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ON THE OPTIMAL CONTROL OF IMPLICIT SYSTEMS

PHILIPPE PETIT

ABSTRACT. In this paper we consider the following problem, known as
implicit Lagrange problem: find the trajectory # argument of

1
min/ L(x, ) dt
0
where the constraints are defined by an implicit differential equation
F(z,2) =0

with dim ' = n — ¢ < dim ¢ = n. We define the geometric framework of
a g-wm-submanifold in the tangent bundle of a surrounding manifold X,
which is an extension of the m-submanifold geometric framework defined
by Rabier and Rheinboldt for control systems. With this geometric
framework, we define a class of well-posed implicit differential equations
for which we obtain locally a controlled vector field on a submanifold
W of the surrounding manifold X by means of a reduction procedure.
We then show that the implicit Lagrange problem leads locally to an
explicit optimal control problem on the submanifold W, for which the
Pontryagin maximum principle is naturally apply.

1. INTRODUCTION

We consider for the state z of R” the implicit differential equation
F(z,z)=0. (1.1)

In this equation the control u does not appear explicitly, but only because
there are less equations than unknowns, namely F : R” x R®* — R"7¢,
where ¢ < n (see [6].) Here, the control variable u belongs to R9. The
cost function is the Lagrangian L(z,#) of TR™. A process is a trajectory
z(+) belonging to C'*([0, 1], R") the set of continously differentiable functions
(resp. KC'([0,1],R") the set of continuous and piecewise differentiable
functions, AC([0,1],R") the set of absolutely continuous functions, see the
footnotes of the subsection 5.2.) A trajectory z(:) is admissible if 2(0) = a,
z(1) = b and

F(z(t),&(t)) = 0,Vt € [0,1] (resp. a.e. on [0, 1]).

For any admissible trajectory z(-) the cost is
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50 PHILIPPE PETIT

An  admissible trajectory Z(-) belonging to C'([0,1],R") (resp.
KCY([0,1],R™), AC([0,1],R™)) is a weak minimum (resp. strong minimum)

of Jif
J(@(-) < J(2()

for any admissible trajectory z(-) belonging to C1([0,1],R") (resp.
KC'([0,1],R™), AC([0,1],R™)). An admissible trajectory z(-) belonging to
C1([0,1],R™) (resp. KC([0,1],R™), AC([0,1],R")) is a weak local mini-
mum (resp. strong local minimum) of J if there exist an £ > 0 such that
for any trajectory x(-) belonging to C1([0,1],R") (resp. KC([0,1],R"),
AC([0,1],R")) such that || 2(-) — Z(-) ||i< € (resp. || 2(-) — Z(-) |[o< € )
where

1) lh= max max{] 2(1) |, (1) |

. . = t
(resp. || () [lo trg[gff]lw()l)

J(@ () < J(z())-

REMARK 1.1. a) An admissible trajectory z(-) belonging to C'*([0, 1],R")
which is a strong (local) minimum is also a weak (local) minimum, mean-
while a trajectory x(-) belonging to C([0,1],R") can be a weak (local)
minimum without to be a strong (local) minimum.

b) The necessary conditions for the weak local minimum are also necessary
conditions for the strong local minimum, and the sufficiency conditions for
the strong local minimum are also the sufficiency conditions for the weak
local minimum.

then

We will subsequently turn our attention to the geometry of the implicit
differential equation (1.1). More precisely, we will extend the definitions
of m-submanifold, reducible and completely reducible 7-submanifold in [16]
to our situation (see also [15].) Let us consider the manifold X = R" and
its tangent bundle TX = TR"™ = R" x R". Let us assume that the subset
M = F~'(0) is a submanifold of TX (it is the case when F is a submersion).
A trajectory z(-) is admissible if (2(¢), #(¢)) belongs to M for any ¢ € [0, 1].
The implicit Lagrange problem! is

Po min
)

If 2(-) is an admissible trajectory then z(¢) has to belong to the set W =
7 (M) for any ¢ € [0,1]. Let us assume that W is a submanifold of X', then
(t) has to belong to the subspace T, W of T, X for any ¢ in [0, 1] and
thus (z(¢), £(t)) belongs to the set My = TWNM for any ¢ in [0, 1]. In other

"When g = n, the constraint F(z,%) = 0 being absent, this is the simple problem of
the calculus of variations (see [3, 4, 5, 10, 11])
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ON THE OPTIMAL CONTROL OF IMPLICIT SYSTEMS 51

words, any admissible trajectory for the implicit Lagrange problem (Pg) is
an admissible trajectory for the following implicit Lagrange problem

1
Py min / L(z(t), &(t))dt.
(z(-)&(-))eMy /O
z(0)=a
z(1)=b

Thus, if Z(-) is a solution of Py then it is a solution of P; and conversely.
Moreover, the startpoint ¢ and the endpoint b have to belong to W. This
replacement of the submanifold M of T X by the submanifold M; of T X
is the reduction procedure and M; is called the reduction of M. Let us
assume that we are able to do with M;, what we have done with M, then
we construct a submanifold Wy = #(M7) of X and a submanifold M; of TX.
If z(-) is an admissible trajectory for the problem P; then it is an admissible
trajectory for the problem

1
P min / L(z(t), &(t))dt.
(z(-)&(-))eMz /O
z(0)=a
z(1)=b

Let us assume that we construct by induction a sequence of implicit Lagrange
problem

1
Py min / L(z(t),(t))dt
(#(-)&(-)) €My 7O
z(0)=a
z(1)=b

such that Wy = w(My) is a submanifold of X and My = M 0 TW,
is a submanifold of TX, then any admissible trajectory z(-) of Py is an
admissible trajectory of Piiq1. Therefore any admissible trajectory of Py is
an admissible trajectory of P for any k. Thus any admissible trajectory of
Py is an admissible trajectory of the following implicit Lagrange problem

P. | min /0 L(z(t),&(t))dt

with C'(M) = Ng>oMj. Clearly, the strong (resp. weak) minimum of Py are
the strong (resp. weak) minimum of P, and the points a et b have to belong
to 7 (C'(M)). Furthermore, if the sequence { M}, } x>0 is stationary then C'(M)
is a submanifold of T X and the smallest integer a such that M, = M,, Vi >
o will be called the index. Then we can wonder if P, is equivalent to an
explicit control problem (see the subsection 5.2 of the Appendix). This will
be the case for the class of well-posed implicit differential equations.

2. DEFINITIONS AND MAIN RESULTS

Using the geometric framework of ¢-m-submanifold of the section 3, we
are able to define a well-posed implicit differential equation.
ESAIM: Cocv, MARCH 1998, VoL. 3, 49-81
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DEFINITION 2.1. An implicit differential equation (1.1) is well-posed if the
set

M = F~1(0)
is a completely reducible ¢-m-submanifold of TR"™ such that the core C'(M)
is not empty.
DEFINITION 2.2. The index of a well-posed implicit differential equation
(1.1) is the maximum over the index of the non-empty connected component

of the core C'(M).

Now, we consider only well-posed implicit differential equations. Asin the
introduction, for each ¢-w-submanifold M} of TR"™ of the chain of reduction
we consider the implicit Lagrange problem

1
Py min / L(z(t),(t))dt
(z(-),#(-) €My /0
z(0)=a
z(1)=b

and for C'(M) the core of M we consider the implicit Lagrange problem

P. _ min /0 L(x(t), &(t))dt.

The sequence {Pg }r>o is called the chain of reduced implicit Lagrange prob-
lems of the well-posed implicit differential equation (1.1) and P. is called
the central implicit Lagrange problem. Evidently, the points ¢ and b have
to belong to 7(My) for any k and thus to belong to 7 (C'(M)).

DEFINITION 2.3. Any point z of R™ is consistent with a well-posed implicit
differential equation F if it belongs to the projection of the core C'(M).

According to the definitions we can formulate the following theorems
(proofs are given in the subsection 5.1 of the Appendix).

THEOREM 2.4. Let I be a well-posed implicit differential equation (¢ < n)
of TR™, {Py}r>o0 its chain of reduced implicit Lagrange problems and P, its
central implicit Lagange’s problem. Then, any admissible trajectory z(-) of
Po is an admissible trajectory of Py for any k. In particular, any admissible
trajectory x(-) of Py is an admissible trajectory of P. and any strong (resp.
weak) minimum z(-) of P, is a strong (resp. weak) minimum of Po.

Theorem 2.4 shows that the strong (resp. weak) minimum are living in
the core C'(M). According to the theorem 3.31, the ¢-m-submanifold C'(M)
is locally the image of a controlled vector field. Thus, we are able to show
that locally the trajectories of C'(M) are in bijection with the trajectories
of the controlled vector field Y.

THEOREM 2.5. (Local equivalence) Let F' be a well-posed implicit differ-
ential equation, C'(M) its core, (xg,po) a point belonging to C'(M) and
W = =(V) a local projection of C(M) at (zo,po), O an open set of RY,
X a controlled vector field given by the theorem 3.31. If x(-) is a local tra-
jectory of C'(M) such that (x(t),z(t)) belongs to V' for any t, then there
ESAIM: Cocv, MARCH 1998, VoL. 3, 49-81



ON THE OPTIMAL CONTROL OF IMPLICIT SYSTEMS 53

exists an unique continuous (resp. piecewise continuous) control u(-) taking
its value in O such that (z(t),(t)) = x(2(t),u(t))? for any t. Conversely,
for any initial condition zo belonging to W and for any continuous (resp.
piecewise continuous) control u(-) taking its value in O there exists a unique
local trajectory of C'(M) such that (z(t), z(-)) belongs to V for any t.

Then, on the one hand, we have shown that the strong (resp. weak)
minimum of the implicit Lagrange problem Py are the strong (resp. weak)
minimum of the central implicit Lagrange problem P, (theorem 2.4), and on
the other hand that (locally) the admissible trajectories of P. are in bijection
with the admissible trajectories of the controlled vector field x (theorem 2.5).
Now, let us consider a strong minimum Z(-) of the central implicit Lagrange
problem P.. Let 7 be a point in the set 7" and W = #(V) a local projection
of C'(M) at (z(7),z(7)), O an open set of R% x a controlled vector field
given by the theorem 3.31. There exists € > 0 such that for any point ¢
belonging to the interval I. = [r — &, 7 + £] then (z(f),z(t)) belongs to V.
We naturally consider the following local implicit Lagrange problem

P.. mi

)

THEOREM 2.6. (Local optimality) Let I' be a well-posed implicit differen-
tial equation. If Z(-) is a strong minimum of the central implicit Lagrange
problem P, then for any 7 belonging to T there exists € > 0 such that the
trajectory f|la (+) is a strong minimum of the implicit Lagrange problem P, .

