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APPROXIMATION OF VISCOSITY SOLUTION

BY MORPHOLOGICAL FILTERS

Denis Pasquignon
1

Abstract. We consider in R2 all curvature equation
∂u

∂t
= |Du|G(curv(u)) where G is a nondecreasing

function and curv(u) is the curvature of the level line passing by x. These equations are invariant with
respect to any contrast change u → g(u), with g nondecreasing. Consider the contrast invariant
operator Tt : uo → u(t). A Matheron theorem asserts that all contrast invariant operator T can
be put in a form (Tu)(x) = infB∈B supy∈B u(x + y). We show the asymptotic equivalence of both
formulations. More precisely, we show that all curvature equations can be obtained as the iteration of
Matheron operators Tnh where h→ 0 and n→∞ with nh = t.

Résumé. Nous considérons dans R2 les équations de courbure ∂u
∂t

= |Du|G(curv(u)) où G est une
fonction croissante et curv(u) représente la courbure de la ligne de niveau passant par le point x. Ces
équations sont invariantes pour tout changement de contraste u → g(u), avec g croissante. D’autre
part, Matheron a prouvé que tout opérateur invariant par changement de contraste Tt : u0 → u(t)
peut s’exprimer comme un schéma inf-sup (Tu)(x) = infB∈B supy∈B u(x + y). Nous démontrons
l’équivalence asymtotique de ces deux approches. Plus précisément, nous prouvons que la solution de
viscosité de toute équation de courbure est la limite d’opérateurs de Matheron itérés Tnh lorsque h→ 0
et n→∞ avec nh = t.
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1. Introduction

In image analysis, one of the most basic tasks is to smooth an image u0(x) for noise removal and shape
simplification. Such a smoothing should preserve as much as possible the essential features of an image. This
requirement is most easily formalized in terms of invariance. Two invariances requirements are basic in this
context: given a smoothing operator T , it should commute with contrast changes, that is, increasing functions.
Indeed, for physical and technological reasons, most digital images are known up to a contrast change. The
second obvious requirement is geometric invariance: since the position of the camera is in general arbitrary or
unknown, the operator T should commute with translations, rotations, and, when possible, with affine and even
projective transforms of the image plane.

There are some limitations, however, to the extent of invariance compatible with smoothing. A classical
theorem of Matheron [12] asserts that if T is a monotonous operator commuting with translations and contrast
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changes, there exists a family of structuring elements B such that

(Tu)(x) = inf
B∈B

sup
y∈B

u(x + y).

In the following, given a family B, we note

(IShu)(x) = inf
B∈hB

sup
y∈x+B

u(y),

(SIhu)(x) = sup
B∈hB

inf
y∈x+B

u(y),

(Ahu)(x) = (ISh ◦ SIhu)(x).

On the other hand, several contrast invariant image operators based on PDE’s have been proposed in recent

years [1, 3, 4], basically mean curvature motion

(
∂u

∂t
= |Du|curv(u)

)
which commutes with all isometries and

contrast changes and the so-called Affine Morphological Scale Space (AMSS), that is

(
∂u

∂t
= |Du|(curv(u))

1
3

)
.

In [11], a multiscale analysis of shapes based on
∂u

∂t
= |Du|(−α + curv(u)), α > 0, was proposed for shape

encoding. In [4], Catte et al. established a link between curvature equations and Matheron operators by proving
that if we choose adequately B, then suitably rescaled iterated Matheron filters converge to the viscosity solution
of the mean curvature equation. This result was extended to the AMSS curvature equation by [8] in 2D and
more recently by Cao [3] in any dimension. These partial results and propositions have opened a range of
mathematical questions, one of which we attempt to solve here. The general questions in dimension 2 we
address are:

1) do all adequately rescaled and iterated Matheron filters converge to a curvature equation?

2) Conversely, can all curvature equations
∂u

∂t
= |Du|G(curv(u)) with G a nondecreasing function, be ob-

tained as the limit of iterated Matheron filters, as soon as they have a unique viscosity solution?

In [9], Ishii and Souganidis proved that such curvature equations with an arbitrary nondecreasing function G
have a viscosity solution theory yielding existence and uniqueness. Guichard and Morel give a partially positive
answer to question 1). More precisely, they give a consistency result, which implies the convergence thanks to
a theorem of Barles and Souganidis [2] about the convergence of approximation schemes.

In this paper, we answer positively question 2). More precisely, we prove the two following theorems.

Theorem 1.1. Given a function G continuous, nondecreasing, there exists a family Bε,M , ε, M > 0, such that
the function defined with the alternate operator associated with Bε,M

uh,ε,M(x, nh) = (Anhu)(x)

tends uniformly on any compact set to the viscosity solution u of

∂u

∂t
= |Du|G(curv(u)),

when ε→ 0, M →∞ and nh→ t:

lim
ε→0

lim
M→∞

lim
nh→t

uh,ε,M(x, nh) = u(t, x).
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Theorem 1.2. Let γ ∈ [0; +∞[. There exists a family B such that the function

uh(x, nh) = (Anhu)(x)

tends uniformly when nh→ t on any compact set to the viscosity solution u(x, t) of

∂u

∂t
= |Du|(curv(u))γ .

The proof of Theorem 1.1 is easy thanks to a result of Ishii and Souganidis [9] but the family Bε,M depends on
two parameters. Whereas with Theorem 1.2, the case of a power function G(s) = |sγ−1|s can be treated with
families which do not depend on parameters. The case γ < 1 is difficult because the family Bh we get is non local.

Our plan is as follows. In Section 2 we review several aspects and results of image processing theory relevant
to questions 1) and 2). In Section 3 we formulate the problem, give the definitions and review the main results
of [9]. We adapt the result of Barles and Souganidis to the new definition of viscosity solutions. In Section 4
we give a consistency theorem for Matheron filters. In Section 5, we approximate the viscosity solution in the
general case. In Section 6, we construct a Matheron filter adapted to curvature equations with a power larger
and smaller than 1 (both cases are quite different).

