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ESTIMATIONS OF THE BEST CONSTANT INVOLVING
THE L? NORM IN WENTE’S INEQUALITY AND
COMPACT H-SURFACES IN EUCLIDEAN SPACE

GE YUXIN

ABSTRACT. In the first part of this paper, we study the best constant
involving the L? norm in Wente’s inequality. We prove that this best
constant 1s universal for any Riemannian surface with boundary, or re-
spectively, for any Riemannian surface without boundary. The second
part concerns the study of critical points of the associate energy func-
tional, whose Euler equation corresponds to H-surfaces. We will estab-
lish the existence of a non-trivial critical point for a plan domain with
small holes.

1. INTRODUCTION

Let Q be a smooth and bounded domain in R% We denote V = {a €
H(Q),a # constant} and Vo = V N HY(Q). Given two functions a, b € V,
we denote by ¢ the unique solution in W1(Q) of the Dirichlet problem

{ —Ayp = agb, — ayb,, in Q

p =0, on 0f), (1.1)

where subscripts denote partial differentiation with respect to coordinates.
By developing a previous work from H. Wente [22], H. Brezis and J.-M.
Coron [7] showed the following result:

TurOREM 1.1. The solution ¢ of equation (1.1) is a continuous function on
Q and ¢ € HY(Q). Moreover there exists a constant Co(Q2) which depends
only on  such that

[l e () + IVElL2 @) £ ColIVall 2 () IVl 2(q) (1.2)

This result is sharp in the sense that since the right hand side of (1.1) is in
L1(Q), the classical theory of Calderon-Zygmund does provide estimates for
@ only in L7(Q) and W?(Q) for ¢ < oo and p < 2. Note that equation (1.1)
appears in many problems arising in physics and geometry, and Theorem
1.1 has many applications.

Later on, F. Bethuel and J.-M. Ghidaglia [5] proved that in fact one can
find a constant Cp(€2) which does not depend on Q. We are interested here
in the optimal (i.e. smallest) value of this constant such that estimates
analogous to (1.2) hold. To be more precise we denote by C,(2) the best
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264 GE YUXIN

constant involving the L*-norm in the estimations and by C5(€) for the
L?*-norm, i.e.

[l
Coo(Q) = sup j=——e—r, (1.3)
abev [Vall,[I Vo],
V 2
Co(@) = sup Vel (1.4)

2 2°
abeV || Vallo[[ VO[3

S. Baraket [3] obtained that C's(€2) = 2= for simply connected domain €.
This result has been recently extended to any domain by P. Topping [21].
Our aim in this paper is to study C3(2). Thus we consider the following
energy functional defined on V x V

IVell3
IVall3lI Vbl

where a, b € V, and ¢ is given by (1.1).
In this paper, we will prove the following main results.

E(a,b,Q) = (1.5)

THEOREM 1.2. Let Q be a smooth bounded domain in R?. Then we have
3
Q)= —.
©2() = 157
Moreover, the best constant is achieved if and only if Q is simply connected.

Notice that the functional F/(a,b,2) is invariant under the action of con-
formal diffeomorphisms on the domain Q (see [15]). As a consequence we
deduce that C3(Q2) and C(2) depend only on the conformal type of Q.
Moreover it implies that the functional ' makes sense on any Riemann sur-
face (i.e. a surface equipped with a conformal structure) with or without
boundary. In section 4, we prove generalizations of Theorem 1.2, namely

THEOREM 1.3. Let M be a Riemann surface with a non empty boundary,

then
3

~ 167
and the mazimum in (1.5) is achieved if and only if M is topologically a
disc.

Ca(M)

THEOREM 1.4. Let M be a Riemann surface without boundary, then

3

T 32r

and the mazimum in (1.5) is achieved if and only if M is topologically a
sphere.

Ca(M)

An interesting observation, due to F. Hélein [15], is that the study of
E leads to a solution of the H-surface equation —Au = u; X u,, satisfied
by surfaces of constant mean curvature in R® in conformal representation.
For this purpose, we will look for critical points of E. Note that direct
variational approaches on that problem were developed in [7], [17] and [22].
In view of Theorem 1.2, we can not maximise the problem if Q is not simply
connected. The major obstruction in proving the existence of a maximum
comes from the fact that the norms ||Val|;2 and ||Vb||j2 are not continuous
under weak convergence in L?. Indeed, for any smooth bounded domain in
plan, concentration phenomena occur in the maximizing sequence as shown
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WENTE’S INEQUALITY AND COMPACT H-SURFACES 265

in section 7 of this paper. However, making use of a topological method,
invented by J.-M. Coron [8], we establish the following result of existence.

THEOREM 1.5. Let £ be the unit disc perfored with small holes. Then F
admits a non trivial critical point.

This paper consists of two parts; sections 2-5 are concerned with the
estimations of the best constant involving the L? norm in Wente’s inequality,
the remainder is devoted to search of a critical point for E: a study of the
compactness of minimizing sequences, of the Palais-Smale condition and
some existence results through a topological argument.

PART A. ESTIMATIONS OF THE BEST CONSTANT INVOLVING THE
L? NORM

2. OQOUTLINE

In this part, we will study the energy functional F and estimate the value
of C3(2). Our approach is the following. In section 3, we will look for
the Euler-Lagrange equation for critical points of the functional E(a,b, )
on the “manifold” where |Va|l2 = [|Vb||s = 1. After a scaling which uses
the Lagrange multiplier, we see that any critical point leads by a canonical
way to a solution of the H-surface equation, that is, the equation satisfied
by a conformal parameterization of a surface when its mean curvature is
constant.

In section 4, we will calculate C3(€2) in the case where Q is a smooth
bounded domain in R2. With the help of the isoperimetric inequality, we
will show that C3(€) = o—. If Q is a disc, it is easy to show also that this
constant is achieved. The next question is to know whether the maximum
of F is achieved for a multiply connected domain. This is an interesting
problem related to surfaces of constant mean curvature. Recall that for a
long time, we thought that there does not exist an immersion with constant
mean curvature from torus into R3. In 1984, H. Wente has given a coun-
terexample. In view of Euler equation, the torus of Wente gives rise to a
critical point of our functional £ on an annulus. Indeed, let ¥ = (a,b, ¢)
be a critical point of £ on an annulus, we construct a compact oriented

Riemannian surface M = Q[J,, Q2 by sticking © and a copy of €, pro-
vided with opposing orientation and define a C'° map ¥ from M into R®
by U = U on Q and ¥ = (a,b,—) on Q. Would this map be conformal,
then its image would be a torus of constant mean curvature. Conversely the
torus of Wente corresponds to a critical point of our functional F on some
annulus. Unfortunately, this surface can not be obtained by maximizing
the energy functional I/ and Wente tori thus correspond to nonmaximizing
critical points of E. We will prove this fact in section 5.

At end of this part, we will also generalize all these results on a compact
manifold without boundary. An interesting fact is that Cy(M) is also uni-
versal and is just half of C3(€2). Furthermore, a maximal critical point on
a domain in the plan gives rise to a maximal critical point on a compact
manifold, by sticking.
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3. THE EULER-LAGRANGE EQUATION

DEFINITION 3.1. A point (a,b) € V x V is critical for the energy functional
F if it satisfies the following conditions:
(i) VE(a+ta,b+s8,Q)|(s,n=(0,0) =0, for all , 3 € HY(Q),
(ii) if o4 : Q@ — Qis a family of diffeomorphisms, depending differentiably
on t, with o9 = tdg, then we have
d

% E(aOUt7bOUt7Q):O.

t=0

We remark that F is invariant under a conformal transformation of €2 and
E(Xa,ub, Q) = E(a,b,Q)for all A\, p € R*. Hence, without loss of generality,
we can assume that [|Va|, = [|Vb||, = 1.

THEOREM 3.2. Assume that (a,b) € V XV is a critical point of E such that
@ #0. Then

(i) /VaVb =0,

Q
b
(ii) g_a = g— =0 on IQ where n = (n',n?) is the normal vector on 99,
n n
(iii) there exists A € R* such that W = (a1, b1, 01) = (Aa, Ab, \2p) satisfies:
—O¢r = a1, b1},
—Oay = {bi, 1}, (3.1)

—Aby = {e1, a1},
where {57 77} = gxny - gynx;
(iv) W is C™ on 1,
(v) the Hopf differential w = (3,¥, 9, V) is holomorphic, i.e.

0:(0,¥,0.¥) = 0.
Moreover, if we denote t = —n® +in' the unit complex number tangent

to 022, we have
Im(wt*) = 0 on 09.

(vi) If Q is simply connected, then the Hopf differential vanishes:
(0,¥,0,¥) =0,

1
where 0, = 5(81, — 10y), which implies that ¥ is conformal,
(vii) if Q is an annulus, then there exists ¢ € R such that
c
First we prove some technical lemma.

LEMMA 3.3. (see [7] and also [22]). If ¢ € HY(Q) N L>™(Q) (resp. ¢ €
H3(Q)), a € HY(Q) N L>¥(Q) (resp. a € H'(Q)) and b € H'(Q) (resp.
be Wheo(Q)), then we have

[ tasy= [ apv.)
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WENTE’S INEQUALITY AND COMPACT H-SURFACES 267

Proof. Assuming first that ¢, a, b € C?(2), we have

/Qc,o{a,b} :/Qc,o(axby—aybx)
- /Q el(aby) — (ab,),].