Let us also consider the following local explicit optimal control problem

T+e
Pe,s min / L(X($(t), u(t))dt
(@().2())=x(z()ul() 7=¢

(7—
(6)(

THEOREM 2.7. Z(-) is strong (local) minimum of the implicit Lagrange prob-
lem P.. if, and only if, the corresponding admissible process (Z(-), u(-)) is a
strong (local) minimum for the explicit control problem P ..

T
T

This leads to consider the following local implicit Lagrange problem. Let
W = w(V) be a local projection such that there exists an open set O in R
and a controlled vector field y : W x O — TW given by the theorem 3.31

min / L(x(t), &(t))dt

Py mi

where the points @ and b belong to W. The admissible trajectories (resp.
strong minimum) of Py are in bijection with the admissible processes (resp.

®In a local coordinate system @ of W, x(z,u) takes the form (z, f(z,u)).
ESAIM: Cocv, MARCH 1998, VoL. 3, 49-81
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strong minimum) of the explicit optimal control problem

1
P min / L(x(a(t), u(t))dt.
(@()#(N=x(z(-)u(-)) /O
u(-)€O
z(0)=a
(1)=b

xr

Finally, we choose a local coordinate system z = (z1,---,2") of W and

then apply the Maximum Principle to the problem P. with the pseudo-
Hamiltonian

HY :T"W x 0O - R

($, ¢7 u) = Z¢zf2($7 u) + ¢0L($7 f(xv u))
=1
and the controlled vector field

Y T*W x O — T(T*W)

e o NI 0

am T ) 8962 preElCE am

=1

where 1 = 0, 1.

REMARK 2.8. Obviously, the necessary conditions of optimality are invari-
ant by bundle isomorphism k. Let us consider a bundle isomorphism h

&= X(z), @ =U(x,u)
with inverse
r=X(2), u=U(z,u).
In the new coordinates (#, @) the controlled vector field is

(3, ) = S X @)X @), UG ),

the Lagrangian L(Z, ﬂ) = L(X(2),U(&,u)) and the pseudo-Hamiltonian
H(z,4, i) = Yoo, 0o f'(3, ) — oL (3, ).

The extremals (Z(-), QZ( -}) are the projection of a triplet (Z(-), QZ(), (+)) such
that

(a): (2(), {L() @(+)) is a trajectory of the controlled vector field (1;0 =
1)

—h

-7 ~ ~ ~
HY - T"W x O — T(T*W)
- = ~ - 8H¢° - Hd’ - d
(j7¢7u)|—>H¢0(j7¢7ﬂ):Z ¥, U ; =
i=1 8% i=1 albi
(b): for any t belonging to [0, 1] (resp. a.e. on [0, 1])

HY(3(t), a(t), 0(t) = max H7(E (1), u, ¥(1)).
IN=N0,
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ON THE OPTIMAL CONTROL OF IMPLICIT SYSTEMS 55

Clearly, the extremals (53(),{;()) are in bijection with the extremals
(2(-),%()) via the relationship

(30, 50)) = (K @0, 92 (K ()

For any triplet (z(-), ¥(+), u(+)) such that (a) and (b) are satisfied, the triplet

= = = o/ — taX o/ — 7 rr/— _
(@), (), () = (X (@ (), 5= (X(@())NP), U@(), ul-))
satisfies (a) and (b).
ExaMPLE 2.9. The controlled rigid pendulum. A mass m is attached at the
extremity of a rigid massless wire of length [ and fixed at the origin. 7 is
the tension of the wire, g the gravity constant and the control u = (uy, uz)
acts on the mass. The equations of the system are

mi, = —Trzitu
mig = —7 2+ mgtug .
0 = af+423-1

In order to return to an implicit differential equation and to use the reduction
procedure we consider the following mapping Fy : TR” — R

P1— 23
P2 — 24
Fo(z,p) = Ps+ x1p7r — Ps , pP=1T

Pe+T2pr — D6 — ¢
x%—l—x%—lQ

where @5 = uy/m, &g = ug/m and @7 = 7/ml and the submanifold, of TR",
My = F;1(0) . My has dimension 9. The equation of the set Wy = 7(Mp)
is
e+ aei—1*=0
it is a submanifold of R” of dimension 6. TW, = G5'(0) where Gy is the
mapping
22 42— 2
Gol(z,p) = ! 2 .
o(@:p) ( P11 + P2 )

Thus the reduction of My is My = TWy N My = Fl_l(O)7 where F] is the
mapping

P1— 23
P2 — 24
+x1pr —
13 (ac,p) — P3 1p7 — Ps 7

Pat Te2pr —Ps — ¢
R T
X123+ 2%y

it is a submanifold of dimension 8. The equations of the set Wy = (M)
are
zi+a3 -1 =0
rirs +ary = 05
ESAIM: Cocv, MarcH 1998, Vor. 3, 49-81
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and it is a submanifold of R” of dimension 5. TW; = G*(0), where G is
the mapping

v 422 -2
2123+ 222y
P1a1 + p2ao

P1%3 + T1p3 + peta+ T2p4

G1(967p)=

Thus My =TW, N M, = FQ_I(O)7 where Fy is the mapping

P — 23
P2 — ¥4
P3+ 21pr — Ps
Fy(z,p) = Pa+T2pr — D6 — ¢ )
x4+ 22— 12
X123+ 2%y
23 + 2 + xips + waps + w29 — Ppr

is a submanifold of dimension 7. Finally the set Wy = (M) is in fact W,
and thus Ms = TWonN My = TWy N My = My (since My C TWy), then
C'(Mp) is the submanifold My and W = 7(C'(My)) is the submanifold Wj.
Moreover C'(M) = x(W x R?) where x(z,v) = (z, f(x,v)) is the vector field
of the state € W depending on v = (vy,v;) € R? such that

T3
Tq
—%(m% +22) + L2 (w0 — 21 (v2 4+ 9))
fav)= | —F@s+ai) - Flaao - zi(v2 +9))
U1
U2
%2(96;2), + OCZ + 2101 + 22(v2 + ¢g))

and vy = uy/m et v = uz/m. On the other hand, from the relation z; =
[sin @ and x4 = lcos (0 €] — 7, 7[) we obtain

. i3 = —16%sin 6+ lfcosd
{ r3 = 101690§00 iy = —10%cosf — 10sinb
Ty = —lOsIn ir = 024 Snll 0 4 v, COZSO-

Therefore, 8 satisfy the following second order implicit differential equation
10 = vy cosd — (vy 4 g) sin § (2.1)
Thus, we take for W the parameterization
x=X(z)= (Isin6,lcos 8,1 cosb, —Vsinb,ys, ys, y7),

where 2z = (6,9, ys, ys, y7) €] — 7, 7[xR?, the controlled vector field

NG v) = (5,90 0) = O+ (018 — (00 + )M L 0 0

toag + (2 4 oS 4 (0 4 g) Pl 0
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ON THE OPTIMAL CONTROL OF IMPLICIT SYSTEMS 57

and the Lagrangian L(z,v) = L(X (2), %—)Z((z)g(z7 v)). Then the problem P,

is equivalent to the explicit optimal control problem

1
min /E(Z(t),v(t))dt,
(2(8),2(8))=x(=(1),v(1)) Vte[o,1] JO

v(t)eR?
2(0)€{a} xR?
2(1)e{b} xR3

for which we obtain the necessary conditions of optimality with the pseudo-
Hamiltonian

H (206,0) = 0+ (0 258 — (0 + ¢) 511
+ 95 (0 + vls“lle + (v +g)

) + 3v1 + Pavg
) oL (z,v).

REMARK 2.10. For this system, the kinetic energy is 7'(6, 0) = %mﬂé?, the
potential energy is V' (0) = —mglcos @ and the Lagrangian is

1 .
L=7T-V= §m1202 + mglcosé.

The virtual work of the control w is éW, = Q8 = (u1lcosb — uylsin 0)56
and for the tension it is zero. The Lagrange equation

d oL JL

dt g 00 =@

gives the second order differential equation 2.1.

3. GEOMETRY OF IMPLICIT DIFFERENTIAL EQUATIONS

For the problem P, M is a submanifold of TR"™; it is obvious that the
reduction procedure that we present in the introduction is not applicable to
any submanifold M of TR", especially the submanifolds M for which 7 ps
admits singularities. In this section we will define the class of submanifolds of
TR"™ that will be allowed for the problem P. For this class of submanifolds
we will be able to apply locally the reduction procedure. First of all, let
us make some comparisons with the definition of w-submanifolds given in
[16]. The authors’ concern is to answer to the problem of the existence and
uniqueness of solutions, namely to put M in the form

M = ¢(Y) (3.1)

for a section ¢ : Y — TY of a connected submanifold Y of R™ with a dimen-
sion equal to that of M. In this situation, M is equivalent to an ordinary
differential equation and, thus, the problem of existence and uniqueness is
solved. Here, it is not our purpose to obtain the existence and uniqueness
of the solutions (since in this case the optimal control problem admits an
obvious solution, namely the trajectory which (possibly) goes from a to b)
but to have the existence and uniqueness of a family of solutions, in other
words to find a submanifold Y of R, an open set U of R? and a mapping

ESAIM: Cocv, MARCH 1998, VoL. 3, 49-81
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x:Y xU — TY such that the diagram

X
YxU — TY CTR”
Pr N, |
Y CR”
switches and such that
M = x(Y x U). (3.2)

This occurs for the submanifold C'(M) in the example of the controlled
rigid pendulum. Even though in [16] the equality (3.1) suggest that the
submanifold M is locally embedded in a tangent bundle T'Y of a submanifold
Y of R™ with the same dimension as that M, in our situation the equality
(3.2) suggests that the submanifold M is locally embedded in a tangent
bundle TY of a submanifold ¥ of R” of dimension less than or equal to the
dimension of M.