2. Image processing

In 1983, Witkin and Koenderink [10,15] introduced the concept of scale space in image processing. It consists
of a family of operators (Tt)t≥0 which associates with an image modelled as a real valued function uo in Rn (in
practice n = 2, 3) a sequence of smoothed images Tt(uo)(x) = u(x, t). We call t the scale parameter. A complete
axiomatization was presented by Alvarez et al. [1] who proved that if a scale space satisfies some stability and
invariance properties, then u(x, t) is viscosity solution of

∂u

∂t
= |Du|G(curv(u)) and u(x, 0) = uo(x),

where G is any nondecreasing continuous function with respect to its argument and curv(u) is the curvature of
the level line of the image u(x, t) passing by x.

Among curvature equation used in image processing, let us mention:

• G(s) = 1, we get an erosion, G(s) = −1, we get an dilation (in the Matheron sense).
• G(s) = s, we get the mean curvature motion.
• G(s) = sγ (that is |s|γ−1s), then the associated scale space is scale invariant (commutes with zooms).

• G(s) = s
1
3 , we get the AMSS [1] which is affine invariant.

• G(s) = 1 + s, we get a reaction diffusion equation introduced in image processing by Kimia et al. [11].
This kind of equation is used to compute the skeleton of a shape provided one adds a stopping test in
order to prevent the shape from breaking [13].

3. The viscosity solution framework

In this section, we review and adapt several results in viscosity solution theory which we shall use in the
following section.
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Figure 1. On the left column an erosion, on the middle mean curvature motion and on the
right the skeletonization of the shapes.

We consider the nonlinear equation

∂u

∂t
= |Du|G(curv(u)) in QT = Ω× (0, T ) (1)

with T > 0. Ω is an open subset of R2, u is the unknown funtion u : Ω × (0, T ) → R, G is a nondecreasing
continuous function, Du(x) is the spatial gradient and curv(u) is the curvature of the level line passing by x,

curv(u) = div

(
Du

|Du|

)
=
uxxu

2
y − 2uxuyuxy + uyyu

2
x

(u2
x + u2

y)
3/2

·

Ishii and Souganidis [9] defined a new class of admissible test functions in the definition of viscosity solutions.
To this end, let us denote by F(G) the set of functions f ∈ C2([0,+∞)) such that f(0) = f ′(0) = f ′′(0) = 0
and f ′′(r) > 0 for r > 0 and such that

lim
p→0

f ′(|p|)G

(
1

|p|

)
= lim
p→0

f ′(|p|)G(
−1

|p|
) = 0.

Ishii and Souganidis [9] prove that this set is a nonempty cone.

Definition 3.1. LetO be an open subset ofQT . A function φ ∈ C2(O) is admissible forG if for any (xo, to) ∈ O
such that Dφ(xo, to) = 0, there is a constant δ > 0 and functions f ∈ F(G) and ω ∈ C((0,+∞)) satisfying

lim
r→0

ω(r)

r
= 0, such that, for all (x, t) ∈ B((xo, to), δ)

|φ(x, t) − φ(xo, to)− φt(xo, to)(t− to)| ≤ f(|x− xo|) + ω(|t− to|).

We note A(G) the set of admissible functions.

We recall the definition of the upper semicontinuous envelope u∗ and the lower semicontinuous envelope u∗
of a function u

u∗(x, t) = lim sup
(y,s)→(x,t)

(u(y, s)) and u∗(x, t) = lim inf
(y,s)→(x,t)

(u(y, s)).
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Definition 3.2. (Ishii-Souganidis) A function u(x, t) : O → R∪ {−∞} is a viscosity subsolution of (1) in O
if u∗ < +∞ in O and for all φ ∈ A(G) and all local finite maximum points (xo, to) of u∗ − φ,


∂φ

∂t
(xo, to)− |Dφ(xo, to)|G(curv(φ)(xo, to)) ≤ 0 if Dφ(xo, to) 6= 0

∂φ

∂t
(xo, to) ≤ 0 if Dφ(xo, to) = 0.

A function u(x, t) : O → R∪{−∞} is a viscosity supersolution of (1) in O if u∗ > −∞ in O and for all φ ∈ A(G)
and all local finite maximum points (xo, to) of u∗ − φ,


∂φ

∂t
(xo, to)− |Dφ(xo, to)|G(curv(φ)(xo, to)) ≥ 0 if Dφ(xo, to) 6= 0

∂φ

∂t
(xo, to) ≥ 0 if Dφ(xo, to) = 0.

A function u(x, t) is a viscosity solution of (1) in O if u is both a viscosity subsolution and supersolution in O.

We denote by BUC(R2) the set of bounded uniformly continuous functions on R2.

Theorem 3.3. (Ishii-Souganidis) Consider the initial value problem with G a non decreasing continuous
function: {

∂u

∂t
− |Du|G(curv(u)) = 0

u(x, 0) = uo(x)·

Assume that uo ∈ BUC(R2). Then there is an unique viscosity solution u ∈ BUC(R2 × (0, T )).

In the following, we need the result of Ishii and Souganidis [9] (Pr. 1.3).

Theorem 3.4. Let G be a nondecreasing continuous function. Let us assume that Gn converge locally uniformly
to G, that F(G) ⊂ F(Gn) for any n and that for any f ∈ F(G),

lim inf
p→0,n→∞

f ′(|p|)Gn

(
1

p

)
≥ 0

(resp.

lim sup
p→0,n→∞

f ′(|p|)Gn

(
−1

p

)
≤ 0).

Let un be a subsolution (resp. a supersolution) of

∂un

∂t
= |Dun|Gn(curv(un)) in O,

and define u∗ and u∗: O → R ∪ {−∞,∞} by

u∗(z) = lim sup
r→0

{
un(y), |y − z| ≤ r, n >

1

r

}

u∗(z) = lim inf
r→0

{
un(y), |y − z| ≤ r, n >

1

r

}
·
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Assume that u∗(z) < ∞ (resp. u∗(z) > −∞) for all z ∈ O. Then u∗ (resp. u∗) is a subsolution (resp. a
supersolution) of

∂u

∂t
= |Du|G(curv(u)) in O.

Our purpose is to approximate the solution u of Theorem 3.3 by an iterated scheme Th where h is a scale
parameter. To prove the convergence, we follow the argumentation developed by Barles and Souganidis [2]. Let
uo be a bounded function on R2. We set

uh(x, (n + 1)h) = Thuh(x, nh) = Tn+1
h uo(x), uh(x, 0) = uo(x).

Definition 3.5. We note B(Ω) the set of bounded functions.