Integrating by parts and using the fact ¢ = 0 on 9€2, we obtain

[ etasy= [ atvap, - b = [ atpo).

Now, we consider ¢ € L>=(Q) N HI (), b€ HY(Q) and a € L>=(Q) N H(Q).
We choose three suitable sequences of smooth functions {¢, bnen, {@n }nen
and {b, },cn satisfying the following conditions:

0, — @ in HY(Q) and ¢, — ¢ weakly x in L (),

b, — bin HY(Q),

a, — a in H'(Q) and a,, — a weakly x in L ().
We state that

| /Q olab)] < llellp IV alll[Fbly:

| /Q afb, 0} < llall IV el Fb]l,:

Passing to the limit in the inequality for a,, b, and ¢,, this completes the
proof. O

LEMMA 3.4. (see [5] and see also [22]). Let W € HY(;R3) be a solution of
equation (3.1) in the sense of distributions. Then W € C*°(Q;R?).

Proof. (of Theorem 3.2). Let a; = a + tb, by = b. We denote by ¢, the
unique solution in H}(Q) of equation (1.1). Obviously, we have ¢; = ¢ for
all t € R and [|Vay||; = ||Val; + 2t [, VaVb+ O(¢?). Then (i) follows from
the definition of a critical point.

Given a; = a+ta, by = b with o € C*°(Q). We denote ¢ the unique solution
in H}(Q) of equation (1.1) with @ = «, that is,

-AY ={a,b}, inQ
P 0, on 0f).

It is clear that
[ived = [ 21 [ Vo-vurow).
Q Q Q

By Lemma 3.3,
/w{ayb}z/a{bw}-
Q Q
Hence, we obtain
[1ver = [19el 42t [ pt-n0)+00)
Q Q Q
= [196F +2 [ plat)+002)
Q Q
= [19el+2t [ alp.e)+ 0
Q Q
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On the other hand,

/ |Va,|* = / |Val® + Qt/ Va-Va+O(t?).
Q Q Q

Thus, we have

IVl +2t [ afbig)+0@)

E(at,bt,Q) = .
(Hva\y§+2t/ Va-Va) Vb5 + O(t?)
Q

With the definition of critical point, we conclude that
/Qoe{b,cp} = HV@H%/QVQ -Va, Yo € C(Q).
Performing analogous deformations for b, we obtain
| 3teay =19l [ 9595, for any 5 € (@)

In particular, if we set a, 5 € C§°(R2), we deduce that

1
a= {b, ¢},
IVl

(3.2)

In order to establish the property (i), we put o, 8 € C*(Q). Setting
A =1/]|V¢ll,, the property (iii) is demonstrated.

In view of Lemma 3.4, ¥ is C' on €. To prove the regularity of u up to the
boundary, fix € 092. So there exists a conformal map [ from B(z,r) N
onto By = BN {z > 0}, where B is a unit disc. Without loss of generality,
we can assume that U is defined on By. We define the extensions of ¥ on
B as follows:

— o S«Ql(xvy)v 1f$207
991($7y)_{ _991(—$7y)7 1f$§07

~ ] ai(z,y), if x>0,
a1e.) —{ ai(~a.y), ife<0,

and

~ ] bi(z,y), if >0,
bu(e,y) = { bi(—=z,y), ifz<0.

Clearly, U is in H'(B,R3. We will prove that U is also a solution of
equation (3.1). Thus, by Lemma 3.4, we conclude that ¥ is C' on €. Set
ESAIM: Cocv, JUNE 1998, VoL. 3, 263-300



WENTE’S INEQUALITY AND COMPACT H-SURFACES 269
¥ € C§°(B). From the properties (ii) and (iii), we have

B B_

By

= Vaiy -V + Vay(z,y)- V(Y (—z,y))
By By

s / (b1, 31} @, 9 (— 2, )
By By

s / {1, 1} (—, 9) (2, )
By B_

= /]3{517¢1}¢-

i.e. —A}il = {517 &1}
With the same arguments, we deduce that

—Aby = {31, @)
On the other hand, we have
/V&I'V¢: V@l'v¢+/ V-V
B By B_
= Vo Vo — [ Voi(z,y) - V(d(-z,y))
By By

= - DN+ Api(z,y)(—z,y)

B: By
= / {a17b1}¢—/ {(117b1}($7y)¢(_$7y)
B4 By

= /]3{51731}1#,

that iS7 —A&l = {61731}.
To prove the property (v), set a; = a ooy, by = bo o, where oy is a family of
d
smooth diffeomorphisms of Q. Suppose that % = (X', X?). Clearly,
=0
(X1, X?)-n =0 on dQ where n is the normal vector on dQ. Moreover, we
have

[=o¢de = [ {ay ooyt va
:/Q{a,b}(cpoa_t)
- [ aptpacy

- [voSigora
Q
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i.e. /Vc,ot-ch:/ch-V(cpoa_t).
Q Q

However, from Theorem 1.1, we get
-5 [ 1vel+ [ ver w—l/wm +ou),
——/w +/w Vigao_ =3 [ [V(eoo ol +0()
Thus, we get

/Q|v<sooa_t>|2:/Q|wt|2+0<t2>-

This means that

IV(goo_i)|3
Elag b, Q) = T—"———"12 4 O(¢?).
IV a |51 VeI
On the other hand, it is easy to get the following relations:
d(||Vay|?
(H dttHQ) _ 2/[((895(1)2 _ (aya)2)(8xX1 _ 8yX2)
t=0 &
+ 20,adya(0, X" + 0,X7?)]
d(|| Vb2
w = 2/[(@1;)2 — (0,0))) (0 X" — 9,X?)
t=0 &
+20,00,b(0, X" + 0,X?)]
d(||V(poo_y)|?
(Il (@dt 1)ll2) _ _Q/Q[((al,gp)? — (aygp)?)(axXl — Gsz)
t=0

+ 20,00,0(0, X1 + 0, X*)].
Thus, we get the equality

/Q {(31’99)2 — (0y9)” + [IVell3((920)* = (9ya)? + (:)* — (9,b)?)
x (0, X' — 0,X?)
+ 2[0:00,0 + |Vl (92a0ya + 9:00,b)) (9, X + 9, X7) =0

i.e.
/ [(WP 10, W) (@ X" — 0,X?)
Q
+2 < 0,V,0,¥ > (9, X' + 0, X% | =0. (3.3)

A convenient way to rewrite this equation is to set w = 9, W|? -9, ¥|* - 2i <
0:¥,0,¥ >, and we obtain

Re/ w0z (X' +iX?*)dady = 0,
Q

where J; = £(d, + id,). In particular, if we put X! +iX? € C§5°(Q), we
deduce that
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WENTE’S INEQUALITY AND COMPACT H-SURFACES 271

i.e. w is holomorphic.
Now, if we use (X1, X?) such that (X!, X?) = f(—n?% n') on 9, where f
is an arbitrary continuous real-valued function on 0€), we obtain

0 :Re/ Oz (w(X' +iX?))dady
Q

=-Im gftzds7
a0 2

thus Im(wt?) = 0 on dQ. The property (v) is proved.

If Q is a disc or an annulus, from (v), we obtain Im(wz?) = 0 on 9.
From the principle of maximum, we have Im(wz?) = 0 on € since Im(wz?)
is harmonic. So we deduce that there exists ¢ € R such that wz? = ¢. In the
case where € is a disc, we have moreover

lim wz? = 0.
z—0

So we conclude the properties (vi) and (vii). O

REMARK 3.5. If (a,b) € Vi x V is a critical point of E in Vy x Vg, then all
the conclusions of Theorem except (ii) are also right.

REMARK 3.6. We know that every plane domain of one connectivity can be
mapped conformally onto some annulus (see Ahlfors [1]). Thus, we obtain
a characterization of Hopf’s differential w. But for a multiply connected
domain €2, the characterization of w is less simple.

4. ISOPERIMETRIC INEQUALITY

In the following €2 denotes a smooth simply connected domain. For sim-
plicity, we suppose that © is a disc, that is, @ = B = {(x,y)/r < 1}. We
check easily that a stereographic representation of the upper hemi-sphere

4a 4y 2(1—1r?)
14+r2" 14727 1412

(avbvw)z(

verifies all the properties of Theorem 3.2, i.e. is a critical point of E. It is
just a maximum of . More precisely, we have the following result.

THEOREM 4.1. Let Q = B, then

3
(i) sup E(a,b,Q)= Tor and the map (Hig—z, 15—2) achieves the best
a,beV s r r
constant,

3
(i) sup E(a,b,Q)= Tor and the best constant is not achieved in Vo x Vp.
a,beVy Q
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First, we will introduce the following notations. Given ¥, © € H!(Q;R"),
we define

0,0y, = /Q<xpx,@x>+<q;y,@y>:/Q<w7v9>

U, = (¥, ¥)p
V(v = %/(\IJ\I@ x W), if ¥ e C°(Q;R)
Q

L(¥) = /Q \/{9917 e2}’ + {2, 03} + {3, 01},

where W = (¢1, @2, ¢3)
(a,b,¢)y, = L(©), where © = (a,b, ).

In the proof, we will make use of the following lemmas.
LEMMA 4.2, (see [22]) Let ¥, © € CO(;R®) N H' (S R?) be two mappings
such that W|sq and ©|aq describe the same oriented Jordan curve ~v; then
_ L)+ L©)
- 367

In fact, this Lemma is equivalent to the isoperimetric inequality.
LEMMA 4.3. (see [23]). Let ¥ € CO°(Q;R3) N C*( QR N HLHQ;R3) be a
solution of equation (3.1); then ¥ = 0.

