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ON THE OPTIMAL CONTROL OF IMPLICIT SYSTEMS

PHILIPPE PETIT

Abstract� In this paper we consider the following problem� known as
implicit Lagrange problem� �nd the trajectory x argument of

min

Z �

�

L�x� �x� dt

where the constraints are de�ned by an implicit di�erential equation

F �x� �x� 	 


with dim F 	 n� q � dim x 	 n� We de�ne the geometric framework of
a q���submanifold in the tangent bundle of a surrounding manifold X�
which is an extension of the ��submanifold geometric framework de�ned
by Rabier and Rheinboldt for control systems� With this geometric
framework� we de�ne a class of well�posed implicit di�erential equations
for which we obtain locally a controlled vector �eld on a submanifold
W of the surrounding manifold X by means of a reduction procedure�
We then show that the implicit Lagrange problem leads locally to an
explicit optimal control problem on the submanifold W � for which the
Pontryagin maximum principle is naturally apply�

�� Introduction

We consider for the state x of Rn the implicit di�erential equation

F �x� �x� � �� ��	��

In this equation the control u does not appear explicitly
 but only because
there are less equations than unknowns
 namely F � Rn � Rn � R

n�q

where q � n �see �
�	� Here
 the control variable u belongs to Rq	 The
cost function is the Lagrangian L�x� �x� of TRn	 A process is a trajectory
x��� belonging to C����� ���Rn� the set of continously di�erentiable functions
�resp	 KC����� ���Rn� the set of continuous and piecewise di�erentiable
functions
 AC���� ���Rn� the set of absolutely continuous functions
 see the
footnotes of the subsection �	�	� A trajectory x��� is admissible if x��� � a

x��� � b and

F �x�t�� �x�t�� � �� �t � ��� �� �resp� a�e� on ��� ����

For any admissible trajectory x��� the cost is

J�x���� �

Z �

�
L�x�t�� �x�t��dt�
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�� PHILIPPE PETIT

An admissible trajectory �x��� belonging to C����� ���Rn� �resp	
KC����� ���Rn�
 AC���� ���Rn�� is a weak minimum �resp	 strong minimum�
of J if

J��x���� � J�x����

for any admissible trajectory x��� belonging to C����� ���Rn� �resp	
KC����� ���Rn�
 AC���� ���Rn��	 An admissible trajectory �x��� belonging to
C����� ���Rn� �resp	 KC����� ���Rn�
 AC���� ���Rn�� is a weak local mini�
mum �resp	 strong local minimum� of J if there exist an � � � such that
for any trajectory x��� belonging to C����� ���Rn� �resp	 KC����� ���Rn�

AC���� ���Rn�� such that jj x��� � �x��� jj�� � �resp	 jj x��� � �x��� jj�� � �
where

jj x��� jj�� max
t������

maxfj x�t� j� j �x�t� jg

�resp� jj x��� jj�� max
t������

j x�t� j�

then
J��x���� � J�x�����

Remark �	�� a� An admissible trajectory x��� belonging to C����� ���Rn�
which is a strong �local� minimum is also a weak �local� minimum
 mean�
while a trajectory x��� belonging to C����� ���Rn� can be a weak �local�
minimum without to be a strong �local� minimum	
b� The necessary conditions for the weak local minimum are also necessary
conditions for the strong local minimum
 and the su�ciency conditions for
the strong local minimum are also the su�ciency conditions for the weak
local minimum	

We will subsequently turn our attention to the geometry of the implicit
di�erential equation ��	��	 More precisely
 we will extend the de�nitions
of ��submanifold
 reducible and completely reducible ��submanifold in ��
�
to our situation �see also ����	� Let us consider the manifold X � Rn and
its tangent bundle TX � TRn � Rn �Rn	 Let us assume that the subset
M � F����� is a submanifold of TX �it is the case when F is a submersion�	
A trajectory x��� is admissible if �x�t�� �x�t�� belongs to M for any t � ��� ��	
The implicit Lagrange problem� is

P� min
�x���� �x�����M

x���	a

x���	b

Z �

�
L�x�t�� �x�t��dt�

If x��� is an admissible trajectory then x�t� has to belong to the set W �
��M� for any t � ��� ��	 Let us assume that W is a submanifold of X 
 then
�x�t� has to belong to the subspace Tx�t�W of Tx�t�X for any t in ��� �� and
thus �x�t�� �x�t�� belongs to the setM� � TW �M for any t in ��� ��	 In other

�When q 	 n� the constraint F �x� �x� 	 
 being absent� this is the simple problem of
the calculus of variations �see ��� �� �� �
� ����

min
x����a

x����b

Z �

�

L�x�t�� �x�t��dt�
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words
 any admissible trajectory for the implicit Lagrange problem �P�� is
an admissible trajectory for the following implicit Lagrange problem

P� min
�x���� �x�����M�

x���	a

x���	b

Z �

�
L�x�t�� �x�t��dt�

Thus
 if �x��� is a solution of P� then it is a solution of P� and conversely	
Moreover
 the startpoint a and the endpoint b have to belong to W 	 This
replacement of the submanifold M of TX by the submanifold M� of TX
is the reduction procedure and M� is called the reduction of M 	 Let us
assume that we are able to do with M�
 what we have done with M 
 then
we construct a submanifold W� � ��M�� of X and a submanifold M
 of TX 	
If x��� is an admissible trajectory for the problem P� then it is an admissible
trajectory for the problem

P
 min
�x���� �x�����M�

x���	a

x���	b

Z �

�
L�x�t�� �x�t��dt�

Let us assume that we construct by induction a sequence of implicit Lagrange
problem

Pk min
�x���� �x�����Mk

x���	a

x���	b

Z �

�
L�x�t�� �x�t��dt

such that Wk � ��Mk� is a submanifold of X and Mk�� � Mk � TWk

is a submanifold of TX 
 then any admissible trajectory x��� of Pk is an
admissible trajectory of Pk��	 Therefore any admissible trajectory of P� is
an admissible trajectory of Pk for any k	 Thus any admissible trajectory of
P� is an admissible trajectory of the following implicit Lagrange problem

Pc min
�x���� �x�����C�M�

x���	a

x���	b

Z �

�
L�x�t�� �x�t��dt

with C�M� � �k��Mk 	 Clearly
 the strong �resp	 weak� minimum of P� are
the strong �resp	 weak� minimum of Pc and the points a et b have to belong
to ��C�M��	 Furthermore
 if the sequence fMkgk�� is stationary then C�M�
is a submanifold of TX and the smallest integer � such thatMk �M�� �i 	
� will be called the index	 Then we can wonder if Pc is equivalent to an
explicit control problem �see the subsection �	� of the Appendix�	 This will
be the case for the class of well�posed implicit di�erential equations	

�� Definitions and Main results

Using the geometric framework of q���submanifold of the section �
 we
are able to de�ne a well�posed implicit di�erential equation	
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Definition �	�� An implicit di�erential equation ��	�� is well�posed if the
set

M � F�����

is a completely reducible q���submanifold of TRn such that the core C�M�
is not empty	

Definition �	�� The index of a well�posed implicit di�erential equation
��	�� is the maximum over the index of the non�empty connected component
of the core C�M�	

Now
 we consider only well�posed implicit di�erential equations	 As in the
introduction
 for each q���submanifold Mk of TRn of the chain of reduction
we consider the implicit Lagrange problem

Pk min
�x���� �x�����Mk

x���	a

x���	b

Z �

�
L�x�t�� �x�t��dt

and for C�M� the core of M we consider the implicit Lagrange problem

Pc min
�x���� �x�����C�M�

x���	a

x���	b

Z �

�
L�x�t�� �x�t��dt�

The sequence fPkgk�� is called the chain of reduced implicit Lagrange prob�
lems of the well�posed implicit di�erential equation ��	�� and Pc is called
the central implicit Lagrange problem	 Evidently
 the points a and b have
to belong to ��Mk� for any k and thus to belong to ��C�M��	

Definition �	�� Any point x of Rn is consistent with a well�posed implicit
di�erential equation F if it belongs to the projection of the core C�M�	

According to the de�nitions we can formulate the following theorems
�proofs are given in the subsection �	� of the Appendix�	

Theorem �	�� Let F be a well�posed implicit di�erential equation �q � n�
of TRn� fPkgk�� its chain of reduced implicit Lagrange problems and Pc its
central implicit Lagange�s problem� Then� any admissible trajectory x��� of
P� is an admissible trajectory of Pk for any k� In particular� any admissible
trajectory x��� of P� is an admissible trajectory of Pc and any strong �resp�
weak� minimum �x��� of Pc is a strong �resp� weak� minimum of P��

Theorem �	� shows that the strong �resp	 weak� minimum are living in
the core C�M�	 According to the theorem �	��
 the q���submanifold C�M�
is locally the image of a controlled vector �eld	 Thus
 we are able to show
that locally the trajectories of C�M� are in bijection with the trajectories
of the controlled vector �eld 		

Theorem �	�� �Local equivalence� Let F be a well�posed implicit di�er�
ential equation� C�M� its core� �x�� p�� a point belonging to C�M� and
W � ��V � a local projection of C�M� at �x�� p��� O an open set of Rq�
	 a controlled vector 	eld given by the theorem 
�
�� If x��� is a local tra�
jectory of C�M� such that �x�t�� �x�t�� belongs to V for any t� then there
ESAIM� Cocv� March ����� Vol� 	� 
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exists an unique continuous �resp� piecewise continuous� control u��� taking
its value in O such that �x�t�� �x�t�� � 	�x�t�� u�t��
 for any t� Conversely�
for any initial condition x� belonging to W and for any continuous �resp�
piecewise continuous� control u��� taking its value in O there exists a unique
local trajectory of C�M� such that �x�t�� �x���� belongs to V for any t�

Then
 on the one hand
 we have shown that the strong �resp	 weak�
minimum of the implicit Lagrange problem P� are the strong �resp	 weak�
minimum of the central implicit Lagrange problem Pc �theorem �	��
 and on
the other hand that �locally� the admissible trajectories of Pc are in bijection
with the admissible trajectories of the controlled vector �eld 	 �theorem �	��	
Now
 let us consider a strong minimum �x��� of the central implicit Lagrange
problem Pc	 Let 
 be a point in the set T and W � ��V � a local projection
of C�M� at ��x�
�� ��x�
��
 O an open set of Rq
 	 a controlled vector �eld
given by the theorem �	��	 There exists � � � such that for any point t
belonging to the interval I� � �
 � �� 
 � �� then ��x�t�� ��x�t�� belongs to V 	
We naturally consider the following local implicit Lagrange problem