• Consistency
A scheme Th, h > 0 is consistent with

∂u

∂t
= |Du|G(curv(u))

if for any u ∈ C∞(Ω) and for any x ∈ Ω we have

(Thu)(x)− u(x)

h
= |Du|G(curv(u)) + ox(1) if Du(x) 6= 0.

If the convergence of ox(1) is uniform on any compact set on which Du(x) 6= 0, the scheme Th is said to
be uniformly consistent with the PDE.

• Monotonicity
A scheme Th, h > 0 is locally monotone if there exists r > 0 such that for any functions u, v ∈ B(Ω) with
u(y) > v(y) on D(x, r) \ {x},one has

Thu(x) ≥ Thv(x) + o(h).

• Stability
A scheme Th, h > 0 is stable if for any u ∈ B(Ω) and for any h > 0 and n, T nh u ∈ B(Ω).

Theorem 3.6. (Barles-Souganidis) We consider a scheme Th, h > 0, uniformly consistent with
∂u

∂t
=

|Du|G(curv(u)), monotone, stable and commuting with the addition of constants (i.e. Th(u+ C) = Thu+ C).
For any xo, we set

u(x) = f(|x− xo|).

Assume that for any f ∈ F(G),

lim
h→0

Thu(xo)

h
= 0.

Then when nh→ t, uh(x, nh) tends uniformly on any compact set to the viscosity solution u(x, t) of

∂u

∂t
= |Du|G(curv(u)).

The proof is an easy adaptation of Barles and Souganidis [2]. For a sake of completeness, we include this
adaptation in the Appendix.
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4. Consistency theorem for Matheron filters

Theorem 4.1. Asymptotic behaviour. Let B be a family of structuring elements in R2 which is bounded
and isotropic. Assume that each element B ∈ B is symmetric with respect to O.

We define the operators

(Tu)(x) = sup
B∈B

inf
y∈x+B

u(y)

and

(Thu)(x) = sup
B∈hB

inf
y∈x+B

u(y).

We set

G(b) = T (u)(0),

with u(x, y) = x+ by2.
Assume that there exists γ ≥ 1

G(b) ' bγ when b→ 0.

If u is a Cn function on R2with n ≥ γ + 2 ,

• if Du(xo) 6= 0, then

Thu(xo) = u(xo) + hγ+1|Du(xo)|

(
1

2
curvu

)γ
+O(hγ+2).

The consistency is uniform on a compact set on which Du(x) 6= 0.

• if Du(xo) = 0, then

Thu(xo) = u(xo) + h2 inf
B

sup
(x,y)∈B

(λ1x
2 + λ2y

2) +O(h3).

λ1 and λ2 are the eigenvalues of D2u(x).

Proof. We only prove the case Du(xo) 6= 0, the other one is straightforward, see Guichard and Morel [8]. As
T (u− u(xo)) = Tu−u(xo), we can choose u(xo) = 0. Moreover as T is invariant by any isometry, it is possible

to choose the origin O at xo, and the orthogonal axes such that ~i = Du
|Du| if Du(xo) 6= 0. Let ~j be such that

(~i,~j) is the orthonormal basis. Assume that u is Cγ+2. In what follows, we note (x, y) the coordinates of x in

(O,~i,~j). Then, with these conventions,

u(x) = px+ ax2 + by2 + cxy +
∑

2<k+l≤γ+1

ak,lx
kyl +O(|x|γ+2)

with p = |Du|(0), and p > 0. Moreover we have

a =
1

2
D2u(~i,~i),

b =
1

2
D2u(~j,~j) =

1

2
|Du|curvu(0),

and

c = D2u(~i,~j).

We set

Q(x, y) = px+ ax2 + by2 + cxy +
∑

2<k+l≤γ+1

ak,lx
kyl.
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So we have
(Thu)(O) = sup

B∈B
inf

x=(x,y)∈hB
(Q(x, y) +O(|x|γ+2)).

As B is bounded, there exists a constant M such that every element B of B is included in D(O,M). Therefore
if x ∈ hB then |x| < hM .

As Th is monotone and commutes with addition of constant, we get

Thu(O) = Th(Q(x, y)) +O(|h|γ+2).

We have the following inequalities for the points (x, y) of hB

x(p− ε(x)

(|a|+ |c|)Mh+
∑

2<k+l≤γ+1,0<k

|ak,l|M
k+l−1hk−1hl)

+ y2

b− ∑
2<l<γ+1

|a0,l|(Mh)l−2


≤ Q(x, y) ≤

x(p+ ε(x)

(|a|+ |c|)Mh+
∑

2<k+l≤γ+1,0<k

|ak,l|M
k+l−1hk−1hl)

+ y2

b+
∑

2<l<γ+1

|a0,l|(Mh)l−2

 ,

and ε(x) is the sign of x: if x ≤ 0, ε(x) = −1, and if x > 0, ε(x) = 1.

Since the coefficients a, c and ak,l are bounded and continuous on D(O,M), we note K and K ′ such that

K = sup
D(O,M)

(|a|+ |c|)M +
∑

2<k+l≤γ+1,0<l

|ak,lM
k+l−1|

 ,

and

K ′ = sup
D(O,M)

 ∑
2<l<γ+1

|a0,l|M
l−3

 .

So we have
px− |x|Kh+ y2(b−K ′h) ≤ Q(x, y) ≤ px+ |x|Kh+ y2(b+K ′h).

Thus, for any B ∈ B,

inf
(x,y)∈hB

(px− |x|Kh+ y2(b−K ′h)) ≤ inf
(x,y)∈hB

Q(x, y) ≤ inf
(x,y)∈hB

(px+ |x|Kh+ y2(b+K ′h)).

Since B is symmetric with respect to O, we deduce that it contains points x = (x, y) such that x is negative.
As p > 0, we deduce that the infimum is reached for a negative x for a small h. Therefore, we get

inf
(x,y)∈hB

(px− |x|Kh+ y2(b−K ′h)) = inf
(x,y)∈hB∩{(x,y),x<0}

(px+ xKh+ y2(b−K ′h)).

With the same argument,

inf
(x,y)∈hB∩{(x,y),x<0}

(px+ xKh+ y2(b−K ′h)) = inf
(x,y)∈hB

(px+ xKh+ y2(b−K ′h)).