(4.1)

Proof. (of Theorem 4.1). Let a, b € C°°(£;R?) and ¢ be the corresponding
solution of (1.1). By Lemma 3.3, we get

(a,b,cp)vz/Qa{b,cp}:/gb{cp,a}:/gcp{a,b}.

Now the two vector functions

\Il:(a , b, LP)and@:(a, b 7—99)‘
lalp’ [6|p" |¢|D lalp” [blp” |#lD

have the same boundary values. Noting that

V(U) = —V(©) and L(¥) = L(O) <

from Lemma 4.2, we obtain that

Consequently,

3
IVells = / (~0¢)p = / pla.by = (a,b.9)v < \/ e—lalplblplelp,
Q Q T

that is, F(a,b,Q) < % Then the density of C*°(Q) into H() implies

T

that 5
sup F(a,b,Q) < —.
a,beV 167

On the other hand, it is easy to check that

(-t Y o)\=2
1+72" 1472 167

ESAIM: Cocv, JUNE 1998, VoL. 3, 263-300




WENTE’S INEQUALITY AND COMPACT H-SURFACES 273
Hence, we deduce the property (i). Similarly, putting © = 0, we get

3 1
< — .
FE(a,b,Q) < 397 for all a,b € Hy(2)

ex b ey ex db ey
S E—— 1= 5 5 A2 = an 9 =
€2+r27 € €2+r27 = £

142 ’ 1_|_€2'
1
Z (14 rHd
INaca |2 = [|Vbe|f? :ﬂ/ 7 (L4 rf)dr
0

2 2
IVacslly = [[Vbe2ll;

We set a. ;1 =
We claim that

where r = y/2? 4+ y2. Set a. = 4.1 — a.2 and b. = b.; — b. 3. We denote by

¢. the unique solution of equation (1.1). Then ¢, can be written as follows:

g2 — p? B e? -1
8(s24+1r?)  8(e241)

where 1. is the unique solution of the following equation

_Albs = _{as,lv bs,?} - {a6,27 bs,l} ‘|’ {a5,27 bs,?}v in Q (4 2)
¢6 = 07 on 89 )

Using Theorem 1.1, we have ||V, |2 = O(c?). Hence,

1
2 rdr
IVedl = 35 |7 e + 06

It is easy to see that

Pe = +¢67

3
Fl(acb., Q) — 397 as ¢ — 0.
o

Finally, we obtain

3
sup F(a,b,Q)=—.
mbeVO 3277

m

Now we suppose that the best constant is achieved in the point (a,b)
Vo X Vo. By Theorem 3.2, there exists A € R* such that (Aa, Ab, A%p) sat-
isfies equation (3.1). From Lemma 4.2 and Theorem 1.1, (Aa, Ab, A%p)
COQ; RHNC*(Q; R?). And, applying Lemma 4.3, we obtain (Aa, Ab, M%)

0. Thus, this contradiction completes the proof.

O m

REMARK 4.4. Because of the isoperimetric inequality, we always have

sup F(a,b,Q) < 3 and  sup E(a,b, Q)< 3
a,beVv 167 a,beVy 327

for any multiply connected domain € in R2. Moreover in the light of [9], this
theorem implies that the embedding of Hardy space H!(R?) into H~*(R?) is
not compact. Indeed, let (a,,b,) € Vo x Vi be a maximizing sequence of F
in Vo x V. Clearly, {a,,b,} is bounded in H!(R?), but it does not converge
strongly in H~}(R?).

In the following, we consider a multiply connected domain . We set

m(2) = sup E(a,b,Q). The analogue of Theorem 4.1 is following result.
a,beVy
ESAIM: Cocv, JUNE 1998 VoL. 3, 263-300
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THEOREM 4.5. Let €2, € be two smooth bounded domains such that 2 C €24.
Then m(2) < m(Qy). Moreover, we have

3
Q) = —.
m(&) 327

Furthermore, the best constant is not achieved in Vi X V.

Proof. Let a, b be two functions in H{ (). We define a embedding of H} ()
into H} (1) as follows, to any @ € H}(Q), we associated & € H}(€4) such

(4.3)

that
afz,y) = alz,y), if (z,y) €Q
afz,y) =0, if (z,y) ¢ Q.
We define a energy functional F; on H}(;) by following:

) =g [ wor- [ s

where 3 € H}(Q). We denote ¢; the unique solution of equation (1.1) in
H& (91)7 i.e.

—A@l = {(l,i)}, in Ql

{ w1 =0, on 09. (4.4)
Recall that ¢ is the unique minimal point of functional Fy. Thus, we get
Ei1(@) > Ei(¢1) where ¢ is the unique solution of equation (1.1) in HJ ().
Therefore, we obtain that

i) =3 [ Vel - [ o)
=5 196~ [ (—a0)e

1
=~ [ |Ve]
2/QI ¢l
1

Silarly, Ex(1) = =3 [ Vel
Q

Consequently, we deduce that
IVelzei) = V@i < IVeill7z,)-

But, stating that HV@H%Z)(QO = HV@H%Q(Q) and HVbH%Q(Ql) = HVbH%Z)(Q), we
conclude that

F(a,b,9Q) < E(a,b,Q),
that is, m(Q) < m (). Now we choose B(zo,70) = {2 € C| |z — 20| < ro}
and B(z,r1) ={z € C||z — 21| < r1} such that B(zg,ro) CQ C B(z1,11).
Thus, we obtain

32% = m(B(z0,70)) < m(Q) <m(B(z,m)) = i

327
Hence, (4.3) follows.
We suppose that the best constant is achieved in the point (a,b) € Vi x Vj.
It is clear that
3 - 3
— = < a < —.
Ton F(a,b,Q) < E(a,b, B(z1,71)) < Ton
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Then in the point (a,b), the best constant is achieved in Vo(B(z1,71)) X
Vo(B(#1,71)). By Theorem 4.1, we obtain a contradiction. Thus, the theo-
rem is proved. O

Now we write @ = B — [J_, ©; where Q; C B for ¢ = 1 to n is simply
connected. We will show the following result.

THEOREM 4.6. Under the above notations, we have

3
Q)=—. 4.
C2(0) = (4.5)
Proof. Set a = ' and b= Then, it is clear that the unique
rZ+1 r2+1
solution in Hd(B) of (1.1) is
1= r?
L 8(r241)°

Choosing a sequence {t, } ,er such that 0 < ¢, < 1l and t,, — 1 as n — 0.
We define the maps T,, by:

which are conformal transformations from B to B. Denote a,, = ¢ o T, and
b, = boT,, clearly,

3
167
and the unique solution of (1.1) for a, and b, is ¢, = ¢ o T,. Clearly,
an, —JLQ ay, by, —JLQ b, and ¢, tend to 0 weakly in H'. Let |J", Q; C B(0,r).
Choosing & € C°°(R?) such that 0 < & < 1, supp(€) C R*\ B(0,r) and £ = 1
on R%\ B(0,r") with r < r’ < 1. Setting G, = £a, and b, = &b, and 3,
the unique solution of (1.1) for @ = a, and b = b, in H}(Q). Therefore, it
is easy to obtain (see Lemma 7.5 below)

F(ay,b,, B) =

Tim [[V(2n = €%00) |20 = 0,

since ¢, — 0 weakly in H}(Q2) and strongly in L%(2). A simple computa-
tion leads to

2
o VEelE 3
n—00 =2 2 16w
IV an[[2[1Vonll
Thus, we deduce that

lim E(ay,b,, Q) = 3
n—>00 167
On the other hand,
3
() < —.
() < g7
Hence, (4.5) is proved. O
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5. GENERALIZATION ON MANIFOLDS

Recall first some definitions and notations (see [2]). Let (M,g) be a
smooth two dimensional Riemannian manifold without boundary. Let {z*}
(1 =1,2) be a local coordinate system. We can write ¢ as following:

g = gijda' @ da’,
Where g% are the components of inverse matrix of the metric matrix (9:5)-
Assume that M is oriented and A an atlas compatible with orientations.

In the coordinate system {z'} corresponding to (Q2, ) € A, define the dif-
ferential 2-form by

dV = n=+/|g|ldz* A da?, (5.1)

where |g| is the determinant of the metric matrix (g;;). 1 is called oriented
volume element, denoted by dV. In the following, we will use a local isother-
mal coordinate. Let o € AP(M). We associate to «, a (2—p)-form *a, called
the adjoint of «, defined as follows:

¥1 = n, *dzt = da?, xd2? = —dat, *n = 1. (5.2)
Now, we define da by
Sa= (=1 Hd* a, where p = deg(a). (5.3)
Then, the Laplacian operator A is defined by
Ay =dé+ 4d. (5.4)

Assume that p = 0, clearly in a chart, we have

Ay = \/—W (\/?g” 896]) . (5.5)

Moreover, let M be compact, we define the global scalar product (o, 3) of
two p-forms o and 3, as follows:

@8)= [ (oo

Now we consider the vector space of smooth functions. We denote H =
{p € C*(M,R), ||¢||lg1 < oo} where

el = /M< i (dp)i(dg); + ¢ /M<v%oviso+so2>n.