3.1. g-7-SUBMANIFOLD

For our geometric framework we will consider separable, Haussdorf man-
ifold X with finite dimension and, for reasons of convenience, they are as-
sumed to be smooth (although they could be of class C*, k > 2). Let us
recall some elements of differential geometry. The dimension of a manifold
M is the maximal dimension among the dimension of the connected compo-
nents = of M. A pure manifold M is a manifold such that all the connected
components = have the same dimension. For any manifold X, the points
belonging to the tangent bundle T'X are denoted by (z, p) with z belonging
to X and p belonging to T, X. The canonical projection = : T X — X is the
mapping such that 7(z,p) = 2. For the manifold R”, the tangent bundle is
identified with R” x R™ and the projection 7 is identified with the projection
onto the first factor. Moreover, for any submanifold ¥ of X and any point
belonging to Y, the subspace T, Y is identified with a subspace of T, X and,
thus, TY is identified with a submanifold of T X. Subsequently, the follow-
ing notation f : (X,a) — (Y,b) means that the mapping f is defined in an
open neighborhood U of @ in X and b = f(a). As in the case of manifolds,
all the mappings are assumed to be smooth (once again they could be of
class C*, k > 2). For any mapping f : X — Y and any point = belonging
to X the linear tangent mapping is denoted by T,f. Now let us give the
definition of subimmersion and the subimmersion theorem

DEFINITION 3.1. (subimmersion) Let X, Y be manifolds and a mapping
f: X =Y.

(a): fis a subimmersion at © € X if r = rank T, f is constant in an open
neighborhood of z in X.

(b): fis a subimmersion on X if it is a subimmersion at « for all points
x of X. In particular, for each connected component = of X the rank
r has a constant value on =, we shall call it the rank of f on Z.

THEOREM 3.2. (subimmersion theorem) Let X be connected manifolds and
[+ X = Y a subimmersion with rank r. Then, the following statements

hold

ESAIM: Cocv, MARCH 1998, VoL. 3, 49-81



ON THE OPTIMAL CONTROL OF IMPLICIT SYSTEMS 59

(a): for any y belonging to f(X) the set M = f~1(y) is a submanifold of
dimension m — r and T, M = KerT,f.

(b): for any point & belonging to X there exists an open neighborhood V
of x in X such that the set W = f(V) is a submanifold of dimension
rand T)W = ImT, f for any point y belonging to W. Moreover, if N
is any submanifold of X of dimension r such that x belongs to N and
T.N Nker T, f = {0} then the mapping f|n is a local diffeomorphism
of some open neighborhood of x in N onto an open neighborhood of y

Proof. see [9] O

For an implicit differential equation (1.1) the following proposition gives
a criterion for the projection 7, to be a subimmersion.

ProprosiTION 3.3. Let G : R" X R™ — R"™¢ be a mapping with 0 < g < n
such that DGz, p) has full rank n — q in an open neighborhood of a point
(20, po) belonging to G=1(0) and U an open neighborhood of this point in
R™ x R™ such that the set M = U NG71(0) is a submanifold of R™ x R" of
dimension n+ q. Then, the mapping 7|p; where 7 is the projection onto the
first factor is a subimmersion at (zo,po) of rank r = p + q if, and only if,
rank D,G(z,p) = p < n — q is constant in an open neighborhood of (o, po)
m M.

Proof. On the one hand, for any point (z,p) belonging to M, the tangent
space T )M is equal to ker DG (z, p) and his dimension is equal to n+¢. On
the other hand, the linear tangent mapping T, ,)(7|ar) : T(zpyM — T:R™ is
the restriction of the canonical projection to the subspace T(, ,)M. Namely,
the mapping

(6x,6p) € Ty p)M + dz.
Then, for any point (z, p) belonging to M

ker T, py(7ar) = {(62,0p) € Tz pyM/dz = 0} = {0} X ker DpG(ac,p)(.3 .

Clearly, the mapping 7|p; has constant rank r in an open neighborhood of
(20, po) in M if, and only if, dim Im T\, ,y(m|as) = r in an open neighborhood
of (2o, po) in M; therefore if, and only if,

dim ker T, ) (7pr) = dim T, (yM — dim Im T, ) (7pr) = n+q—1 (3.4)

in an open neighborhood of (g, po) in M. According to (3.3), (3.4) holds if,
and only if, dim ker D,G/(z,p) = n+¢—r = n — p in an open neighborhood
of (29,po) in M; that is if, and only if, dim Im D,G(z,p) = p in an open
neighborhood of (zg, po) in M. O

Now we give the definition of a g-w-submanifold M of T'X.

DEFINITION 3.4. (g-m-submanifold) Let X be a manifold, ¢ a fixed integer
less than or equal to the dimension of X, M a submanifold of T'X and (z, p)
a point of M. M is a g-w-submanifold of TX at (z,p) (in an neighborhood
of (z,p) in M) if the following conditions hold
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(a): there exists a connected open neighborhood U of (z,p) in M and a
submanifold Y of X such that dimY + ¢ = dim U and U is a subset of
TY.

(b): the mapping ;7 : U — X is a subimmersion in the neighborhood of

(z,p).

M is a g-m-submanifold of 7T'X if for any point (z, p) belonging to M, M is
a ¢g-m-submanifold at (z,p).

REMARK 3.5. a) If M is a ¢g-m-submanifold at a point (z, p) of M, then we
can assume that the mapping 7y : U — X is a subimmersion on U, even
if this means shrinking U. Moreover, for any point (z,p) belonging to U,
the first condition of the definition holds (It is enough to take U and Y').
Thus, for any point (z,p) belonging to U, U is a ¢-m-submanifold at (z, p);
in other words U is a ¢g-w-submanifold of T'X.

b) When M is not a g-w-submanifold of T'X we can consider the set, possibly
empty, of points (2, p) of M such that M is g-m-submanifold of TX at (z, p).
If it is a non-empty set, according to a), it is an open set of M and a ¢-7-
submanifold of T'X.

The definition of a g-w-submanifold can be formulated in the following
way
DEFINITION 3.6. (bis) Let X be a manifold and ¢ an integer less than or
equal to the dimension of X. A submanifold M of T X is a ¢-w-submanifold
of T'X if for any connected component = of M the following conditions hold.

(a): for any point (z,p) of = there exists an open neighborhood U in =
of (z,p) and a submanifold ¥ of X such that dimY + ¢ = dim = and
U is a subset of TY.
(b): the mapping 7z : £ — X is a subimmersion in a neighborhood of
any point (z,p) of =Z.
REMARK 3.7. This definition extends the definition of a w-submanifold in
[16], which is the case ¢ = 0 of our definition. The first condition means
exactly that M is locally embedded in the tangent bundle TY of a subman-
ifold Y of X of dimension less than or equal to the dimension of M. For
the second, according to the subimmersion theorem, for any point (z,p) of
M there exists an open neighborhood V of (z, p) in M such that W = = (V)
is a submanifold of X of dimension the rank of the mapping 7= at (z,p).
This is the local analogous of the condition, W = #(M) is a submanifold
of X, supposed in the global reduction procedure. For any connected com-
ponent = of M the inequality 2¢ < dim = is satisfied (dimZ < 2dimY,
dimY + ¢ = dim =). We shall use this inequality to prove a property of the
index.

ExampPLE 3.8, Let y : X x U — TX be a smooth controlled vector field
with dim U = ¢. Let us assume that

(a): the mapping %(w, u) has full rank ¢.
(b): for any (z,p) belonging to T'X either the equation x(z,u) = (z,p)
has a unique solution or it does not have any solution.
(c): the mapping (2, u) — x(z,u) is proper.
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Clearly, under this mild assumption the set M = x(X x U) is a submanifold
of TX3. Obviously, dim M = dim X + dim U and T|p is a subimmersion.
Thus, M is a ¢-m-submanifold.

In the example of the controlled rigid pendulum, the submanifold My of
TR7 is connected and its dimension is equal to 7. Therefore, for any point
(z,p) belonging to Mg the first condition holds with U = My, Y = R” and
g = 2. Moreover, for any point (z, p) belonging to Mg, rank D,G(z,p) = 4;
then, according to the proposition 3.3, the mapping 73y, is a subimmersion
of rank 4 + 2 = 6. Therefore, the submanifold My is a 2-w-submanifold of
TR".

Now we shall give some definitions: the order of point (z,p) of M is the
rank of the mapping |z at this point, we shall denote it by ord as(z, p).
Since, the mapping 7z has, locally, constant rank, ord p(z,p) is constant
for each point of any connected component of M, then we may define ord ;=
as the order of one of its points and it is less than or equal to the dimension
of the submanifold Y. A submanifold W as in the remark 3.7 is called a
local projection of M at (z,p).

REMARK 3.9. With the notations of the definition of a g-m-submanifold, U is
a submanifold of T'Y" and since the mapping 7z : = — X is a subimmersion,
the mapping ;7 : U — X is a subimmersion. This is satisfied if, and only if|
the mapping 77 : U — Y is a subimmersion. The order of a point belonging
to = is also the rank of the mapping 7|y : U — Y at this point. Then, we
can see U as a submanifold of TY and as a submanifold of T X.

The following theorem ensures that a ¢-m-submanifold M is, locally, the
image of a unique controlled vector field.

THEOREM 3.10. (Existence and uniqueness) Given X a manifold and M a
q-w-submanifold of TX such that

dimZ=ord y=+4¢q (3.5)

for each connected component = of M, then for each point (x,p) of M there
exists a local projection W = w(V) of M at (z,p), an open set O of R? and
a unique smooth mapping x : W x O = TW such that

V=XV X 0), p=x(2.0), ranks (z,0) =

and such that Pr = 7w o x where Pr is the canonical projection from W x O
onto W. Moreover, if W' = (V') is another local projection of M at (x,p)
such that there exists an open set O' of R? and a unique smooth mapping
X W x O — TW' such that
/ / / ’ ox'
Vi=x(W' x 0O, p=x'(2,0), rankw(x,O) =q

and such that Pr' = wox' where Pr' is the canonical projection from W' x O’
onto W', then there exists a diffeomorphism h : (W x O, (z,0)) — (W' X
O, (2,0)) such that x = x" o h and Pr = Pr'oh.