Pc�� min
�x���� �x�����V

x�����	
x�����

x�����	
x�����

Z ���

���
L�x�t�� �x�t��dt�

Theorem �	
� �Local optimality� Let F be a well�posed implicit di�eren�
tial equation� If �x��� is a strong minimum of the central implicit Lagrange
problem Pc then for any 
 belonging to T there exists � � � such that the
trajectory ��xjI���� is a strong minimum of the implicit Lagrange problem Pc��

Let us also consider the following local explicit optimal control problem

Pe�� min
�x���� �x����	��x����u����

u����O

x�����	
x�����

x�����	
x�����

Z ���

���
L�	�x�t�� u�t��dt�

Theorem �	�� �x��� is strong �local� minimum of the implicit Lagrange prob�
lem Pc�� if� and only if� the corresponding admissible process ��x���� �u���� is a
strong �local� minimum for the explicit control problem Pe���

This leads to consider the following local implicit Lagrange problem	 Let
W � ��V � be a local projection such that there exists an open set O in Rq

and a controlled vector �eld 	 � W �O � TW given by the theorem �	��

PV min
�x���� �x�����V

x���	a

x���	b

Z �

�
L�x�t�� �x�t��dt

where the points a and b belong to W 	 The admissible trajectories �resp	
strong minimum� of PV are in bijection with the admissible processes �resp	

�In a local coordinate system x of W � ��x� u� takes the form �x� f�x�u���
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strong minimum� of the explicit optimal control problem

Pe min
�x���� �x����	��x����u����

u����O

x���	a

x���	b

Z �

�
L�	�x�t�� u�t��dt�

Finally
 we choose a local coordinate system x � �x�� � � � � xr�� of W and
then apply the Maximum Principle to the problem Pe with the pseudo�
Hamiltonian

H�� � T �W �O � R

�x� �� u� 
�
r�X
i	�

�if
i�x� u� � ��L�x� f�x� u��

and the controlled vector �eld
��
H �� � T �W � O� T �T �W �

�x� �� u� 
�
��
H ���x� �� u� �

r�X
i	�

�H��

��i
�x� �� u�

�

�xi
�

r�X
i	�

�H��

�xi
�x� �� u�

�

��i

where �� � �� �	

Remark �	�� Obviously
 the necessary conditions of optimality are invari�
ant by bundle isomorphism h	 Let us consider a bundle isomorphism h

�x � �X�x�� �u � �U�x� u�

with inverse

x � X��x�� u � U��x� �u��

In the new coordinates ��x� �u� the controlled vector �eld is

�f��x� �u� �
� �X

�x
�X��x��f�X��x�� U��x� �u���

the Lagrangian �L��x� �u� � L�X��x�� U��x� �u�� and the pseudo�Hamiltonian

�H��x� ��� �u� �
Pr�

i	�
��i �f i��x� �u�� ��� �L��x� �u���

The extremals ���x���� ������� are the projection of a triplet ���x���� ������� ��u���� such
that

��a�� ���x���� ������� ��u���� is a trajectory of the controlled vector �eld � ��� �
�� ��

��
�H
��� � T � �W � �O� T �T � �W �

��x� ��� u� 
�
��
�H
�����x� ��� �u� �

r�X
i	�

� �H
���

� ��i
��x� ��� �u�

�

��xi
�

nX
i	�

� �H
���

��xi
��x� ��� �u�

�

� ��i

��b�� for any t belonging to ��� �� �resp	 a	e	 on ��� ���

�H
������x�t�� ��u�t�� ����t�� � max

�u � �O

�H
������x�t�� u� ����t���
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Clearly
 the extremals ���x����
������� are in bijection with the extremals

��x���� ������ via the relationship

���x����
������� � � �X��x����

t�X

��x
� �X��x����� �������

For any triplet ��x���� ������ �u���� such that �a� and �b� are satis�ed
 the triplet

���x���� ������� ��u���� � � �X��x�����
t�X

��x
� �X��x����� ������ �U��x���� �u�����

satis�es ��a� and ��b�	

Example �	�� The controlled rigid pendulum� A mass m is attached at the
extremity of a rigid massless wire of length l and �xed at the origin	 
 is
the tension of the wire
 g the gravity constant and the control u � �u�� u
�
acts on the mass	 The equations of the system are

m�x� � �

l
x� � u�

m�x
 � �

l
x
 �mg � u


� � x
� � x

 � l

�

In order to return to an implicit di�erential equation and to use the reduction
procedure we consider the following mapping F� � TR

�� R
�

F��x� p� �

�
BBBB�

p� � x�
p
 � x�

p� � x�p� � p�
p� � x
p� � p� � g

x
� � x

 � l


�
CCCCA � p � �x

where �x� � u�
m
 �x� � u

m and �x� � 

ml and the submanifold
 of TR�

M� � F��

� ��� 	 M� has dimension �	 The equation of the set W� � ��M��
is

x
� � x

 � l
 � �

it is a submanifold of R� of dimension 
	 TW� � G��
� ��� where G� is the

mapping

G��x� p� �

�
x
� � x

 � l


p�x� � p
x


�
�

Thus the reduction of M� is M� � TW� �M� � F��
� ���
 where F� is the

mapping

F��x� p� �

�
BBBBBB�

p� � x�
p
 � x�

p� � x�p� � p�
p� � x
p� � p� � g

x
� � x

 � l


x�x� � x
x�

�
CCCCCCA
�

it is a submanifold of dimension �	 The equations of the set W� � ��M��
are

x
� � x

 � l
 � �
x�x� � x
x� � � �
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and it is a submanifold of R� of dimension �	 TW� � G��
� ���
 where G� is

the mapping

G��x� p� �

�
BB�

x
� � x

 � l


x�x� � x
x�
p�x� � p
x


p�x� � x�p� � p
x� � x
p�

�
CCA �

Thus M
 � TW� �M� � F��

 ���
 where F
 is the mapping

F
�x� p� �

�
BBBBBBBB�

p� � x�
p
 � x�

p� � x�p� � p�
p� � x
p� � p� � g

x
� � x

 � l


x�x� � x
x�
x
� � x
� � x�p� � x
p� � x
g � l
p�

�
CCCCCCCCA
�

is a submanifold of dimension �	 Finally the set W
 � ��M
� is in fact W�

and thus M� � TW
 �M
 � TW� �M
 � M
 �since M
 � TW��
 then
C�M�� is the submanifold M
 and W � ��C�M��� is the submanifold W
	
Moreover C�M� � 	�W �R
� where 	�x� v� � �x� f�x� v�� is the vector �eld
of the state x � W depending on v � �v�� v
� � R


 such that

f�x� v� �

�
BBBBBBBBBB�

x�
x�

�x�
l

�x
� � x
�� �

x

l

�x
v� � x��v
 � g��

�x

l

�x
� � x
���

x�
l

�x
v� � x��v
 � g��

v�
v


�
l

�x
� � x
� � x�v� � x
�v
 � g��

�
CCCCCCCCCCA

and v� � u�
m et v
 � u

m	 On the other hand
 from the relation x� �
l sin � and x
 � l cos � �� ��� �� ��� we obtain

�
x� � l �� cos �

x� � �l �� sin �

�	

	�

�x� � �l ��
 sin � � l�� cos �

�x� � �l ��
 cos � � l�� sin �

�x� � ��
 � v�
sin �
l
� v


cos �
l

�

Therefore
 � satisfy the following second order implicit di�erential equation

l�� � v� cos � � �v
 � g� sin � ��	��

Thus
 we take for W the parameterization

x � X�z� � �l sin �� l cos �� l� cos���l� sin �� y�� y�� y���

where z � ��� �� y�� y�� y�� ��� �� ���R�� the controlled vector �eld

	�z� v� � �z� g�z� v�� � � �
��
� �v�

cos �
l

� �v
 � g�sin �
l
� �
��

� v�
�
�y�

� v

�
�y�

� ��
 � v�
sin �
l
� �v
 � g�cos�

l
� �
�y�
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and the Lagrangian �L�z� v� � L�X�z�� �X
�z
�z�g�z� v��� Then the problem Pc

is equivalent to the explicit optimal control problem

min
�z�t�� �z�t��	��z�t��v�t�� �t������

v�t��R�

z����fag�R�

z����fbg�R�

Z �

�

�L�z�t�� v�t��dt�

for which we obtain the necessary conditions of optimality with the pseudo�
Hamiltonian

H���z� �� v� � ���� �
�v�
cos �
l

� �v
 � g�sin �
l
� � ��v� � ��v


� ����

 � v�

sin �
l
� �v
 � g�cos �

l
�� �� �L�z� v��

Remark �	��� For this system
 the kinetic energy is T ��� ��� � �
�ml


 ��

 the

potential energy is V ��� � �mgl cos � and the Lagrangian is

L � T � V �
�

�
ml
 ��
 �mgl cos ��

The virtual work of the control u is �Wu � Q�� � �u�l cos � � u
l sin ����
and for the tension it is zero	 The Lagrange equation

d

dt

�L

� ��
�
�L

��
� Q�

gives the second order di�erential equation �	�	

�� Geometry of Implicit Differential Equations

For the problem P 
 M is a submanifold of TRn� it is obvious that the
reduction procedure that we present in the introduction is not applicable to
any submanifold M of TRn
 especially the submanifolds M for which �jM
admits singularities	 In this section we will de�ne the class of submanifolds of
TRn that will be allowed for the problem P 	 For this class of submanifolds
we will be able to apply locally the reduction procedure	 First of all
 let
us make some comparisons with the de�nition of ��submanifolds given in
��
�	 The authors� concern is to answer to the problem of the existence and
uniqueness of solutions
 namely to put M in the form

M � ��Y � ��	��

for a section � � Y � TY of a connected submanifold Y of Rn with a dimen�
sion equal to that of M 	 In this situation
 M is equivalent to an ordinary
di�erential equation and
 thus
 the problem of existence and uniqueness is
solved	 Here
 it is not our purpose to obtain the existence and uniqueness
of the solutions �since in this case the optimal control problem admits an
obvious solution
 namely the trajectory which �possibly� goes from a to b�
but to have the existence and uniqueness of a family of solutions
 in other
words to �nd a submanifold Y of Rn
 an open set U of Rq and a mapping
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	 � Y � U � TY such that the diagram

	
Y � U � TY � TRn

Pr � 
 �
Y � Rn

switches and such that

M � 	�Y � U�� ��	��

This occurs for the submanifold C�M� in the example of the controlled
rigid pendulum	 Even though in ��
� the equality ��	�� suggest that the
submanifoldM is locally embedded in a tangent bundle TY of a submanifold
Y of Rn with the same dimension as that M 
 in our situation the equality
��	�� suggests that the submanifold M is locally embedded in a tangent
bundle TY of a submanifold Y of Rn of dimension less than or equal to the
dimension of M 	