The Sobolev space H'(M) is completion of H with respect to the norm
|z In fact, H' is independent on the metric g. Then we have the Sobolev
embedding theorem and the Kondrakov theorem, that is,

LEMMA 5.1. For any p < oo, the embedding HY (M) — LP(M) is compact.
On the manifold M, we consider the Dirichlet problem, that is, to solve

the following linear elliptic equations

Ag@ =/
5.6
/ wdV =0, (5.6)
M

where f € L*(M).
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It is well known that there exists a unique weak solution ¢ € H' of (5.6)
if and only if fo = 0. Moreover, if f € C"t® then ¢ € C?*T"F (r > 0 an
integer and 1 > o > 0).

We denote H{(M) = {a € H'(M), [,;adV = 0} and define {a,b}, as

follows:
{a,b}, = *(da A db), (5.7)

where a, b € H}(M). Thus, if in the chart U (M,g) is conformal to the
Euclidian metric, under corresponding local coordinate system, we can write

2 2
a,1b2—ba,2) and Ay, =— ! ((8 0 )

1
{a7b}g - m( \/m 8$1)2 + (8$2)2

We consider the following equation:
Dy ={a, b}y,
(5.8)
/ pdV = 0.
M

We will generalize Wente’s inequality on the manifold M. Our result is the
following.

THEOREM 5.2. There exists a unique solution ¢ € Hy of (5.8). Further-
more, the solution is continuous on M and there exists a constant Co(M)
which depends on M such that

[elleo +I1Veell2 < Co(M)[[Vallo[[ V]2, (5.9)

where ||Val|3 = / g (da);(da);dV = / V'aV;adV for any a € H (M).
M M
In the proof, we will use Green’s function. First, we give some properties
of Green’s function on manifolds.

LEMMA 5.3. Under the above notations, there exists G(P, Q) a Green’s func-
tion of the Laplacian which has the following properties:

(i) for all functions ¢ € C*

p(P) =V /Mso@)dw@) + /MG<P,@>Agso<@>dv<@>, (5.10)

where V' is the volume of the manifold M,
(i) G(P,Q) is C™ on M x M minus the diagonal (for P # ()),

(iii) there exists a constant K such that
IG(P,Q)| < K(1+]logrl),
IVoG(P,Q)| < Krt, (5.11)
IVRG(PQ)| < Kr?,
where 7 =d(P,Q),
(iv) there exists a constant B such that G(P,Q) > B. Since the Green’s

Sfunction is defined up to a constant, we can thus choose the Green’s
function so that its integral equals to zero,

(v) G(P,Q) =G(Q, P).
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Proof. (of Theorem 5.2). Set a, b € C*(M). First, by Stokes” Formula, we

see that
/{mb}ng:/ da/\db:/ d(aNdb) =0.
M M M

Thus there exists the unique C* solution of (5.8). On the other hand,
there exists ro > 0 such that for any P € M the set B(P,2rq) = {Q €
M, d(P,Q) < 2rq} is included in a local chart where g is conformal to
the Euclidian metric and corresponding coordinate system is {z'}(i = 1,2).
First, we assume that there exists P; € M such that supp(a) C B(FPr, ).
We divide M into two parts, that is, M = M; U My where M; = {Q €
M, d(PhQ) < %)} and My = {Q €M, d(Pva) > %)}

Case 1: P € M. Hence, applying Lemma 5.3, we conclude that

e(P)] = /MG<P,@>Agso<@>dv<@>\

-/ . G(RQ)AM(Q)W(Q)‘
M\B(P,7{) (5.12)

_ / G(P,Q)da A db
M\B(P2)

B T
<CK (1+10g ‘ZOD 1V al|2]| V5|5

Case 2: P € M;. We consider the solution ¢ of the following equation:

{ Ay ={a, b}y, on B(P,rg),

(5.13)
¢1 =0, on 0B(P, o).
So Ay(¢ —¢1) =0 on B(P,rg). Using the maximum principle, we obtain

e = @il B@ro)) < lo = eillLe@B(Pro)) = I9llLe(3B(Pr))-  (5:14)

However, by Theorem 1.1 and using the conformal chart {z'}(i = 1,2), we
have

leill Lo (B(Pro)) < ClVallL2B(PropIVOllL2(B(Pre)) = ClIVall2[| V|2

(5.15)
Combining (5.12), (5.14) and (5.15), we get
el e (B(Preyy < ClIVall2[| V|2
In general case: using partition of unity, we deduce
[#lloe < ClIVall2|| V2.
Finally,
INol3 = [ ete= [ elab),= [ wdonds
M M M
< CliglleclIVall2|| V2.
Thus, by density, the conclusion follows. O
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Now, we consider the energy functional £(a,b, M) and Cy(M) defined as
the same way as before, i.e.,

2
IVelly

Ela,b,M)= —1" 712
( ) IVal3[Voll3

and

Co(M)= sup Ela,b,M).
a,bEH&

First, we will give the Euler equation for critical point.

DEFINITION 5.4. A point (a,b) € H} x Hj is critical for the energy func-
tional F if it satisfies the following condition:

VE(a+ta,b+ s, M)|(sn=(0,0) =0, for all o, 3 € HM(M).

Clearly, F is also invariant under a conformal transformation of M and
E(Xa,pb, M) = E(a,b, M) for all A\, p € R* so without loss of generality,
we can assume that [|Va|, = [|Vb||, = 1.

THEOREM 5.5. Assume that (a,b) € HY x Hy is a critical point of F such
that @ # 0; then there exists A € R* such that

0 [ Fav=0,

M
ii) denote W = (ay, b1, 1) = (Aa, Ab, . en we have
i) denote W bi,o1) = (Aa, Ab, \%0). Th h

Ag@l = {017 bl}g7
Agay = {b1, 1}y, (5.16)
Agbl = {9917 al}g?

(iii) of M is a surface homeomorphic to S%, then W is conformal.

We need some similar technical lemmas as Lemmas 3.3 to 4.3.
LEMMA 5.6. Ifp € HY(M)NL>(M), a € H{(M)NL>* (M) andb € H' (M),
then we have

/M e{a, b}, = /M a{b, p},. (5.17)

Proof. Setting ¢, a, b € C?*(M), we have

/c,o{a,b}g :/ wda A db
M M
:/ d(ac,o)/\db—/ ade A db
M M

- /M d(apb) + /M a{d, ¢},

:/ a{b, p}, (Stokes’ Formula).
M
However, we see that

pla, b3gn| < lelluIVall IVl

/,
/M afb.o}on| < llall Vel VolL.

By approximation, (5.17) follows. O
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LEMMA 5.7. (see [16]). Let X be a surface homeomorphic to S* with a
metric tensor given in the local coordinates by bounded measurable functions
satisfying

g11922 — gfz > A > 0 almost everywhere.

Then there is a homeomorphism h : S? — X satisfying the conformality
relations

dh' Oh’ dh' Oh’

9ii 3" Y3 a4
890' 8$4 dy Jy (5.18)
oh' Oh?

o =0,
90 gy dy
almost everywhere.
If (gij) € C?, then h is a diffeomorphism of class C1°, satisfying (5.18)
everywhere. If 3 is of class C**, C* or C%, then so is h.

Proof. (of Theorem 5.5). We only need to prove the property (iii). The proof
of other assertions is the same that for Theorem 3.2. Thanks to Lemma 5.7,
for simplicity, we can assume that M is S?. We use the coordinates of
stereographic projection, that is,

P: R* — 5%2-(0,0,—-1)

(2,1) 2x 2y 1 —1r?
T — .
Y 14727147271 412

With these coordinates, we have
—AV =V, AY,.

Hence, we define the Hopf’s differential w by w = [W,|? — |¥,|? — 2i(¥,, ¥,).
Clearly, a simple computation leads

So, w is holomorphic on R% On the other hand,

—4
w(z,y) = ————=(0:)0 (2", 1), (0:) ¥ (2, y')),
(z,y) ($+2y)4<( YU’ y'), (9)¥ (2", y))
where (2/,y') = (%, %) and 2’ = 2’ + iy’. Therefore,
r2’r
lim w(z)=0.
|z| o0
Thus, the conclusion follows. O

REMARK 5.8. By Lemma 3.4, ¥ is C'*°.

Actually, we calculate Cy(M). In fact, we show that Cy(M) is indepen-
dent on the compact manifold M.

THEOREM 5.9. Let M be a compact oriented Riemannian surface; then

3

(5.19)
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a b ©®
Valla"[[Voll2 " IVl

Proof. Denote ¥ = (‘
of surface W(M) is:

) = (a1, b1, ¢1). Thus, the area

A(\II) = \//M{ah bl}?} + {b17 991}527 + {9917 al}?]dv

1
< —/ (dw, dw)dv = 2.
2 Sy 2
On the other hand, the oriented volume bounded by V(M) is

1

V(v) = 3 /M(ﬂPl{ah bitg + ar{bi, 1ty +bi{er, arty)dV

= / 991{(117 bl}ng
M

1 / Vel
= pda Ndb= — 1T F12
IVall2[VOll2[[Vel|2 [Vall2[|Vll2||°

In view of the isoperimetric inequality, we have

V()" < JA(D)].

Hence,

3
= 327
Now, fix ) € M. Choose a local chart U of ) which is conformal to an open
subset W of R2. Denote by {z;}(: = 1,2) the corresponding coordinates.
Choose a function & € C§°(W). Set

FE(a,b, M) <

£xq £xq
Qe :€($17$2)m and b5:€($17$2)m
where r? = 2?2 + 22, It is easy to check that
lim F(a.,b., M) = i
=0 32
Hence, the theorem is proved. O

THEOREM 5.10. If M is not homeomorphic to S%, the mazimum is not
achieved.