Proof. Let (x¢,po) be a point of M. According to (3.5) and the remark 3.9
the mapping 7y : U — Y is a subimmersion with rank equal to Ord = =

#Since the mapping y is an injective proper immersion.
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dim= — ¢ = dim Y, therefore it is a submersion. Then, there exists an open
neighborhood V of (z¢, po) in U such that the local projection W = = (V) is
an open set of Y. Since W is an open set of Y, the tangent bundle TW of
W is equal to (mpy) (W) = 7Y (W) NTY. Moreover, V. C TY and V C
7L (W) then V C 771 (W)NTY = TW. Then, V is a submanifold of TW
of dimension dim Y +¢. This last property is also satisfied when we shrink V
or W (for any open set V' of V, W/ = (V') is also a local projection and V'
is a submanifold of TW’ by the same arguments; for any open set W’ of W
setting V' = (mpy) 7 (W/)NV then W' = 7(V’) and V" is also a submanifold
of TW’). Thus, even if this means shrinking V', we can assume that there
exists a chart (W, %) of Y such that W is identified with an open set of
R™, also denoted by W, then TW is identified with W x R™, & is identified
with the canonical projection and V is identified with a submanifold of
W x R™ projected onto W. We can also assume that there exists an open
set Q of (g, po) in W x R™, an open set 2, of 0 in R”~? and a submersion
G Q — Q, such that VNQ = G71(0)NQ. Since V is projected onto W then
D,G (x0, po) has full rank; ; even if this means shrinking €, there exists an
open set €2, of 0 in R? and a mapping H : 2 — €, such that for the mapping
¢: Q- W xQ, xQ, defined by (y,u,v) = ®(x,p) = (x, H(z,p),G(z,p)),
D®(z0,po) is an isomorphism. According to the local inverse functions
theorem there exists an open set Q' C Q of (xg,po) in W x R™ and an
open set Q" of (z0,0,0) in W x Q, x Q, such that gy : Q" — Q" is a
diffeomorphism. We can assume that Q" has the form W’ x Q! x Q! where
W' is an open set of W, Q! is an open set of 2, and €/ is an open set of €,,.
Moreover there exists an open set € of p in R™ such that Q' = (I>|_Ql,(Q”) has

the form W' x Q). Let Vo =V N Q', then Wy = 7(1p) is a local projection
of M at (xq, po). Given @'_Ql,(y7 u,v) = (y, ¢(y, u, v)) the inverse mapping of
P o, then Vo = {(x, ¢(z,u,0), z € Wy, u € Q,} = <1>|;;,(W0 x Q% {0}).

Therefore, we define O = Q! x {0} and y = (I)|_VII/0><O‘ Then Vp = x(Wo x O),

X(x0,0) = po and rank%(xo, 0) =rank %(xo, 0,0) = q. Given W' = n(V")

another local projection of M at (x,p) such that there exists an open set

O’ of R? and a unique smooth mapping \' : W/ x O' — TW' such that
/

Vi=x(W'x 0", p=x'(z,0), rank%(x, 0) = ¢ and such that Pr' = 7oy’
where Pr’ is the canonical projection from W' x O’ onto W', then the implicit

equation '(z,u') = y(x, u) is locally invertible relative to « and u’ and the
existence of h follows. O

REMARK 3.11. The diagrams

/

X X
W' x0O' — TW' cTX dWxO - TW cCTX
PrroN, 1l 7 an Pr N, | =
W' cX W cX

are equivalent in a neighborhood of (z,0) by the bundle isomorphism h.
Such bundle isomorphisms define in control theory a feedback.
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3.2. REDUCTION OF A ¢-T-SUBMANIFOLD

Since the condition of the theorem 3.10 is generally not fulfilled, then we
have to define the reduction procedure. In the case of the global reduction
procedure, we have seen that any admissible trajectory z(-) for My is neces-
sarily an admissible trajectory for My = MoNT Wy and M is the reduction of
My. In order to have, locally, the same reduction procedure, we use local pro-
jection. Let z(-) be a local admissible trajectory, in other words (2(-), (+)) is
a trajectory of M passing through the point (zq, po) = (2(to), &(to)) € M at
time tg, where tg is a point of continuity; since M is a ¢g-w-submanifold , then
for a local projection W = 7 (V) at (zo, po) of M and for ¢ in a neighborhood
of to, (x(t),2(t)) € V, whence 2(t) € W == (V) and (x(t),2(t)) € TW. In
particular (z9,po) € TW NV C TW N M. This leads to the following
definition

DEFINITION 3.12. Let X be a manifold and M a ¢-m-submanifold of T X.
A point (z,p) € M is a point of reducibility of M if there exists a local
projection W = 7(V) of M at X such that p € T,W, in other words (z, p)
belongs to TW N M. The (possibly empty) set of the points of reducibility
of M is the reduction of M, we denote it by M’

REMARK 3.13. If such local projection W = 7 (V') exists then for any other
local projection W/ = #(V') of M at (z,p), since T,W' = T, W, (z,p)
belongs to TW' N M. Thus, the definition does not depend on the choice of
the local projection W.

EXAMPLE 3.14. A ¢-w-submanifold M such that the reduction M' is the
emply sel.

In TR® let M be the submanifold given by the implicit differential equa-
tion Fy = 0 where

Tl — T3
-1
Fo(z,p) =
o(z,p) Do
P3—Pa—DPs
Clearly, M is a 1-m-submanifold of TR W = #(M) is the submanifold of
dimension 4 of R® given by the equation 27 —2z9 = 0 and M' = TWNM = {.

Now that we have stated the reduction procedure and a new set, namely
M’ the reduction of M, we are going to see under which conditions for M,
the reduction M’ is a submanifold and a ¢-w-submanifold. First of all, we
can establish the following results

ProrosiTION 3.15. Let X be a manifold and M a q-w-submanifold of TX .
Then, the reduction M' of M is a closed subset of M.

Proof. The cases M = M’ and M = () are obvious. Let us assume that
0 &€ M" ¢ M and let us consider the subset N = M \ M'. Let (x,p) be
a point of N and W = =(V) a local projection of M at this point. W is
a submanifold of X of dimension r = ordp;=. Upon shrinking V', we can
assume that there exists a chart (2, ¢) of X such that W C Q, ¢(£2) is an
open set of R™, ¢(W) is an open set of R", TQ is identified with Q x R™,
TW is identified with W x R"” and V is identified with a submanifold of
Q2 x R™. Since, the point (z,p) belongs to N and the point z belongs to W
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the point p does not belong to T, W, and in the chart this means that p does
not belong to R". Thus, there exists an open neighborhood V' of (z,p) in
V such that V' N TW = (. Therefore, the set N is an open set of M and
then M’ is a closed subset of M. O

The following proposition is used to establish the conditions such that the
reduction M’ of a ¢-w-submanifold M is a submanifold.
ProprosiTION 3.16. Let X be a manifold and M a q-w-submanifold of T X
such that its reduction M’ is not empty. Given (z,p) a point of M’', then
for any local projection W = =(V)) of M at (z,p)

dim [T, ) TW N T,y M] > ord ar(z,p) + q.

Proof. Let (29, po) be a point of M’ and W = =(V) a local projection of M
at (20, po). According to the definition of a ¢-m-submanifold there exists an
open neighborhood U of (zg, pg) in M and a submanifold Y of X such that
dimY 4+ ¢ = dim = and U is a subset of T'Y. We can choose W = 7 (V) such
that V' C U, therefore W C #(U) C Y. Let i : W — Y be the canonical
embedding of W in ¥ and

S=iTY = |J {2} xT.Y CTVY.
reW
> is a submanifold of TY of dimension equal to the sum of the dimension
of W and of the dimension of Y. Moreover, TW and V are submanifold of
Y. Indeed, let (z, p) be a point of ¥. Then, according to the construction of
3, x belongs to W and p belongs to T,,Y . Since ¥ and W are submanifolds
of X, there exists in a neighborhood of the point = in X two submersions
g: (R"z)— (R"7,0) and h: (R",2) — (R"7,0) such that in a neigh-
borhood of z, W = ¢71(0) and Y = 271(0) where m = dimY =dim= — ¢
and r = ord p(2,p) = ord ar(xo, po). Thus in a neighborhood of (z,p) in
TX, XY is the zero set of the submersion
o:(TX,(z,p)) = (R xR"™™,(0,0))
(z,p) = a(z,p) = (9(z), dh(z).p).

Thus, ¥ is a submanifold of TX of dimension n —r — (n —m) =r+m
and therefore a submanifold of TY. According to the construction, TW is a
subset of 3 and a submanifold of T X, therefore TW is a submanifold of ..
Finally, since V' is subset of X (for any point (z,p)of V. C U C TY, x belongs

to W and p belongs to 7,,Y) and a submanifold of 7Y, V' is a submanifold
of X. Since dimV = dimY + ¢, dimTW = 2r and dim ¥ = dim Y + r then

dim[ T, ) TW O Ty V] > dim Ty, ) TW + dim T, )V — dim Ty, )2

=ord p(z,p) +q.
O

THEOREM 3.17. Let X be a manifold and M a q-w-submanifold of T X such
that its reduction M’ is not empty. If for each point (x,p) of the reduction
M’ of M there exists a local projection W = (V') of M at (x,p) such that

dim[T(, \TW N T, ,)M] = ord p(z,p) + g, (3.6)
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then M' is a submanifold and T, ,yM' = T(u yTW 0T (, yM. Moreover, if
in an open neighborhood of (z,p) in TW N M

T 1y M has constant rank, (3.7)

=/

then for any connected component = of M, =’ the reduction of = is either
empty or a pure q-rw-submanifold of dimension ord yy= + q. In particular
M' is a g-m-submanifold.

Proof. Given (z,p) a point of M" and W = =(V) a local projection of M
at (z,p) such that (3.6) is satisfied, then the submanifolds TW and V are
transversal in the bundle ¥ at (z, p), therefore TW NV is a submanifold of
TW and of M of dimension ord (z, p) +¢. The mapping 7y has constant
rank on V', even if this means shrinking V. But, on the one hand,

MNV = {(z,p) € V/3 alocal projection W(xm) = ﬂ-(‘/(x,p)) /pE TxW(x,p)}

and, on the other hand, W = = (V) is a local projection of M at each points
of V, therefore

M0V ={(x,p)eV /peT,W}=TWnV.