Then,

inf
(x,y)∈hB

(px+ xKh+ y2(b−K ′h)) ≤ inf
(x,y)∈hB

Q(x, y) ≤ inf
(x,y)∈hB

(px− xKh+ y2(b+K ′h)).
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So we deduce

SIh(x(p +Kh) + y2(b−K ′h)) ≤ SIh(Q(x, y)) ≤ SIh(x(p−Kh) + y2(b+K ′h)).

As Th(x+ by2)(O) = hG(hb), we have

SIh(x(p −Kh) + y2(b+K ′h)) = h(p−Kh)G

(
h
b+K ′h

p−Kh

)
,

we deduce that

SIh(x(p −Kh) + y2(b+K ′h)) = hγ+1p

(
b

p

)γ
+ C1(b, p,K,K ′)hγ+2,

and

SIh(x(p +Kh) + y2(b−K ′h)) = hγ+1p

(
b

p

)γ
+ C2(b, p,K,K ′)hγ+2,

C1 and C2 are continuous functions with respect to all their arguments. Then

SIh(Q(x, y)) = hγ+1p

(
b

p

)γ
+O

(
hγ+2

)
,

thus

SIhu = hγ+1p

(
b

p

)γ
+O

(
hγ+2

)
.

From this result, we deduce the consistency if Du(xo) 6= 0:

Thu(xo) = u(xo) + hγ+1|Du(xo)|G

(
1

2
curvu

)
+O(hγ+2).

In addition, consider Ω a neighborhood of xo such that for any x ∈ Ω |Du(x)| 6= 0. We have for any x ∈ Ω

hγ+1p

(
b

p

)γ
+ C1(b, p,K,K ′)hγ+2 ≤ Th(u)(x) − u(xo) ≤ h

γ+1p

(
b

p

)γ
+ C2(b, p,K,K ′)hγ+2,

and b, p, K, K ′ are continuous functions of x, therefore C1 and C2 are bounded functions on Ω. So we deduce
that the consistency of Th is uniform in Ω.

This theorem enables us to build in Section 6 a family B with which we define an inf-sup scheme converging
to the viscosity solution when G is a power function. But in the general case, we get the following equation if
Du(xo) 6= 0:

Thu(xo) = u(xo) + h|Du(xo)|G

(
1

2
hcurvu

)
+ o(h).

Since the scale parameter h is linked to the curvature term curv(u), G
(

1
2hcurvu

)
, it is impossible to separate

these two terms when G is not a power function. Instead of considering Bh as hB, we give an other definition
for the scaling of a family Bh.

Definition 4.2. Let B be a family of structuring elements. B ∈ Bh if and only if there exists B′ ∈ B and
θ ∈ [0, 2π] such that

B = PθAhB
′

where

Pθ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
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and

Ah =

(
h 0

0 h
1
2

)
.

Theorem 4.3. (Asymptotic behaviour 2). Let B a bounded and isotropic family of structuring elements of
R2. Assume that each element B ∈ B is symmetric with respect to O.

Let (Tu)(x) = infB∈B supy∈x+B u(y), (resp. (Tu)(x) = supB∈B infy∈x+B u(y)). Define the scheme

(Thu)(x) = inf
B∈Bh

sup
y∈x+B

u(y)

(resp. (Thu)(x) = supB∈Bh infy∈x+B u(y)), and set

G(b) = T (x+ by2)(0).

Then if u ∈ C∞(R2) , if Du(xo) 6= 0, we have

Thu(x) = u(xo) + h|Du(xo)|G

(
1

2
curv(u)(xo)

)
+O

(
h

3
2

)
.

The consistency is uniform on a compact set on which Du(x) 6= 0.

Proof. As T (u− u(xo)) = Tu− u(xo), we can choose u(xo) = 0. Moreover as T is invariant by any isometry, it

is possible to take the origin O at xo, and the orthogonal axes such that ~i = Du
|Du| if Du(xo) 6= 0. Let ~j be such

that (~i,~j) is an orthonormal basis. So we have with x = (x, y)

u(x) = px+ ax2 + by2 + cxy +O(|x|3)

with p = |Du|(0) > 0, and

a =
1

2
D2u(~i,~i),

b =
1

2
D2u(~j,~j) =

1

2
|Du|curvu(0),

and

c = D2u(~i,~j).

We set

Q(x, y) = px+ ax2 + by2 + cxy.

We have for B′ ∈ Bh
(x′, y′) ∈ B′ ⇔ ∃B ∈ B ∃(x, y) ∈ B ∃ θ ∈ [0, 2π] such that

(
x′

y′

)
= PθAh

(
x
y

)
or

{
x′ = h cos(θ)x−

√
h sin(θ)y

y′ = h sin(θ)x+
√
h cos(θ)y.
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Then

Th(Q)(O) = inf
B′∈Bh

sup
(x′,y′)∈B′

(Q(x′, y′))

therefore

Th(Q)(O) = inf
B∈B

inf
0≤θ≤π

sup
(x,y)∈B

(Q(h cos(θ)x−
√
h sin(θ)y, h sin(θ)x+

√
h cos(θ)y)).

With the definition of Q

Th(Q)(O) = inf
B∈B

inf
0≤θ≤π

sup
(x,y)∈B

(
−p
√
h sin(θ)y + h(p cos(θ)x+ a sin2(θ)y2 + b cos2(θ)y2) +O

(
|h|

3
2

))
.

It is clear that for h small enough the inf-sup is reached when θ = 0. Then we set θ = 0:

Th(Q)(O) = hp inf
B∈B

sup
(x,y)∈B

(
x+

b

p
y2

)
+O

(
h

3
2

)
.

Hence

Th(Q)(O) = hpG

(
b

p

)
+O

(
h

3
2

)
.

Since B is bounded, there exists a constant M such that for any B ∈ Bh, B ⊂ D
(
O, h

1
2M
)

. By monotonicity,

we get

Th(u)(O) = Th(Q)(O) +O
(
|h|

3
2

)
.

Th(u)(O) = hpG

(
b

p

)
+O

(
h

3
2

)
.

In addition, as in Theorem 4.1, the consistency is uniform on a neighborhood of xo on which Du(x) 6= 0.