First, we need a result of Hartman and Wintner

LEMMA 5.11. (see [14]). Let L = Z —|— Zb (x), where b;

and ¢ be continuous functions in B. Let U be a solutwn of class C? for the
equation

L(u) =0, in B,

or, more generally, let u be a function of class C' satisfying

Ou Ou
g a—mdxl — a—xldwg / (Zb -+ cu) dxdzs,
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for every domain E bounded by a piecewise smooth C1 Jordan curve J,
contained in B. Then if u satisfies

w(z) =o(| « |"), for some n € N, (5.20)
it must satisfy that
0-u
lim —= st 21
lim — (x) ewists, (5.21)

where z = x1+1xy and 0, = %(81,1 —i0y,). Moreover, if u % 0, then In’ € N,
such that

lim sup M > 0. (5.22)
z—0 | X |n
Proof. (of Theorem 5.10). Suppose that ¥ = (a, b, ¢) is a maximum of F
with ||Val|z = [|Vb]l2 = [[Vellz = v/327/3. From the proof of Theorem 5.9,
U is a conformal map and W(M) is a sphere S2 with radius equal to 2. By
the property of degree, we deduce that

| we
M

deg(\p) = 7
/ Q
53

where Q) = %($1d$2 Adxs — xodxy A drs + xsdzy A dzy) is the area element
on the sphere S7. A simple calculation leads to deg(¥) = 1 if we choose
a suitable orientation on the sphere. On the other hand, if (20,y0) is a
branch-point, using Lemma 5.11, we obtain that there exists n € N* and

c € C* — {0} such that
0.V =c(z—2z0)" + o((z — z0)"),

where zg = xg + 1yg. Thus, the branch-points are isolated. By the condition
of conformality and using the stereographic coordinates, we conclude that
det(0¥/0z) > 0 and ¥ is a harmonic map. Moreover, ¥ is holomorphic.
We claim that W has no branch-points. Otherwise, there exists ¢ € C* and
n € N* such that

U(z) = e(z = 20)"" +o((z — 20)""),

where W is the stereographic coordinates on the sphere and z is a branch-
point. This contradicts the fact that the degree of W is equal to 1. Hence,
we deduce that W is a covering map since M is compact. And since the
degree of W is one, it is a diffeomorphism. This is a contradiction. O

COROLLARY 5.12. If Q is a multiply connected domain in R?, then Co(Q)
can not be achieved.

Proof. Suppose that ¥ = (a,b, ¢) is a maximum of F. In view of Theorem
3.2, W is C*°. We construct a compact oriented Riemannian surface M =
QUaq Q by sticking Q and a copy of Q, provided with opposing orientation.
We define a C°° map ¥ on M by

U =WonQand ¥ = (ab —¢)on Q.
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Thus, ¥ is a maximum of F on M. The result follows from the previous
theorem. O

ParT B. COMPACT H-SURFACES IN EUCLIDEAN SPACE

6. PRECISE STATEMENT OF THE PROBLEM AND SETTING OF THE
RESULTS

In this part, we consider the following equation
—Au = uy Ay, in Q, (6.1)
where v € C?(Q;R?). The equation (6.1) is satisfied by surfaces of mean

curvature 3 in R?in conformal representation. Thus we will call (6.1) the

incomplete H-system. Moreover, it is of variational type. The classical
energy functional associated with this equation is

1 1
FEo(u) = 3 /Q |Vul*dzdy — g/Qu “Up A Uydrdy.

As before, we study a new variational approach of (6.1) proposed by Hélein
in [15]. In fact, in view of Theorem 1.1, we can consider the new energy
functional F/(a,b, ), or equivalently,

IVallfzq) + IVOIZ2(q)
2IVellrz (o)

F(a,b,Q) = , defined for a,b € H' (),

or,

1
Fi(a,b,Q) = §(HVQH%Q(Q) + HVbH%Q(Q)), defined for all a,b € M,
where M = {(a,b) € H' x H',||V¢||;2 = 1}. Recall that, by Theorem 3.2,
we can recognize in (6.1) the Euler-Lagrange equation associated to the crit-
ical points of these functionals, through the substitution u = (Aa, Ab, %)
for A = ||Vb||2. Moreover, we have

da  0b

c,o:a—nza—nzoonaﬁ7 (6.2)
where n = (ny, ng) is the normal vector on 9. The conditions on boundary
allow us to construct a solution of (6.1) from a compact oriented Riemannian
surface into R® by sticking two copies of Q. Thus, if Q is an annulus, we
may expect to find again Wente’s torus, which is an immersion of a torus
into R? with a constant mean curvature. For this purpose, we will look for
critical points of F' on an annulus.

Our first task is to study a minimizing sequence for F. In part one,
we saw that the minimum of F is a universal constant for any bounded
and smooth domain. Here we will deal with a minimizing sequence for the
energy functional F; and we will show that we can not minimize the energy
functional F' on a multiply connected domain. Our first result provides a
complete description of a minimizing sequence.

THEOREM 6.1. If Q is simply connected, there exists some (a, b, ) which is
solution of (6.1) such that
Fa,b,Q)=G(Q) = inf F(a,b,Q).
(0:6,9) = G(Q) = inf Fla,b,9)
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Moreover, if (an, by, ¢n) is a minimizing sequence for I' with (a,,b,) € M
and fQ a, = fQ b, = 0, then (an,b,, v,) up to conformal transformations
is relatively compact in H'. If Q is multiply connected, then there exists
2o € 0 such that

(s by ) — (G(Q), G(Q),1)d5, in D'(R?),

where 6, is the Dirac-mass of mass 1 concentrated at x.

REMARK 6.2. Clearly,

() = g

Thus, we see that concentration phenomena occur for a minimizing se-
quence. In some way, our problem is similar to the problem of the best
constant of Sobolev embedding for the limiting case. For a multiply con-
nected domain, we can not produce a solution of (6.1) by minimizing this
energy. So we must study the compactness properties of I at higher energy
levels as well. The next result is to analyze the behavior of a Palais-Smale
sequence. It can be viewed as an extension of P.-L. Lions’ concentration
compactness method for minimizing problems. A similar phenomenon had
been observed by M. Struwe [19] in the context of Sobolev embedding for
the limiting case. QOur proof is inspired by the method of concentration
compactness.

THEOREM 6.3. Fy satisfies the Palais-Smale condition for all C' € (G(Q),

The value v/2G(Q) is optimal in the following sense. Let Q@ = D =
{(z,y);2%+y? < 1} be the unit disc. Let u = (a, b, ) be a solution of (6.1)
satisfying the boundary conditions (6.2). After an extension by symmetry
has been performed, we are led to a finite energy solution of (6.1) on all of R2.
In view of H. Brezis and J.-M. Coron’s result, we deduce that there exists k €
N* such that F(a,b,Q) = VEG(Q). Now let {t,},en be a sequence in (0,1)
converging to 1 as n tends to infinity. After the Md6bius transformations

on(2) = 15 with 2 = 241y, we obtain a sequence (a,,b,) = (a00,,boa,)

in H' x H'. Obviously, (a,,b,) is a Palais-Smale sequence. But it is not
compact in H' x H!. It proves that Palais-Smale condition fails at the
energy values v = \/EG(Q) Now, with the help of Theorem 6.3, we can
prove our main result in this part.

THEOREM 6.4. Let Q = D\ J"_, B(x;,7r;) be a multiply connected domain
in R%. Assume that the set of points {x;} is fived. Then, there exists £ > 0
such that if r; < € for all t = 1,...,n and there exists a solution of (6.1)
satisfying the boundary conditions (6.2).

A similar conclusion for Sobolev embedding has been obtained by J.-M.
Coron [8]. Here we will use the same strategy. For ¢t > G(Q) denote by
El, ={(a,b) € M/Fi(a,b) < t} the level set of F. In fact, the topology of
E}, is equivalent to 92 when ~ is near G/(2). We will argue by contradiction.

E]\\fG(Q)

We will construct a topological disc A in whose boundary is a non

contractible circle JA in E]\G}Q). And if the system (6.1), (6.2) does not
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admit a solution in E]\\fG(Q), then it implies that there exists a contraction
h of A onto 9A, which is a contradiction.

This part is organized as follows. In the section 7, we prove Theorem
6.1. In the section 8, we establish Theorem 6.3. In the section 9, we show
Theorem 6.4. In the last section, we describe some additional properties for
a solution of equation (6.1) and (6.2).

7. STUDY OF A MINIMIZING SEQUENCE
Now we consider the minimum of energy functional I'. Let (a,,b,, ¢.)
be a minimizing sequence, that is, (a,, b,, ¢,) satisfying the equation (1.1)
and
Flan, b,, Q) =G(Q)+o(1).

Without loss of generality, we can assume that

(an,b,) € M and /an:/bnzo.
Q Q

After extracting a subsequence, we may assume that
a, — « weakly in H' and strongly in L2,
b, — 3 weakly in H! and strongly in L2,
©n — 1 weakly in H! and strongly in L2.
We will show the following result.

THEOREM 7.1. Under the above assumptions, we have the alternative:
(i) if v =0, thena=p=0,
or
(ii) if ¥ # 0, then (o, 8,%) is a minimum of energy I'. Moreover, the
following holds:
a, — o strongly in HY,
b, — [3 strongly in H",
©n — 1 strongly in H'.
First, we recall a technical lemma.