�	�	 q���submanifold

For our geometric framework we will consider separable
 Haussdorf man�
ifold X with �nite dimension and
 for reasons of convenience
 they are as�
sumed to be smooth �although they could be of class Ck
 k 	 ��	 Let us
recall some elements of di�erential geometry	 The dimension of a manifold
M is the maximal dimension among the dimension of the connected compo�
nents � ofM 	 A pure manifold M is a manifold such that all the connected
components � have the same dimension	 For any manifold X 
 the points
belonging to the tangent bundle TX are denoted by �x� p� with x belonging
to X and p belonging to TxX 	 The canonical projection � � TX � X is the
mapping such that ��x� p� � x	 For the manifold Rn
 the tangent bundle is
identi�ed with Rn�Rn and the projection � is identi�ed with the projection
onto the �rst factor	 Moreover
 for any submanifold Y of X and any point
belonging to Y 
 the subspace TxY is identi�ed with a subspace of TxX and

thus
 TY is identi�ed with a submanifold of TX 	 Subsequently
 the follow�
ing notation f � �X� a�� �Y� b� means that the mapping f is de�ned in an
open neighborhood U of a in X and b � f�a�	 As in the case of manifolds

all the mappings are assumed to be smooth �once again they could be of
class Ck
 k 	 ��	 For any mapping f � X � Y and any point x belonging
to X the linear tangent mapping is denoted by Txf 	 Now let us give the
de�nition of subimmersion and the subimmersion theorem

Definition �	�� �subimmersion� Let X 
 Y be manifolds and a mapping
f � X � Y 	

�a�� f is a subimmersion at x � X if r � rank Txf is constant in an open
neighborhood of x in X 	

�b�� f is a subimmersion on X if it is a subimmersion at x for all points
x of X 	 In particular
 for each connected component � of X the rank
r has a constant value on �
 we shall call it the rank of f on �	

Theorem �	�� �subimmersion theorem� Let X be connected manifolds and
f � X � Y a subimmersion with rank r� Then� the following statements
hold
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�a�� for any y belonging to f�X� the set M � f���y� is a submanifold of
dimension m� r and TxM � KerTxf �

�b�� for any point x belonging to X there exists an open neighborhood V
of x in X such that the set W � f�V � is a submanifold of dimension
r and TyW � ImTxf for any point y belonging to W � Moreover� if N
is any submanifold of X of dimension r such that x belongs to N and
TxN � kerTxf � f�g then the mapping fjN is a local di�eomorphism
of some open neighborhood of x in N onto an open neighborhood of y
in f�V ��

Proof� see ���

For an implicit di�erential equation ��	�� the following proposition gives
a criterion for the projection �jM to be a subimmersion	

Proposition �	�� Let G � Rn� Rn � R
n�q be a mapping with � � q � n

such that DG�x� p� has full rank n � q in an open neighborhood of a point
�x�� p�� belonging to G����� and U an open neighborhood of this point in
R
n�Rn such that the set M � U �G����� is a submanifold of Rn�Rn of

dimension n� q� Then� the mapping �jM where � is the projection onto the
	rst factor is a subimmersion at �x�� p�� of rank r � � � q if� and only if�
rank DpG�x� p� � � � n � q is constant in an open neighborhood of �x�� p��
in M �

Proof� On the one hand
 for any point �x� p� belonging to M 
 the tangent
space T�x�p�M is equal to kerDG�x� p� and his dimension is equal to n�q	 On
the other hand
 the linear tangent mapping T�x�p���jM� � T�x�p�M � TxR

n is
the restriction of the canonical projection to the subspace T�x�p�M 	 Namely

the mapping

��x� �p� � T�x�p�M 
� �x�

Then
 for any point �x� p� belonging to M

kerT�x�p���jM� � f��x� �p� � T�x�p�M
�x � �g � f�g � kerDpG�x� p��
��	��

Clearly
 the mapping �jM has constant rank r in an open neighborhood of
�x�� p�� inM if
 and only if
 dim Im T�x�p���jM� � r in an open neighborhood
of �x�� p�� in M � therefore if
 and only if


dim kerT�x�p���jM� � dimT�x�p�M � dim Im T�x�p���jM� � n� q � r ��	��

in an open neighborhood of �x�� p�� in M 	 According to ��	��
 ��	�� holds if

and only if
 dim kerDpG�x� p� � n� q� r � n� � in an open neighborhood
of �x�� p�� in M � that is if
 and only if
 dim Im DpG�x� p� � � in an open
neighborhood of �x�� p�� in M 	

Now we give the de�nition of a q���submanifold M of TX 	

Definition �	�� �q���submanifold� Let X be a manifold
 q a �xed integer
less than or equal to the dimension of X 
M a submanifold of TX and �x� p�
a point of M 	 M is a q���submanifold of TX at �x� p� �in an neighborhood
of �x� p� in M� if the following conditions hold
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�a�� there exists a connected open neighborhood U of �x� p� in M and a
submanifold Y of X such that dim Y � q � dimU and U is a subset of
TY 	

�b�� the mapping �jU � U � X is a subimmersion in the neighborhood of
�x� p�	

M is a q���submanifold of TX if for any point �x� p� belonging to M 
 M is
a q���submanifold at �x� p�	

Remark �	�� a� If M is a q���submanifold at a point �x� p� of M 
 then we
can assume that the mapping �jU � U � X is a subimmersion on U 
 even
if this means shrinking U 	 Moreover
 for any point �x� p� belonging to U 

the �rst condition of the de�nition holds �It is enough to take U and Y �	
Thus
 for any point �x� p� belonging to U 
 U is a q���submanifold at �x� p��
in other words U is a q���submanifold of TX 	
b� WhenM is not a q���submanifold of TX we can consider the set
 possibly
empty
 of points �x� p� ofM such thatM is q���submanifold of TX at �x� p�	
If it is a non�empty set
 according to a�
 it is an open set of M and a q���
submanifold of TX 	

The de�nition of a q���submanifold can be formulated in the following
way

Definition �	
� �bis� Let X be a manifold and q an integer less than or
equal to the dimension of X 	 A submanifold M of TX is a q���submanifold
of TX if for any connected component � ofM the following conditions hold	

�a�� for any point �x� p� of � there exists an open neighborhood U in �
of �x� p� and a submanifold Y of X such that dim Y � q � dim � and
U is a subset of TY 	

�b�� the mapping �j� � � � X is a subimmersion in a neighborhood of
any point �x� p� of �	

Remark �	�� This de�nition extends the de�nition of a ��submanifold in
��
�
 which is the case q � � of our de�nition	 The �rst condition means
exactly thatM is locally embedded in the tangent bundle TY of a subman�
ifold Y of X of dimension less than or equal to the dimension of M 	 For
the second
 according to the subimmersion theorem
 for any point �x� p� of
M there exists an open neighborhood V of �x� p� in M such that W � ��V �
is a submanifold of X of dimension the rank of the mapping �j� at �x� p�	
This is the local analogous of the condition
 W � ��M� is a submanifold
of X 
 supposed in the global reduction procedure	 For any connected com�
ponent � of M the inequality �q � dim� is satis�ed �dim� � � dimY 

dim Y � q � dim��	 We shall use this inequality to prove a property of the
index	

Example �	�� Let 	 � X � U � TX be a smooth controlled vector �eld
with dimU � q	 Let us assume that

�a�� the mapping 	�
	u
�x� u� has full rank q	

�b�� for any �x� p� belonging to TX either the equation 	�x� u� � �x� p�
has a unique solution or it does not have any solution	

�c�� the mapping �x� u� 
� 	�x� u� is proper	
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Clearly
 under this mild assumption the setM � 	�X�U� is a submanifold
of TX�	 Obviously
 dimM � dimX � dimU and �jM is a subimmersion	
Thus
 M is a q���submanifold	

In the example of the controlled rigid pendulum
 the submanifold M� of
TR� is connected and its dimension is equal to �	 Therefore
 for any point
�x� p� belonging to M� the �rst condition holds with U � M�
 Y � R� and
q � �	 Moreover
 for any point �x� p� belonging to M�
 rank DpG�x� p� � ��
then
 according to the proposition �	�
 the mapping �jM�

is a subimmersion
of rank � � � � 
	 Therefore
 the submanifold M� is a ����submanifold of
TR�	
Now we shall give some de�nitions� the order of point �x� p� of M is the

rank of the mapping �j� at this point
 we shall denote it by ord M�x� p�	
Since
 the mapping �j� has
 locally
 constant rank
 ord M�x� p� is constant
for each point of any connected component ofM 
 then we may de�ne ord M�
as the order of one of its points and it is less than or equal to the dimension
of the submanifold Y 	 A submanifold W as in the remark �	� is called a
local projection of M at �x� p�	

Remark �	�� With the notations of the de�nition of a q���submanifold
 U is
a submanifold of TY and since the mapping �j� � �� X is a subimmersion

the mapping �jU � U � X is a subimmersion	 This is satis�ed if
 and only if

the mapping �jU � U � Y is a subimmersion	 The order of a point belonging
to � is also the rank of the mapping �jU � U � Y at this point	 Then
 we
can see U as a submanifold of TY and as a submanifold of TX 	

The following theorem ensures that a q���submanifold M is
 locally
 the
image of a unique controlled vector �eld	

Theorem �	��� �Existence and uniqueness� Given X a manifold and M a
q���submanifold of TX such that

dim � � ord M� � q ��	��

for each connected component � of M � then for each point �x� p� of M there
exists a local projection W � ��V � of M at �x� p�� an open set O of Rq and
a unique smooth mapping 	 �W �O � TW such that

V � 	�W � O�� p � 	�x� ��� rank
�	

�u
�x� �� � q

and such that Pr � � � 	 where Pr is the canonical projection from W �O
onto W � Moreover� if W � � ��V �� is another local projection of M at �x� p�
such that there exists an open set O� of Rq and a unique smooth mapping
	� �W � �O� � TW � such that

V � � 	�W � �O��� p � 	��x� ��� rank
�	�

�u�
�x� �� � q

and such that Pr� � ��	� where Pr� is the canonical projection from W ��O�

onto W �� then there exists a di�eomorphism h � �W � O� �x� ��� � �W � �
O�� �x� ��� such that 	 � 	� � h and Pr � Pr� � h�

Proof� Let �x�� p�� be a point of M 	 According to ��	�� and the remark �	�
the mapping �jU � U � Y is a subimmersion with rank equal to Ord M� �

�Since the mapping � is an injective proper immersion�

ESAIM� Cocv� March ����� Vol� 	� 
����



�
 PHILIPPE PETIT

dim�� q � dim Y 
 therefore it is a submersion	 Then
 there exists an open
neighborhood V of �x�� p�� in U such that the local projection W � ��V � is
an open set of Y 	 Since W is an open set of Y 
 the tangent bundle TW of
W is equal to ��jTY �

���W � � ����W � � TY 	 Moreover
 V � TY and V �

����W � then V � ����W � � TY � TW 	 Then
 V is a submanifold of TW
of dimension dim Y �q	 This last property is also satis�ed when we shrink V
orW �for any open set V � of V 
W � � ��V �� is also a local projection and V �

is a submanifold of TW � by the same arguments� for any open set W � of W
setting V � � ��jTY �

���W ���V thenW � � ��V �� and V � is also a submanifold
of TW ��	 Thus
 even if this means shrinking V 
 we can assume that there
exists a chart �W��� of Y such that W is identi�ed with an open set of
R
m
 also denoted by W 
 then TW is identi�ed with W �Rm
 � is identi�ed

with the canonical projection and V is identi�ed with a submanifold of
W �Rm projected onto W 	 We can also assume that there exists an open
set  of �x�� p�� in W �Rm
 an open set  v of � in R

m�q and a submersion
G �  �  v such that V � � G������ 	 Since V is projected ontoW then
DpG�x�� p�� has full rank� � even if this means shrinking  
 there exists an
open set  u of � in R

q and a mapping H �  �  u such that for the mapping
! �  � W �  u �  v de�ned by �y� u� v� � !�x� p� � �x�H�x� p��G�x� p��

D!�x�� p�� is an isomorphism	 According to the local inverse functions
theorem there exists an open set  � �  of �x�� p�� in W � Rm and an
open set  �� of �x�� �� �� in W �  u �  v such that !j�� �  � �  �� is a
di�eomorphism	 We can assume that  �� has the form W � � �u � 

�
v where

W � is an open set of W 
  �u is an open set of  u and  
�
v is an open set of  v 	

Moreover there exists an open set  �p of p in R
m such that  � � !��

j��� 
��� has

the form W � �  �p	 Let V� � V �  �
 then W� � ��V�� is a local projection

of M at �x�� p��	 Given !
��
j���y� u� v� � �y� ��y� u� v�� the inverse mapping of

!j�� 
 then V� � f�x� ��x� u� ��� x � W�� u �  
�
ug � !��j���W� �  

�
u � f�g�	

Therefore
 we de�ne O �  �u�f�g and 	 � !
��
jW��O

	 Then V� � 	�W��O�


	�x�� �� � p� and rank
�	
�u
�x�� �� �rank

��
�u
�x�� �� �� � q	 Given W � � ��V ��

another local projection of M at �x� p� such that there exists an open set
O� of Rq and a unique smooth mapping 	� � W � � O� � TW � such that

V � � 	�W ��O��
 p � 	��x� ��
 rank�	
�

�u�
�x� �� � q and such that Pr� � � �	�

where Pr� is the canonical projection fromW ��O� ontoW �
 then the implicit
equation 	��x� u�� � 	�x� u� is locally invertible relative to u and u� and the
existence of h follows	

Remark �	��� The diagrams

	�

W � �O� � TW � � TX
Pr� � 
 �

W � � X

and

	
W � O � TW � TX

Pr � 
 �
W � X

are equivalent in a neighborhood of �x� �� by the bundle isomorphism h	
Such bundle isomorphisms de�ne in control theory a feedback	
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�	�	 Reduction of a q���submanifold

Since the condition of the theorem �	�� is generally not ful�lled
 then we
have to de�ne the reduction procedure	 In the case of the global reduction
procedure
 we have seen that any admissible trajectory x��� forM� is neces�
sarily an admissible trajectory forM� �M��TW� andM� is the reduction of
M�	 In order to have
 locally
 the same reduction procedure
 we use local pro�
jection	 Let x��� be a local admissible trajectory
 in other words �x���� �x���� is
a trajectory ofM passing through the point �x�� p�� � �x�t��� �x�t��� �M at
time t�
 where t� is a point of continuity� sinceM is a q���submanifold 
 then
for a local projectionW � ��V � at �x�� p�� ofM and for t in a neighborhood
of t�
 �x�t�� �x�t�� � V 
 whence x�t� � W � ��V � and �x�t�� �x�t�� � TW 	 In
particular �x�� p�� � TW � V � TW � M 	 This leads to the following
de�nition

Definition �	��� Let X be a manifold and M a q���submanifold of TX 	
A point �x� p� � M is a point of reducibility of M if there exists a local
projection W � ��V � of M at X such that p � TxW 
 in other words �x� p�
belongs to TW �M 	 The �possibly empty� set of the points of reducibility
of M is the reduction of M 
 we denote it by M �

Remark �	��� If such local projection W � ��V � exists then for any other
local projection W � � ��V �� of M at �x� p�
 since TxW

� � TxW 
 �x� p�
belongs to TW � �M 	 Thus
 the de�nition does not depend on the choice of
the local projection W 	

Example �	��� A q���submanifold M such that the reduction M � is the
empty set�
In TR� let M be the submanifold given by the implicit di�erential equa�

tion F� � � where

F��x� p� �

�
BB�

x� � x

p� � �
p


p� � p� � p�

�
CCA �

Clearly
 M is a ����submanifold of TR�
 W � ��M� is the submanifold of
dimension � of R� given by the equation x��x
 � � andM

� � TW �M � �	

Now that we have stated the reduction procedure and a new set
 namely
M � the reduction of M 
 we are going to see under which conditions for M 

the reduction M � is a submanifold and a q���submanifold	 First of all
 we
can establish the following results

Proposition �	��� Let X be a manifold and M a q���submanifold of TX�
Then� the reduction M � of M is a closed subset of M �

Proof� The cases M � M � and M � � are obvious	 Let us assume that
� �� M � �� M and let us consider the subset N � M nM �	 Let �x� p� be
a point of N and W � ��V � a local projection of M at this point	 W is
a submanifold of X of dimension r � ordM�	 Upon shrinking V 
 we can
assume that there exists a chart � � �� of X such that W �  
 �� � is an
open set of Rn
 ��W � is an open set of Rr
 T is identi�ed with  � Rn

TW is identi�ed with W � Rr and V is identi�ed with a submanifold of
 �Rn	 Since
 the point �x� p� belongs to N and the point x belongs to W
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the point p does not belong to TxW 
 and in the chart this means that p does
not belong to Rr	 Thus
 there exists an open neighborhood V � of �x� p� in
V such that V � � TW � �	 Therefore
 the set N is an open set of M and
then M � is a closed subset of M 	

The following proposition is used to establish the conditions such that the
reduction M � of a q���submanifold M is a submanifold	

Proposition �	�
� Let X be a manifold and M a q���submanifold of TX
such that its reduction M � is not empty� Given �x� p� a point of M �� then
for any local projection W � ��V � of M at �x� p�

dim�T�x�p�TW � T�x�p�M � 	 ord M �x� p� � q�

Proof� Let �x�� p�� be a point of M
� and W � ��V � a local projection of M

at �x�� p��	 According to the de�nition of a q���submanifold there exists an
open neighborhood U of �x�� p�� in M and a submanifold Y of X such that
dim Y � q � dim� and U is a subset of TY 	 We can choose W � ��V � such
that V � U 
 therefore W � ��U� � Y 	 Let i � W � Y be the canonical
embedding of W in Y and

" � i�TY �
�

x � W

fxg � TxY � TY�

" is a submanifold of TY of dimension equal to the sum of the dimension
of W and of the dimension of Y 	 Moreover
 TW and V are submanifold of
"	 Indeed
 let �x� p� be a point of "	 Then
 according to the construction of
"
 x belongs to W and p belongs to TxY 	 Since Y and W are submanifolds
of X 
 there exists in a neighborhood of the point x in X two submersions
g � �Rn� x� � �Rn�r� �� and h � �Rn� x� � �Rn�m� �� such that in a neigh�
borhood of x
 W � g����� and Y � h����� where m � dim Y � dim� � q
and r � ord M �x� p� � ord M�x�� p��	 Thus in a neighborhood of �x� p� in
TX 
 " is the zero set of the submersion

� � �TX� �x� p��� �Rn�r �Rn�m� ��� ���
�x� p� 
� ��x� p� � �g�x�� dh�x��p��

Thus
 " is a submanifold of TX of dimension n � r � �n � m� � r � m
and therefore a submanifold of TY 	 According to the construction
 TW is a
subset of " and a submanifold of TX 
 therefore TW is a submanifold of "	
Finally
 since V is subset of " �for any point �x� p� of V � U � TY 
 x belongs
to W and p belongs to TxY � and a submanifold of TY 
 V is a submanifold
of "	 Since dimV � dimY � q
 dimTW � �r and dim" � dim Y � r then

dim�T�x�p�TW � T�x�p�V � 	 dim T�x�p�TW � dimT�x�p�V � dimT�x�p�"

� ord M�x� p� � q�

Theorem �	��� Let X be a manifold and M a q���submanifold of TX such
that its reduction M � is not empty� If for each point �x� p� of the reduction
M � of M there exists a local projection W � ��V � of M at �x� p� such that

dim�T�x�p�TW � T�x�p�M � � ord M�x� p� � q� ��	
�
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then M � is a submanifold and T�x�p�M
� � T�x�p�TW � T�x�p�M � Moreover� if

in an open neighborhood of �x� p� in TW �M

�jT�x��p��M � has constant rank� ��	��

then for any connected component � of M � �� the reduction of � is either
empty or a pure q���submanifold of dimension ord M� � q� In particular
M � is a q���submanifold�

Proof� Given �x� p� a point of M � and W � ��V � a local projection of M
at �x� p� such that ��	
� is satis�ed
 then the submanifolds TW and V are
transversal in the bundle " at �x� p�
 therefore TW � V is a submanifold of
TW and ofM of dimension ord M�x� p�� q	 The mapping �jV has constant
rank on V 
 even if this means shrinking V 	 But
 on the one hand


M ��V � f�x� p� � V
� a local projection W�x�p� � ��V�x�p�� 
 p � TxW�x�p�g

and
 on the other hand
 W � ��V � is a local projection ofM at each points
of V 
 therefore

M � � V � f�x� p� � V 
 p � TxWg � TW � V�

In other words M � is a submanifold of M and T�x�p�M
� � T�x�p�TW �

T�x�p�V � T�x�p�TW � T�x�p�M 	
Therefore the connected component of M � containing the point �x� p� has

a dimension equal to ord M �x� p��q	 Let us prove that the �rst condition of
the de�nition of a q���submanifold hold	 Given �� the connected component
of M � containing �x� p�
 there exists an open neighborhood U � of �x� p� in ��

such that U � � TW 
 in fact U � � TW�V that we can assume included in ��	
If we set down Y � � W then dim Y � � q � dim �� and the condition holds	
Moreover
 if condition ��	�� holds then �j�� has constant rank and therefore
according to the previous results
 M � is a q���submanifold of X 	