5. The general case of a nondecreasing function G

In this section, we prove Theorem 1.1 given in the introduction. First we recall this theorem:

Theorem 1.1. Given a function G continuous, nondecreasing, there exists a family Bε,M , ε, M > 0, such that
the function defined with the alternate operator associated with Bε,M

uh,ε,M(x, nh) = (Anhu)(x)

tends uniformly on any compact set to the viscosity solution u of

∂u

∂t
= |Du|G(curv(u)),

when ε→ 0, M →∞ and nh→ t:

lim
ε→0

lim
M→∞

lim
nh→t

uh,ε,M(x, nh) = u(t, x).
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Proof. 1. We shall first consider the nondecreasing function G such that

 i) ∃A > 0 ∀x ∈ R+ G′(x) ≤ A
ii) ∃M > 0 ∀x > M G(x) = G(M) +A(x−M)
iii) ∀x ≤ 0 G(x) = 0.

(2)

Given N > 0, we consider the piece of parabola Ps : (x, y) ∈ Ps if x = G(s) − y2s and −N ≤ x ≤ G(s).
We call BN the smallest isotropic set containing all the sets Ps when s ∈ [0;M ]. Some examples of set Ps
are given in Figure 2. In addition, BN is a bounded family.

G(s)

Figure 2. Examples of set Ps.

Lemma 5.1. Let G defined by (2) and the family BN as above, for any b ∈ R and for N large enough

G(b) = inf
B∈BN

sup
(x,y)∈B

(x+ by2).

Proof. Given s > 0, we define fs on R by{
If x ≤ s fs(x) = G(s)
If x ≥ s fs(x) = G(s) +A(x− s).

As shown by Figure 3, we have for any x ∈ R

G(x) = inf
0≤s≤M

(fs(x)).

We can write
fs(x) = sup

0≤p≤A
(G(s) + p(x− s)).

So we have

G(b) = inf
0≤s≤M

(
sup

0≤p≤A
(G(s) − ps+ pb)

)
.
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M

G

s

fs

Figure 3

We set {
x(p) = G(s) − ps

y(p) =
√
p.

(3)

The point (x(p), y(p) belongs to the parabola Ps. So we deduce

G(b) = inf
0≤s≤M

(
sup

(x,y)∈Ps

(x+ by2)

)
.

For N large enough, we have

inf
B∈BN

sup
(x,y)∈B

(x+ by2) = inf
0≤s≤M

sup
(x,y)∈Ps

(x+ by2),

so we get the Lemma.

2. Lemma 5.2. Let G defined by (2). The functions uh(x, nh), defined with the inf-sup scheme associated
with BN , tend uniformly when nh→ t on any compact to the viscosity solution u(x, t) of

∂u

∂t
= |Du|G(curv(u)).

Proof. With Theorem 4.3, we deduce that the inf-sup scheme is consistent with

∂u

∂t
= |Du|G(curv(u)).

Moreover, for any f ∈ F(G), we have f ∈ C2([0,+∞)) such that f(0) = f ′(0) = f ′′(0) = 0 and f ′′(r) > 0
for r > 0. With a Taylor expansion, we get

f(|x− xo|) = O(|x− xo|
3).

With the definition of Bh, we have

Thf(|.− xo|)(xo) = O
(
h

3
2

)
.
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Thus

lim
h→0

Thf(|.− xo|)(xo)

h
= 0.

Thus, with Theorem 3.6, we deduce the Lemma.

3. Thus, given a nondecreasing continuous function G, let be ε > 0, we note f εs the function defined on R by{
If x ≤ s f εs(x) = G(s)
If x ≥ s f εs(x) = G(s) + 1

ε (x− s).

We set

Gε(x) = inf
s≥0

(f εs(x)).

Lemma 5.3. Let uε be the viscosity solution of

∂uε

∂t
= |Duε|Gε(curv(uε)),

then uε → u when ε→ 0 and u is the viscosity solution of

∂u

∂t
= |Du|G(curv(u)).

Proof. We only have to prove that the functions Gε satisfy the assumptions of Theorem 3.4.
The functions Gε converge uniformly locally to G. Let be f ∈ F(G), then

lim
p→0

f ′(|p|)G

(
−1

|p|

)
= lim
p→0

f ′(|p|)G

(
1

|p|

)
= 0.

When p is small enough, we have

0 ≤ f ′(|p|)Gε

(
1

|p|

)
≤ f ′(|p|)G

(
1

|p|

)
hence

lim
p→0

f ′(|p|)Gε

(
1

|p|

)
= 0.

In addition, Gε
(
−1
|p|

)
= 0. Finally, let be f ∈ F(G), as f ′(|p|)Gε

(
1
|p|

)
≥ 0 and f ′(|p|)Gε

(
−1
|p|

)
= 0, we

deduce the last needed condition to apply the above theorem.

4. It remains to approach uε. Again, given ε > 0, we approximate Gε by GMε with M > 0 and{
If x ≤M GMε (x) = Gε(x)
If x ≥M GMε (x) = G(M) + 1

ε
(x−M).

It is easy to check the assumptions of Theorem 3.4, then

Lemma 5.4. Let uM be the viscosity solution of

∂uM

∂t
= |DuM |G

M
ε (curv(uM )),
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then uM → u when M →∞ and u is the viscosity solution of

∂u

∂t
= |Du|Gε(curv(u)).

5. Let ε, M > 0 be two parameters. We consider the function GMε defined as in step 4. Since GMε satisfies
the assumptions of Lemma 5.2, step 2, we can construct a family BMε such that the associated functions
uMε,h(x, nh) tends uniformly on any compact set to the viscosity solution uMε of

∂u

∂t
= |Du|GMε (curv(u)).

With Lemma 5.4, we let M tend to ∞, then uMε tends uniformly on any compact set to the viscosity
solution uε of

∂u

∂t
= |Du|Gε(curv(u)).

With Lemma 5.3, we let ε tend to 0, then uε tend uniformly on any compact set to the viscosity solution
u of

∂u

∂t
= |Du|G(curv(u)).

6. Case where G(s) = sγ

6.1. Notations

The approach is simpler than in the preceding case because of the concavity or convexity of G. We use the
first consistency theorem about the asymptotic behaviour of the scheme Th when Bh = hB. We adopt the

following notations. Let be a =
(
γ1/2

1−γ

) 2
γ+1

. We set I = [0; a] and consider the curve C = (x(t), y(t)) when t ∈ I

defined by {
x(t) = (1− γ)tγ

y(t) = (γ)
1
2 t

γ−1
2 .