LEMMA 7.2. (see [22] and also [7]). We assume that ¢, is a bounded se-
quence in HY N L>. Let a,, — 0 weakly in H' and strongly in L?. Then
Jor every b € H', we have

lim [ ¢,{a,, b} =0. (7.1)

n—0oo

Proof. We state that

[ eta)

Given £ > 0, we fix b € C°°(Q) such that ||b — b||;1 < £. Thus we obtain

[entanty = [ ontan)

On the other hand, in view of Lemma 3.3, we have

[etann|=|] an{%,b}\ < IV eullollanlalbllcr
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that is,
lim [ ¢,{a,,b} = 0.

n—0oo

Therefore, we obtain

lim sup ‘/@n{an,b}‘ < Ce, for any ¢ > 0,

n—0oo

which implies that
lim [ ¢,{a,,b}=0.

n—0oo

COROLLARY 7.3. Under the above notations, if ¢ € H, we have

lim w{an, b} I/QP{O@@}-

n—0oo

Proof. (of Theorem 7.1). By the corollary, («,3,%) is also a solution of
equation (1.1). Set o, = a,, — 0, 3,, = b,, — § and 1, = ¢, — © so that

a, — 0 weakly in H' and strongly in L2,
B, — 0 weakly in H! and strongly in L?,
¥, — 0 weakly in H' and strongly in L2,

Denote by ;1 (resp. 1y,2) the unique solution of equation (1.1) for a = «,
and b= (resp. a = a and b= f3,,). So v, = ¥, — ¥,,.1 — ¥y, 2 is the unique
solution of equation (1.1) for @ = a,, and b = 3,,. Applying Lemma 7.2, we
deduce that

i [ (96002 = fin [(=A0n0)0n = lin [ onfans) =0

n—0oo

Similarly, we get
lim /|V¢M|2 =0.
n— 0o

IVanll3 = Vel + Va3 + o(1),
VOl = IV Ball3 + IV B3 + o(1),
IVenlld = [[Venll3 + IVEI3 + o(1).
Therefore, we deduce that
L= [IVeull3 = Vel + IVIE + o(1) = [Vyall3 + (IVEN5 + o(1),

which implies

Clearly,

IVanll3 + 1Vballz > 2G( Q) (V|2 + 1V yall2)-

Now passing to the limit as n — oo, we obtain

G(Q) = GOQIVEll+ /1= IVE]3).

That is, ||Vl = 0 or ||Ve||2 = 1. In the first case, we infer that o« = 3 = 0.
The second case implies that
Tim [[¥ (i — ©)]l2 = 0.
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Moreover, we have

IVall3+ VI3 < lim inf (| Va3 + Vb [13) < 26(€).
Hence, we achieve the proof. O

The proof of Theorem 6.1 is divided into several steps. First, we need
only study the case

a, = 0,b, = 0 and ¢, = 0in H.

Step 1. In this step, assume that € is the unit disc. Clearly, we have
lonllo > IVenllz = 1. By the continuity of ¢, on €, there exists a point
z, € £ such that
P (2n)] = ll@nl]oo-
Z—z
Then, after a homographic transformation T " we may assume that
— Znz

|2 (0)] = [l@nloe-
LEMMA 7.4. For any 1 > ¢ > 0, there exists 6() > 0 such that

lim sup/ IVa,|* +|Vb,|? > 6(e), (7.2)
B(0,¢)

n— 0o
where B(0,g) = {(z,y), 2%+ y* < 2}.
Proof. Suppose that there exists €9 > 0 such that
lim |Va,|* + |Vb,|? = 0.
n—00 B(O,Eo)

Denote by 1, the unique solution of equation (1.1) in H}(B(0,20)), i.e.,

_A¢n = {an7bn}7 in B(0750)
P =0, on 0B(0,e0).

So ., — 1y, is harmonic in B(0,c). Applying the mean value property, we
deduce that

£ (on ) =200 - 6,00)
B(O,Eo)
Obviously, from (1.2), we get

lim ¥, = 0,
n—00 B(O,Eo)
and
lim ,(0) = 0.
n—00

On the other hand, but by the fact that ¢, — 0 in L?(Q), we deduce

lim on = 0.
n— 0o B(O,Eo)
Consequently,
Jim_#a(0) = 0.
This contradiction completes our proof. O
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Step 2. Denote by M (2) the space of non-negative measures on © with finite
mass. Set ft, = 1(|Va,|* + |Vb,|*)dz and v, = [V,|*dz. We consider the
extensions of p, and v, to all of R? by valuing 0 in R%\ Q. Then {u,}
and {v,} are bounded in M(R?). Modulo a subsequence, we may assume
that p, — p, v, — v weakly in the sense of measures where p and v are
bounded non-negative measures on R2.

LEMMA 7.5. Under the above notations, then we have that there exists a
point xg € Q0 such that

v =20y and pp = G(Q)b,. (7.3)

Proof. Clearly, un(R?\ Q) = v(R?\ Q) = 0. Choose ¢ € C*°(R?). Denote by
b, the unique solution of equation (1.1) for a = £a,, and b = &b, that is

_A¢n :{ganvgbn}v in
v =0, on 0f2.

Thus,
€a, — 0 and €b, — 0 in H'.
From (1.2) and by Lemma 7.2, we obtain
¥, — 0 weakly in II' and strongly in L%

Since

/Q IV (4 — €202
- /Q (A — E0,)) (10 — E00)
= /Q({famfbn} - gZ{am bn} + 2V(€2)V9@n + (Agz)@n)(¢n - 529%)

- /Q (bt €} 1 a0 (€. b} + 29 (€)Y + (AE)00) (b — E20,)

ClUIball2 + lanll2) (IVoallz + I Vanll2) E]lor 4n — €@l
+IElEllenllzllvn = Ealla + 1ENE NIV @all2lltn — €% @nll2],
and ©,, 1,, a, and b, tend to 0 strongly in L?, we deduce that

Tim [V (1, — €5, 2 = 0.

IN

Hence, we obtain

GOIIV(Eenlll2 +o(1) < S IV (Ean)ll3 + [V (€ba)13),

N | —

le.

G(Q)\//(f“lvﬁpnl2 +2VEV e, + @i [ VE?) + (1)

< 5 CUTBE + ITaf) + 2VE(Tar+ V) + V(e +82).

Passing to the limit as n — oo, there holds

G(Q), //54dy < /52@, Ve € C2(RY). (7.4)
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By approximation, therefore,
G(Q)/v(E) < u(F) (F C R E Borel). (7.5)

Let © be a open domain containing Q. Clearly, we have

v(Q) < liminf v, (Q) = 1.

n—0oo

On the other hand, we obtain

v(Q) > limsup v, () = 1.
n—0oo

Hence, v(2) = 1. With the same argument, we deduce that ;(2) = G(9).
Now, let A be a Borel set contained in . It follows from (7.5) that

G(Q)\/r(A) < p(A) and G(Q)4/v(Q\ A) < u(Q\ A).
Or, v(2) = 1 and u(Q) = G(Q). Therefore, we deduce that
v(A) = p(A) =0or v(Q\ A) = u(Q\ A) =0.
Then we conclude the result. O

Proof. (of Theorem 6.1 completed). Suppose first that 2 is a disc. Applying
Lemma 7.4, we deduce that

W(B(0,1) > i sup (B0, 1)) > 6(r) > 0.
Using Lemma 7.5, we conclude that
p=0p and v = G(2)dy.

Choose ¢ € C§°(R?) such that 0 < ¢ < 1 and &lB(o,) = 1 with r < 1. Setting
an, = a, and b, = &b, denote by ¢,, the unique solution of (1.1) for a = a,
and b = b,. Therefore, going back to (7.3), we obtain

IVan|ls = [[Van[ls + o(1),
[Vbnllo = [[Vba]l2 + o(1),
IV@nllz = IVenll2 + o(1).

This implies that (@,, b,, @,) is also a minimizing sequence. Or, @, b, € H,
we infer

Fla,, by, Q) > inf  F(a,b,Q) > V2G(Q) > G(Q).

a,beVnH}

This contradiction completes the proof of the first part. Now, let € be
multiply connected. We know that we can not minimize the energy F.
Therefore, with the same arguments as above, we establish the result. [J

REMARK 7.6. For any compact Riemann surface without boundary, we have
the same result that in Theorem 7.1 and Lemmas 7.4 to 7.5.
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8. PROOF OF THEOREM 6.3
Consider the energy functional F; on M and the energy level sets
Ey = {(a,b) € M; Fi(a,b) <~}

A simple calculation leads to

DFi(a,b)(a, B) = /QVa-Voe—l—Vb-Vﬂ

1 2 2
3] Va4 9] ety + ofa ), (8.0

for all @, 8 € HY(Q). First, we introduce a result which is essential in our
proof of Theorem 6.3.