In other words M’ is a submanifold of M and T, ,M' = T, ,TW N
T(W)V = T(Lp)TW N T(%p)M

Therefore the connected component of M’ containing the point (z, p) has
a dimension equal to ord a;(z, p) +¢. Let us prove that the first condition of
the definition of a ¢-m-submanifold hold. Given Z' the connected component
of M’ containing (x, p), there exists an open neighborhood U’ of (z,p) in =’
such that U’ C TW, in fact U’ = TWNV that we can assume included in =’
If we set down Y’ = W then dim Y’ 4 ¢ = dim =2’ and the condition holds.
Moreover, if condition (3.7) holds then 7=/ has constant rank and therefore
according to the previous results, M’ is a ¢g-wm-submanifold of X. O

The theorem 3.17 justified the following definition

DEFINITION 3.18. Let X be a manifold and M a ¢-w-submanifold M of T X
such that its reduction M’ is not empty. M is a reducible q-w-submanifold if
for any point (z, p) of the reduction M’ of M there exists a local projection

W =n(V) of M at (z,p) such that
dim[T(, )\ TW N T, yM] = ord p(z,p) + ¢ (3.8)
and if in an open neighborhood of (z,p) in TW N M
T[Ty oy M his constant rank (3.9)
where Ty M" = T yWTW N T )M

REMARK 3.19. If M is a reducible g-r-submanifold of class ¢*, k > 2, then
its reduction is a g-m-submanifold of class C*~1,

EXAMPLE 3.20. ¢-w-submanifold M such that the reduction M’ is not empty
and is not a q-w-submanifold. Let us consider in TR, the 1-r-submanifold
given by the implicit differential equation Fy = 0 where

_ L1
Fole,p) = ( p1 + 2 + pi ) '
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Clearly, W = m(M) is the submanifold of dimension 2 of R® given by the
equation z; = 0. Its reduction M, is equal to ;7 '(0) where

L1
Fi(z,p) = 21
x4 p3
is not a 1-m-submanifold.
We can now provide a new formulation of the theorem 3.10

THEOREM 3.21. (Existence and uniqueness) Given X a manifold and M a
g-m-submanifold of TX such that its reduction M' is M, then for each point
(x,p) of M there exists a local projection W = =(V) of M at (z,p), an open
set O of RY and a unique smooth mapping x : W x O = TW such that

V=XV X 0), p=x(2.0), ranks (z,0) =

and such that Pr = 7w o x where Pr is the canonical projection from W x O
onto W. Moreover, if W' = (V') is another local projection of M at (x,p)
such that there exists an open set O' of R? and a unique smooth mapping
X W x O — TW' such that

/

Vi=x(W' x 0", p=x'(z,0), mnk%(% 0) =q
U

and such that Pr' = wox' where Pr' is the canonical projection from W' x O’
onto W', then there exists a diffeomorphism h : (W x O, (z,0)) — (W' X
O, (2,0)) such that x = x" o h and Pr = Pr'oh.

Proof. The connected component =’ of M’ is exactly the connected compo-
nent = of M, but according to the theorem 3.17dim = = dim Z' = ord j=+q¢
then assumption (3.5) of the theorem 3.10 holds for any connected compo-
nent of M. O

REMARK 3.22. For any g-m-submanifold M of T'X such that for any con-
nected component = of M the equality (3.5) holds then M is equal to its
reduction. Clearly, for any point (z,p) of M there exists a local projection
W ==(V) of M at (z,p) such that p belongs to T,W N M.

This remark leads to the following proposition

ProprosITION 3.23. Let X be a manifold, ¢ a fized integer less than or equal
to the dimension of X and M a submanifold of TX. Let us assume that for
any point (z,p) in M there exists a connected open neighborhood U of (x, p)
i M and a submanifold Y of X such that dimY 4+ ¢ = dim U and U is a
subset of TY . Then M is a reducible g-w-submanifold of TX equal to its
reduction M’ if, and only if, for any connected component = of M there exists
a point (x,p) in Z, such that the linear mapping T(p 7 : Tz yM — Ty )Y
18 surjective.

Proof. If M is a reducible ¢-w-submanifold of TX equal to its reduction
then for any connected component = and for any point (z, p) of = the linear
mapping Ty 7 : Tz p)M — Tz )Y is surjective. Clearly, this must hold
only for one point (2, p) of any connected component = of M. Conversely,
let us assume that for any connected component = of M there exists a
point (z,p) in = such that the linear mapping T(, 7 : Tz WM — T(, )Y
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is surjective. Thus, the mapping 7y : U — Y has full rank dimY" and
according to the remark 3.9 the mapping m;; : U — X has constant rank.
Then M is a ¢-w-submanifold of T'X. In particular for each connected
component = of M the equality (3.5) is satisfied. Thus, according to the
remark 3.22, M is equal to its reduction. O

3.3. COMPLETELY REDUCIBLE ¢-7m-SUBMANIFOLD

Given a reducible g-m-submanifold M of a manifold T X, then according
to the theorem 3.17 its reduction M; is a g-m-submanifold. Clearly, the
reduction My of M; may be empty (example 3.14) and in the case where
My is not empty, Mz may not be reducible (example 3.20). If M; is reducible
then Ms is a ¢g-w-submanifold. Thus, we can, if it is possible, consider the
successive reductions of M (example 2.9). For reasons of convenience, we
shall say that the empty set is a reducible ¢-w-submanifold such that its
reduction is the empty set. These considerations lead us to consider the
definition of a completely reducible ¢-w-submanifold

DEFINITION 3.24. Let X be a manifold and M a ¢-m-submanifold of T X.
We shall say that M is a completely reducible q-w-submanifold if it is re-
ducible and if its reduction M’ is a completely reducible g-r-submanifold.

The definition means that it is possible to construct a sequence of re-
ducible g-m-submanifolds My, k& > 0 such that M = My, My = M, if
My, # 0 and My = My if My = (. This sequence of g-w-submanifold is
called the chain of reduction of M. If for an integer o, M,41 = M, then
the sequence M} becomes stationary at and after the integer a. Since the
sequence dim My, is decreasing, we can expect the chain of reduction of M
to be stationary.

THEOREM 3.25. (Stationarity) Let X be a manifold and M a completely
reducible q-w-submanifold of TX, m its dimension and {My,}r>o its chain
of reduction. -

(a): given Z,,11-9, a non-empty connected component of My, 11_o4 and
Jorany k =0,--- ,m—2q, 2y the connected component of My, contain-
ing g1, then there exists a smallest integer o, 0 < o < dimEg—2q <
m — 2q, such that =), = =y for any k > o.

(b): the reduction My, 4o_oq of Mpp1-_24 s Myy1_2,.

Proof. When M,,y1_2, = 0 we do not take (a) into account and with the
convention, (b) is obvious. Let us assume that M, 1_2, is not empty and
let us consider =, 11_2, one of its non empty connected component. For any
k=0,---,m—2q the reduction =} of Zj is by definition the set of points of
reducibility of =, namely the set of points of reducibility of M} belonging
to Zp ie. =) = Zr N Mg4q. Thus from the construction of the sequence
=, the connected component =gy of Mygyq included in Zf is a connected
component of the reduction =) of = and a closed subset of Z;. Then we

have

Ept1 C E; C g, k=0,m-2q. (3.10)
Therefore, the sequence vy = dim =g, k = 0,--- ,m — 2¢ satisfy
2q < Vm—2q+1 < Vm—2q <--<pp<m (311)
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and thus there exists a smallest integer o between 0 and vy — 2¢ such that
Vo = Vg41. Thus 2,41 is an open set of E,. Since =41 is also a non empty
closed subset of =, then =, = Z,41. According to (3.10) the reduction
=/ of =, is exactly =41 and therefore, for any k = a,--+,2m — ¢ + 1,
the reduction Zj of Zj is Zpyq. Finally, the reduction = ., , of any
connected component =, 41_94 of M, 1124 18 Epqa_9q, thus My, 419, =
Mm—|—2—2q- O

DEFINITION 3.26. (Index) Let X be a manifold, M a completely reducible
g-m-submanifold of TX, m the dimension of, and {M}}>o the chain of
reduction of M.

(a): the core of the completely reducible ¢-m-submanifold M is the limit
of its chain of reduction and we denote it by C'(M).

(b): the index of any non-empty connected component = of C'(M) is the
integer o in 3.25(a).

(¢): the index of any point (z,p) of C'(M) is the index of the connected
component of C'(M) containing (z,p). In particular it is less than or
equal to dim =g — 24.

REMARK 3.27. a) According to the remark 3.5a) for any point (z, p) belong-
ing to a ¢-m-submanifold M of T'X then there exists a connected open neigh-
borhood U which is a g-w-submanifold of T'X . If M is a completely reducible
g-m-submanifold of T X then U is a completely reducible ¢-m-submanifold of
TX, and C(U) the core of U is included in the core of M. Obviously, for
any point (z,p) of C'(U) the index of (z, p) seen as a point of C'(U) is equal
to the index of (z, p) seen as a point of C'(M). Generally speaking, any open
set U of a g-m-submanifold M of T X is a ¢-w-submanifold of TX and if M
is a completely reducible ¢-m-submanifold then U is a completely reducible
g-m-submanifold. Thus, for any point (z,p) of M such that there exists an
open set U which is a completely reducible ¢-m-submanifold such that (z, p)
belongs to C'(U), then the index of (z, p) seen as a point of C'(U) does not
depend on U; when M is a completely reducible ¢-r-submanifold, it is equal
to the index of (z,p) see as a point of C'(M).

b) As in the remark 3.5b), when M is not a completely reducible ¢-7-
submanifold of T'X we can consider the set, possibly empty, of points (z, p)
of M such that there exists an open set U of M which is a completely re-
ducible g-w-submanifold of T.X. Then, this set is an open set in M and it
is a completely reducible ¢-m-submanifold of TX. In the example 3.20, it is
the set of points (z,p) of TR? such that p3 is not equal to zero.

REMARK 3.28. According to the remark 3.19 for a completely reducible ¢-
r-submanifold M of class C!,1 > m+42—2¢, the g-m-submanifolds Mj, of the
chain of reduction are of class C'=*. Clearly, the core C'(M), which is the
g-m-submanifold M,,;1_2, is a ¢-m-submanifold of class C'=m=1424 When
M has class C' with [ < m + 2 — 2¢ then, the chain of reduction is only
defined for k < [ since the reduction M; is not defined. Consequently, if
M; the reduction of M;_q is not equal to M;j, it is not possible to construct
C(M) the core of M. Obviously, when M the reduction of M is equal
to My with £ <! —1 then, the core C'(M) is equal to M.
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ExaMmPLE 3.29. The controlled rigid pendulum. The connected submanifold
C'(M) has an index equal to 2.

ExamPLE 3.30. Under the mild assumption of the example 3.8 the con-
nected manifold A = x(X x U) has an index equal to 0.

According to the above theorem the core C'(M) of a completely reducible
g-m-submanifold M is the completely reducible g-m-submanifold M,,;1_24
which is reducible and equal to its reduction. Thus we can formulate the
following theorem

THEOREM 3.31. (Existence and uniqueness) Given X a manifold and M a
completely reducible g-m-submanifold then its core C'(M) is either empty or
a reducible g-w-submanifold equal to its reduction and for any point (z,p) of
M there exists a local projection W = (V') of M at (z,p), an open set O
of R? and a unique smooth mapping x : W x O — TW such that

V=W 5 0), p= (.0, rankP(2,0) = g

and such that Pr = 7w o x where Pr is the canonical projection from W x O
onto W. Moreover, if W' = =(V') is another local projection of M at (x,p)
such that there exists an open set O' of RY and a unique smooth mapping
X W' x O — TW' such that

/

Vi=x(W' x 0", p=x'(z,0), mnk%(% 0) =q
U

and such that Pr' = woy’ where Pr' is the canonical projection from W' x O’

onto W', then there exists a diffeomorphism h : (W x O, (z,0)) — (W' x
O, (2,0)) such that x = X" o h and Pr = Pr’ o h.