The theorem �	�� justi�ed the following de�nition

Definition �	��� Let X be a manifold and M a q���submanifold M of TX
such that its reduction M � is not empty	 M is a reducible q���submanifold if
for any point �x� p� of the reduction M � of M there exists a local projection
W � ��V � of M at �x� p� such that

dim�T�x�p�TW � T�x�p�M � � ord M �x� p� � q ��	��

and if in an open neighborhood of �x� p� in TW �M

�jT�x��p��M � has constant rank ��	��

where T�x��p��M
� � T�x��p��TW � T�x��p��M 	

Remark �	��� If M is a reducible q���submanifold of class ck� k 	 �
 then
its reduction is a q���submanifold of class Ck��	

Example �	��� q���submanifoldM such that the reduction M � is not empty
and is not a q���submanifold� Let us consider in TR�
 the ����submanifold
given by the implicit di�erential equation F� � � where

F��x� p� �

�
x�

p� � x
 � p
�

�
�
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Clearly
 W � ��M� is the submanifold of dimension � of R� given by the
equation x� � �	 Its reduction M� is equal to F

��
� ��� where

F��x� p� �

�
� x�

p�
x
 � p
�

�
A �

is not a ����submanifold	

We can now provide a new formulation of the theorem �	��

Theorem �	��� �Existence and uniqueness� Given X a manifold and M a
q���submanifold of TX such that its reduction M � is M � then for each point
�x� p� of M there exists a local projection W � ��V � of M at �x� p�� an open
set O of Rq and a unique smooth mapping 	 �W � O� TW such that

V � 	�W � O�� p � 	�x� ��� rank
�	

�u
�x� �� � q

and such that Pr � � � 	 where Pr is the canonical projection from W �O
onto W � Moreover� if W � � ��V �� is another local projection of M at �x� p�
such that there exists an open set O� of Rq and a unique smooth mapping
	� �W � �O� � TW � such that

V � � 	�W � �O��� p � 	��x� ��� rank
�	�

�u�
�x� �� � q

and such that Pr� � ��	� where Pr� is the canonical projection from W ��O�

onto W �� then there exists a di�eomorphism h � �W � O� �x� ��� � �W � �
O�� �x� ��� such that 	 � 	� � h and Pr � Pr� � h�

Proof� The connected component �� of M � is exactly the connected compo�
nent � ofM 
 but according to the theorem �	�� dim� � dim�� � ord M��q
then assumption ��	�� of the theorem �	�� holds for any connected compo�
nent of M 	

Remark �	��� For any q���submanifold M of TX such that for any con�
nected component � of M the equality ��	�� holds then M is equal to its
reduction	 Clearly
 for any point �x� p� of M there exists a local projection
W � ��V � of M at �x� p� such that p belongs to TxW �M�

This remark leads to the following proposition

Proposition �	��� Let X be a manifold� q a 	xed integer less than or equal
to the dimension of X and M a submanifold of TX� Let us assume that for
any point �x� p� in M there exists a connected open neighborhood U of �x� p�
in M and a submanifold Y of X such that dim Y � q � dimU and U is a
subset of TY � Then M is a reducible q���submanifold of TX equal to its
reductionM � if� and only if� for any connected component � ofM there exists
a point �x� p� in �� such that the linear mapping T�x�p�� � T�x�p�M � T�x�p�Y
is surjective�

Proof� If M is a reducible q���submanifold of TX equal to its reduction
then for any connected component � and for any point �x� p� of � the linear
mapping T�x�p�� � T�x�p�M � T�x�p�Y is surjective	 Clearly
 this must hold
only for one point �x� p� of any connected component � of M 	 Conversely

let us assume that for any connected component � of M there exists a
point �x� p� in � such that the linear mapping T�x�p�� � T�x�p�M � T�x�p�Y
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is surjective	 Thus
 the mapping �jU � U � Y has full rank dim Y and
according to the remark �	� the mapping �jU � U � X has constant rank	
Then M is a q���submanifold of TX 	 In particular for each connected
component � of M the equality ��	�� is satis�ed	 Thus
 according to the
remark �	��
M is equal to its reduction	

�	�	 completely reducible q���submanifold

Given a reducible q���submanifold M of a manifold TX 
 then according
to the theorem �	�� its reduction M� is a q���submanifold	 Clearly
 the
reduction M
 of M� may be empty �example �	��� and in the case where
M
 is not empty
M
 may not be reducible �example �	���	 IfM� is reducible
then M
 is a q���submanifold	 Thus
 we can
 if it is possible
 consider the
successive reductions of M�example �	��	 For reasons of convenience
 we
shall say that the empty set is a reducible q���submanifold such that its
reduction is the empty set	 These considerations lead us to consider the
de�nition of a completely reducible q���submanifold

Definition �	��� Let X be a manifold and M a q���submanifold of TX 	
We shall say that M is a completely reducible q���submanifold if it is re�
ducible and if its reduction M � is a completely reducible q���submanifold	

The de�nition means that it is possible to construct a sequence of re�
ducible q���submanifolds Mk � k 	 � such that M � M�
 Mk�� � M �

k if
Mk �� � and Mk�� � Mk if Mk � �	 This sequence of q���submanifold is
called the chain of reduction of M 	 If for an integer �
 M��� � M� then
the sequence Mk becomes stationary at and after the integer �	 Since the
sequence dimMk is decreasing
 we can expect the chain of reduction of M
to be stationary	

Theorem �	��� �Stationarity� Let X be a manifold and M a completely
reducible q���submanifold of TX� m its dimension and fMkgk�� its chain
of reduction�

�a�� given �m���
q a non�empty connected component of Mm���
q and
for any k � �� � � � � m��q� �k the connected component of Mk contain�
ing �k��� then there exists a smallest integer �� � � � � dim����q �
m� �q� such that ��k � �k for any k 	 ��

�b�� the reduction Mm�
�
q of Mm���
q is Mm���
q�

Proof� When Mm���
q � � we do not take �a� into account and with the
convention
 �b� is obvious	 Let us assume that Mm���
q is not empty and
let us consider �m���
q one of its non empty connected component	 For any
k � �� � � � � m� �q the reduction ��k of �k is by de�nition the set of points of
reducibility of �k 
 namely the set of points of reducibility of Mk belonging
to �k i	e	 ��k � �k �Mk��	 Thus from the construction of the sequence
�k 
 the connected component �k�� of Mk�� included in �k is a connected
component of the reduction ��k of �k and a closed subset of �k 	 Then we
have

�k�� � �
�
k � �k � k � �� m� �q� ��	���

Therefore
 the sequence �k � dim�k 
 k � �� � � � � m� �q satisfy

�q � �m�
q�� � �m�
q � � � � � �� � m ��	���
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and thus there exists a smallest integer � between � and �� � �q such that
�� � ����	 Thus ���� is an open set of ��	 Since ���� is also a non empty
closed subset of �� then �� � ����	 According to ��	��� the reduction
��� of �� is exactly ���� and therefore
 for any k � �� � � � � �m � q � �

the reduction ��k of �k is �k��	 Finally
 the reduction ��m���
q of any
connected component �m���
q of Mm���
q is �m�
�
q 
 thus Mm���
q �
Mm�
�
q	

Definition �	�
� �Index� Let X be a manifold
 M a completely reducible
q���submanifold of TX 
 m the dimension of
 and fMkgk�� the chain of
reduction of M 	

�a�� the core of the completely reducible q���submanifold M is the limit
of its chain of reduction and we denote it by C�M�	

�b�� the index of any non�empty connected component � of C�M� is the
integer � in �	���a�	

�c�� the index of any point �x� p� of C�M� is the index of the connected
component of C�M� containing �x� p�	 In particular it is less than or
equal to dim �� � �q	

Remark �	��� a� According to the remark �	�a� for any point �x� p� belong�
ing to a q���submanifoldM of TX then there exists a connected open neigh�
borhood U which is a q���submanifold of TX 	 IfM is a completely reducible
q���submanifold of TX then U is a completely reducible q���submanifold of
TX 
 and C�U� the core of U is included in the core of M 	 Obviously
 for
any point �x� p� of C�U� the index of �x� p� seen as a point of C�U� is equal
to the index of �x� p� seen as a point of C�M�	 Generally speaking
 any open
set U of a q���submanifold M of TX is a q���submanifold of TX and if M
is a completely reducible q���submanifold then U is a completely reducible
q���submanifold	 Thus
 for any point �x� p� of M such that there exists an
open set U which is a completely reducible q���submanifold such that �x� p�
belongs to C�U�
 then the index of �x� p� seen as a point of C�U� does not
depend on U � whenM is a completely reducible q���submanifold
 it is equal
to the index of �x� p� see as a point of C�M�	
b� As in the remark �	�b�
 when M is not a completely reducible q���
submanifold of TX we can consider the set
 possibly empty
 of points �x� p�
of M such that there exists an open set U of M which is a completely re�
ducible q���submanifold of TX 	 Then
 this set is an open set in M and it
is a completely reducible q���submanifold of TX 	 In the example �	��
 it is
the set of points �x� p� of TR� such that p� is not equal to zero	

Remark �	��� According to the remark �	�� for a completely reducible q�
��submanifold M of class Cl� l 	 m����q
 the q���submanifoldsMk of the
chain of reduction are of class Cl�k	 Clearly
 the core C�M�
 which is the
q���submanifold Mm���
q is a q���submanifold of class C

l�m���
q	 When
M has class Cl with l � m � � � �q then
 the chain of reduction is only
de�ned for k � l since the reduction Ml is not de�ned	 Consequently
 if
Ml the reduction of Ml�� is not equal to Ml
 it is not possible to construct
C�M� the core of M 	 Obviously
 when Mk�� the reduction of Mk is equal
to Mk with k � l � � then
 the core C�M� is equal to Mk 	
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Example �	��� The controlled rigid pendulum� The connected submanifold
C�M� has an index equal to �	

Example �	��� Under the mild assumption of the example �	� the con�
nected manifold M � 	�X � U� has an index equal to �	

According to the above theorem the core C�M� of a completely reducible
q���submanifold M is the completely reducible q���submanifold Mm���
q

which is reducible and equal to its reduction	 Thus we can formulate the
following theorem

Theorem �	��� �Existence and uniqueness� Given X a manifold and M a
completely reducible q���submanifold then its core C�M� is either empty or
a reducible q���submanifold equal to its reduction and for any point �x� p� of
M there exists a local projection W � ��V � of M at �x� p�� an open set O
of Rq and a unique smooth mapping 	 �W � O� TW such that

V � 	�W � O�� p � 	�x� ��� rank
�	

�u
�x� �� � q

and such that Pr � � � 	 where Pr is the canonical projection from W �O
onto W � Moreover� if W � � ��V �� is another local projection of M at �x� p�
such that there exists an open set O� of Rq and a unique smooth mapping
	� �W � �O� � TW � such that