LEMMA 8.1. (see [7]). Let w € L} (R*R?) be such that

loc

Aw = 2w, Aw,, on R, (8.2)

and
|Vw|? < occ. (8.3)
R2
Then w has precisely the form
P (Z))
w=m +C, 8.4
(565 =

where © : C — S? denotes stereographic projection, P, ) are polynomials
and C' is a constant. In addition,

/ |Vw|? = 87 Maz{degP, degQ}.
R2

Let {(an,b,) }nen € M be a Palais-Smale sequence such that
Fi(an,b,) = C € (G(Q),V2G(Q)), DFi(an,b,) = 0, as n — co.  (8.5)

By the boundedness of (a,, b, ¢,) where ¢, is a solution of (1.1) for a = a,
and b = b, there exists a, b, ¢ € H'(Q) such that, modulo a subsequence,

an — a,b, = b, p, = @, in H'(Q).
Applying the Rellich’s theorem, we have also
ay — a,b, — b, @, — p, in L?(Q).

Fix o, § € C*(Q). From (8.1) and (8.5), it follows that

DFi(ay,b,)(a,5) = /Van-Va—l—Vbn-Vﬂ
Q

1
- —(/ VanQ + Vbn2)(/ {bn, on}t + Blpn, an})
2 Q Q
= of1).
Lemma 7.2 implies

/Va-Voe—l—/Vﬁ-Vb—C/oe{b,cp}—C/ﬁ{cp,a}:0,
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that is,
—Aa=C{b,¢}, inQ
-Ab=C in Q
o0 9b {¢,a}, in (8.6)
a—n = a—n = 07 on 897
On the other hand, (a, b, ¢) satisfies (1.1). Thus,
— | ala
D e T o
= .
/a{bwp} —/@A@ Vel
Similarly,
VoI5
= . (8.8)
IVell3

Set @, = a, — a, IN)n =b, — bNand Pn = pn — . Denote by 1, the solution
of (1.1) for @« = @, and b = b,. Similarly to the proof of Theorem 7.1, we
deduce that

IV(@n = ¥n)llz2 = o(1).
Set p, = %(|V&n|2—|—|VI~)n|2)dw and v, = |V, |*dz. Then {u,} and {v,,} are
bounded in M(R?). Modulo a subsequence, we may assume that p, — p,
v, — v weakly in the sense of measures where y and v are bounded non-
negative measures on R2. It is clear that p(R?\ Q) = v(R?\ Q) = 0. Fix
¢ € C5°(R?). Recall (8.5), we have

DFl(anv )(fan,fb ) ( )

which implies

[ Ven-Vi€a) - ¢ [ oufgan b = o),

(8.9)
[ 0856 - € [ oufanéha = o).
Using the equation (8.6), we get the following equalities
[ve-vica) =c [ e,
(8.10)

/Vb-V(ngn) = C/c,o{a,fl;n}.
Combining (8.9) and (8.10), we deduce that
[V V(€)= € [ udin, b + Gul€in b} + olin, b} = o),
[ V096 = € [ Gl b+ Euda b + ol il = o).
Applying Lemma 7.2, we obtain

[avar-c [efgandy = o,
Jawip=c [eand) = o).
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Consequently,

3 [vaf + 1902 = ¢ [y +o),
since

/@ﬂ&mﬁ}' u/&%mmb}+0 /&%A¢m+d)
= [€96. Voutolt) = [ €6+ o)

and
[ eutan b = [vunl+ o).
Thus, we conclude that
p=_Cuv. (8.11)

With the same arguments that in the proof of Lemma 7.5 and Theorem 6.1,
we deduce that

V() < —up(E) (E CQ, E borel ),
1 (8.12)

w(E) (2 CC Q, E borel ).

Thus, it follows from (8.11) and (8.12) that if v(£) # 0, then

v(l) > %(E C Q) and v(L) >1(F CCQ).

Hence, there exists g € 92 and A > % such that
V= Ay,
since #(Q) < 1. On the other hand, from (8.7) and (8.8), we have
(76l + 1V

A% = >— if ||V 0

Or,
L= [Vl = IVEall3 + [IVell3 + o(1).
This leads to
p=0or vr=0.

For the case v = 0, in view of (8.11), we have p = 0. Therefore, (a,,b,) is
compact in M.

For the case ¢ = 0, then from (8.7) and (8.8), we have ¢« = b = 0. So
we have v(Q) = 1. From (8.11), it follows that v = §,, and g = C§,, for
some xg € JQ. Notice that our problem is invariant under the conformal
mapping. Without loss of generality, we can assume Q = D\ |J_, Q; where
Q; is a simply connected domain verifying Q; C D and suppose that zq €
dD. Choose a function ¢ € C§°(R?\ U, Q) such that £sp = 1. Let
(dp, by) = (82, &0y wwhere e, is a constant such that (@,,b,) € M. So

en ' en
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(@p,b,) can be extended to D. Obviously, modulo a subsequence, we can
assume that
a, = 0and b, — 0, strongly in L*(D) and weakly in H'(D),
T(Va,|* +|Vb,|?)de — Cb,,  in M(R?).
Moreover, it is easy to check that (a,,b,) is a Palais-Smale sequence for
Q = D. Now, we can choose a sequence of Mébius transformations {0, },exn
such that

/ |Va, o0,|? 4 |Vb, 0 0,]* > e, for some gy > 0,
B(0,3)

since we can use the same arguments as in the proof of Lemma 7.4. We
repeat the above procedure so that (a, o o,,b, o ¢,) is compact in M for
Q = D. Let 9, be a solution of (1.1) for a = @, o o, and b = b, o 7, with
Q= D. Assume that

(@p, 00,0, 00,,10,) — (a,b,¢), in Hl(D).
Thus, u = (v/Ca,/Cb,Cp) is a solution of (6.1). We consider the following

extension of u to all of R?
u(z) in D,
ﬂ(z) = z z z . 9
— b(— — R\ D.
(VOu ) VO Do) R
Hence, @ is a solution of (6.1). By Lemma 8.1, we obtain

HVUH%Q(D) = 167k, for some k € N*.
Observing that ||[VCVa|2 = |[VCVb|2 = [|CV¢|2 and |Vellz = 1, we

deduce:
C= 16;’“ _VEG(Q) ¢ (G(Q), VAG(Q)).

Therefore, this contradiction completes the proof of Theorem 6.3.

9. PROOF OF THEOREM 6.4

In this section, arguing by contradiction, we assume that F; does not
admit a critical value in (G(Q),v2G(Q)) on M. For simplicity, we consider
annular domains. Let Q@ = D\ B(0,r). We divide the proof into several
steps.

Step 1. First we show a technical lemma.

LEMMA 9.1. M is a complex C* Finsler manifold.

Proof. Let us consider a map [
I: HY Q) xHY(Q) — R
(a,b) — [ Vols,
Q

where ¢ is a solution of (1.1). Clearly, I is a smooth analytical multilinear
map and the differential of I at (a,b) is

DI(a,b)(a, ) = /Qcp{oe,b}—l—/gcp{a,ﬂ}, for all o, 3 € H' ().
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Note that M = {(a,b) € H(Q) x H'(Q),(a,b) = 1} and DI # 0 on M.
Hence, we conclude the result. O
Step 2. We show that, for sufficiently small p, E]\G;“ has the same topology
as 02 (where (G denotes GG(€2)). For this purpose, we introduce a map C'
from HY(Q2) x H1(Q) into R,

C: HY Q) xH'(Q) — R?

1
(a,b) —s —/x-(|Va|2—|-|Vb|2)dac€R2.
2G Jo

It is easy to prove that C'is continuous. We have the following result.
LEMMA 9.2. V6 > 0, 3p > 0 such that

V(a,b) € ESH dist(C(a,b),00) < 8. (9.1)

Proof. Argue by contradiction. Suppose that (9.1) is not right. Then, there
exists a sequence (ay,,b,) in M such that

dist(C'(a,b),0Q) > 6, for some § > 0,
and
Fi(an,b,) — G(Q).
By Theorem 6.1, there exists xg € 02 such that

1
Clap, b,) = %/Q x - (|Van|2 + |Vbn|2)dw — Zo.

This contradiction terminates our proof. O

The main result of this step is the following.

LEMMA 9.3. There exists g > 0 such that Yu < &g, E]\G;“ and 0¥) are of

the same homotopy type.

Proof. Set W5 = {z € R?, dist(z,d9Q) < §}. Choose a small § > 0 such that
we can define the nearest point projection P : Ws — 99, i.e.,

dist(z,09Q) = |P(z) — z|.
Clearly, P is a continuous map. In view of Lemma 9.2, we construct a

continuous map 7 for all small g > 0

EGH — 09
(a,b) — m(a,b)= P(C(a,b)).

2! 212 z+ 1tz
h=|——,—— d « =—
(@) (1+r2’1+r2) and  00e(2) L+ t2z
where = /(21)? + (22)2, t € [0, 1) and 20 = x4 + iz§. Denote o(z) = %
Now, we define another continuous map 7 from 92 to M such that

{ e(aoo,,boosy)la if 2 € 9B(0,1),
T(z) = ' '

e(aoaﬁi oa7boalm_|7t oo)lqg ifx€dB(0,r),

o

Let

where ¢ € [0,1] and e € R are well chosen such that 7(z) € E]\G;“. Using
Theorem 6.1, we deduce that Tom and Id e+, are homotopic and that o7
M

and Idsq are homotopic. Thus, Lemma 9.3 is proved. U
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E]\\{[EG whose

Step 3. We prove the existence of an embedded two-disc A in
boundary is in E]\G4 Consider the unit circle in R?

S = {z € R%Ja| = 1}.
Let

(a,b, ) = 2v/321 2v/322 V3(1—r?)