REMARK 3.32. In our definition of a g-m-submanifold we assume that the
integer ¢ is the same for each connected component = of M; in fact we
can extend the definition if we assume that the integer ¢ depends on the
connected component =. In other words M, is a disjoint reunion of ¢;-7-
submanifold N; of T X of dimension n;, ¢ > 1, where the ¢; are integers less
than or equal to dim X. We will say again that M is a g-m-submanifold,
where ¢ is an integer n-tuple (¢1,4q2,...,¢,) (n possibly infinite). On the
other hand the definition of the reduction is still valid and M is a (com-
pletely) reducible g-m-submanifold of T'X if each ¢;-w-submanifold N; is a
(completely) reducible g;-m-submanifold of 7X. For a completely reducible
g-m-submanifold M of T X we can define in the same way the chain of reduc-
tion { Mg }r>o0. Clearly, if for each ¢;-m-submanifold N;, {N;z}r>o is its chain
of reduction, then, M; = U; Nix. Moreover, according to the ‘theorem 3.25
for each g;-m-submanifold N; of T X, the reduction N, yo_94. of Ny, 41-94, is
Ny, 41-24;; consequently, if we pose o« = max{n;+2—2¢, ¢ > 1} then M, the
reduction of M,_; is exactly M,_q1. Then, the core is the ¢-m-submanifold
M, _q. Clearly, the theorem 3.31 still holds.

4. ALGORITHM OF REDUCTION

For a ¢-w-submanifold M we can set the following algorithm in a neigh-
borhoods of any point (zg, pg) of M, allowing us to know if M is completely
reducible, to find C'(M) and to obtain the controlled vector field.
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Step 0:  Assume My is a non-empty ¢-m-submanifold and (zg, po) belongs to
My = M. Let Zg be the connected component of My which contains (zq, po).
From the definition of a g-w-submanifold there exists an open set Uy of
(20, po) in Zg, a submanifold Yy of X such that dim Yp+¢ = mg+¢ = dim =
and we have also seen that Uy is a submanifold of TY;. We can place
ourselves in a chart of Yy at zq, even if this means shrinking Uy. Thus Yy is
an open set of R™0, that we denote again by Yy, TYy = Yy x R™ and Uy
is a submanifold of Yy x R™° of dimension mg + ¢. Then there exists in a
neighborhood of (zg, po) in Yo XxR™° a submersion G : (Yo xR™0, (20, po)) —
(R™0~%,0) such that Uy = G5 (0). In this way g, is a subimmersion in
a neighborhood of (zg,po) if, and only if, D,Go(z,p) has constant rank
po =19 — q < mg — ¢ in a neighborhood of (zg,po) in Up. Then any local
projection Wy = w(Vy) of Uy (or My) in (xg, po) is a submanifold of Yy of
dimension rg. Thus there exists in a neighborhood of zg in Yy a submersion
go : (Yo,20) — (R™770 0) such that Wy = g5 '(0) in a neighborhood of z
in Yp. The tangent bundle TW, is the subset of points (z,p) of TY; for
which the following equations are satisfied

go(x) =0, Dgo(z)p=0.

According to the definition 3.12 the reduction My of My is in a neighborhood
of (g, po) the (possibly empty) subset of points (2, p) such that

Dgo(z)p =10, Go(z,p)=0.

More particularly here, (xq, po) is a point of reducibility of M if, and only
if, Dgo(2z0)po = 0. If M; is not a g-w-submanifold of 7'X then the algorithm
is stopped. If M is empty then C'(M) is empty.

Step k: Assume My is a a non-empty g-w-submanifold and (zq, po) belongs
to M. Let = be the connected component of M}, which contains (zg, po).
As before there exists an open set Uy of (xg,po) in Zk, a submanifold Y
of X such that dimY; + ¢ = mi + ¢ = dim Z; and Uy is a submanifold of
TYy. Even if this means shrinking Uy, let us place ourselves once more in
a chart of Y3 at 9. Then Y} is an open set of R™* that we denote by Y%,
TY, = Y, x R™ and Uy is a submanifold of Y3, x R™* of dimension myg + g.
Then there exists in a neighborhood of (zg, pg) in Y, XxR™* a submersion G :
(Y x R™*, (20, po)) — (R™*7,0) such that Uy = G (0). In this way 7z,
is a subimmersion in a neighborhood of (zg, po), if, and only if, D,G(z, p)
has constant rank py = rp — ¢ < my — ¢ in a neighborhood of (zg, pg) in
Uk. Then any local projection Wy, = 7(Vy) of Ux (or My) in (zo,po) is a
submanifold of Y; of dimension r;. There exists in a neighborhood of zg
in Y, a submersion gx : (Yo, 20) — (R™7*,0) such that Wy = ¢;'(0) in a
neighborhood of zg in Y;. The tangent bundle TWy is the subset of points
(x,p) of TY} for which the following equations are satisfied

gr(z) =0, Dgi(x)p=0.

The reduction M1 of My is in a neighborhood of (¢, po) the (possibly
empty) subset of points such that

Dgr(z)p =0, Gp(z,p)=0.
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More particularly here, (xq, po) is a point of reducibility of Mj if, and only
if, Dgi(z0)po = 0. If Myy1 is not a ¢-m-submanifold then the algorithm is
stopped. If Mj1; is empty then C'(M) is empty.
Step m + 1 — 2q:  Let us assume that M,,;1_9, is a non-empty g-7-
submanifold of T'X and (z¢,po) belongs to M,,41_2,. Then the proof of
the theorem 3.10 gives the controlled vector field.

REMARK 4.1. For each step k we define the submersions

Gi: (Y x R™ (20,p0)) = (R™770)

gk (Yi, o) = (R™77%0)

with mg = dimZg and mg41 = rp = pr + ¢ < my. Since the sequences
of integers pr and my are decreasing there exists an integer o such that
Pi—1 = Pa—1 and my = m, for any integer &k > a. We have the following
sequence of inequalities
gL =Ml = My < Mgy < oo < Mgy <mp < - <myp < mg < .
We find once again that the index « is, at most, equal to mg—¢ = dim Zg—2¢
and it is equal to mg — ¢ when mgp4q = my — 1 for all k£ < a.

We shall end this section by showing first how to obtain g from G/, then
how to characterize the reducibility of My in a neighborhood of (zg, po) and
finally how to find Gyy; with g and Gj.

Construction of g: we show the existence of a local coordinates system on
a submanifold Ny of Uy such that TN, P Neg = Wy is a local diffeomorphism.
Since, N has to be a submanifold of Uy of dimension r;, we must obtain a
submersion Gk of Vi x Rk in R?™+~ 7k, Let A : R™% — R™* %k be a linear
mapping such that

ker Ay Nker DGy (20, po) = {0}, rank Ay = my — py
We define Gy by G (2, p) = (Gr(z,p), Ar(p—po)). DG (0, po) has full rank

2my — rk, and so G, is a submersion in an open neighborhood of (zq, po)
in TY,. We take N, = G,;l(O) in a neighborhood of (zg,pg) in Ug. The
tangent space is
T Ny = ker Dék(xo,po) = ker Ay N ker DG (20, po).
Then, according to the following equality
T(w07p0)Nk N ker D(7T|Uk)($07p0) =
ker Dék(xo,po) N{0} x ker D,Gy (20, po) =0

and the subimmersion theorem, |y, : Ny — Wy is a local diffeomorphism.

#0,p0)

The local coordinate system of Vi in a neighborhood of (zg, pg) is obtained
in the following way. Let Iy = Im D,G (20, po) and Fj be any complement
of F in R”*™% and P the projection of R™*~9 = E}, & Fp ~ E}, x I} onto
.

LEmMA 4.2. The subspace Ky = ker Py DG (z0, po) of R™* has dimension
ri. Moreover, for any complement Ly of Ky in R™*, the linear mapping

Iy, = Py D:Gr(x0,po) iz, : Lk — Fy

is an isomorphism.
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Proof. For the subspace K we have the first inequality
dim Ky = my — dim Im Py DGy (2o, po) > mp — (mp — 1) = 1

Let us show the other inequality. According to the definition of the projec-
tion Py

Py DG (o, po) = Py D2G (20, o).
Consequently, for any (dz,dp) € Tiwopo) Nk, 62 € Ky. Conversely, for any
6r € Ky, there exists a op € R™* such that (0z,dp) € T4, o) Nk Indeed, if
Sz € Ky, then D,Gy(zo, po)dx € Im D,G (20, po), and so there exists §p’ €
R™* such that DG (2o, po)(dz,dp’) = 0. But, since Ay is an isomorphism
from ker D,G(zo, po) into R™x~7% there exists a 0p” € ker D,Gy(zo, po)
such that

Ap(dp"+0p") =0

Ny, for p = 6p’ + 6p”. Thus

whence (8z,3p) € Tz .po)

Dﬂ-($07p0)T(l’07p0)Nk = I(k
and dim K < dim T(x07p0)Nk = rg. Finally, according to the definition of
Ly and Iy, ker]k:LkﬂKk:{O}. O

Thus any point z of R™* is splitting in a unique way as @ = 42, where &
belongs to K and & belongs to L. Let us consider in a open neighborhood
of (2o, po) the equation

Hy (2,3, p) = G(2 + &,p) = (Gr(@ + & p), A(p = po)) = 0.
Since ( ) ( )
; D,Gr(zo, po)in, DpG(xo,po )
Dl - PO)ILy. Ppta (o,

(&.p) (0, o) ( 0 Alp — po)

is an isomorphism then in an open neighborhood of (zg, po)
N ={(z, ¢x(2), ¥i(2)}
with (Zo, ¢x(Z0), Yr(x0)) = (Zo, To, po). Lastly, in a neighborhood of zg,
Wi = (Ny) = {(z, ()} = g7 (0).

We can therefore establish g (2) = & — ¢ ().