V � � 	�W � �O��� p � 	��x� ��� rank
�	�

�u�
�x� �� � q

and such that Pr� � ��	� where Pr� is the canonical projection from W ��O�

onto W �� then there exists a di�eomorphism h � �W � O� �x� ��� � �W � �
O�� �x� ��� such that 	 � 	� � h and Pr � Pr� � h�

Remark �	��� In our de�nition of a q���submanifold we assume that the
integer q is the same for each connected component � of M � in fact we
can extend the de�nition if we assume that the integer q depends on the
connected component �	 In other words M 
 is a disjoint reunion of qi���
submanifold Ni of TX of dimension ni� i 	 �
 where the qi are integers less
than or equal to dimX 	 We will say again that M is a q���submanifold

where q is an integer n�tuple �q�� q
� � � � � qn� �n possibly in�nite�	 On the
other hand the de�nition of the reduction is still valid and M is a �com�
pletely� reducible q���submanifold of TX if each qi���submanifold Ni is a
�completely� reducible qi���submanifold of TX 	 For a completely reducible
q���submanifoldM of TX we can de�ne in the same way the chain of reduc�
tion fMkgk��	 Clearly
 if for each qi���submanifold Ni
 fNikgk�� is its chain
of reduction
 then
 Mk �

S
iNik	 Moreover
 according to the theorem �	��

for each qi���submanifold Ni of TX 
 the reduction Nni�
�
qi of Nni���
qi is
Nni���
qi � consequently
 if we pose � � maxfni����q� i 	 �g thenM� the
reduction of M��� is exactly M���	 Then
 the core is the q���submanifold
M���	 Clearly
 the theorem �	�� still holds	

�� Algorithm of reduction

For a q���submanifold M we can set the following algorithm in a neigh�
borhoods of any point �x�� p�� ofM 
 allowing us to know ifM is completely
reducible
 to �nd C�M� and to obtain the controlled vector �eld	
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Step �
 AssumeM� is a non�empty q���submanifold and �x�� p�� belongs to
M� �M 	 Let �� be the connected component ofM� which contains �x�� p��	
From the de�nition of a q���submanifold there exists an open set U� of
�x�� p�� in ��
 a submanifold Y� of X such that dim Y��q � m��q � dim��
and we have also seen that U� is a submanifold of TY�	 We can place
ourselves in a chart of Y� at x�
 even if this means shrinking U�	 Thus Y� is
an open set of Rm�
 that we denote again by Y�
 TY� � Y� �R

m� and U�
is a submanifold of Y� � R

m� of dimension m� � q	 Then there exists in a
neighborhood of �x�� p�� in Y��R

m� a submersion G� � �Y��R
m�� �x�� p����

�Rm��q� �� such that U� � G��
� ���	 In this way �j�� is a subimmersion in

a neighborhood of �x�� p�� if
 and only if
 DpG��x� p� has constant rank
�� � r� � q � m� � q in a neighborhood of �x�� p�� in U�	 Then any local
projection W� � ��V�� of U� �or M�� in �x�� p�� is a submanifold of Y� of
dimension r�	 Thus there exists in a neighborhood of x� in Y� a submersion
g� � �Y�� x�� � �Rm��r� � �� such that W� � g��� ��� in a neighborhood of x�
in Y�	 The tangent bundle TW� is the subset of points �x� p� of TY� for
which the following equations are satis�ed

g��x� � �� Dg��x�p � ��

According to the de�nition �	�� the reductionM� ofM� is in a neighborhood
of �x�� p�� the �possibly empty� subset of points �x� p� such that

Dg��x�p � �� G��x� p� � ��

More particularly here
 �x�� p�� is a point of reducibility of M� if
 and only
if
 Dg��x��p� � �	 If M� is not a q���submanifold of TX then the algorithm
is stopped	 If M� is empty then C�M� is empty	

Step k
 Assume Mk is a a non�empty q���submanifold and �x�� p�� belongs
to Mk 	 Let �k be the connected component of Mk which contains �x�� p��	
As before there exists an open set Uk of �x�� p�� in �k 
 a submanifold Yk
of X such that dim Yk � q � mk � q � dim�k and Uk is a submanifold of
TYk 	 Even if this means shrinking Uk
 let us place ourselves once more in
a chart of Yk at x�	 Then Yk is an open set of Rmk that we denote by Yk 

TYk � Yk �R

mk and Uk is a submanifold of Yk �R
mk of dimension mk � q	

Then there exists in a neighborhood of �x�� p�� in Yk�Rmk a submersion Gk �
�Yk �Rmk� �x�� p���� �Rmk�q � �� such that Uk � G��

k
���	 In this way �j�k

is a subimmersion in a neighborhood of �x�� p��
 if
 and only if
 DpGk�x� p�
has constant rank �k � rk � q � mk � q in a neighborhood of �x�� p�� in
Uk	 Then any local projection Wk � ��Vk� of Uk �or Mk� in �x�� p�� is a
submanifold of Yk of dimension rk	 There exists in a neighborhood of x�
in Yk a submersion gk � �Y�� x�� � �Rmk�rk � �� such that Wk � g��

k
��� in a

neighborhood of x� in Yk	 The tangent bundle TWk is the subset of points
�x� p� of TYk for which the following equations are satis�ed

gk�x� � �� Dgk�x�p � ��

The reduction Mk�� of Mk is in a neighborhood of �x�� p�� the �possibly
empty� subset of points such that

Dgk�x�p � �� Gk�x� p� � ��
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More particularly here
 �x�� p�� is a point of reducibility of Mk if
 and only
if
 Dgk�x��p� � �	 If Mk�� is not a q���submanifold then the algorithm is
stopped	 If Mk�� is empty then C�M� is empty	

Step m � � � �q
 Let us assume that Mm���
q is a non�empty q���
submanifold of TX and �x�� p�� belongs to Mm���
q 	 Then the proof of
the theorem �	�� gives the controlled vector �eld	

Remark �	�� For each step k we de�ne the submersions

Gk � �Yk �R
mk� �x�� p���� �Rmk�q� ��

gk � �Yk� x��� �Rmk�rk � ��

with m� � dim�� and mk�� � rk � �k � q � mk 	 Since the sequences
of integers �k and mk are decreasing there exists an integer � such that
�k�� � ���� and mk � m� for any integer k 	 �	 We have the following
sequence of inequalities

q � � � � � m��� � m� � m��� � � � � � mk�� � mk � � � � � m� � m� � n�

We �nd once again that the index � is
 at most
 equal tom��q � dim����q
and it is equal to m� � q when mk�� � mk � � for all k � �	

We shall end this section by showing �rst how to obtain gk from Gk
 then
how to characterize the reducibility of Mk in a neighborhood of �x�� p�� and
�nally how to �nd Gk�� with gk and Gk	

Construction of gk
 we show the existence of a local coordinates system on
a submanifold Nk of Uk such that �jNk

� Nk � Wk is a local di�eomorphism	
Since
 Nk has to be a submanifold of Uk of dimension rk
 we must obtain a
submersion �Gk of Yk�R

mk in R
mk�rk 	 Let Ak � R
mk � R

mk�
k be a linear
mapping such that

kerAk � kerDpGk�x�� p�� � f�g� rank Ak � mk � �k

We de�ne �Gk by �Gk�x� p� � �Gk�x� p�� Ak�p�p���	 D �Gk�x�� p�� has full rank
�mk � rk
 and so �Gk is a submersion in an open neighborhood of �x�� p��

in TYk	 We take Nk � �G��
k ��� in a neighborhood of �x�� p�� in Uk	 The

tangent space is

T�x��p��Nk � kerD �Gk�x�� p�� � kerAk � kerDGk�x�� p���

Then
 according to the following equality

T�x��p��Nk � kerD��jUk��x�� p�� �

kerD �Gk�x�� p�� � f�g � kerDpGk�x�� p�� � �

and the subimmersion theorem
 �jNk
� Nk � Wk is a local di�eomorphism	

The local coordinate system ofNk in a neighborhood of �x�� p�� is obtained
in the following way	 Let Ek � Im DpGk�x�� p�� and Fk be any complement
of Ek in R

mk�q and Pk the projection of R
mk�q � Ek � Fk � Ek � Fk onto

Fk 	

Lemma �	�� The subspace Kk � kerPkDxGk�x�� p�� of Rmk has dimension
rk� Moreover� for any complement Lk of Kk in Rmk� the linear mapping

Ik � PkDxGk�x�� p��jLk � Lk � Fk

is an isomorphism�
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Proof� For the subspace Kk we have the �rst inequality

dimKk � mk � dim Im PkDxGk�x�� p�� 	 mk � �mk � rk� � rk

Let us show the other inequality	 According to the de�nition of the projec�
tion Pk

PkDG�x�� p�� � PkDxGk�x�� p���

Consequently
 for any ��x� �p� � T�x��p��Nk� �x � Kk	 Conversely
 for any
�x � Kk there exists a �p � R

mk such that ��x� �p� � T�x��p��Nk	 Indeed
 if
�x � Kk
 then DxGk�x�� p���x � Im DpGk�x�� p��
 and so there exists �p

� �
R
mk such that DGk�x�� p����x� �p

�� � �	 But
 since Ak is an isomorphism
from kerDpGk�x�� p�� into R

mk�
k there exists a �p�� � kerDpGk�x�� p��
such that

Ak��p
� � �p��� � �

whence ��x� �p� � T�x��p��Nk for �p � �p� � �p��	 Thus

D��x�� p��T�x��p��Nk � Kk

and dimKk � dimT�x��p��Nk � rk	 Finally
 according to the de�nition of
Lk and Ik
 ker Ik � Lk �Kk � f�g	

Thus any point x of Rmk is splitting in a unique way as x � �x��x
 where �x
belongs to Kk and �x belongs to Lk	 Let us consider in a open neighborhood
of �x�� p�� the equation

�Hk��x� �x� p� � �Gk��x� �x� p� � �Gk��x� �x� p�� Ak�p� p��� � ��

Since

D��x�p�
�H�x�� p�� �

�
DxGk�x�� p��jLk DpG�x�� p��

� A�p� p��

�

is an isomorphism then in an open neighborhood of �x�� p��

Nk � f��x� �k��x�� �k��x�g

with ��x�� �k��x��� �k�x��� � ��x�� �x�� p��	 Lastly
 in a neighborhood of x�


Wk � ��Nk� � f��x� �k��x�g � g��k ����

We can therefore establish gk�x� � �x� �k��x�	

Criterion of reducibility
 in order to characterize the reducibility of Mk in
a neighborhood of �x�� p�� we give the following result

Proposition �	�� Given gk � Rmk � Kk � Lk � Lk � Rmk�rk the above
mapping� then for any �x � ��x� ��x� �y � ��y � ��y of Rmk