The equation of C is

y = γ

(
−1

1− γ

) γ−1
2γ

(−x)
γ−1
2γ .

The exponent of x belongs to the interval
[
0; 1

2

[
. Let Bt be the set formed by the four points

Bt = {(x(t), y(t)); (x(t),−y(t)); (−x(t), y(t)); (−x(t),−y(t))}·

We call B1 the smallest isotropic set containing all the sets Bt when t ∈ I. We notice that the element containing
only the origin belongs to B1. Let Rt be the rectangle the vertices of which are the points of Bt. We call B2

the smallest isotropic set containing all the sets Rt when t ∈ I.

Theorem 6.1. Consider the family B = B1 or = B2 just defined above. Set ISh, SIh and Ah the operators
defined by

(IShu)(x) = inf
B∈hB

sup
y∈x+B

u(y),

(SIhu)(x) = sup
B∈hB

inf
y∈x+B

u(y),
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(Ahu)(x) = (ISh ◦ SIhu)(x).

If γ ∈ [0; 1] and B = B2, the functions uh(x, nh), defined with the inf-sup scheme Ah, tend uniformly when
nh→ t on any compact set to the viscosity solution u(x, t) of

∂u

∂t
= |Du|(curv(u))γ .

If γ ∈ [1; +∞] and B = B1, the functions uh(x, nh), defined with the inf-sup scheme Ah, tend uniformly when
nh→ t on any compact set to the viscosity solution u(x, t) of

∂u

∂t
= |Du|(curv(u))γ .

6.2. γ is larger than 1

x

y

A1 B1C

C1D1

A2 B2

C2D2

Figure 4. The four corners of the rectangle (A1, B1, C1, D1) constitute an element of B1. In
the same way the four corners of the rectangle (A2, B2, C2, D2).

Let us first prove Theorem 6.1 when γ is larger than 1.

1. Lemma 6.2.
• For all b in I, sup

B1

inf
B

(x+ by2) = bγ ,

• for all b ≤ 0, sup
B1

inf
B

(x+ by2) = 0.

Proof. First we assume b ∈ I. We call Bθt the image of Bt by the rotation centered in O with angle θ.
Because of the symmetry of Bt, we restrict θ to

[
0; π2

]
. So we have

sup
B1

inf
B

(x+ by2) = sup
t∈I

sup
θ

inf
Bθt

(x+ by2).

We consider the point At = (x(t), y(t)). As t ∈ I, we have |x(t)| ≤ y(t), we deduce that for all θ ∈
[
0; π2

]
inf
Bθt

(x+ by2) ≤ inf
B0
t

(x+ by2),

therefore
sup
θ

inf
Bθt

(x+ by2) = inf
B0
t

(x+ by2).
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Finally we get

sup
B1

inf
B

(x+ by2) = sup
t∈I

inf
B0
t

(x+ by2).

It remains to prove that

sup
t∈I

inf
B0
t

(x+ by2) = bγ . (4)

By construction we have

sup
t∈I

inf
Bt

(x+ by2) = sup
t∈I

(x(t) + by(t)2).

On the other hand, since G(s) = sγ is a convex function on I, G is the supremum of its tangent lines.
Thus, for any s in I

G(s) = sup
t∈I

(G(t) +G′(t)(s− t)),

or

G(s) = sup
t∈I

(x(t) + sy(t)2).

From this and the definition of Bt, we get (4).
We now assume b ≤ 0. For all θ, it is posssible to find a point (x, y) ∈ Bθt with x ≤ 0. Thus,

inf
Bθt

(x+ by2) ≤ 0.

In addition, there is only one point in B0: the origin, so

inf
Bθ0

(x+ by2) = 0.

Finally,

sup
t∈I

inf
Bt

(x+ by2) = 0.

2. We have a dual lemma with the inf-sup scheme, since

inf
B1

sup
B

(−u) = − sup
B1

inf
B

(u).

So we can also deduce

Lemma 6.3.
• for all b ≥ 0, inf

B1

sup
B

(x+ by2) = 0,

• for all b of I, inf
B1

sup
B

(x+ by2) = (−b)γ .

3. Since the family B1 is bounded, isotropic and each element is symmetric with respect to O, we deduce
with Theorem 4.1 that for any function u ∈ Cγ+2(R2) in a neighborhood of xo ∈ R2, if |Du(xo)| 6= 0

lim
h→0

IShu(xo)− u(xo)

hγ+1
= |Du(xo)|G(curv(u)+(xo)),

lim
h→0

SIhu(xo)− u(xo)

hγ+1
= |Du(xo)|G(curv(u)−(xo)),
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lim
h→0

Ahu(xo)− u(xo)

hγ+1
= |Du(xo)|G(curv(u)(xo)),

with (curvu)+ = max(curvu, 0), (curvu)− = max(−curvu, 0), and

G(r) = rγ .

In addition, the consistency is uniform.

Then the scheme Ah is uniformly consistent with
∂u

∂t
= |Du|G(curv(u)).

4. It is easy to check that for any f ∈ F(G), for any xo,

lim
h→0

Ahf(|.− xo|)(xo)

h
= 0.

In addition, Ah is monotone, stable and commuting with the addition of constants (i.e. Th(u + C) =
Thu+ C). Thus, we can apply Theorem 3.6 and complete the proof.

2

6.3. γ is smaller than 1

x

yA1

D1

C

C1

B1

B2A2

D2 C2

Figure 5. The rectangle (A1, B1, C1, D1) constitutes an element of B2. In the same way the
rectangle (A2, B2, C2, D2).

We prove Theorem 6.1 if γ is smaller than 1.