Criterion of reducibility: in order to characterize the reducibility of My in
a neighborhood of (zq, pg) we give the following result

ProprosITION 4.3. Given g : R™ = K & Ly — L ~ R™7"% the above
mapping, then for any éx = 6% + 6&, dy = 0y + oy of R™*

Dg(z0)dx = 6 and D*gx(x0) (02, 8y) = I, Py Bi (62, 6y)

where By is the bilinear mapping on K
By.(e,+) = D*G(0, po) (8, Dbx(T0)®), (+, Dvox(70)s )
Proof. For any éa = 6% + 6%, Sy = 8y + 67 of R™*
Dgr(w0)dx = 6 — Doy (To)07
D?g(0)(6z,8y) = —D?¢4(20) (37, 87).

According to the relationship Hy(Z, ¢5(Z), ¢¥(Z)) = 0 we have

Dz Hy (2, 61(2), ¥r(2)) + DaHi (2, 61 (%), ¥r(2)) Dop(2)
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+ Dy Hy (7, 1.(), $3(7)) Dipn(7) =
and at the point (zg, po) this gives
Dz (%0, %0, po) + DeHy(Zo, Fo, po) Dor(Z0)
+ DpHy (%o, %0, po) DYy (o) = 0.

But
D-H.(Za. 7 D, Gz, :
=Hy (%o, To, po) = ( k(OO PO)|K ), )
D-H (T 7 D, Gz,
+Hi(Zo, To, po) = ( k(OO P0)|Lk )
D. HilZo. 7 D, G (o,
ka($07$07p0) = ( ' kf(lko po) ) )

Thus, we obtain
DG (0, po) i, + DeGr(20, po)|r, Dor(To) + DpGr(o, po) Dvr(To) = 0

AkD¢k(f0) =0.
Let us apply Py on the second equality, then we find D¢y (zg) = 0.
According to the relationship

Dy Hy (%, 0x(2), ¥u(2)) + D (2, ¢x( ) r(2)) Dor()
+ Dy Hy (2, 6k (2), ¥u()) Dii(2) =
we obtain at the point (z, Z, p) = (7, ¢r(Z), ¥ir(Z) the followmg equality
D Hy(2, 3 p) (5, 69) + D2 Hu (&, 3, p) (52, Don(2)53)

+  Dp Hy(2, &, p) (62, Dy (2)6y) + D3 Hy,(2, 2, p) (Dér ()62, 67)
+  DLHy(%, & p)(Dér(2)82, Dy (7)6y)

+ Dpplli(a, &, p)(Dén(2)dz, DYy (2)8y)

+ Dif{k(f, i, p)D*on () (6%, 0) + D2 Hk(x z,p)(Dyr(z)dz, oY)
+ D3, Hy(z, &, p)(Dvn()67, Doy (2)8y)

+ Dp2Hk(af,x,p)(D¢k( z)0x, Dy (2)0y)

+ D Hy(z, %, p)D*p(7)(6%,85) = 0

which thus gives at the point (x¢, po) the equality

(
D2 Hy, (0, 2o, po) (82, 89) + D3, Hy (o, Fo, po) (D¥3,(20)0%, 67)
+  D2.Hp(Zo, %o, po) (82, Dioi(0)6y)
+ Dy Hi(%o, &0, po) (Der(0) 8, Dy (%0)0y)
+  DyHy(Zo, %o, po) D*r(Z0) (07, 07)
+ Dzl (Zo, %0, po) D*¢x(20) (67, 6y) = 0.
According to the definition of Hj, we obtain for Gy, the relationship
Dka(wmP0)|LkD2¢k(fo)(5fv 6y) =
—  DyGy(o, po) D*y(20) (62, 6)
DGy (0, po) (62, Dby (20)62), (85, Dby (0)dy)).-
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Let us apply P on the left, then we obtain
1. D? ¢ (20) (87, §y) =
— PDGy (w0, po) (52, DYe(70)0), (67, Dibw(%0)57))-
O

ProposITION 4.4. Let (xg,po) be a point of reducibility of My and W;, =
(V) a local projection of My, in (xo,po). My is reducible in a neighborhood

of (xg, po) if, and only if,

rank ( Py Bi(po,®) PiD.Gr(xo,po)
D,Gr(x0,p0)  DpGr(wo, po)

and if in a neighborhood of (xq, po) in TWi NV

dim[ker Py(z, p) D,Gr(z, p) Nker D,G(x, p)] =
dim[ker P, D, G (20, po) Nker D, G (20, po)]

) =2my — (rx +q) (4.1)

where Py(x,p) is the projection onto a complement of
Ex(z,p) =1m D,Gg(z,p).

Proof. Clearly, the tangent space of TWj, at (zg,po) is the subset of points
(0, dp) of TY), which satisfy the following system

Dgi(zg)dx =0
D?gj(20) (po, 6) + Dgy(0)dp = 0

and consequently T{ TWip NIy Mj, is the subset of points such that

20,P0) 20,P0)

Dgi(zg)dx =0
DQ!}k(ﬂﬁo)(Pm dz) + Dgp(z0)dp =0
D.Gr(xo,po)dx + DpGr(xo, po)dp = 0.

But, on the one hand, according to proposition 4.3, the first equality means
that éx = 6%, namely dz belongs to Ki. And on the other hand, we obtain
the same thing when Py is applied on the third equation. Thus we can leave
aside the first equation. Now, T(,, ) TWj N T4, o) My is the kernel of the

linear mapping DRy (2o, po) : R"* x R™k — Lj x R™ where

D2g;(z)(p, Dy (x
DRy(z,p) = ( D‘Z]Z;(k()gp)) DpGg:((%)P) ) '

Therefore, the subspace T, ;0\ T Wik N1, )M has dimension ry+¢ if, and
only if, the linear mapping DRy (2o, po) has full rank my — rp +my — g =
2my — (ri + q), namely if, and only if, dim ker DRy(zo,po) = rx +q. A
point (dx,dp) belongs to ker DRy (0, po) if, and only if, (dz, dp) satisfy the
following system

{ DZ!Jk(QCO)(JUO#SQC)—I—ng(ﬂﬁo)fslﬁ =0
D,Gr(x0,po)dx + DpGrlx0, po)dp = 0.

According to proposition 4.3 this is equivalent to the system

{ 171 Py By.(po, 6) + 8p =0
D.Gy(xo, po)dz + DGz, po)dp = 0.
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And according to lemma 4.2 this is equivalent to the system
Py By(po, 02) + Py DGy (20, po)ép = 0
DGy (20, po)dx + DpGr(0, po)dp = 0.

Lastly, as we have seen above, the second equation implies that da = éz.
Thus, we are able to write da instead of 6% in the first equation of this
system. Obviously we are also able to write dp instead of ép in the first
equation. Then we obtain the system

{ Py By (po, 0z) + P DGr(20,po)p = 0
DGy (20, po)dx + DpGr(0, po)dp = 0.
Thus, dim ker DRy (x0, po) = 7k + qx if, and only if, (4.1) holds.
Now, assume that in an open neighborhood of (zg, po) in TWj N Vj

rank T\T(y py (TWiOV) is constant. (4.2)

As we can see, DRy (zo,po) is precisely the derivative of the mapping
Ry :TY, — L x Rmr—4
(x,p) = (Dgr(, p), Gi(x, p))

where the zero set in a neighborhood of (zg, po) is exactly TWj; NVy. Thus,
in a neighborhood of (zq, po), T(sp)(TWi N V) is the kernel of DRg(z, p).
The condition (4.2) holds if, and only if, the mapping

(0x,dp) € ker DRy (2, p) — Sz (4.3)

has constant rank in neighborhood of (zg, pg) in TW;NV;. Compute the ker-
nel of this mapping for any point (z, p) in an open neighborhood of (zq, po).
This is the set of (6z,0p) of R™* x R™* such that

dx =0
D?gi(x)(p, 0z) + Dgi(x)dp =0
D,Gy(z,p)éz+ D,Gy(z,p)dp=0
namely, the set {0} X [ker Dgg(z) Nker D,G(z, p)]. However,
ker Dgy(z) = ker Py (z, p) D,Gr(z, p).
Indeed the equality Dgx(x)dp = 0 means that §p belongs to T, W), which is

the projection of T, Mj,. Therefore, there exists d¢g such that D,Gy(z, p)dp +
D,Gy(z,p)dg=10. And if we apply Pj(z,p), we obtain that

keI’ng($) C kerPk(x,p)Dka(x,p).

Since dim ker Dgy(z) = dim ker Py (z,p)D,Gr(x,p) we have the equality.
Thus, the mapping (4.3) has constant rank if, and only if,

dim[ker Py(z, p) D,Gr(z, p) Nker D,G(x, p)] =
dim[ker P, D, G (20, po) Nker D, G (20, po)]
O

Construction of Gy1: we construct another submersion for My, and then we
obtain a submersion for My,q. Let ('} be a linear mapping from R™x=(prta)
to R™x~% guch that Im Cy & Fy = R™ 7% | K} the kernel of D,G(zo, po)
and L a complement of K. The linear mapping J : L X R™—(prta)

*Such mapping is one-to-one since it has rank mj — (px +9q).
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R™~1 given by Jy(u,v) = D,Gg (0, po)u—+ Cyv is an isomorphism. Indeed,
for any (u, v) such that D,G'g (20, po)u+Crv = 0 since u belongs to £ a com-
plement of K = ker D,G'(20, po), then Cv belongs to Im D,G(zo, po) =
Fy, therefore Cyv = 0, and v = 0 since C} is one-to-one. Consequently, u
belongs to Ky and then v = 0. Now, for the mapping

F,:TY, x Rme—(prtd) _y Rmr—1
(2,p,u) = Grlz,p) + Cru

the zero set M, is a submanifold of dimension 2mj; — pr. Using ‘Ehe implicit
mapping theorem we obtain the following parameterization of My

p:ak(xvﬁ)7 u:bk($7i))

where p belongs to £ and p to Ki. Then we define in a neighborhood of
(20, po) in T'Yy the mapping

Fk :TY, — L ~Rrx
($7p) = Fk($7p) = p - ak($7i))
and the mapping

G tik —y Rk~ (pxtq) X Lr
(va) = Gk(va) = (gk(x)ka(xvp))‘

PropPoOSITION 4.5. In an neighborhood of (xo, po) the g-m-submanifold M
is the zero set of the mapping Gy and the q-w-submanifold My is the zero
set of the mapping Fy 7w, -

Proof. According to the construction, the mapping~(}k is a submersion in a
neighborhood of (zg, po), therefore the zero set of GG is a submanifold with
the same dimension of M. Then we have only to prove that M, C G '(0)

in a neighborhood of (zg,pg) to set the equality M = G;l(O). For any
point (z,p) of My in a neighborhood of (29, po), Gk(z,p) = 0, therefore
(z,p,0) belongs to Mj, which implies that Fy(z,p) = 0. Lastly, Gg(z,p) = 0
implies that g (2) = 0. Then the inclusion has been proved. The reducibility
assumption of My in a neighborhood of (¢, po) gives

rank ( D?gy.(20) (po, ) ng(ﬂﬁo)

DyGi(z0,p0)  DpGr(wo, po
Therefore, for any dv of Ly there exists (dz, dp) such that

))=2mk—(7‘k+f])-

D2gi(x0) (po, 02) + Dgi(x0)dp = 0
i ~ng(avo)(Sp =0
Dy Fy (w0, po)dz + DpFy(w0, po)dp = dv.
In other words for any dv of L, there exists (dz, dp) belonging to Ty ,po) T Wk

such that
D, Fy (%0, po)dx + DpFy(xo, po)dp = dv.