Dg�x���x � ��x and D
gk�x����x� �y� � I��
k
PkBk���x� ��y�

where Bk is the bilinear mapping on Kk

Bk��� � � D
Gk�x�� p������ D�k��x����� � � D�k��x�� ��

Proof� For any �x � ��x� ��x� �y � ��y � ��y of Rmk

Dgk�x���x � ��x�D�k��x����x

D
gk�x����x� �y� � �D
�k��x�����x� ��y��

According to the relationship �Hk��x� �k��x�� �k��x�� � � we have

D
x
�Hk��x� �k��x�� �k��x�� �D�x

�Hk��x� �k��x�� �k��x��D�k��x�
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� Dp
�Hk��x� �k��x�� �k��x��D�k��x� � ��

and at the point �x�� p�� this gives

D
x
�Hk��x�� �x�� p�� �D�x

�Hk��x�� �x�� p��D�k��x��

� Dp
�Hk��x�� �x�� p��D�k��x�� � ��

But

D
x
�Hk��x�� �x�� p�� �

�
DxGk�x�� p��jKk

�

�

D�x
�Hk��x�� �x�� p�� �

�
DxGk�x�� p��jLk

�

�

Dp
�Hk��x�� �x�� p�� �

�
DpGk�x�� p��

Ak

�
�

Thus
 we obtain

DxGk�x�� p��jKk
�DxGk�x�� p��jLkD�k��x�� �DpGk�x�� p��D�k��x�� � �

AkD�k��x�� � ��

Let us apply Pk on the second equality
 then we �nd D�k��x�� � �	
According to the relationship

D
x
�Hk��x� �k��x�� �k��x�� �D�x

�Hk��x� �k��x�� �k��x��D�k��x�

� Dp
�Hk��x� �k��x�� �k��x��D�k��x� � ��

we obtain at the point ��x� �x� p� � ��x� �k��x�� �k��x� the following equality

D


x�
�Hk��x� �x� p����x� ��y� �D


�x
x
�Hk��x� �x� p����x�D�k��x���y�

� D

p
x
�Hk��x� �x� p����x�D�k��x���y� �D



x�x
�Hk��x� �x� p��D�k��x���x� ��y�

� D

�x�
�Hk��x� �x� p��D�k��x���x�D�k��x���y�

� D

p�x
�Hk��x� �x� p��D�k��x���x�D�k��x���y�

� D�x
�Hk��x� �x� p�D


�k��x����x� ��y� �D


xp
�Hk��x� �x� p��D�k��x���x� ��y�

� D

�xp
�Hk��x� �x� p��D�k��x���x�D�k��x���y�

� D

p�
�Hk��x� �x� p��D�k��x���x�D�k��x���y�

� Dp
�Hk��x� �x� p�D


�k��x����x� ��y� � �

which thus gives at the point �x�� p�� the equality

D


x�
�Hk��x�� �x�� p�����x� ��y� �D



xp
�Hk��x�� �x�� p���D�k��x����x� ��y�

� D

p
x
�Hk��x�� �x�� p�����x�D�k��x����y�

� D

p�
�Hk��x�� �x�� p���D�k��x����x�D�k��x����y�

� Dp
�Hk��x�� �x�� p��D


�k��x�����x� ��y�

� D�x
�Hk��x�� �x�� p��D


�k��x�����x� ��y� � ��

According to the de�nition of �Hk we obtain for Gk the relationship

DxGk�x�� p��jLkD

�k��x�����x� ��y� �

� DpGk�x�� p��D

�k��x�����x� ��y�

� D
Gk�x�� p������x�D�k��x����x�� ���y�D�k��x����y���
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Let us apply Pk on the left
 then we obtain

IkD

�k��x�����x� ��y� �

�PkD

Gk�x�� p������x�D�k��x����x�� ���y�D�k��x����y���

Proposition �	�� Let �x�� p�� be a point of reducibility of Mk and Wk �
��V � a local projection of Mk in �x�� p��� Mk is reducible in a neighborhood
of �x�� p�� if� and only if�

rank

�
PkBk�p�� �� PkDxGk�x�� p��
DxGk�x�� p�� DpGk�x�� p��

�
� �mk � �rk � q� ��	��

and if in a neighborhood of �x�� p�� in TWk � Vk

dim�kerPk�x� p�DxGk�x� p�� kerDpGk�x� p�� �

dim�kerPkDxGk�x�� p�� � kerDpGk�x�� p���

where Pk�x� p� is the projection onto a complement of

Ek�x� p� � Im DpGk�x� p��

Proof� Clearly
 the tangent space of TWk at �x�� p�� is the subset of points
��x� �p� of TYk which satisfy the following system

Dgk�x���x � �
D
gk�x���p�� �x� �Dgk�x���p � �

and consequently T�x��p��TWk � T�x��p��Mk is the subset of points such that

Dgk�x���x � �
D
gk�x���p�� �x� �Dgk�x���p � �

DxGk�x�� p���x�DpGk�x�� p���p � ��

But
 on the one hand
 according to proposition �	�
 the �rst equality means
that �x � ��x
 namely �x belongs to Kk	 And on the other hand
 we obtain
the same thing when Pk is applied on the third equation	 Thus we can leave
aside the �rst equation	 Now
 T�x��p��TWk � T�x��p��Mk is the kernel of the

linear mapping DRk�x�� p�� � R
mk �Rmk � Lk �R

mk�q where

DRk�x� p� �

�
D
gk�x��p� �� Dgk�x�
DxGk�x� p� DpGk�x� p�

�
�

Therefore
 the subspace T�x��p��TWk�T�x��p��M has dimension rk�q if
 and
only if
 the linear mapping DRk�x�� p�� has full rank mk � rk � mk � q �
�mk � �rk � q�
 namely if
 and only if
 dim kerDRk�x�� p�� � rk � q	 A
point ��x� �p� belongs to kerDRk�x�� p�� if
 and only if
 ��x� �p� satisfy the
following system�

D
gk�x���p�� �x� �Dgk�x����p � �
DxGk�x�� p���x�DpGk�x�� p���p � ��

According to proposition �	� this is equivalent to the system�
I��k PkBk�p�� ��x� � ��p � �

DxGk�x�� p���x�DpGk�x�� p���p � ��
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And according to lemma �	� this is equivalent to the system�
PkBk�p�� ��x� � PkDxGk�x�� p����p � �
DxGk�x�� p���x�DpGk�x�� p���p � ��

Lastly
 as we have seen above
 the second equation implies that �x � ��x	
Thus
 we are able to write �x instead of ��x in the �rst equation of this
system	 Obviously we are also able to write �p instead of ��p in the �rst
equation	 Then we obtain the system�

PkBk�p�� �x� � PkDxGk�x�� p���p � �
DxGk�x�� p���x�DpGk�x�� p���p � ��

Thus
 dim kerDRk�x�� p�� � rk � qk if
 and only if
 ��	�� holds	
Now
 assume that in an open neighborhood of �x�� p�� in TWk � Vk

rank �jT�x�p��TWk�Vk� is constant� ��	��

As we can see
 DRk�x�� p�� is precisely the derivative of the mapping

Rk � TYk � Lk �Rmk�q

�x� p� 
� �Dgk�x� p�� Gk�x� p��

where the zero set in a neighborhood of �x�� p�� is exactly TWk �Vk	 Thus

in a neighborhood of �x�� p��
 T�x�p��TWk � Vk� is the kernel of DRk�x� p�	
The condition ��	�� holds if
 and only if
 the mapping

��x� �p� � kerDRk�x� p� 
� �x ��	��

has constant rank in neighborhood of �x�� p�� in TWk�Vk 	 Compute the ker�
nel of this mapping for any point �x� p� in an open neighborhood of �x�� p��	
This is the set of ��x� �p� of Rmk �Rmk such that

�x � �
D
gk�x��p� �x��Dgk�x��p � �

DxGk�x� p��x�DpGk�x� p��p � �

namely
 the set f�g � �kerDgk�x� � kerDpGk�x� p��	 However


kerDgk�x� � kerPk�x� p�DxGk�x� p��

Indeed the equality Dgk�x��p � � means that �p belongs to TxWk which is
the projection of TxMk � Therefore
 there exists �q such thatDxGk�x� p��p �
DpGk�x� p��q � �	 And if we apply Pk�x� p�
 we obtain that

kerDgk�x� � kerPk�x� p�DxGk�x� p��

Since dim kerDgk�x� � dim kerPk�x� p�DxGk�x� p� we have the equality	
Thus
 the mapping ��	�� has constant rank if
 and only if


dim�kerPk�x� p�DxGk�x� p�� kerDpGk�x� p�� �

dim�kerPkDxGk�x�� p�� � kerDpGk�x�� p���

Construction of Gk��
 we construct another submersion forMk and then we
obtain a submersion forMk��	 Let Ck be a linear mapping from Rmk��
k�q�

to Rmk�q such that Im Ck � Ek � Rmk�q� 
 Kk the kernel of DpGk�x�� p��

and Lk a complement of Kk	 The linear mapping Jk � Lk �Rmk��
k�q� �

�Such mapping is one�to�one since it has rank mk � ��k � q��
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R
mk�q given by Jk�u� v� � DpGk�x�� p��u�Ckv is an isomorphism	 Indeed


for any �u� v� such thatDpGk�x�� p��u�Ckv � � since u belongs to Lk a com�
plement of Kk � kerDpGk�x�� p��
 then Ckv belongs to Im DpGk�x�� p�� �
Ek
 therefore Ckv � �
 and v � � since Ck is one�to�one	 Consequently
 u
belongs to Kk and then u � �	 Now
 for the mapping

Fk � TYk �R
mk��
k�q� � R

mk�q

�x� p� u� 
� Gk�x� p� � Cku

the zero set �Mk is a submanifold of dimension �mk � �k	 Using the implicit
mapping theorem we obtain the following parameterization of �Mk

#p � ak�x� $p�� u � bk�x� $p�

where #p belongs to Lk and $p to Kk	 Then we de�ne in a neighborhood of
�x�� p�� in TYk the mapping

�Fk � TYk � Lk � R
k

�x� p� 
� �Fk�x� p� � #p� ak�x� $p�

and the mapping

�Gk � TYk � R
mk��
k�q� � Lk

�x� p� 
� �Gk�x� p� � �gk�x�� �Fk�x� p���

Proposition �	�� In an neighborhood of �x�� p�� the q���submanifold Mk

is the zero set of the mapping �Gk and the q���submanifold Mk�� is the zero
set of the mapping �Fk jTWk