1. We prove the consistency result for ISh(u), and thanks to the relation

sup
B2

inf
B

(u(y)) = − inf
B2

sup
B

(−u(y)),

we deduce the result for SIh, and then for Ch(u) and Ah. Since the family B2 is not bounded, that is
to say there is no disk containing every element of B2, the value of IShu(x) depends on values of u(y)
at points y arbitrarily far from x. Therefore, this operator looks like an a priori non local operator no
matter how small h is. Nevertheless, we shall show that the behaviour of ISh is very close to an operator
defined with a bounded family. We defined this new family Bε by restricting the domain of t to [ε; a]
instead of [0; a] with ε > 0. This new family is bounded, isotropic and each element B ∈ Bε is symmetric
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with respect to O. Therefore, we can apply Theorem 4.1 about the asymptotic behaviour to ISε deduced
from the bounded family Bε

ISh,εu(xo) = u(xo) + h|Du|Gε(hcurv(u)) +Kε,xoh
2+1/3

and

Gε(b) = inf
Bε

sup
B

(x+ by2) = inf
t∈[ε;a]

sup
Bt

(x+ by2).

So the idea is to let ε tend to 0. First, we compute G(b) = infB2 supB(x + by2) and we deduce Gε(b).
Then, by using the locality lemma, we compare ISh and IShε.

2. Lemma 6.4.
• If b ∈ I, inf

B2

sup
B

(x+ by2) = bγ ,

• if b ≤ 0 inf
B2

sup
B

(x+ by2) = 0.

Proof. First, we assume b ∈ I. We call Bθt the image of Bt by a rotation of θ. Because of the symmetry
of Bt, we restrict θ to

[
0; π2

]
. So we have

inf
B2

sup
B

(x+ by2) = inf
t∈I

inf
θ

sup
Bθt

(x+ by2).

We consider the point At = (x(t), y(t)). Since we have |x(t)| ≤ y(t), we deduce that for all θ ∈
[
0; π2

]
sup
Bθt

(x+ by2) ≥ sup
B0
t

(x+ by2),

therefore

inf
θ

sup
Bθt

(x+ by2) = sup
B0
t

(x+ by2),

and finally we get

inf
B2

sup
B

(x+ by2) = inf
t∈I

sup
B0
t

(x+ by2).

It remains to prove

inf
t∈I

sup
B0
t

(x+ by2) = bγ . (5)

Now, since G(s) = sγ is a concave function on I, G is the infimum of its tangent lines. Thus, for any s
in I

G(s) = inf
t∈I

(G(t) +G′(t)(s− t)),

or

G(s) = inf
t∈I

(x(t) + sy(t)2).

From this we get (5).
We now assume b ≤ 0. So we have x+ by2 ≤ x. Then, since the origin belongs to any set B of B2, we

have

0 ≤ sup
B

(x+ by2) ≤ sup
B

(x),

therefore,

0 ≤ inf
B∈B2

sup
B

(x+ by2) ≤ inf
B∈B2

sup
B

(x) = 0.
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Finally,
inf
B∈B2

sup
B

(x+ by2) = 0.

3. We have a dual lemma with sup-inf scheme since

inf
B2

sup
B

(−u) = − sup
B2

inf
B

(u).

Lemma 6.5.
• For all b ≥ 0, sup

B2

inf
B

(x+ by2) = 0,

• for all b of I, sup
B2

inf
B

(x+ by2) = (−b)γ .

4. Then, it is easy to compute Gε.

 If x ≥ ε Gε(x) = G(s)
If ε ≥ x ≥ 0 Gε(x) = G(ε) +G′(ε)(x− ε)
If 0 ≥ x Gε(x) = G(ε)− εG′(ε).

We get the following graphics for the two functions G and Gε:

x

ε

y

G

O

G

aε

Figure 6. G and Gε.

So
|G(b)−Gε(b)| ≤ x(ε) = (1− γ)εγ .

5. The next lemma expresses that the families B2 and Bε are very close for the semi-Hausdorff distance. We
introduce the Hausdorff semi-distance for two bounded sets of R2

δ(B′, B) = sup
x∈B′

( inf
y∈B
|x− y|).

Lemma 6.6. Locality
Let ε > 0, and r = h(x2(ε) + y2(ε))

1
2 . Then for every B ∈ hB2, there exists B′ ∈ Bεh, such that

δ(B′, B ∩D(0, r)) ≤ (1− γ)hεγ .

Proof. If B ∈ Bεh, we choose for B′ the set B. Assume now that B doesn’t belong to the family Bεh. We
choose ~i so that this vector is parallel to the smaller side of the rectangle B, and ~j is orthogonal to ~i. We
consider the element B′ of Bεh like in Figure 7. Then we have

δ(B′, B ∩D(0, r)) ≤ hxε = (1− γ)εγh.
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d(B’,B)

B

B’

x

y

r

Figure 7. B and B′ are very close for the semi Hausdorff distance.

6. Lemma 6.7. Local Monotonicity
Let ε > 0 and r = h(x2(ε) + y2(ε))

1
2 . Let u and v be two K-Lipschitz functions such that for every

x ∈ D(xo, r)
u(x) ≥ v(x).

Then we have
IShu ≥ IShv −K(1− γ)hεγ

and
IShεu(y) ≥ IShu(y) ≥ IShεu(y)−K(1− γ)hεγ .

Proof. We have

IShu(xo) ≥ inf
B∈hB2+xo

sup
y∈B∩D(xo,r)

u(y) ≥ inf
B∈hB2+xo

sup
y∈B∩D(xo,r)

v(y).

Let B ∈ hB2, we consider the B′ obtained with the preceding lemma. As v is K-Lipschitz, we have for
y ∈ B′ and x ∈ B ∩D

v(y) ≤ v(x) +K|y− x|,

therefore,
v(y) ≤ sup

x∈B∩D
v(x) +K inf

x∈B∩D
|y− x|,

so,
sup
B′

v(y) ≤ sup
x∈B∩D

v(x) +Kδ(B′, B ∩D),
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thus,
sup
B′

v(y) ≤ sup
x∈B∩D

v(x) +K(1− γ)hεγ ,

we deduce

IShu(xo) ≥ inf
B∈hB2+xo

sup
y∈B′

v(y) −K(1− γ)hεγIShεv(y) −K(1− γ)hεγ .

As Bεh ⊂ hB2, we have
IShεv(y) ≥ IShv(y).

7. So we have the relation

ISh,εu(xo) = u(xo) + h|Du|Gε(hcurvu) +Kε,xoh
2+1/3.

We set
ε = hω.

With the preceding results, we have

ISh,εu(xo) = IShu(xo) +K1,ε,xoh
1+ωγ ,

and
Gε(hcurvu) = G(hcurvu) +K2,ε,xoh

ωγ .