Therefore the mapping Fy |y, is a submersion in a neighborhood of (¢, po)
and the zero set is TW; N V}. O

We now see that, with a chart of Wy, we may define Gy1 = Fyrw, -
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5. APPENDIX
5.1. PROOF OF MAIN RESULTS

ProoF oF THEOREM 2.4. Let z(-) be an admissible trajectory of Py ( sup-
posed continuously differentiable in the interval [0, 1] for reasons of conve-
nience®). Let to belongs to the open interval ]0,1[, (zo, po) = (2(to), #(t0))
and Wy = w(Vy) be a local projection of My at (zg, po), then for any ¢ in
a open neighborhood of ty, (z(t),#(t)) belongs to Vy. Consequently, z(t)
belongs to Wy for any ¢ in an open neighborhood of t5. Thus (z(t), &(t)) be-
longs to TWyN Vg for any ¢ in an open neighborhood of ty. Since TWyNVy is
equal to My in an open neighborhood of (zq, po), (z(t), #(¢)) belongs to M;
for any t in open neighborhood of ty; this is the case for t;. We have shown
that for any ¢y belonging to the open interval ]0, 1], (z(to), #(to)) belongs to
M. Let us prove that (z(0),#(0)) (resp. (2(1),%(1))) belongs to M;. Let
{tn}n>0 be a sequence of ]0, 1[ converging to 0 (resp. 1), we then have

lim (z(t,), &(tn)) = (£(0), (0))

n—0oo

(resp. lim (a(t,), #(ta)) = (x(1), #(1))).

But for any n, (2(t,), #(t,)) belongs to My which is a closed subset of Mo,
therefore (2(0),%(0)) (resp. (2(1),#(1))) belongs to M;. Thus we have
shown that z(-) is an admissible trajectory of the problem P;. By induction
we show that z(-) is an admissible trajectory of the problem Py for any
k. From the definition of the core C'(M), z(-) is an admissible trajectory
of P.. Let Z(-) be a strong (resp. weak) trajectory of P., clearly it is an
admissible trajectory of Py. Assume that Z(-) is not an strong (resp. weak)
minimum of Pg, then there exists an admissible trajectory z(-) of Py such
that J(Z(-)) < J(Z(+)), but any admissible trajectory of Py is an admissible
trajectory of P.. Therefore, #(-) is an admissible trajectory of P. such
that J(Z(-)) < J(Z(-)); then, we obtain a contradiction with the optimal
character of z(-). O

ProOOF OF THEOREM 2.5. According to the proof of the theorem 3.10 the
continuous mapping (resp. piecewise continuous) u(-) = H(z(-), &(-)) is the
solution. The converse is direct. O

REMARK 5.1. According to theorem 3.31 if we take another local projection
W'=nm(V')of C(M) at (zo, po), another open set O" and another controlled
vector field x’ then the bundle isomorphism # gives a bijection between the
trajectories of y and x’. Then, the theorem 2.5 is independent of the choice
of the triplets (W, 0O, x).

°In the case of continuous and piecewise differentiable admissible trajectory z(-) we
proceed from the same way for any interval [0, 71[, |7, Te41[, ]Tn, 1[, where 0 < 71 < -+ - <
7n < 1 are the points of discontinuity of & and for any admissible trajectory z(-) which is
absolutely continuous we use the fact that there exists a denumerable sequence (]n)ne N
of disjoint interval in [0, 1] such that the Lebesgue’s measure of the set I — Uyl is zero
and the restriction of (z(-),#(-)) in each interval I, is extended on the interval I, by a

continuous mapping (zn(-), Tn(-)).
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Proor oF THEOREM 2.6. If 7|7, (-) is not a strong minimum of the implicit
Lagrange problem P, . then there exists an admissible trajectory Z(-) of P .
such that
T+e X T+e

/ L(3(1), 3(8))dt < / L(z(1), #(t))dt.
Then, the construction of the admissible trajectory of the implicit Lagrange
problem P,

(1) = { z(t) ifte0,7—clUlr+e,1],

(t) iftelr—e,m+¢],
gives the inequality
J(2(-)) < J(2 ()

which contradicts the optimality of z(-). O

Proor oF THEOREM 2.7. Let Z(-) be a strong minimum of P.. and u(-)
the corresponding control. Assume that the control #(-) is not an optimal
control of P then there exists an admissible control @(-) of the explicit
optimal control problem P, such that for the process (Z(-), %(-)) we have the
inequality

T+e T+e
[ raGamnac< [ L, o)

—& T—€
According to the theorem 2.5 the trajectory Z(-) is an admissible trajectory
of P, such that

T+e .
- / L(z(1), (t))dt.

—&
Which is impossible. Conversely, given (Z(-),u(-)) an optimal process of
the explicit optimal control problem P., then according to theorem 2.5 the
trajectory Z(-) is an admissible trajectory of P... If it is not a strong
minimum then there exists an admissible trajectory &(-) of P.. such that

T+e X T+e .
/ L(i(t),i(t))dt</ L(z(1), #(t))dt.

But, according to the theorem 2.5 ’for the trajectory #(-) there exists a
unique control @(-) such that (z(¢),z(t)) = x(2(¢),w(t)). Thus, (2(-),a(-))
is an admissible process of P, such that

T+e T+e X
[ pGo.amna = [ Lo

—& T—€

which is impossible. O
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5.2. PONTRYAGIN MAXIMUM PRINCIPLE

For the classic problem of optimal control ([1, 2, 12, 14]) we are given a
state variable z in R”™, a control variable u belonging to a closed subset U
of R?, a vector field f(z,u) of the state depending on the control variable, a
startsubmanifold Xy of R, an endsubmanifold Xy of R™ and a cost function
L(z,u). For any control u belonging to KC([0,1],R?) the set of piecewise
continuous functions® (resp. measurable and bounded”) the Cauchy’s prob-
lem

z(0) = a

admits an unique trajectory belonging to KC1([0,1],R"™), the set of contin-
uous and piecewise differentiable functions® (resp. AC([0, 1], R"), the set of
absolutely continuous functions?). The pairs trajectory/control (z(-), u(-))
are called the processes. A process is admissible if u(¢t) € U for any ¢, z(0)
belongs to Xy and z(1) belongs to X;. For any admissible process (z, u) we
associate the cost

{ () = flxz(t),u(t)) vVt € [0,1] (resp. a.e. on [0, 1]) (5.1)

J(x,u):/o L(z(t), u(t))dt.

An admissible process u is optimal if J(Z, %) is the minimum of J on the set
of admissible processes, namely the solution of the following problem

1
P min / L(z(t),u(t))dt.
e()=f(=()u(-)) /O
l’(O)EXO
l’(l)EXl
The Pontryagin Maximum Principle gives the necessary conditions for opti-
mality.
THEOREM 5.2. (Mazimum Principle) If (Z(-), u(-)) is an optimal process for
the problem P, then there exists a non zero Lagrange multiplier
(Po(), 1)y -+, alt)) = (o(-), ¥ ()
belonging to KC([0,1], R*) (resp. AC([0,1], R*"t')) and satisfying the
following conditions
(a): for any t belonging to [0,1] (resp. a.e. on [0,1])
= oH _ . _ . - ,
Jolt) = 0, (1) = =S (@(0), 0(t), do(t), (1)), i =1, m.
(b): for any t belonging to [0, 1] (resp. a.e. on [0,1])
H(j(t)v ﬂ(t)v QLO(t)v QL(t)) = maxu & UH(j(t)v u, QLO(t)v %(t))
(c): %0(0) <0, $(0) LT50yXo and (1) LTy Xy

5For such control u, there exists a finite number of points 0 < 7, < --- < 7, < 1 such
that u is continuous on any open interval |0, 71[,]7&, Te+1[, ]Tn, 1[, and such that the right
and left limits of u at 75 exist. We denote the set of points of continuity by 7T

"For this class of control, T is the set of Lebesgue points.

®For such trajectories @ the function @(-) belongs to K C([0,1],R™).

®Recall that for any e > 0 there exist a § > 0 such that for any finite collection
(Jar,bx[)x=1,.. n of non overlapping open interval such that > ;_, | bx — ax |< § then

Yonq N w(br) — war) ||< e
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where H($7 U, ¢07 ¢) = E?:l ¢2f2 ($7 u) + ¢0L($7 u)
ProoOF oF THEOREM 2.7. See [1, 2, 7, 14] and [8, 13] for the nonsmooth

case. O

REMARK 5.3. a) As usual, we can only consider the two cases 1y(0) = 0
and 19(0) = —1 and then consider the following pseudo-Hamiltonian

HY :T"R"x U - R

HY (2,9, u) =Y Wi f (2, u) + oLz, u)
=1
where g = 0, 1. The necessary conditions (a) and (b) become
(a’): the triplet (z(-),%(-), u(-)) is a trajectory of the controlled vector

field
TV  T*R" x U — T(T*R”)
n 8H¢0 n anO 8
o — .
u) ﬁ (z,¢,u) = Z: ;i (2, 89@2 — Ozt ) 0;
where ¥y = 0, 1.

(b’): for any t belonging to [0, 1] (resp. a.e. on [0, 1])
1 (3(0),a(0), B(t)) = mazy ¢ g H @), u, 5(0).
b) the trajectories (z(-),1(-)) which are the projection of a triplet
(@), %), ul))

satisfying the conditions (a’), (b') and (c¢) are called the extremals of P.

I would like to express my sincere gratitude to Marc Chaperon and Pierre
Rouchon for helpful discussions and encouragements.
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