GO =N AAF ) R+ ) 2m (102 )

Note that (a,b, ) is a minimizer of I for Q@ = D. Forz € S1, 0 <t < 1
let 0, :(z) be defined as above. Set a;; = a0 0,¢|q, byt = bo o, and

Ypt = @ooz|a. We see that (ayy, byt 0p) “concentrates” at z as ¢t — 1.
Moreover, letting t — 0, we have

(ax,tva,h@ox,t) — (a,b,cp), in H'.

The set A = {(az4,by4)/z € S, ¢ € [0,1[} is a disc embedded in Fj, with
G < v < V2@, as a consequence of the following lemma.
LEMMA 9.4. Let 1, ¢ be a solution of

_A¢x,t = {ax,t7 bx,t}7 in =D \ B(07 T‘), (9 2)
Yy =0, on 0f. ’

Then, for any £ > 0, there exists n > 0 independent of t and x such that for
any r <mn

IV (Yt = )72y < &
Proof. First, we see that

—A@xﬂj = {ax7t7 bxﬂj} in D
We will decompose ¢, ; into its harmonic 8, ; and non-harmonic 1, ¢ com-
ponents

Pr,t = 01’,7,‘ + be,h

where

{ —AOQN = 07 in 97

0:¢ = ¢rt, on O (9-3)

Hence, for any € > 0, there exists n > 0 such that for any r < 7

IVowtlln2Bor) < &

since

lim diam(o,(B(0,r))) = 0.

r—0
Set 6, = 0,+(r22/|2[%). Thus, 6, is harmonic in Q = B(0,r)\ B(0,r?).
Choose ¢ € C5°(R?\ B(0,7%)) such that B0, 0\B(O,r/2) = 1 and [VE] < %.

So, we have

IN

_ 4 _
IV(E(@wt — N2 (B(0)) IV @aillize o) + e = 2llzsor)

IN

ClIVerillr2B0.r)
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where @ :][ @z, Consequently,
B(0,r)

V0ol 2 BoanBo) = IV0eillz2B0.)\B0,2)
< V(e — @) llz2B0r)
< ClIVerillrz o < Ce.

Hence, we get the result. O

Hence, we deduce that, for r < 7, A is embedded in E},, for y < G +¢.

Step 4. Conclusion. By the deformation lemma, for any v € (G, v2G)
there exists a continuous flow W : £, x [0,1] — E}, such that

U(u,0) = u, for all u € £},
(1) € Byt
U(u,t) = u, for all u € E]\G;“,

where 4 > G+pu. Thus, by Step 3, we can define the map & : S1x[0,1] — 99,
given by
h(z,t) = ﬂ-(q}((al’ﬂfv bl’ﬂf)v 1),
then it is continuous and satisfies
h(z,0) = 7 (¥((a,b),1)) =: 20 € 9Q for all € ST,
h(z,1) == for all z € St

Hence, & is a contraction of S' in €. This contradicts our assumptions.
Thus, Theorem 6.4 is proved.

10. SOME EXTENSIONS

In this section, we study the properties of a solution of the incomplete H-
system, i.e., a solution of equation (6.1). We remark first that a conformal
covering map of a sphere is such a solution. But these solutions are not
interesting, from a geometric point of view. Hence one difficulty for our
approach to the construction of H-tori is that there are holomorphic maps
from a torus T into a sphere of arbitrary degrees > 2. However, we expect
that we may find a non-trivial solution for H-system. And, we will give here
a criterion.

Let (N, g) be a compact orientable smooth Riemannian surface without
boundary. Given a,b € H'(N,R), we define

{a,b} = *(da A db),
where * is the Hodge operator associated to g. We consider the following
equation, called H-system,
ANy ={a,b} on N,
ANga={b,p} on N, (10.1)
Agb={¢p,a} on N,

where v = (a,b,¢) € C*(N,R?% and A, is Laplacian operator associated
to g. This equation is of variational type associated to a energy functional
arising from the generalized Wente’s inequality on a manifold as above (see
also [15]). In isothermal charts, it follows from (10.1)

—Au = uz ANuyon N. (10.2)
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If w maps N into a sphere, then u is also a harmonic map. J. Eells and J.C.
Wood have shown the following useful result for a harmonic map.

LeMMA 10.1. Let X and Y be closed orientable smooth surfaces and ¢ :
X =Y be a smooth map. If v is a harmonic map relative to Riemannian
metrics g and h, and if

e(X)+ |dye(Y)] > 0, (10.3)
then o is holomorphic or anti-holomorphic relative to the complex structures
determinated by g and h.

Here e(X) =2 — 2p and e(Y) = 2 — 2¢ denote Euler characteristics, and
d, is the degree of . With the help of this result, we have the following:

THEOREM 10.2. Let N be a Riemannian surface with a genus p = 0 or 1.
Assume that u is a solution of (10.2) and uw maps N into a sphere. Then,
there exists k € N such that

32km

IVallz = [[Vollz = [[Vell2 = 4/ —— (10.4)

Proof. Suppose v : N — 5, where S is a sphere. Note first that u is a
harmonic map. It is clear that

HVaH%:/ adb/\dcp:/ d(ab)/\dcp—/ bda/\dcp:/ bdp Nda = ||Vb||3.
N N N N

Similarly, we obtain

IVall3 = IVell3.
Case 1: N is simply connected.  Clearly, it follows from Lemma 8.1 and
the fact that N is conformal to S2.
Case 2: the genus of N is equal to 1.  Assume u is not a constant map. We
claim that deg(u) # 0. Indeed, assuming that «(N) C dB(0,r) and by the
properties of degree, we have

deg(u) = ﬁ

/ 0
9B(0,r)

where Q = L(z'da? A da® — 2%da’ A da® + 23da’ A da?) is the element of
volume on the sphere dB(0,r). Hence, from equation (10.1), it follows

drrideg(u) = / adb A\ do — bda A dp + @da N db
N
= IVall3 + [IVBlI + IVell3 = 3 Vall3.
Now, applying Lemma 10.1 and using e(M) = 0 and e(0B(0,r)) = 2, we de-
duce that u is a conformal map. Suppose that zp is a branch-point. Thanks

of Hartman’s and Wintner’s result (see [14] and [16]), there exist n € N*
and ¢ € C* \ {0} such that

d.u=c(z— 2)" +o((z— 20)"),
where 9. = (8, — 19,). This implies that the branch-point is isolated.
Recalling (10.1), we conclude that u(N) is a sphere with radius equal to 2.
Therefore, by using (10.5), (10.4) is proved. Moreover, we have k =deg(u).
O
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With the same method, we have the following general result.
THEOREM 10.3. Under the above assumptions and supposing that N is a
Riemannian surface with a genus p > 1, then we have that either
32deg(u)m
3
32deg(u)m
3

(i) [[Vallz = [[Vb]ls = IVl =

or

(ii) [[Valls = [[VO]ls = [[Vell2 >

s Jor deg(u) = p,

, for deg(u) < p.

Proof. 1t is easy to check that
(IVuf?)? = [Hopf(u) |+ (2l A uy ),
where Hopf(u) = |uz|? — |uy|* + 2¢{uz, uy). From (10.1), it follows that
[Hopf(u) [ = (2 — 4)[uz A 12,

since u is harmonic, i.e.,

NEETE
Thus,

r > 2.

Using (10.5), we terminate the proof. O

COROLLARY 10.4. Let u be a solution of (10.1) on a torus obtained by The-
orem 6.4. Then, u is not a covering map of a sphere.

Now, return to equation (6.1). Let © be an annulus. We know that for
each solution of (6.1) satisfying the boundary condition (6.2), there exists
¢ € R such that

(O.u,0.u) = —. (10.6)

52
Here we study the branch-points. Set P = {(z,y) € Q, rank(Vu(z,y)) <
1}. So we have the following result.

THEOREM 10.5. Under the above assumptions we have
H(P) < oo,
where H' designates the 1-dimensional Hausdorff measure.

Proof. Set H = zu, 4+ yu, and J = yu, — zu,. Hence, we obtain

(H,J) = wy((uy, uy) = (ues we)) + (27 = y?)(ua, uy)
= —2Im(2%(d.u, 0. u)).

It follows from (10.6) that H and J are orthogonal.

Case 1: ¢ =0. Thus, u is a conformal map. By Hartman’s and Wintner’s
result on real-valued vector functions, we conclude that a branch-point is
isolated.

Case 2: ¢# 0. By definition, we have

Hy, = up + vy, + YUgy, Hy = Uy + TUgy + YUyy-
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Assume that 29 # 0 and H (¢, yo) = 0. Hence, using (10.1), we deduce

—AH = 2Au—z2(Au); — y(Au),
= 2uy Aty + 2 (g A Uy) e + y(ug A ty)y

= (2uy A ty)y + (Yug A ty)y
Yy
:(HAuwx+(5HAuwy

Therefore, by Hartman’s and Wintner’s result, there exist n € N* and ¢ €

C® \ {0} such that

lim H.27" = ¢,
z2—0

which implies that there exists some neighborhood V' of (zg, yo) such that
HU (VN {(z,y), H(z,y) = 0}) < co

Now let yo # 0 and J(zo,y0) = 0. With the same arguments, there exists
some neighborhood V' of (2¢, yo) such that

H (V' 0 {(2,y), J (2, y) = 0}) < co
Hence, we prove Theorem 10.5. U

The author thanks Professor Frédéric Hélein who brought this problem
to him and for his constant support and many suggestions. The author is
grateful to Dong Ye and Tristan Riviere for their helpful discussions.
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