We deduce
IShu(xo) = u(xo) + h|Du|G(hcurvu) +K3,ε,xoh

1+ωγ +Kε,xoh
2+1/3.

If curv(u)(xo) < 0, then

IShu(xo) = u(xo) +K3,ε,xoh
1+ωγ +Kε,xoh

2+1/3.

If curv(u)(xo) > 0, then

IShu(xo) = u(xo) + hγ+1|Du|(curvu)γ +K3,ε,xoh
1+ωγ +Kε,xoh

2+1/3.

In order to get the consistency result, it is enough to choose ω > 1.
Moreover, we can prove that the consistency is uniform on any compact set on which |Du|(x) 6= 0 if

ω < 2. To get this result, we only have to prove that the family Bhε remains included in a ball whose
radius tends to 0 with h. For all B ∈ Bhε, B is included in a ball with radius r = h(x2(ε) + y2(ε))1/2. An

equivalent of r in h = 0 is h1+ω γ−1
2 . Then, with the condition ω < 2, r tends to 0 with h. Therefore the

constants Kε,xo and K3,ε,xo are bounded, so we get the uniform consistency.

Then the scheme Ah is uniformly consistent with
∂u

∂t
= |Du|G(curv(u)) and

G(r) = rγ .

8. It is easy to check that for any f ∈ F(G), for any xo,

lim
h→0

Ahf(|.− xo|)(xo)

h
= 0.

In addition, Ah is monotone, stable and commuting with the addition of constants (i.e. Th(u + C) =
Thu+ C). Thus, we can apply Theorem 3.6 and complete the proof.

2
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7. Appendix

Proof of Theorem 3.6. 1. We define

u∗(x, t) = lim sup
nh→t,h→0

uh(x, nh)

and
u∗(x, t) = lim inf

nh→t,h→0
uh(x, nh).

Next we prove that u∗ is a usc subsolution and u∗ is a lsc supersolution. As u∗(x, 0) = u∗(x, 0), we deduce
with the comparison principle [9] u∗(x, t) ≤ u∗(x, t). But the opposite inequality is obvious, so we get the
equality which means the convergence of the scheme.

2. We only prove that the function u∗ is a subsolution since the argument for u∗ is identical. Let φ be an
admissible function and (xo, to) be a local maximum of u− φ on Ω. We set D = D((xo, to), r) such that
(xo, to) is a strict local maximum of u − φ on D. With standard arguments, it is possible to extract a
sequence (xh, nhh) → (xo, to) when h → 0 and (xh, nhh) is a local maximum of uh − φ on D. Then, for
h small enough and for any y ∈ D(x, r2 ), we get (y, (nh − 1)h) ∈ D. Hence

uh(y, (nh − 1)h) ≤ uh(xh, nhh)− φ(xh, nhh) + φ(y, (nh − 1)h).

With the local comparison principle, and the commutation with the addition of constant we deduce

Thuh(., (nh − 1)h)(xh) ≤ uh(xh, nhh)− φ(xh, nhh) + Thφ(., (nh − 1)h)(xh) + o(h). (6)

With standard arguments, we get the following lemma.

Lemma 7.1. If u is a subsolution (resp. supersolution) for any function φ admissible C∞ with φ(x, t)
= f(x) + g(t), then u is a subsolution (resp. a supersolution).

Then we set φ(x, t) = f(x) + g(t) in (6), we get

uh(xh, nhh) ≤ uh(xh, nhh)− f(xh)− g(nhh) + Thf(xh) + g((nh − 1)h) + o(h),

therefore,

g(nhh)− g((nh − 1)h) + f(xh)− Thf(xh) + o(h) ≤ 0. (7)

3. First, we consider the case |Dφ|(xo, to) = |Df |(xo) 6= 0. Then, for h small enough, |Df |(xh) 6= 0. We
conclude with the consistancy property

hg′(c)− h|Df(xh)|G(curv(f(xh))) + o(h) ≤ 0

with c ∈ [(nh − 1)h;nhh]. We divide by h and we let h tend to 0, as G is continuous, we get

g′(to)− |Df(xo)|G(curv(f(xo))) ≤ 0.

4. We consider now the case |Dφ|(xo, to) = 0. Since φ is admissible, there exists a constant δ > 0 and

functions f ∈ F(G) and ω ∈ C((0,+∞)) with limr→0
ω(r)
r

= 0 such that

|φ(x, t) − φ(xo, to)− φt(xo, to)(t− to)| ≤ f(|x− xo|) + w(|t − to|)
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for any (x, t) ∈ B((xo, to), δ).
We assume, as [9], that ω ∈ C1((0,+∞)) and ω(0) = ω′(0) = 0 and ω(r) > 0 for r 6= 0. We set

ψ(x, t) = φt(xo, to)(t− to) + 2f(|x− xo|) + 2w(|t− to|).

We deduce that u− ψ has a local strict maximum in (xo, to). If x 6= xo,

Dψ(x, t) = 2f ′(|x− xo|)
x− xo
|x− xo|

,

and

D2ψ(x, t) = 2f ′(|x− xo|)
I

|x− xo|
+ 2f”(|x− xo|)

(x− xo)⊗ (x− xo)

|x− xo|2
− 2f ′(|x− xo|)

(x− xo)⊗ (x− xo)

|x− xo|3
·

• If xh 6= xo, then Dψ(xh, t) 6= 0, so we have the preceding result

ψt(xh, nhh)− |Dψ(xh, nhh)|G(curv(ψ(xh, nhh))) + o(h) ≤ 0,

therefore,

φt(xo, to) + 2w′(|nhh− to|)− 2f ′(|xh − xo|)G

(
1

|xh − xo|

)
+ o(h) ≤ 0.

We let h tend to 0, by definition of F(G), it remains

φt(xo, to) ≤ 0.

• If xh = xo for any h, we apply 7 with the function ψ defined in step 4, so we get

g(nhh)− g((nh − 1)h) + f(xh)− 2Thf(|.− xo|)(xh) + o(h) ≤ 0.

We replace xh by xo
hg′(c)− 2Thf(|.− xo|)(xo) + o(h) ≤ 0

with c ∈ [(nh − 1)h;nhh]. As we assume

lim
h→0

Thf(|.− xo|)(xo)

h
= 0

hence
φt(xo, to) ≤ 0.
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