhood of the level lines (∂Pi)i. Let wR be the resulting image, called refined microtexture image.
Step 3: Compute the impurity image wS = w − wR which carries mainly the remaining sketch information
of u.

6.2. Texture compression

The compact image model allows to compress the original image at very low bit rates, by coding the
segmentation map (∂Pi)i and the samples (φi(x))i;x∈∂IPi that define the sketch image v. However, since
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this compression scheme removes all the microtextures, the reconstructed image v may not sound natural. To
recover some of the texture information, we can compress the error image w or, for better results, the refined
microtexture image wR. While the information contained in the sketch image is essentially of geometrical struc-
ture, microtextures are better characterised in the space-frequency domain. It is well known that, among linear
scale-space based compression schemes, biorthonormal wavelet decompositions [12] offer one of the best results.
We use a variant of the standard Shapiro’s EZW (Embedded Zerotrees Wavelet) algorithm [34] to compress the
microtexture image with biorthonormal wavelet bases. This choice may not be optimal and improved results
may be obtained with bases better localized in the frequency domain, as wavelet packets or local trigonometric
bases [22,27].

To compress natural images containing edges, schemes based on a wavelet representation offer better results
than the ones based on Fourier, but Gibbs phenomena errors due to the quantization and the sampling of the
coefficients might still appear at high compression ratios. These errors are located where the wavelet coefficients
decrease slowly, that is, at the discontinuity lines. Therefore, the most perceptive errors are located at the
neighbourhood of the main level set borders, which are given by (∂Pi)i. Thanks to the texture refinement
algorithm, the refined microtexture image wR does not carry any information at these locations. For these
reasons, we expect better quality in the compressed refined image ŵR than in the compressed image ŵ.

7. Experimental results

All algorithms given in this paper have been implemented in the MegaWave2 image processing environment
[17]. In order to show how the compact image model can generate a high compression scheme, data have been
error-free compressed using adapted coding techniques.

Figure 7 summarises the experimental results obtained with the “House” image u, from the morphological
segmentation presented in Figure 2. With this choice of morphological segmentation that retains the very most
important structures only, the data of the image model are extremely compact: a compression ratio of 38 is
achieved. However, since all important objects are well preserved, one can easily recognized the original image
on the sketch image v. The vanishing information is given by the image difference w = u− v. As expected, the
image w carries the microtextures of the original image u : the textures of the brick wall and of the sky are
particularly well catched. As noticed in Section 6.1, one can see some low-frequency information in addition to
the microtextures (especially along the right side border of the roof). These patterns are due to the samples
(φi(x))i;x∈∂IPi used to reconstruct the image values in each region Pi: the average of u into Pi does not necessary
equal the average of v. However, this does not affect the visual quality of the reconstructed image v. Indeed,
the gray level of a region is not relevant by itself, but by comparisons with the level of the neighbouring regions
only. The algorithm that computes the samples (φi(x))i;x∈∂IPi (see Sect. 4.2) has been composed so that to
satisfy this local comparison principle.

Depending on the complexity of the morphological segmentation, the sketch image may contain much more
information that the one presented the Figure 7. It is even possible to keep some structures that may be
interpreted as microtextures, leading to a sketch image visually identical to the original. This progressive
representation property is illustrated by Figure 8, where the complexity of the sketch image is increased with
the number of morphological edges.

We shall now present some results related to texture refinement and compression. The up-left image of
Figure 9 has to be compared to the down-right image of Figure 7. The first one is the refined microtexture
image wR while the second one is the raw microtexture image w. The difference between them is given by the
image wS , displayed in the up-right part of Figure 9. As expected, the refined microtexture image does not
contain the low-frequency structures that we have noticed in w, and which are well isolated in wS . Regarding
the parameters choosen to compute the morphological decomposition, the remaining sketch image wS does not
contain relevant information. We propose to ignore this image in the texture compression scheme.