�

Proof� According to the construction
 the mapping �Gk is a submersion in a
neighborhood of �x�� p��
 therefore the zero set of �Gk is a submanifold with
the same dimension of M 	 Then we have only to prove that Mk � �G��

k
���

in a neighborhood of �x�� p�� to set the equality Mk � �G��
k
���	 For any

point �x� p� of Mk in a neighborhood of �x�� p��
 Gk�x� p� � �
 therefore
�x� p� �� belongs to �Mk which implies that �Fk�x� p� � �	 Lastly
 Gk�x� p� � �
implies that gk�x� � �	 Then the inclusion has been proved	 The reducibility
assumption of Mk in a neighborhood of �x�� p�� gives

rank

�
D
gk�x���p�� �� Dgk�x��

Dx
�Gk�x�� p�� Dp

�Gk�x�� p��

�
� �mk � �rk � q��

Therefore
 for any �v of Lk there exists ��x� �p� such that

D
gk�x���p�� �x� �Dgk�x���p � �
Dgk�x���p � �

Dx
�Fk�x�� p���x�Dp

�Fk�x�� p���p � �v�

In other words for any �v of Lk there exists ��x� �p� belonging to T�x��p��TWk

such that

Dx
�Fk�x�� p���x�Dp

�Fk�x�� p���p � �v�

Therefore the mapping Fk jTWk
is a submersion in a neighborhood of �x�� p��

and the zero set is TWk � Vk	

We now see that
 with a chart of Wk
 we may de�ne Gk�� � �FkjTWk
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�� Appendix

�	�	 Proof of main results

Proof of Theorem ���� Let x��� be an admissible trajectory of P� � sup�
posed continuously di�erentiable in the interval ��� �� for reasons of conve�
nience��	 Let t� belongs to the open interval ��� ��
 �x�� p�� � �x�t��� �x�t���
and W� � ��V�� be a local projection of M� at �x�� p��
 then for any t in
a open neighborhood of t�
 �x�t�� �x�t�� belongs to V�	 Consequently
 x�t�
belongs to W� for any t in an open neighborhood of t�	 Thus �x�t�� �x�t�� be�
longs to TW��V� for any t in an open neighborhood of t�	 Since TW��V� is
equal to M� in an open neighborhood of �x�� p��
 �x�t�� �x�t�� belongs to M�

for any t in open neighborhood of t�� this is the case for t�	 We have shown
that for any t� belonging to the open interval ��� ��
 �x�t��� �x�t��� belongs to
M�	 Let us prove that �x���� �x���� �resp	 �x���� �x����� belongs to M�	 Let
ftngn�� be a sequence of ��� �� converging to � �resp	 ��
 we then have

lim
n	


�x�tn�� �x�tn�� � �x���� �x����

�resp� lim
n	


�x�tn�� �x�tn�� � �x���� �x������

But for any n
 �x�tn�� �x�tn�� belongs to M� which is a closed subset of M�

therefore �x���� �x���� �resp	 �x���� �x����� belongs to M�	 Thus we have
shown that x��� is an admissible trajectory of the problem P�	 By induction
we show that x��� is an admissible trajectory of the problem Pk for any
k	 From the de�nition of the core C�M�
 x��� is an admissible trajectory
of Pc	 Let �x��� be a strong �resp	 weak� trajectory of Pc
 clearly it is an
admissible trajectory of P�	 Assume that �x��� is not an strong �resp	 weak�
minimum of P�
 then there exists an admissible trajectory �x��� of P� such
that J��x���� � J��x����
 but any admissible trajectory of P� is an admissible
trajectory of Pc	 Therefore
 �x��� is an admissible trajectory of Pc such
that J��x���� � J��x����� then
 we obtain a contradiction with the optimal
character of �x���	

Proof of Theorem ���� According to the proof of the theorem �	�� the
continuous mapping �resp	 piecewise continuous� u��� � H�x���� �x���� is the
solution	 The converse is direct	

Remark �	�� According to theorem �	�� if we take another local projection
W � � ��V �� of C�M� at �x�� p��
 another open set O� and another controlled
vector �eld 	� then the bundle isomorphism h gives a bijection between the
trajectories of 	 and 	�	 Then
 the theorem �	� is independent of the choice
of the triplets �W�O� 	�	

	In the case of continuous and piecewise di�erentiable admissible trajectory x��� we
proceed from the same way for any interval �
� ���� ��k� �k
��� ��n� ��� where 
 � �� � � � � �
�n � � are the points of discontinuity of �x and for any admissible trajectory x��� which is
absolutely continuous we use the fact that there exists a denumerable sequence �In�n�N
of disjoint interval in �
� �� such that the Lebesgue�s measure of the set I � �nIn is zero
and the restriction of �x���� �x���� in each interval In is extended on the interval �In by a
continuous mapping �xn���� �xn�����
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Proof of Theorem ���� If �xjI���� is not a strong minimum of the implicit
Lagrange problem Pc�� then there exists an admissible trajectory �x��� of Pc��
such that Z ���

���

L��x�t�� ��x�t��dt �

Z ���

���

L��x�t�� ��x�t��dt�

Then
 the construction of the admissible trajectory of the implicit Lagrange
problem Pc

x��t� �

�
�x�t� if t � ��� 
 � ����
 � �� ���
�x�t� if t � �
 � �� 
 � ���

gives the inequality
J�x����� � J��x����

which contradicts the optimality of �x���	

Proof of Theorem ���� Let �x��� be a strong minimum of Pc�� and �u���
the corresponding control	 Assume that the control �u��� is not an optimal
control of Pe then there exists an admissible control �u��� of the explicit
optimal control problem Pe such that for the process ��x���� �u���� we have the
inequality Z ���

���
L�	��x�t�� �u�t���dt �

Z ���

���
L�	��x�t�� �u�t���dt�

According to the theorem �	� the trajectory �x��� is an admissible trajectory
of Pc�� such thatZ ���

���
L��x�t�� ��x�t��dt �

Z ���

���
L�	��x�t�� �u�t���dt

�

Z ���

���
L�	��x�t�� �u�t���dt

�

Z ���

���
L��x�t�� ��x�t��dt�

Which is impossible	 Conversely
 given ��x���� �u���� an optimal process of
the explicit optimal control problem Pe
 then according to theorem �	� the
trajectory �x��� is an admissible trajectory of Pc��	 If it is not a strong
minimum then there exists an admissible trajectory �x��� of Pc�� such thatZ ���

���

L��x�t�� ��x�t��dt �

Z ���

���

L��x�t�� ��x�t��dt�

But
 according to the theorem �	� for the trajectory �x��� there exists a
unique control �u��� such that ��x�t�� ��x�t�� � 	��x�t�� �u�t��	 Thus
 ��x���� �u����
is an admissible process of Pe such thatZ ���

���
L�	��x�t�� �u�t���dt �

Z ���

���
L��x�t�� ��x�t��dt

�

Z ���

���

L��x�t�� ��x�t��dt

�

Z ���

���

L�	��x�t�� �u�t���dt

which is impossible	
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�	�	 Pontryagin Maximum Principle

For the classic problem of optimal control ���
 �
 ��
 ���� we are given a
state variable x in Rn
 a control variable u belonging to a closed subset U
of Rq
 a vector �eld f�x� u� of the state depending on the control variable
 a
startsubmanifold X� of R

n
 an endsubmanifold X� of R
n and a cost function

L�x� u�	 For any control u belonging to KC���� ���Rq� the set of piecewise
continuous functions� �resp	 measurable and bounded�� the Cauchy�s prob�
lem �

�x�t� � f�x�t�� u�t�� �t � ��� �� �resp� a�e� on ��� ���
x��� � a

��	��

admits an unique trajectory belonging to KC����� ���Rn�
 the set of contin�
uous and piecewise di�erentiable functions� �resp	 AC���� ���Rn�
 the set of
absolutely continuous functions��	 The pairs trajectory%control �x���� u����
are called the processes	 A process is admissible if u�t� � U for any t
 x���
belongs to X� and x��� belongs to X�	 For any admissible process �x� u� we
associate the cost

J�x� u� �

Z �

�
L�x�t�� u�t��dt�

An admissible process �u is optimal if J��x� �u� is the minimum of J on the set
of admissible processes
 namely the solution of the following problem

P min
�x���	f�x����u����

x����X�

x����X�

Z �

�
L�x�t�� u�t��dt�

The Pontryagin Maximum Principle gives the necessary conditions for opti�
mality	

Theorem �	�� �Maximum Principle� If ��x���� �u���� is an optimal process for
the problem P� then there exists a non zero Lagrange multiplier

� ������� ������� � � � � ��n���� � ������� �����

belonging to KC����� ���Rn��
�
� �resp� AC���� ���Rn��

�
�� and satisfying the

following conditions

�a�� for any t belonging to ��� �� �resp� a�e� on ��� ���

�����t� � ��
���i�t� � �

�H

�xi
��x�t�� �u�t�� ����t�� ���t��� i � �� � � � � n�

�b�� for any t belonging to ��� �� �resp� a�e� on ��� ���

H��x�t�� �u�t�� ����t�� ���t�� � maxu � UH��x�t�� u�
����t�� ���t���

�c�� ������ � �� ������T
x���X� and ������T
x���X�

�For such control u� there exists a �nite number of points 
 � �� � � � � � �n � � such
that u is continuous on any open interval �
� ������k� �k
��� ��n� ��� and such that the right
and left limits of u at �k exist� We denote the set of points of continuity by T �

�For this class of control� T is the set of Lebesgue points�

For such trajectories x the function �x��� belongs to KC��
� ���Rn��
�Recall that for any 	 
 
 there exist a � 
 
 such that for any �nite collection

��ak� bk ��k������ �n of non overlapping open interval such that
Pn

k�� j bk � ak j� � thenPn

k�� jj x�bk�� x�ak� jj� 	�
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where H�x� u� ��� �� �
Pn

i	� �if
i�x� u� � ��L�x� u��

Proof of Theorem ���� See ��
 �
 �
 ��� and ��
 ��� for the nonsmooth
case	

Remark �	�� a� As usual
 we can only consider the two cases ������ � �
and ������ � �� and then consider the following pseudo�Hamiltonian

H�� � T �
R
n� U � R

H���x� �� u� �
nX
i	�

�if
i�x� u� � ��L�x� u�

where �� � �� �	 The necessary conditions �a� and �b� become

�a��� the triplet ��x���� ������ �u���� is a trajectory of the controlled vector
�eld

��
H �� � T �

R
n� U � T �T �

R
n�

�x� �� u� 
�
��
H ���x� �� u� �

nX
i	�

�H��

��i
�x� �� u�

�

�xi
�

nX
i	�

�H��

�xi
�x� �� u�

�

��i

where �� � �� �	
�b��� for any t belonging to ��� �� �resp	 a	e	 on ��� ���

H����x�t�� �u�t�� ���t�� � maxu � UH
����x�t�� u� ���t���

b� the trajectories ��x���� ������ which are the projection of a triplet

��x���� ������ �u����

satisfying the conditions �a��
 �b�� and �c� are called the extremals of P 	

I would like to express my sincere gratitude to Marc Chaperon and Pierre
Rouchon for helpful discussions and encouragements�
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