Figure 10 presents the results obtained by compressing the refined microtexture image wR, while Figure 11
gives the results with the raw microtexture image w. Both compressions are made at the same bit rate. We
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Figure 7. Compact image model of the “House” image. Up and left: original “House” image u.
TV(u) ' 8×105, ||u||1 ' 9×106. Up and right: compact sketch model with 194 morphological
edges. In this image, the samples (φi(x))i;x∈∂IPi are bitmapped at the pixels borders ∂IPi of
the segmentation map. By coding this image, one can achieve a total bit rate of 0.21 bpp (bit
per pixel), which corresponds to a compression ratio of 38. Down and left: reconstruction from
the previous image, using the AMLE model. This is the sketch image v. TV(v) ' 2 × 105,
||v||1 ' 9× 106. Down and right: error image w = u− v. TV(w) ' 7× 105, ||w||1 ' 6× 105.
This image contains the microtexture and some remaining sketch information. To print this
signed image, the pixels absolute value has been considered and a change of contrast has been
applied.
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Figure 8. Different sketch images obtained by increasing the number of morphological edges
considered as perceptually significant. Up and left: original “House” image u; TV(u) ' 8×105.
Up and right: sketch image with 1928 morphological edges; TV(v) ' 5.4× 105. Down and left:
sketch image with 3760 morphological edges; TV(v) ' 6.5×105. Down and right: sketch image
with 10105 morphological edges; TV(v) ' 6.6× 105.

notice a better visual quality in the compressed textured sketch image v + ŵR than in the compressed original
image û = v + ŵ : the microtextures are better compressed and there is no noticeable Gibbs artifacts.
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Figure 9. Texture refinement and full sketch extraction. Up and left: refined microtexture
image wR obtained by removing the remaining sketch information in w. Up and right: re-
maining sketch image wS = w − wR. This image carries the average gray levels differences
between the original image u and the sketch image v, together with the shapes that have not
been retained because of their negligible morphological edges. We claim that this information
is perceptually irrelevant (regarding the parameters choosen) and may be thrown away. Down
and left: full sketch image v + wS . Down and right: textured sketch image v + wR = u− wS .
This is the original image without the remaining sketch image wS . To print this signed image
(up left and right), the pixels absolute value has been considered and a change of contrast has
been applied.
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Figure 10. Compression experiment on the textured sketch image (without wS). Up and
left: original “House” image u. Up and right: compressed refined microtexture image ŵR,
using EZW algorithm. Bit rate = 0.29 bpp. Down and left: compressed textured sketch image
v+ ŵR. Total bit rate = 0.5 bpp (compression ratio: 16). Down and right: error u− (v+ ŵR).
To print this signed image (right up and down), the pixels absolute value has been considered
and a change of contrast has been applied.

8. Conclusion

Most of compact image models that can be found in the literature, and which tend to split the information
between sketch and texture, are based on the detection of the most important discontinuity lines in the image
[5, 16, 21] (recently, an alternate way to efficiently compress the various structures of natural images has been
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Figure 11. Compression experiment on the original image (with wS). Up and left: original
“House” image u. Up and right: compressed error image ŵ, using EZW algorithm. Bit
rate = 0.29 bpp. Notice the important Gibbs phenomena due to number of discontinuity lines.
Down and left: compressed original image û = v + ŵ. Total bit rate = 0.5 bpp (compression
ratio: 16). On a high resolution screen, the Gibbs phenomena from ŵ are still visible in û.
Down and right: error image u− (v + ŵ). To print this signed image (right up and down), the
pixels absolute value has been considered and a change of contrast has been applied.

proposed in [27]. This approach, which consists of using different space-frequency bases to encode the different
structures, does not require the detection of edges). In our paper, we propose a new definition of edges, as
level lines containing a great number of topological singularities (the T-junctions). Using the total variation,
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we explain why the microtexture can be removed by approximating the image with a piecewise smooth non-
oscillating function, the singularities being located at the morphological edges. This approach allows to build an
image model respectful of the human visual system, and with a compactness that makes it suitable to perform
image compression at low bit rate.

The author would like to thank Jean-Michel Morel, Françoise Dibos and Jean-Pierre D’Alès for valuable discussions.
The AMLE interpolation algorithm has been implemented with the help of Catalina Sbert and Jean-Pierre D’Alès. The
T-junction detection algorithm has been implemented with the help of Vicent Caselles, Bartomeu Coll and José Luis
Lisani. The EZW compression scheme has been implemented by Jean-Pierre D’Alès.
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